WO2020075538A1 - 吸収液再生装置及びこれを備えたco2回収装置並びに吸収液再生方法 - Google Patents

吸収液再生装置及びこれを備えたco2回収装置並びに吸収液再生方法 Download PDF

Info

Publication number
WO2020075538A1
WO2020075538A1 PCT/JP2019/038274 JP2019038274W WO2020075538A1 WO 2020075538 A1 WO2020075538 A1 WO 2020075538A1 JP 2019038274 W JP2019038274 W JP 2019038274W WO 2020075538 A1 WO2020075538 A1 WO 2020075538A1
Authority
WO
WIPO (PCT)
Prior art keywords
cleaning
cleaning liquid
gas
liquid
absorbent
Prior art date
Application number
PCT/JP2019/038274
Other languages
English (en)
French (fr)
Inventor
修 宮本
上條 孝
達也 辻内
Original Assignee
三菱重工エンジニアリング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工エンジニアリング株式会社 filed Critical 三菱重工エンジニアリング株式会社
Priority to JP2020550399A priority Critical patent/JP7171753B2/ja
Priority to EP19872002.1A priority patent/EP3838379A4/en
Priority to AU2019356719A priority patent/AU2019356719B2/en
Priority to CA3114746A priority patent/CA3114746C/en
Publication of WO2020075538A1 publication Critical patent/WO2020075538A1/ja
Priority to JP2022175221A priority patent/JP7361182B2/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1425Regeneration of liquid absorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1418Recovery of products
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • B01D53/1456Removing acid components
    • B01D53/1475Removing carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/265Drying gases or vapours by refrigeration (condensation)
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/77Liquid phase processes
    • B01D53/78Liquid phase processes with gas-liquid contact
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/96Regeneration, reactivation or recycling of reactants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/304Alkali metal compounds of sodium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/30Alkali metal compounds
    • B01D2251/306Alkali metal compounds of potassium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/60Inorganic bases or salts
    • B01D2251/604Hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20405Monoamines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • B01D2252/20484Alkanolamines with one hydroxyl group
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2252/00Absorbents, i.e. solvents and liquid materials for gas absorption
    • B01D2252/20Organic absorbents
    • B01D2252/204Amines
    • B01D2252/20478Alkanolamines
    • B01D2252/20489Alkanolamines with two or more hydroxyl groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2256/00Main component in the product gas stream after treatment
    • B01D2256/22Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present disclosure relates to an absorbent regenerator, a CO 2 recovery apparatus including the same, and an absorbent regenerator.
  • Patent Document 1 describes a CO 2 recovery system configured to regenerate a CO 2 absorbing liquid after absorbing CO 2 in exhaust gas in an absorption tower.
  • the CO 2 absorbing liquid introduced from the absorption tower to the regeneration tower releases a gas containing CO 2 by being heated with steam in the regeneration tower, Is played.
  • the released gas is separated into CO 2 gas and reflux water in the reflux water drum.
  • the CO 2 gas discharged from the reflux water drum is guided to a separator via a compressor and a cooler, and is separated into CO 2 gas and condensed water containing a trace amount of CO 2 absorbent, Of these, condensed water is supplied to the bottom of the regeneration tower.
  • the carry-out of the CO 2 absorbent to the outside of the system is suppressed, and the CO 2 absorbent can be effectively regenerated.
  • the gas phase portion of the reflux water drum contains a CO 2 absorbent corresponding to the vapor pressure, and therefore, even on the downstream side of the reflux water drum, An amount of CO 2 absorbent will be present in the gas phase. Therefore, it may be difficult to maintain the concentration of the CO 2 absorbent in the product CO 2 finally obtained by the CO 2 recovery system at a reference value or less.
  • some embodiments of the present invention provide an absorbent regenerator and an absorbent regenerating method capable of effectively suppressing the carry-out of the CO 2 absorbent out of the system. To aim.
  • the absorbent regenerator is A regeneration tower for regenerating the CO 2 absorbent, A reflux water drum configured to separate the gas discharged from the regeneration tower into CO 2 gas and condensed water, and reflux the condensed water to the regeneration tower;
  • the gas phase portion of the reflux water drum, or provided in the CO 2 gas flows CO 2 stream path which flows out from the gas phase, the CO 2 absorbing agent contained in the CO 2 gas to remove the washing liquid
  • a cleaning unit configured in With The cleaning liquid is characterized in that the concentration of the CO 2 absorbent is lower than that of the condensed water stored in the liquid phase portion of the reflux water drum.
  • the cleaning unit that cleans the CO 2 gas separated by the reflux water drum with the cleaning liquid to remove the CO 2 absorbent is provided. Further, the cleaning liquid used in the cleaning unit has a lower concentration of CO 2 absorbent than the condensed water stored in the reflux water drum. Therefore, the CO 2 absorbing agent contained in the CO 2 gas can be effectively dissolve in the cleaning solution. Therefore, it is possible to effectively prevent the CO 2 absorbent from being taken out of the system. Furthermore, the concentration of CO 2 absorbent in the finally obtained product CO 2 can be reduced.
  • the cleaning section is provided in the gas phase section of the reflux water drum,
  • the absorbent regenerator is A cleaning liquid supply unit configured to supply the cleaning liquid to the cleaning unit in the vapor phase portion of the reflux water drum is provided.
  • the absorbent regenerator is A tray that is arranged below the cleaning unit in the vapor phase part of the reflux water drum and is configured to store the cleaning liquid from the cleaning unit; A circulation line for circulating the cleaning liquid stored in the tray to the cleaning liquid supply unit, Is provided.
  • the cleaning liquid used in the cleaning section can be received by the tray provided below the cleaning section. Then, the cleaning liquid stored in the tray is circulated to the cleaning liquid supply unit by the circulation line and can be reused. As a result, it is possible to effectively suppress the carry-out of the CO 2 absorbent out of the system based on the principle described in (1) above while effectively reusing the cleaning liquid.
  • the absorbent regenerator is A washing drum provided separately from the reflux water drum on the CO 2 flow path,
  • the cleaning unit is provided in the cleaning drum, above the liquid pool of the cleaning liquid formed in the lower portion of the cleaning drum.
  • a cleaning liquid supply unit configured to supply the cleaning liquid to the cleaning unit in the cleaning drum is provided.
  • the cleaning unit is provided in the cleaning drum provided separately from the reflux water drum, so that the CO 2 gas and the cleaning liquid come into gas-liquid contact with each other to remove the residual CO 2 absorbent. It is possible to secure a sufficient volume of the cleaning section. Therefore, based on the principle described in (1) above, it is possible to more effectively suppress the carry-out of the CO 2 absorbent from the system.
  • the absorbent regenerator is A circulation line for circulating the cleaning liquid stored in the liquid reservoir to the cleaning liquid supply unit is provided.
  • the cleaning liquid stored in the liquid reservoir can be circulated to the cleaning liquid supply unit by the circulation line and reused for cleaning CO 2 gas in the cleaning unit.
  • the circulation line and reused for cleaning CO 2 gas in the cleaning unit.
  • the absorbent regenerator is A compressor provided on the CO 2 flow path for compressing the CO 2 gas; A first cleaning liquid line configured to guide compressor condensed water that is condensed water generated on the downstream side of the compressor on the CO 2 flow path toward the cleaning unit as the cleaning liquid; Is provided.
  • compressor condensed water is used as the cleaning liquid.
  • the absorbent regenerator is A compressor condensed water drum for storing the compressor condensed water separated from the CO 2 gas, located on the downstream side of the compressor on the CO 2 flow path,
  • the first cleaning liquid line is configured to guide the compressor condensed water in the compressor condensed water drum as the cleaning liquid toward the cleaning unit.
  • the compressor condensed water stored in the compressor condensed water drum is used as the cleaning liquid.
  • a second cleaning liquid line configured to guide pure water as the cleaning liquid toward the cleaning unit is provided.
  • a second cleaning liquid line configured to guide pure water as the cleaning liquid toward the cleaning unit;
  • a line switching unit configured to select the cleaning liquid supply line so that the cleaning liquid from at least one of the first cleaning liquid line and the second cleaning liquid line is guided to the cleaning unit; Is provided.
  • the cleaning liquid to be used can be selected from the compressor condensed water, the pure water, or the mixed water thereof by the line switching unit.
  • the compressor condensed water when the compressor condensed water is suitable for cleaning, by preferentially using the compressor condensed water, the CO 2 gas can be efficiently cleaned by using the resources in the absorbent regenerator system.
  • the residual CO 2 absorbent concentration of the product CO 2 when the CO 2 absorbent concentration of the compressor condensed water becomes high and it becomes unsuitable for cleaning CO 2 gas, pure water can be used as the cleaning liquid. Therefore, by appropriately selecting the cleaning liquid to be used by the line switching unit, it is possible to effectively utilize the resources in the absorbent regenerator system and effectively suppress the carry-out of the CO 2 absorbent out of the system.
  • the CO 2 recovery device is An absorption tower that removes the CO 2 gas by contacting the CO 2 absorbent with exhaust gas; An absorbent regenerator according to any one of (1) to (9) above; Is provided.
  • the absorption liquid regenerating method comprises: Regenerating the CO 2 absorbing liquid in the regeneration tower, Leading the gas discharged from the regeneration tower to a reflux water drum, and separating CO 2 gas and condensed water in the reflux water drum; Gas phase portion of the reflux water drum, or, in the cleaning unit provided in the CO 2 gas flows CO 2 stream path which flows out from the gas phase, the CO 2 gas in contact with the cleaning liquid, the CO 2 Removing the CO 2 absorbent contained in the gas; With The cleaning liquid is characterized in that the concentration of the CO 2 absorbent is lower than that of the condensed water stored in the liquid phase portion of the reflux water drum.
  • the step of cleaning the CO 2 gas separated by the reflux water drum with the cleaning liquid to remove the CO 2 absorbent is provided.
  • the cleaning liquid used in the cleaning unit has a lower concentration of CO 2 absorbent than the condensed water stored in the reflux water drum. Therefore, the CO 2 absorbing agent contained in the CO 2 gas can be effectively dissolve in the cleaning solution. Therefore, it is possible to effectively prevent the CO 2 absorbent from being taken out of the system. Furthermore, the concentration of CO 2 absorbent in the finally obtained product CO 2 can be reduced.
  • the cleaning section is provided in the gas phase section of the reflux water drum,
  • the method further comprises the step of supplying the cleaning liquid to the cleaning unit from a cleaning liquid supply unit located above the cleaning unit in the vapor phase portion of the reflux water drum.
  • the cleaning liquid supply unit is above the cleaning unit, the CO 2 gas and the cleaning liquid can be brought into gas-liquid contact in the cleaning unit. Furthermore, by providing the washing section in the reflux water drum, the washing section can be installed in a small space. Therefore, based on the principle described in (11) above, it is possible to effectively suppress the carry-out of the CO 2 absorbent from the system while realizing space saving.
  • the cleaning liquid used in the cleaning unit can be received by the tray provided below the cleaning unit. Then, the cleaning liquid stored in the tray is circulated to the cleaning liquid supply unit by the circulation line and can be reused. As a result, it is possible to effectively prevent the CO 2 absorbent from being taken out of the system based on the principle described in (11) above while effectively reusing the cleaning liquid.
  • the compressor condensed water in the compressor condensed water drum is used as the cleaning liquid.
  • the cleaning liquid to be used can be selected from the compressor condensed water, the pure water, or the mixed water thereof by the line switching unit.
  • the compressor condensed water when the compressor condensed water is suitable for cleaning, by preferentially using the compressor condensed water, the CO 2 gas can be efficiently cleaned by using the resources in the absorbent regenerator system.
  • the residual CO 2 absorbent concentration of the product CO 2 when the CO 2 absorbent concentration of the compressor condensed water becomes high and it becomes unsuitable for cleaning CO 2 gas, pure water can be used as the cleaning liquid. Therefore, by appropriately selecting the cleaning liquid to be used by the line switching unit, it is possible to effectively utilize the resources in the absorbent regenerator system and effectively suppress the carry-out of the CO 2 absorbent out of the system.
  • Cleaning unit reflux water drum is a schematic diagram showing the structure of a CO 2 recovery apparatus according to an embodiment of the present invention provided.
  • FIG. 6 is a schematic diagram showing a configuration of a CO 2 recovery device according to another embodiment of the present invention in which a circulating water drum is provided with a cleaning unit and a circulation line.
  • Cleaning unit to the cleaning drum is a schematic diagram showing a structure of a CO 2 recovery apparatus according to an embodiment of the present invention provided.
  • FIG. 6 is a schematic diagram showing a configuration of a CO 2 recovery device according to another embodiment of the present invention in which a cleaning unit and a circulation line are provided in a cleaning drum.
  • FIG. 3 is an enlarged schematic view of a reflux section of the regeneration tower according to the embodiment of the present invention.
  • FIG. 1 is a schematic diagram showing a configuration of a CO 2 recovery device 400A according to an embodiment of the present invention in which a reflux water drum 100A is provided with a cleaning unit 200A.
  • FIG. 2 is a schematic diagram showing the configuration of a CO 2 recovery device 400B according to another embodiment of the present invention, in which the washing section 200B and the circulation line 206B are provided in the reflux water drum 100B.
  • FIG. 3 is a schematic diagram showing a configuration of a CO 2 recovery device 400C according to an embodiment of the present invention in which a cleaning unit 200C is provided on a cleaning drum 250C.
  • FIG. 1 is a schematic diagram showing a configuration of a CO 2 recovery device 400A according to an embodiment of the present invention in which a reflux water drum 100A is provided with a cleaning unit 200A.
  • FIG. 2 is a schematic diagram showing the configuration of a CO 2 recovery device 400B according to another embodiment of the present invention, in which the washing section 200B and the circulation line 206B are provided in the reflux water drum
  • FIG. 4 is a schematic diagram showing a configuration of a CO 2 recovery device 400D according to another embodiment of the present invention in which a cleaning unit 200D and a circulation line 206D are provided on a cleaning drum 250D.
  • FIG. 5 is a schematic diagram showing the configuration of a CO 2 recovery device 400E according to an embodiment of the present invention in which a cleaning unit 200E is provided on the compressor condensed water drum 150E.
  • FIG. 6 is an enlarged schematic view of the reflux section 80 of the regeneration tower 50 according to the embodiment of the present invention.
  • the CO 2 recovery devices 400A, 400B, 400C, 400D, 400E may be collectively referred to as the CO 2 recovery device 400.
  • the CO 2 recovery device 400 includes an absorption tower 1 and a CO 2 absorbing liquid 300 that absorbs CO 2 gas (rich absorbing liquid 302 described later). And an absorption liquid regenerator 450 for regenerating the liquid.
  • the CO 2 recovery device 400 has a function of bringing the exhaust gas 500 discharged from a factory or the like and the CO 2 absorbing liquid 300 into gas-liquid contact in the absorption tower 1 to recover the CO 2 gas in the exhaust gas 500.
  • CO 2 CO 2 absorbing solution 300 having absorbed gas (rich absorbing liquid 302) is guided to the absorbent solution regeneration device 450.
  • Absorbing solution regeneration device 450 the CO 2 absorbing solution 300 that has absorbed CO 2 gas (rich absorbing liquid 302) and to release CO 2 gas, a regeneration tower 50 for playing for reuse the CO 2 absorbing solution 300 And a reflux water drum 100 configured to separate the gas discharged from the regeneration tower 50 into CO 2 gas and condensed water 310 and to recirculate the condensed water 310 to the regeneration tower 50.
  • the CO 2 gas released from the absorbent regenerator 450 is compressed and cooled, and the compressor condensed water 320 is removed from the compressor condensed water drum 150.
  • the compression and cooling of the CO 2 gas may be repeated in multiple stages, and the compressor condensed water 320 may be removed by the compressor condensed water drum 150 each time.
  • the CO 2 gas that has been subjected to one or more compression steps and cooling steps is taken out of the system as a product CO 2 1000.
  • the absorption tower 1, washed with water and absorbing portion 10 that absorbs CO 2 gas in the exhaust gas 500 is provided above the absorber 10, the exhaust gas 500 after the CO 2 gas is removed
  • the water washing section 20 and the mist eliminator 7 provided above the water washing section 20 for removing mist in the exhaust gas 500 are provided.
  • the exhaust gas 500 flows into the absorption tower 1 from below the absorber 10 on the tower bottom 3 side of the absorption tower 1.
  • the exhaust gas 500 flows upward in the absorption tower 1 from the tower bottom 3 side of the absorption tower 1 and flows into the absorption section 10.
  • Absorbing unit 10 the CO 2 absorbing solution 300 containing CO 2 absorbent and the gas-liquid contact portion 11 for contacting the exhaust gas 500, and a CO 2 absorbing solution supply unit 12 provided above the gas-liquid contact section 11 Including.
  • the exhaust gas 500 makes counter-current contact with the CO 2 absorbing liquid 300 supplied from above by the CO 2 absorbing liquid supply unit 12 in the gas-liquid contact unit 11.
  • the gas-liquid contact portion 11 is not particularly limited as long as it promotes gas-liquid contact between the CO 2 absorbing liquid 300 and the exhaust gas 500, but is formed of, for example, a filling layer filled with a filling material of an arbitrary material. It may be configured by one or more trays.
  • the type of CO 2 absorbent contained in the CO 2 absorbent 300 is not particularly limited, but for example, other than amines such as alkanolamines represented by monoethanolamine and diethanolamine, and amines such as sodium hydroxide, potassium hydroxide and calcium hydroxide.
  • amines such as alkanolamines represented by monoethanolamine and diethanolamine
  • amines such as sodium hydroxide, potassium hydroxide and calcium hydroxide.
  • alkaline aqueous solutions can be used.
  • the CO 2 gas in the exhaust gas 500 is absorbed by the CO 2 absorbing liquid 300 by the reaction in the gas-liquid contact portion 11.
  • the CO 2 gas absorption reaction is represented by the reaction formula of R—NH 2 + H 2 O + CO 2 ⁇ R—NH 3 HCO 3 .
  • R—NH 2 + H 2 O + CO 2 ⁇ R—NH 3 HCO 3 the reaction formula of R—NH 2 + H 2 O + CO 2 ⁇ R—NH 3 HCO 3 .
  • the CO 2 absorbing liquid 300 that has reacted with the CO 2 gas in the exhaust gas 500 in the gas-liquid contact portion 11 falls to the tower bottom portion 3 of the absorption tower 1 and is stored in the tower bottom portion 3.
  • the CO 2 absorbing liquid 300 stored in the tower bottom portion 3 of the absorption tower 1 is referred to as a rich absorbing liquid 302.
  • the rich absorbent 302 contains a large amount of CO 2 gas absorbed from the exhaust gas 500.
  • the exhaust gas 500 after the CO 2 gas is removed by the contact with the CO 2 absorbing liquid 300 in the gas-liquid contact portion 11 further rises in the absorption tower 1 toward the tower top 5.
  • the exhaust gas 500 after passing through the gas-liquid contact portion 11 contains a CO 2 absorbent due to the saturated vapor pressure relationship at the temperature of the exhaust gas 500. Therefore, in order to collect the CO 2 absorbent contained in the exhaust gas 500 after passing through the gas-liquid contact portion 11, the exhaust gas 500 may be washed with water in the water washing portion 20 located above the absorption portion 10.
  • the water washing section 20 includes a gas-liquid contact section 21, a wash water supply section 22 for supplying wash water 24 from above the gas-liquid contact section 21, and a chimney tray 26 provided below the gas-liquid contact section 21. including.
  • the exhaust gas 500 passes through the absorption unit 10 and then rises to the gas-liquid contact unit 21 via the opening of the chimney tray 26.
  • the chimney tray 26 is configured to allow gas to pass through from the bottom to the top through the opening, but not allow liquid to pass from the top to the bottom.
  • the rising exhaust gas 500 and the cleaning water 24 supplied from the cleaning water supply section 22 are in gas-liquid contact with each other, whereby the CO 2 absorbent in the exhaust gas 500 is dissolved in the cleaning water 24.
  • the water washing unit 20 may further include a wash water circulation line 29 for circulating the wash water 24, and a wash water circulation pump 30 provided on the wash water circulation line 29.
  • the cleaning water 24 after cleaning the exhaust gas 500 falls from the gas-liquid contact portion 21 and is stored in the liquid storage portion 28 of the chimney tray 26.
  • the cleaning water 24 stored in the liquid storage section 28 is circulated by the cleaning water circulation pump 30 via the cleaning water circulation line 29, and is again supplied from the cleaning water supply section 22 toward the gas-liquid contact section 21.
  • the absorption tower 1 is provided with one stage of the water washing unit 20, but may be provided with a plurality of stages of the water washing unit 20.
  • the exhaust gas 500 from which the CO 2 absorbent has been removed in the water washing section 20 having the above configuration further rises in the absorption tower 1 toward the tower top section 5 and reaches the mist eliminator 7.
  • the mist in the exhaust gas 500 is captured by the mist eliminator 7.
  • the exhaust gas 500 from which the mist has been removed by the mist eliminator 7 is discharged from the tower top 5 of the absorption tower 1 to the outside.
  • the rich absorbent liquid 302 is supplied from the tower bottom portion 3 of the absorption tower 1 to the tower top portion 55 side of the regeneration tower 50 by the rich absorbent liquid circulation pump 42 provided in the rich absorbent liquid supply line 40. Is supplied to.
  • the regeneration tower 50 includes a release unit 70 that releases CO 2 gas from the rich absorbent 302 and a reflux unit 80 that cleans the released CO 2 gas with reflux water 312. .
  • the discharge section 70 includes a rich absorbent supply section 72 for supplying the rich absorbent 302 and a filling section 74 located below the rich absorbent supply section 72.
  • the rich absorbent liquid 302 is supplied to the filling portion 74 from above by the rich absorbent liquid supply portion 72.
  • the rich absorbing solution 302 is heated by the saturated steam 62 described later in the filling section 74, releases CO 2 gas, and becomes the lean absorbing solution 304 having a relatively low CO 2 content rate.
  • a chimney tray 76 for receiving the lean absorbent 304 is provided below the filling section 74.
  • the lean absorbent 304 received by the chimney tray 76 is guided to the regenerative heater (reboiler) 66 provided on the reboiler line 64 through the reboiler line 64.
  • the regenerative heater 66 is provided with a line 68 for supplying a heating medium (for example, saturated vapor) to the regenerative heater 66.
  • a heating medium for example, saturated vapor
  • At least a part of the lean absorbent 304 that has been heated by exchanging heat with the heating medium in the regenerative heater 66 undergoes a phase change to the saturated steam 62, and is guided to the lower part of the chimney tray 76 by the reboiler line 64 in a gas-liquid mixed state.
  • the saturated steam 62 generated by the regenerative heater 66 rises in the regenerator 50 to the filling section 74 via the chimney tray 76.
  • the lean absorption liquid 304 (lean absorption liquid 304 that has not undergone phase change in the regeneration heater 66) guided to the lower portion of the chimney tray 76 via the reboiler line 64 is stored in the column bottom portion 53 of the regeneration tower 50. .
  • the lean absorbent 304 stored in the tower bottom 53 is extracted from the lean bottom 53 of the regeneration tower 50 through the lean solution feed line 44, and is fed by the lean solution feed pump 46 to the CO 2 absorbent feed section of the absorption tower 1. Delivered to 12.
  • the lean absorption liquid 304 returned to the CO 2 absorption liquid supply unit 12 of the absorption tower 1 is reused as the CO 2 absorption liquid 300 described above.
  • the CO 2 gas released from the rich absorbing solution 302 in the release section 70 goes to the reflux section 80 provided above the release section 70 in the regeneration tower 50.
  • the reflux section 80 of the regeneration tower 50 may be provided with a plurality of trays 82a to 82d.
  • Refrigerant water 312 flows through the trays 82a to 82d of the reflux unit 80.
  • the CO 2 gas released in the release unit 70 comes into gas-liquid contact with the reflux water 312 flowing in the trays 82a to 82d of the reflux unit 80 a plurality of times (here, four times). , CO 2 absorbent is removed and washed.
  • FIG. 6 shows four trays 82a to 82d, the number of trays may be any number.
  • the CO 2 gas that has passed through the reflux portion 80 is discharged from the tower top portion 55 of the regeneration tower 50 and guided to the CO 2 gas line 90.
  • the CO 2 gas is cooled by the condenser 92 on the CO 2 gas line 90. Thereby, the water vapor in the CO 2 gas is condensed.
  • the CO 2 gas that has passed through the condenser 92 is separated into CO 2 gas and condensed water 310 in the reflux water drum 100 provided on the outlet side of the CO 2 gas line 90.
  • the condensed water 310 separated by the reflux water drum 100 is stored in the tower bottom 103 of the reflux water drum 100.
  • the condensed water 310 stored in the tower bottom 103 is fed as reflux water 312 to the reflux section 80 of the regeneration tower 50 via the reflux water feed line 94.
  • the return water 312 is sent by the return water circulation pump 96.
  • the CO 2 gas separated by the reflux water drum 100 is discharged from the tower top portion 105 of the reflux water drum 100, and goes to the post-treatment device 160.
  • Post-processing device 160 CO 2 gas supply line 162 for guiding the gas (the first gas supply line 162-1 to the n gas supply line 162-n) from the upstream side, provided on the gas supply line 162, CO 2 A compressor 164 (first compressor 164-1 to n-th compressor 164-n) that compresses gas, and a cooler 166 (the first compressor 164-1 to n-th compressor 164-n) that is provided on the gas supply line 162 downstream of the compressor 164 and cools CO 2 gas 1 condenser 166-1 to n-th condenser 166-n) and a compressor condensed water drum 150 (first compressor condensed water drum 150) which is provided on the outlet side of the gas supply line 162 and removes water in the CO 2 gas. -1 to n-th compressor condensed water drum 150-n).
  • n is an integer of 1 or more.
  • the first compressor 164-1 is provided on the most upstream side of the plurality of compressors
  • the first cooler 166-1 is provided on the most upstream side of the plurality of coolers
  • the first compressor condensed water drum 150-1 Is provided on the most upstream side of the plurality of compressor condensed water drums.
  • the CO 2 gas flowing into the aftertreatment device 160 is compressed by the compressor 164 and then cooled by the cooler 166. Thereby, the moisture contained in the CO 2 gas is condensed.
  • the step of separating this moisture by the compressor condensed water drum 150 and storing it as the compressor condensed water 320 in the tower bottom portion 153 of the compressor condensed water drum 150 is repeated n times.
  • the CO 2 gas from which water has been removed is discharged from the tower top 155 of the compressor condensed water drum 150.
  • the CO 2 gas is released from the column top 155 of the nth compressor condensed water drum 150-n and taken out as the product CO 2 1000.
  • the CO 2 absorbing liquid 300 (rich absorbing liquid 302) that has absorbed the CO 2 gas in the absorption tower 1 is regenerated in the regeneration tower 50.
  • CO 2 gas is released from the rich absorbent 302.
  • the CO 2 gas released from the rich absorbent 302 is washed in the reflux section 80, but it is difficult to completely recover the CO 2 absorbent in the reflux section 80, and the CO 2 gas contains a small amount of CO 2 absorbent.
  • the CO 2 gas containing a small amount of the CO 2 absorbent is discharged from the regeneration tower 50 and then separated into the CO 2 gas and the condensed water 310 in the reflux water drum 100. At this time, a part of the CO 2 absorbent moves to the condensed water 310 side, but the CO 2 absorbent having a saturated vapor pressure remains in the CO 2 gas in the gas phase portion of the reflux water drum 100. .
  • the absorbent regenerator 450 (450A to 450E) according to some embodiments is configured to remove residual CO 2 absorbent from the CO 2 gas separated in the reflux water drum 100.
  • the cleaning unit 200 (200A to 200E) for removing The cleaning unit 200 is provided inside the vapor phase portion of the reflux water drum 100 or on the CO 2 flow path in which the CO 2 gas flowing out from the vapor phase portion of the reflux water drum 100 flows.
  • the CO 2 gas and the cleaning liquid are brought into gas-liquid contact to remove the CO 2 absorbent contained in the CO 2 gas.
  • any liquid may be used as long as the concentration of the CO 2 absorbent is lower than that of the condensed water 310 stored in the liquid phase portion of the reflux water drum 100.
  • the cleaning liquid having a relatively low concentration of the CO 2 absorbent As described above, by cleaning the CO 2 gas using the cleaning liquid having a relatively low concentration of the CO 2 absorbent, the saturated vapor contained in the CO 2 gas after being separated from the condensed water 310 in the reflux water drum 100.
  • the pressure-dependent CO 2 absorbent can be effectively dissolved in the cleaning liquid. Therefore, it is possible to effectively prevent the CO 2 absorbent from being taken out of the system.
  • CO 2 cleaning unit 200 for cleaning the gas can be installed CO 2 gas after being separated from the condensed water 310 at the reflux water drum 100 to wash if possible, a variety of locations.
  • the cleaning unit 200 may be provided in the vapor phase part of the reflux water drum 100 (100A, 100B).
  • the absorbent regenerator 450 (450A, 450B) may include the cleaning liquid supply unit 202 (202A, 202B) for supplying the cleaning liquid to the cleaning unit 200.
  • the cleaning unit 200 (200A, 200B) may be formed by a gas-liquid contact unit located below the cleaning liquid supply unit 202.
  • the gas-liquid contact portion that constitutes the cleaning unit 200 is not particularly limited as long as it promotes gas-liquid contact, and like the gas-liquid contact portion 11 of the absorption unit 10, for example, a filling material of any material is filled.
  • It may be formed of a filled layer or may be formed of one or more trays. As described above, by providing the cleaning unit 200 (200A, 200B) in the reflux water drum 100 (100A, 100B), the space for installing the cleaning unit 200 can be reduced and the space can be saved.
  • the cleaning unit 200 (200C, 200D) has a cleaning drum 250 provided on the downstream side of the reflux water drum 100, separately from the reflux water drum 100. It may be provided in the vapor phase part of (250C, 250D).
  • the absorbent regenerator 450 (450C, 450D) includes a cleaning liquid supply unit 202 (202C, 202D) for supplying the cleaning liquid to the cleaning unit 200, and the cleaning unit 200 is located below the cleaning liquid supply unit 202. It may be formed by a gas-liquid contact portion.
  • the gas-liquid contacting unit as the cleaning unit 200 may be formed of, for example, a filling layer filled with a filling material of an arbitrary material, or may be configured by one or more trays.
  • a liquid pool 260 (260C, 260D) for storing the cleaning liquid after CO 2 gas cleaning is formed in the tower bottom 253 (253C, 253D) of the cleaning drum 250.
  • the cleaning unit 200 (200C, 200D) in the cleaning drum 250 (250C, 250D) provided separately from the reflux water drum 100 the CO 2 gas and the cleaning liquid are left in gas-liquid contact with each other. It is possible to secure a sufficient volume of the gas-liquid contact portion for removing the CO 2 absorbent.
  • the cleaning liquid stored in the liquid reservoir 260 of the cleaning drum 250 may be returned to the upstream side of the CO 2 recovery device 400 instead of being discharged to the outside of the system.
  • the cleaning liquid in the liquid reservoir 260C is fed to the reflux water drum 100C.
  • the cleaning unit 200E may be provided in the compressor condensed water drum 150E, as in the absorbent regenerator 450E shown in FIG. In the example shown in FIG. 5, the cleaning unit 200E is provided on the first compressor condensed water drum 150-1, but the cleaning unit 200E may be provided on any of the n compressor condensed water drums 150.
  • the cleaning liquid used in the cleaning unit 200 having the above configuration may be circulated to the cleaning unit 200 and can be reused, as shown in FIGS. 2 and 4.
  • the absorbent regenerator 450B includes a tray 204B provided below the cleaning unit 200B and a circulation line for circulating the cleaning liquid stored in the tray 204B to the cleaning liquid supply unit 202B. 206B and a circulation pump 208B provided on the circulation line 206B.
  • the cleaning liquid supplied from the cleaning liquid supply unit 202B to the cleaning unit 200B passes through the cleaning unit 200B and is then stored in the tray 204B below the cleaning unit 200B.
  • the cleaning liquid stored in the tray 204B is returned to the cleaning liquid supply unit 202B by the circulation pump 208B via the circulation line 206B and used again for cleaning the CO 2 gas. By circulating the cleaning liquid in this manner, the cleaning liquid can be effectively reused.
  • the absorbent regenerator 450D includes a circulation line 206D for circulating the cleaning liquid, and a circulation pump 208D provided on the circulation line 206D.
  • the cleaning liquid stored in the liquid reservoir 260D of the cleaning drum 250D is returned to the cleaning liquid supply unit 202D by the circulation pump 208D via the circulation line 206D and used again for cleaning the CO 2 gas.
  • the cleaning liquid can be effectively reused.
  • the absorbent regenerator 450 guides the compressor condensed water 320 in the compressor condensed water drum 150 toward the cleaning unit 200 as a cleaning liquid.
  • the first cleaning liquid line 810 configured as described above may be provided.
  • the first cleaning liquid line 810 guides the compressor condensed water 320 from the tower bottom 153 of the compressor condensed water drum 150 to the cleaning unit 200.
  • the compressor condensed water 320 has a lower concentration of CO 2 absorbent than the condensed water 310 stored in the liquid phase portion of the reflux water drum 100. Therefore, as described above, by providing the first cleaning liquid line 810, the compressor condensed water 320 can be effectively used as the cleaning liquid. In this way, it is possible to efficiently suppress the carry-out of the CO 2 absorbent out of the system by using the resources in the system of the absorbent regenerator 450. If the entire amount of the compressor condensed water 320 is not used as the cleaning liquid, the compressor condensed water 320 not used as the cleaning liquid may be returned to the reflux water drum 100.
  • the first cleaning liquid line 810 is provided on all the compressor condensed water drums 150 of the first compressor condensed water drum 150-1 to the nth compressor condensed water drum 150-n.
  • the present invention is not limited to this, and the first cleaning liquid line 810 may be provided only in a specific compressor condensed water drum 150.
  • the first cleaning liquid line 810 is connected to the cleaning liquid supply unit 202 by the compressor condensation. It is configured to direct water 320.
  • the first cleaning liquid line 810B is configured to guide the compressor condensed water 320 to the cleaning liquid supply unit 202B.
  • the compressor condensed water 320 may be guided to the tray 204B. Further, as shown in FIG.
  • the first cleaning liquid line 810D may be configured to guide the compressor condensed water 320 to the cleaning liquid supply unit 202D.
  • the compressor condensed water 320 may be guided to the liquid pool 260D.
  • the absorbent regenerator 450 (450A to 450E) includes the second cleaning liquid line 860 configured to guide the pure water 850 as the cleaning liquid toward the cleaning unit 200. Since the pure water 850 contains substantially no CO 2 absorbent, the pure water 850 is used as the cleaning liquid as described above, whereby the CO 2 gas can be cleaned more effectively.
  • the second cleaning liquid line 860 is connected to the cleaning liquid supply unit 202. It is configured to direct water 850.
  • the second cleaning liquid line 860B may be configured to guide the pure water 850 to the cleaning liquid supply unit 202B. The pure water 850 may be guided to the tray 204B.
  • the second cleaning liquid line 860D may be configured to guide the pure water 850 to the cleaning liquid supply unit 202D. The pure water 850 may be guided to the liquid pool 260D.
  • the absorbent regenerator 450 includes both the first cleaning liquid line 810 and the second cleaning liquid line 860 described above, a configuration may be adopted in which the line used for supplying the cleaning liquid can be selected.
  • the absorbent regenerator 450 shown in FIGS. 1 to 5 is configured so that the cleaning liquid supply line can be selected so that the cleaning liquid from at least one of the first cleaning liquid line 810 and the second cleaning liquid line 860 is guided to the cleaning unit 200.
  • the line switching unit 880 is provided.
  • the line switching unit 880 can select the cleaning liquid to be used from the compressor condensed water 320, the pure water 850, or a mixed water thereof.
  • the compressor condensed water 320 is suitable for cleaning
  • the compressor condensed water 320 is preferentially used to efficiently clean the CO 2 gas by using the resources in the absorbent regenerator 450 system. Can be done.
  • the pure water 850 is suitable for cleaning
  • the residual CO 2 absorbent concentration of the product CO 2 1000 can be further reduced by preferentially using the pure water 850.
  • pure water 850 can be used as a cleaning liquid.
  • the line switching unit 880 shown in FIGS. 1 to 5 includes a first valve 881 provided in the first cleaning liquid line 810 and a second valve 882 provided in the second cleaning liquid line 860.
  • the line switching unit 880 further includes a third valve 883 provided in the return line 812 branched from the first cleaning liquid line 810 and connected to the reflux water drum 100.
  • the opening degree of the first valve 881 is adjusted so that an appropriate amount of the compressor condensed water 320 is supplied to the cleaning unit 200 with the second valve 882 closed. Further, the opening degree of the third valve 883 is appropriately adjusted so that an excessive portion of the compressor condensed water 320 that is not used as a cleaning liquid is returned to the reflux water drum 100. When the entire amount of the compressor condensed water 320 is supplied to the cleaning unit 200 as the cleaning liquid, the third valve 883 is closed.
  • the mixing ratio of the compressor condensed water 320 and the pure water 850 becomes a desired value, and the cleaning liquid supplied to the cleaning unit is
  • the openings of the first valve 881 and the second valve 882 are adjusted so that the amounts are appropriate. Further, the opening degree of the third valve 883 is appropriately adjusted so that an excessive portion of the compressor condensed water 320 that is not used as a cleaning liquid is returned to the reflux water drum 100.
  • the third valve 883 is closed.
  • the opening of the second valve 882 is adjusted so that an appropriate amount of pure water 850 is supplied to the cleaning unit 200 with the first valve 881 closed. Further, the third valve 883 is opened so as to return the compressor condensed water 320 to the reflux water drum 100.
  • the method of regenerating the CO 2 absorbing liquid described below may be performed using the CO 2 recovery device 400 described above.
  • the method of reproducing the CO 2 absorbing liquid in the regeneration tower 50, steps S1 to play CO 2 absorbing solution 300 leads to release gas from the regenerator 50 to the reflux water drum 100, a reflux water Step S2 of separating CO 2 gas and condensed water 310 in the drum 100, and a cleaning unit provided on the gas phase part of the reflux water drum 100 or on the CO 2 flow path through which the CO 2 gas flowing out from the gas phase part flows.
  • step S3 of bringing CO 2 gas into contact with the cleaning liquid to remove the CO 2 absorbent contained in the CO 2 gas.
  • the cleaning liquid used for cleaning the CO 2 gas has a lower concentration of the CO 2 absorbent than the condensed water 310 stored in the liquid phase portion of the reflux water drum 100.
  • step S3 by cleaning the CO 2 gas in the cleaning unit 200 (step S3), it is possible to effectively prevent the CO 2 absorbent from being taken out of the system.
  • the cleaning of the CO 2 gas using the cleaning liquid in step S3 can be performed in various places as long as the CO 2 gas after being separated from the condensed water 310 by the reflux water drum 100 can be cleaned. is there.
  • CO 2 gas may be washed in the washing section 200 (200A, 200B) provided in the gas phase section of the reflux water drum 100.
  • the cleaning liquid may be supplied to the cleaning unit 200 from the cleaning liquid supply unit 202 located above the cleaning unit 200 in the vapor phase portion of the reflux water drum 100 (step S4).
  • the CO 2 gas cleaning place is, as shown in FIGS.
  • a cleaning unit 200 (provided in the vapor phase part of the cleaning drum 250 (250C, 250D) provided separately from the reflux water drum 100. 200C, 200D), or as shown in FIG. 5, it may be a cleaning unit 200E provided on any of the compressor condensed water drums 150E.
  • the tray 204B arranged below the cleaning unit 200 causes the CO 2 gas to be discharged from the cleaning unit 200.
  • the cleaning liquid may be stored (step S5), and the cleaning liquid stored in the tray 204B may be circulated to the cleaning liquid supply unit 202 (step S6).
  • the cleaning liquid used in the cleaning unit 200 in step S3 at least one of the compressor condensed water 320 in the compressor condensed water drum 150 and the pure water 850 supplied from the outside can be used.
  • the compressor condensate 320 separated from the CO 2 gas is guided from the compressor condensate drum 150 to the cleaning section 200 via a first cleaning liquid line 810,
  • the compressor condensed water 320 may be used as the cleaning liquid.
  • the line switching unit 880 may be used to select at least one of the first cleaning liquid line 810 and the second cleaning liquid line 860 as the cleaning liquid supply line.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Gas Separation By Absorption (AREA)
  • Treating Waste Gases (AREA)

Abstract

吸収液再生装置は、CO吸収液を再生するための再生塔と、前記再生塔からの放出ガスをCOガスと凝縮水とに分離し、前記凝縮水を前記再生塔に還流させるように構成された還流水ドラムと、前記還流水ドラムの気相部内、または、前記気相部から流出した前記COガスが流れるCO流路上に設けられ、前記COガスに含まれるCO吸収剤を洗浄液により除去するように構成された洗浄部と、を備え、前記洗浄液は、前記還流水ドラムの液相部に貯留された前記凝縮水に比べて、前記CO吸収剤の濃度が低いことを特徴とする。

Description

吸収液再生装置及びこれを備えたCO2回収装置並びに吸収液再生方法
 本開示は、吸収液再生装置及びこれを備えたCO回収装置並びに吸収液再生方法に関する。
 近年、排ガスとCO吸収液とをCO回収装置内で気液接触させて、排ガス中のCOを回収する方法が精力的に研究されている。COを吸収したCO吸収液は、吸収液再生装置へと導かれ、CO吸収液として再利用できるように再生される。
 例えば、特許文献1には、吸収塔において排ガス中のCOを吸収した後のCO吸収液を再生するようにしたCO回収システムが記載されている。
 具体的には、引用文献1記載のCO回収システムでは、吸収塔から再生塔に導かれたCO吸収液は、再生塔において蒸気で加熱されることによりCOを含むガスを放出し、再生される。放出されたガスは、還流水ドラムにおいて、COガスと還流水とに分離される。還流水ドラムから放出されたCOガスは、圧縮機及び冷却器を経て分離器に導かれ、この分離器において、COガスと、微量のCO吸収剤を含む凝縮水とに分離され、これらのうち凝縮水は再生塔底部に供給される。これにより、CO吸収剤の系外への持ち出しが抑制され、CO吸収液の再生を効果的に行うことができるようになっている。
米国特許第9050555号明細書
 しかしながら、特許文献1記載のCO回収システムにおいて、還流水ドラムの気相部には、蒸気圧分のCO吸収剤が含まれているから、還流水ドラムの後流側においても、僅かな量のCO吸収剤が気相中に存在することになる。このため、CO回収システムで最終的に得られる製品CO中におけるCO吸収剤の濃度を基準値以下に維持することが難しい場合があった。
 よって、本発明の幾つかの実施形態は、上記の事情に鑑みて、CO吸収剤の系外への持ち出しを効果的に抑制可能な吸収液再生装置及び吸収液再生方法を提供することを目的とする。
(1)本発明の少なくとも一実施形態に係る吸収液再生装置は、
 CO吸収液を再生するための再生塔と、
 前記再生塔からの放出ガスをCOガスと凝縮水とに分離し、前記凝縮水を前記再生塔に還流させるように構成された還流水ドラムと、
 前記還流水ドラムの気相部内、または、前記気相部から流出した前記COガスが流れるCO流路上に設けられ、前記COガスに含まれる前記CO吸収剤を洗浄液により除去するように構成された洗浄部と、
を備え、
 前記洗浄液は、前記還流水ドラムの液相部に貯留された前記凝縮水に比べて、前記CO吸収剤の濃度が低いことを特徴とする。
 上記(1)の構成によれば、還流水ドラムで分離されたCOガスを、洗浄液を用いて洗浄し、CO吸収剤を除去する洗浄部が設けられている。さらに、洗浄部で用いられる洗浄液は、還流水ドラムに貯留された凝縮水と比べて、CO吸収剤の濃度が低い。そのため、COガスに含まれるCO吸収剤を洗浄液に効果的に溶け込ませることができる。よって、CO吸収剤の系外への持ち出しを効果的に抑制できる。さらに、最終的に得られる製品COにおけるCO吸収剤の濃度を低減できる。
(2)幾つかの実施形態では、上記(1)の構成において、
 前記洗浄部は、前記還流水ドラムの前記気相部内に設けられ、
 前記吸収液再生装置は、
 前記還流水ドラムの前記気相部内において前記洗浄部に前記洗浄液を供給するように構成された洗浄液供給部を備える。
 上記(2)の構成によれば、洗浄部においてCOガスと洗浄液を気液接触させることが出来る。さらに、還流水ドラム内に洗浄部を設けることで、スペースを節約して洗浄部の設置を実現できる。よって、上記(1)で述べた原理に基づいて、省スペースを実現しながら、CO吸収剤の系外への持ち出しを効果的に抑制できる。
(3)幾つかの実施形態では、上記(2)の構成において、
 前記吸収液再生装置は、
 前記還流水ドラムの前記気相部において前記洗浄部の下方に配置され、前記洗浄部からの前記洗浄液を貯留可能に構成されたトレイと、
 前記トレイに貯留された前記洗浄液を、前記洗浄液供給部へと循環させるための循環ラインと、
を備える。
 上記(3)の構成によれば、洗浄部で用いられた洗浄液を、洗浄部下方に設けられたトレイで受け止めることができる。そして、トレイに貯留された洗浄液は、循環ラインによって洗浄液供給部へと循環され、再利用できる。その結果、洗浄液を効果的に再利用しながら、上記(1)で述べた原理に基づいて、CO吸収剤の系外への持ち出しを効果的に抑制できる。
(4)幾つかの実施形態では、上記(1)の構成において、
 前記吸収液再生装置は、
 前記CO流路上において前記還流水ドラムとは別に設けられた洗浄ドラムをさらに備え、
 前記洗浄部は、前記洗浄ドラム内において、前記洗浄ドラムの下部に形成される前記洗浄液の液溜り部の上方に設けられ、
 前記洗浄ドラム内において前記洗浄部に前記洗浄液を供給するように構成された洗浄液供給部を備える。
 上記(4)の構成によれば、還流水ドラムとは別に設けられた洗浄ドラム中に洗浄部を設けることで、COガスと洗浄液とが気液接触して残留CO吸収剤を除去するのに十分な洗浄部の容積を確保できる。よって、上記(1)で述べた原理に基づいて、より効果的にCO吸収剤の系外への持ち出しを効果的に抑制できる。
(5)幾つかの実施形態では、上記(4)の構成において、
 前記吸収液再生装置は、
 前記液溜り部に貯留された前記洗浄液を、前記洗浄液供給部へと循環させるための循環ライン
を備える。
 上記(5)の構成によれば、液溜り部に貯留された洗浄液を、循環ラインによって洗浄液供給部へと循環し、洗浄部におけるCOガスの洗浄のために再利用できる。その結果、洗浄液を効果的に再利用しながら、上記(1)で述べた原理に基づいて、CO吸収剤の系外への持ち出しを効果的に抑制できる。
(6)幾つかの実施形態では、上記(1)乃至(5)の何れか一つに記載の構成において、
 前記吸収液再生装置は、
 前記CO流路上に設けられ、前記COガスを圧縮するためのコンプレッサと、
 前記CO流路上において前記コンプレッサの下流側で生じた凝縮水であるコンプレッサ凝縮水を、前記洗浄液として前記洗浄部に向けて導くように構成された第1洗浄液ラインと、
を備える。
 上記(6)の構成によれば、洗浄液としてコンプレッサ凝縮水を用いる。その結果、上記(1)で述べた原理に基づいて、吸収液再生装置系内の資源を用いて効率的に、CO吸収剤の系外への持ち出しを効果的に抑制できる。
 (7)幾つかの実施形態では、上記(6)の構成において、
 前記吸収液再生装置は、
 前記CO流路上において前記コンプレッサの下流側に位置し、前記COガスから分離した前記コンプレッサ凝縮水を貯留するためのコンプレッサ凝縮水ドラムを備え、
 前記第1洗浄液ラインは、前記コンプレッサ凝縮水ドラム内の前記コンプレッサ凝縮水を、前記洗浄液として前記洗浄部に向けて導くように構成される。
 上記(7)の構成によれば、洗浄液として、コンプレッサ凝縮水ドラムに貯留されたコンプレッサ凝縮水を用いる。その結果、上記(1)で述べた原理に基づいて、吸収液再生装置系内の資源を用いて効率的に、CO吸収剤の系外への持ち出しを効果的に抑制できる。
(8)幾つかの実施形態では、上記(1)乃至(7)の何れか一つに記載の構成において、
 前記洗浄液としての純水を前記洗浄部に向けて導くように構成された第2洗浄液ライン
を備える。
 上記(8)の構成によれば、洗浄液として純水を用いるため、CO吸収剤が含まれていない洗浄液を洗浄に用いることが出来る。よって、上記(1)で述べた原理に基づいて、一層効果的にCO吸収剤の系外への持ち出しを効果的に抑制できる。
 また、最終的に得られる製品CO中のCO吸収剤の濃度を効果的に低減可能であるため、例えば、製品COにおけるCO吸収剤の濃度基準が厳格である場合に上記(8)の構成は有利である。
(9)幾つかの実施形態では、上記(6)又は(7)の構成において、
 前記洗浄液としての純水を前記洗浄部に向けて導くように構成された第2洗浄液ラインと、
 前記第1洗浄液ライン又は前記第2洗浄液ラインの少なくとも一方からの前記洗浄液が前記洗浄部に導かれるように、前記洗浄液の供給ラインを選択可能に構成されたライン切換部と、
を備える。
 上記(9)の構成によれば、ライン切換部によって、コンプレッサ凝縮水、純水、又はこれらの混合水の何れかから、使用する洗浄液を選択することができる。
 例えば、コンプレッサ凝縮水が洗浄に適している場合は、コンプレッサ凝縮水を優先的に用いることにより、吸収液再生装置系内の資源を用いて効率的にCOガスの洗浄を行うことが出来る。一方、純水が洗浄に適している場合は、純水を優先的に用いることにより、より製品COの残留CO吸収剤濃度を低下させることが出来る。さらに、コンプレッサ凝縮水のCO吸収剤濃度が高くなり、COガスの洗浄に適さなくなった場合は、純水を洗浄液として使うことが出来る。
 よって、ライン切換部によって使用する洗浄液を適切に選択することで、吸収液再生装置系内の資源を有効活用しながら、CO吸収剤の系外への持ち出しを効果的に抑制できる。
(10)本発明の少なくとも一実施形態に係るCO回収装置は、
 前記CO吸収液と排ガスを接触させて前記COガスを除去する吸収塔と、
 上記(1)乃至(9)の何れか一つに記載の吸収液再生装置と、
を備える。
 上記(10)の構成によれば、よって、上記(1)で述べた原理に基づいて、CO吸収剤の系外への持ち出しを効果的に抑制できる。
(11)本発明の少なくとも一実施形態に係る吸収液再生方法は、
 再生塔において、CO吸収液を再生するステップと、
 前記再生塔からの放出ガスを還流水ドラムに導き、該還流水ドラムにおいてCOガスと凝縮水とに分離するステップと、
 前記還流水ドラムの気相部、または、前記気相部から流出した前記COガスが流れるCO流路上に設けられた洗浄部において、前記COガスを洗浄液に接触させて、前記COガスに含まれる前記CO吸収剤を除去するステップと、
を備え、
 前記洗浄液は、前記還流水ドラムの液相部に貯留された前記凝縮水に比べて、前記CO吸収剤の濃度が低いことを特徴とする。
 上記(11)の方法によれば、還流水ドラムで分離されたCOガスを、洗浄液を用いて洗浄し、CO吸収剤を除去するステップが設けられている。さらに、洗浄部で用いられる洗浄液は、還流水ドラムに貯留された凝縮水と比べて、CO吸収剤の濃度が低い。そのため、COガスに含まれるCO吸収剤を洗浄液に効果的に溶け込ませることができる。よって、CO吸収剤の系外への持ち出しを効果的に抑制できる。さらに、最終的に得られる製品COにおけるCO吸収剤の濃度を低減できる。
(12)幾つかの実施形態では、上記(11)の方法において、
 前記洗浄部は、前記還流水ドラムの前記気相部内に設けられ、
 前記還流水ドラムの前記気相部内において前記洗浄部の上方に位置する洗浄液供給部から、前記洗浄部に前記洗浄液を供給するステップを備える。
 上記(12)の方法によれば、洗浄液供給部が洗浄部の上方にあることで、洗浄部においてCOガスと洗浄液を気液接触させることが出来る。さらに、還流水ドラム内に洗浄部を設けることで、省スペースに洗浄部の設置を実現できる。よって、上記(11)で述べた原理に基づいて、省スペースを実現しながら、CO吸収剤の系外への持ち出しを効果的に抑制できる。
(13)幾つかの実施形態では、上記(12)の方法において、
 前記還流水ドラムの前記気相部において前記洗浄部の下方に配置されたトレイによって、前記洗浄部からの前記洗浄液を貯留するステップと、
 前記トレイに貯留された前記洗浄液を、前記洗浄液供給部へと循環させるステップと、
を備える。
 上記(13)の構成によれば、洗浄部で用いられた洗浄液を、洗浄部下方に設けられたトレイで受け止めることができる。そして、トレイに貯留された洗浄液は、循環ラインによって洗浄液供給部へと循環され、再利用できる。その結果、洗浄液を効果的に再利用しながら、上記(11)で述べた原理に基づいて、CO吸収剤の系外への持ち出しを効果的に抑制できる。
(14)幾つかの実施形態では、上記(11)乃至(13)の何れか一つに記載の方法において、
 前記CO流路上に設けられたコンプレッサにより、前記COガスを圧縮するステップと、
 前記CO流路上において前記コンプレッサの下流側に位置するコンプレッサ凝縮水ドラムにより、前記COガスから分離した水をコンプレッサ凝縮水として貯留するステップと、
 第1洗浄液ラインを介して、前記コンプレッサ凝縮水ドラム内の前記コンプレッサ凝縮水を前記洗浄液として前記洗浄部に向けて導くステップと、
を備える。
 上記(14)の構成によれば、洗浄液としてコンプレッサ凝縮水ドラム内のコンプレッサ凝縮水を用いる。その結果、上記(11)で述べた原理に基づいて、吸収液再生装置系内の資源を用いて効率的に、CO吸収剤の系外への持ち出しを効果的に抑制できる。
(15)幾つかの実施形態では、上記(14)の方法において、
 第2洗浄液ラインを介して、前記洗浄液としての純水を前記洗浄部に向けて導くステップと、
 前記第1洗浄液ライン又は前記第2洗浄液ラインの少なくとも一方からの前記洗浄液が前記洗浄部に導かれるように、前記洗浄液の供給ラインを選択するステップと、
を備える。
 上記(15)の構成によれば、ライン切換部によって、コンプレッサ凝縮水、純水、又はこれらの混合水の何れかから、使用する洗浄液を選択することができる。
 例えば、コンプレッサ凝縮水が洗浄に適している場合は、コンプレッサ凝縮水を優先的に用いることにより、吸収液再生装置系内の資源を用いて効率的にCOガスの洗浄を行うことが出来る。一方、純水が洗浄に適している場合は、純水を優先的に用いることにより、より製品COの残留CO吸収剤濃度を低下させることが出来る。さらに、コンプレッサ凝縮水のCO吸収剤濃度が高くなり、COガスの洗浄に適さなくなった場合は、純水を洗浄液として使うことが出来る。
 よって、ライン切換部によって使用する洗浄液を適切に選択することで、吸収液再生装置系内の資源を有効活用しながら、CO吸収剤の系外への持ち出しを効果的に抑制できる。
 本発明の幾つかの実施形態によれば、CO吸収剤の系外への持ち出しを効果的に抑制できる。
還流水ドラムに洗浄部が設けられた本発明の一実施形態に係るCO回収装置の構成を示す概略図である。 還流水ドラムに洗浄部と循環ラインが設けられた本発明の他の実施形態に係るCO回収装置の構成を示す概略図である。 洗浄ドラムに洗浄部が設けられた本発明の一実施形態に係るCO回収装置の構成を示す概略図である。 洗浄ドラムに洗浄部と循環ラインが設けられた本発明の他の実施形態に係るCO回収装置の構成を示す概略図である。 コンプレッサ凝縮水ドラムに洗浄部が設けられた本発明の一実施形態に係るCO回収装置の構成を示す概略図である。 本発明の一実施形態に係る再生塔の還流部拡大概略図である。
 以下、本発明の実施形態について、図面に基づいて詳細に説明する。
 ただし、本発明の範囲は以下実施形態に限定されるものではない。以下の実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは、本発明の範囲をそれにのみ限定する趣旨ではなく、単なる説明例に過ぎない。
 図1は、還流水ドラム100Aに洗浄部200Aが設けられた本発明の一実施形態に係るCO回収装置400Aの構成を示す概略図である。図2は、還流水ドラム100Bに洗浄部200Bと循環ライン206Bが設けられた本発明の他の実施形態に係るCO回収装置400Bの構成を示す概略図である。図3は、洗浄ドラム250Cに洗浄部200Cが設けられた本発明の一実施形態に係るCO回収装置400Cの構成を示す概略図である。図4は、洗浄ドラム250Dに洗浄部200Dと循環ライン206Dが設けられた本発明の他の実施形態に係るCO回収装置400Dの構成を示す概略図である。図5は、コンプレッサ凝縮水ドラム150Eに洗浄部200Eが設けられた本発明の一実施形態に係るCO回収装置400Eの構成を示す概略図である。図6は、本発明の一実施形態に係る再生塔50の還流部80の拡大概略図である。
 なお、以下の説明においては、CO回収装置400A,400B,400C,400D,400Eを、CO回収装置400として総称する場合がある。
 本発明の幾つかの実施形態では、図1~図5に示すように、CO回収装置400は吸収塔1と、COガスを吸収したCO吸収液300(後述のリッチ吸収液302)を再生させる吸収液再生装置450と、を備える。
 CO回収装置400は、工場などから排出された排ガス500とCO吸収液300とを吸収塔1内で気液接触させて、排ガス500中のCOガスを回収する機能を有する。COガスを吸収したCO吸収液300(リッチ吸収液302)は、吸収液再生装置450へと導かれる。
 吸収液再生装置450は、COガスを吸収したCO吸収液300(リッチ吸収液302)からCOガスを放出させて、CO吸収液300を再利用できるように再生する再生塔50と、再生塔50からの放出ガスをCOガスと凝縮水310とに分離し、凝縮水310を再生塔50に還流させるように構成された還流水ドラム100と、を備える。
 吸収液再生装置450から放出されたCOガスは、圧縮及び冷却され、コンプレッサ凝縮水ドラム150においてコンプレッサ凝縮水320が取り除かれる。COガスの圧縮及び冷却は、多段階で繰り返し行われ、その都度、コンプレッサ凝縮水ドラム150でコンプレッサ凝縮水320が除去されてもよい。1段階以上の圧縮工程及び冷却工程が施された後のCOガスは、製品CO1000として系外に取り出される。
 図1~図5に示すように、吸収塔1は、排ガス500中のCOガスを吸収する吸収部10と、吸収部10の上方に設けられ、COガス除去後の排ガス500を水洗する水洗部20と、水洗部20の上方に設けられ、排ガス500中のミストを除去するミストエリミネータ7と、を備えている。
 排ガス500は、吸収塔1の塔底部3側において、吸収部10の下方から吸収塔1の内部に流れ込む。排ガス500は、吸収塔1の塔底部3側から吸収塔1内を上方に流れていき、吸収部10へと流れ込む。
 吸収部10は、CO吸収剤を含むCO吸収液300を排ガス500に接触させるための気液接触部11と、気液接触部11の上方に設けられるCO吸収液供給部12とを含む。排ガス500は、気液接触部11において、CO吸収液供給部12により上方から供給されるCO吸収液300と対向流接触する。
 気液接触部11は、CO吸収液300と排ガス500との気液接触を促進させるものであれば特に限定されないが、例えば、任意の材質の充填物が充填された充填層によって形成されてもよいし、1段以上のトレイによって構成されてもよい。
 CO吸収液300に含まれるCO吸収剤の種類は特に限定されないが、例えば、モノエタノールアミン、ジエタノールアミンに代表されるアルカノールアミンや、水酸化ナトリウム、水酸化カリウム及水酸化カルシウム等のアミン以外の各種アルカリ水溶液を使用することができる。
 気液接触部11における反応により、排ガス500中のCOガスは、CO吸収液300に吸収される。例えば、CO吸収剤としてアミンを用いる場合、COガスの吸収反応は、R-NH+HO+CO→R-NHHCOの反応式によって表される。この吸収反応の結果、吸収部10を通過して、吸収塔1の内部を上昇する排ガス500のCOガスは、ほとんど除去される。
 気液接触部11において排ガス500中のCOガスと反応したCO吸収液300は、吸収塔1の塔底部3に落下し、塔底部3に貯留される。この吸収塔1の塔底部3に貯留されたCO吸収液300は、リッチ吸収液302と称される。
 リッチ吸収液302には、排ガス500から吸収したCOガスが多く含まれる。
 一方、気液接触部11におけるCO吸収液300との接触によりCOガスが除去された後の排ガス500は、吸収塔1内を塔頂部5に向かってさらに上昇する。
 気液接触部11を通過後の排ガス500には、排ガス500の温度における飽和蒸気圧の関係から、CO吸収剤が含まれる。このため、気液接触部11を通過後の排ガス500に含まれたCO吸収剤を回収するため、吸収部10の上方に位置する水洗部20において、排ガス500を水洗してもよい。
 水洗部20は、気液接触部21と、気液接触部21の上方から洗浄水24を供給するための洗浄水供給部22と、気液接触部21の下方に設けられるチムニートレイ26と、を含む。
 排ガス500は、吸収部10を通った後、チムニートレイ26の開口部を介して気液接触部21へと上昇する。なお、チムニートレイ26は、開口部を介して下方から上方へと気体を通過させるが、上方から下方へは液体を通過させない構成となっている。
 気液接触部21において、上昇してきた排ガス500と、洗浄水供給部22から供給された洗浄水24が気液接触することにより、排ガス500中のCO吸収剤が洗浄水24に溶解する。
 水洗部20は、洗浄水24を循環させるための洗浄水循環ライン29と、洗浄水循環ライン29上に設けられた洗浄水循環ポンプ30と、をさらに含んでいてもよい。
 排ガス500を洗浄した後の洗浄水24は、気液接触部21から落下し、チムニートレイ26の液貯留部28に貯留される。液貯留部28に貯留された洗浄水24は、洗浄水循環ポンプ30によって、洗浄水循環ライン29を介して循環されて、再び、洗浄水供給部22から気液接触部21に向けて供給される。
 なお、図1~図5において、吸収塔1は水洗部20を1段備えているが、水洗部20を複数段備えていてもよい。
 上記構成の水洗部20でCO吸収剤が除去された排ガス500は、さらに、塔頂部5に向かって吸収塔1内を上昇し、ミストエリミネータ7に到達する。ミストエリミネータ7において、排ガス500中のミストが捕捉される。
 ミストエリミネータ7においてミストが除去された排ガス500は、吸収塔1の塔頂部5より外部へ排出される。
 次に、上記構成の吸収塔1において排ガス500中からCOを吸収したCO吸収液300(リッチ吸収液302)を再生するための吸収液再生装置450の構成に関して詳しく説明する。
 リッチ吸収液302は、リッチ吸収液供給ライン40に設けられたリッチ吸収液循環ポンプ42によって、吸収塔1の塔底部3から、再生塔50の塔頂部55側に設けられるリッチ吸収液供給部72へ供給される。
 図1~図5に示すように、再生塔50は、リッチ吸収液302からCOガスを放出させる放出部70と、放出したCOガスを還流水312で洗浄する還流部80と、を備える。
 放出部70は、リッチ吸収液302を供給するためのリッチ吸収液供給部72と、リッチ吸収液供給部72の下方に位置する充填部74と、を含む。
 リッチ吸収液302は、リッチ吸収液供給部72によって、上方から充填部74に供給される。
 リッチ吸収液302は、充填部74において、後述する飽和蒸気62により加熱され、COガスを放出し、相対的にCOの含有率が低いリーン吸収液304となる。
 充填部74の下方には、リーン吸収液304を受け止めるチムニートレイ76が設けられている。
 チムニートレイ76に受け止められたリーン吸収液304は、リボイラライン64を通ってリボイラライン64上に設けられる再生加熱器(リボイラ)66に導かれる。
 再生加熱器66には、加熱媒体(例えば、飽和蒸気)を再生加熱器66に供給するためのライン68が設けられている。再生加熱器66において加熱媒体と熱交換して加熱されたリーン吸収液304は、少なくとも一部が飽和蒸気62に相変化し、気液混相状態でリボイラライン64によりチムニートレイ76の下部に導かれる。こうして、再生加熱器66によって生成された飽和蒸気62は、チムニートレイ76を介して、再生塔50内を充填部74へと上昇する。
 一方、リボイラライン64を介してチムニートレイ76の下部に導かれたリーン吸収液304(再生加熱器66において相変化しなかったリーン吸収液304)は、再生塔50の塔底部53に貯留される。
 塔底部53に貯留されたリーン吸収液304は、再生塔50の塔底部53からリーン溶液送給ライン44より抜き出され、リーン溶液送給ポンプ46によって、吸収塔1のCO吸収液供給部12に送給される。吸収塔1のCO吸収液供給部12に戻されたリーン吸収液304は、上述したCO吸収液300として再利用される。
 一方、放出部70でリッチ吸収液302から放出されたCOガスは、再生塔50内において放出部70の上方に設けられた還流部80へと向かう。
 図6に示すように、再生塔50の還流部80には、複数段のトレイ82a~82dが設けられていてもよい。
 還流部80のトレイ82a~82dには、後述する還流水312が流れている。
 図6に示すように、放出部70で放出されたCOガスは、還流部80のトレイ82a~82dに流れる還流水312と複数回(ここでは4回)に亘って気液接触することにより、CO吸収剤が除去され、洗浄される。
 なお、図6では4段のトレイ82a~82dを図示したが、トレイの段数は何段であってもよい。
 還流部80を通ったCOガスは、再生塔50の塔頂部55から放出され、COガスライン90へと導かれる。
 COガスは、COガスライン90上のコンデンサ92により冷却される。それにより、COガス中の水蒸気が凝縮される。
 コンデンサ92を通過後のCOガスは、COガスライン90の出口側に設けられた還流水ドラム100において、COガスと凝縮水310に分離される。
 還流水ドラム100で分離された凝縮水310は、還流水ドラム100の塔底部103に貯留される。
 塔底部103に貯留された凝縮水310は、還流水312として、還流水送給ライン94を介して、再生塔50の還流部80に送給される。還流水312の送給は、還流水循環ポンプ96により行われる。
 一方、還流水ドラム100で分離されたCOガスは、還流水ドラム100の塔頂部105から放出され、後処理装置160へと向かう。
 後処理装置160は、上流側からCOガスを導くガス供給ライン162(第1ガス供給ライン162-1~第nガス供給ライン162-n)と、ガス供給ライン162上に設けられ、COガスを圧縮するコンプレッサ164(第1コンプレッサ164-1~第nコンプレッサ164-n)と、ガス供給ライン162上のコンプレッサ164の後流側に設けられ、COガスを冷却する冷却器166(第1冷却器166-1~第n冷却器166-n)と、ガス供給ライン162の出口側に設けられ、COガス中の水分を除去するコンプレッサ凝縮水ドラム150(第1コンプレッサ凝縮水ドラム150-1~第nコンプレッサ凝縮水ドラム150-n)と、を有する。
 なお、nは、1以上の整数である。
 第1コンプレッサ164-1は、複数のコンプレッサのうち最も上流側に設けられ、第1冷却器166-1は複数の冷却器のうち最も上流側に設けられ、第1コンプレッサ凝縮水ドラム150-1は複数のコンプレッサ凝縮水ドラムのうち最も上流側に設けられている。
 後処理装置160に流入したCOガスは、コンプレッサ164で圧縮された後、冷却器166で冷却される。それにより、COガスに含まれる水分が凝縮する。この水分を、コンプレッサ凝縮水ドラム150で分離し、コンプレッサ凝縮水ドラム150の塔底部153にコンプレッサ凝縮水320として貯留する工程をn回繰り返す。
 水分が除去されたCOガスは、コンプレッサ凝縮水ドラム150の塔頂部155から放出される。
 COガスの圧縮及び冷却をn回繰り返したのち、第nコンプレッサ凝縮水ドラム150-nの塔頂部155からCOガスは放出され、製品CO1000として取り出される。
 これまで、CO回収装置400の全体構成について述べてきた。
 以下、図1~図5を用いて、本発明の幾つかの実施形態にかかるCO回収装置400における洗浄部200の構成について説明する。
 これまで述べてきたように、吸収塔1でCOガスを吸収したCO吸収液300(リッチ吸収液302)は、再生塔50において再生される。この時、リッチ吸収液302からCOガスが放出される。リッチ吸収液302から放出されたCOガスは、還流部80において洗浄されるが、還流部80においてCO吸収剤を完全に回収することは難しく、少量のCO吸収剤を含有する。少量のCO吸収剤を含有するCOガスは、再生塔50から排出された後、還流水ドラム100において、COガスと凝縮水310に分離される。この時、CO吸収剤の一部は、凝縮水310側に移動するが、飽和蒸気圧分のCO吸収剤は、還流水ドラム100の気相部におけるCOガスに残留することになる。
 そこで、幾つかの実施形態にかかる吸収液再生装置450(450A~450E)は、図1~図5に示すように、還流水ドラム100において分離されたCOガスから、残留したCO吸収剤を除去する洗浄部200(200A~200E)を有する。
 洗浄部200は、還流水ドラム100の気相部内、または、還流水ドラム100の気相部から流出したCOガスが流れるCO流路上に設けられる。
 洗浄部200において、COガスと洗浄液を気液接触させることにより、COガスに含まれるCO吸収剤を除去する。洗浄液には、還流水ドラム100の液相部に貯留された凝縮水310に比べて、CO吸収剤の濃度が低ければ、どのような液体を用いてもよい。
 このように、CO吸収剤の濃度が相対的に低い洗浄液を用いてCOガスを洗浄することで、還流水ドラム100において凝縮水310と分離された後のCOガスに含まれる飽和蒸気圧分のCO吸収剤を洗浄液に効果的に溶け込ませることができる。よって、CO吸収剤の系外への持ち出しを効果的に抑制できる。
 COガスを洗浄するための洗浄部200は、還流水ドラム100で凝縮水310と分離された後のCOガスを洗浄可能であれば、種々の位置に設置することができる。
 例えば、図1及び図2に示す実施形態のように、洗浄部200(200A,200B)は、還流水ドラム100(100A,100B)の気相部内に設けてもよい。この場合、吸収液再生装置450(450A,450B)は、洗浄液を洗浄部200に供給するための洗浄液供給部202(202A,202B)を備えていてもよい。洗浄部200(200A,200B)は、洗浄液供給部202の下方に位置する気液接触部によって形成されてもよい。洗浄部200を構成する気液接触部は、気液接触を促進させるものであれば特に限定されず、吸収部10の気液接触部11と同様に、例えば、任意の材質の充填物が充填された充填層によって形成されてもよいし、1段以上のトレイによって構成されてもよい。
 このように、還流水ドラム100(100A,100B)内に洗浄部200(200A,200B)を設けることで、洗浄部200の設置のためのスペースを削減し、省スペース化を図ることができる。
 あるいは、図3及び図4に示す他の実施形態のように、洗浄部200(200C,200D)は、還流水ドラム100とは別に、還流水ドラム100の後流側に設けられた洗浄ドラム250(250C,250D)の気相部内に設けられてもよい。この場合、吸収液再生装置450(450C,450D)は、洗浄液を洗浄部200に供給するための洗浄液供給部202(202C,202D)を備え、洗浄部200は、洗浄液供給部202の下方に位置する気液接触部により形成されていてもよい。洗浄部200としての気液接触部は、上述したように、例えば、任意の材質の充填物が充填された充填層によって形成されてもよいし、1段以上のトレイによって構成されてもよい。洗浄ドラム250の塔底部253(253C,253D)には、COガス洗浄後の洗浄液が貯留される液溜り部260(260C,260D)が形成される。
 このように、還流水ドラム100とは別に設けられた洗浄ドラム250(250C,250D)中に洗浄部200(200C,200D)を設けることで、COガスと洗浄液とが気液接触して残留CO吸収剤を除去するのに十分な気液接触部の容積を確保できる。
 なお、洗浄ドラム250の液溜り部260に貯留された洗浄液は、系外に排出するのではなく、CO回収装置400の上流側に戻してもよい。例えば、図3に示す例では、液溜り部260Cの洗浄液は、還流水ドラム100Cへと送給される。
 さらに別の例として、図5に示す吸収液再生装置450Eのように、洗浄部200Eは、コンプレッサ凝縮水ドラム150Eに設けられていてもよい。図5に示す例では、洗浄部200Eは第1コンプレッサ凝縮水ドラム150-1に設けたが、n個のコンプレッサ凝縮水ドラム150のうち何れに洗浄部200Eを設けてもよい。
 また、上記構成の洗浄部200で使用された洗浄液は、図2および図4に示すように、洗浄部200へと循環されて再利用可能になっていてもよい。
 図2に示す例示的な実施形態では、吸収液再生装置450Bは、洗浄部200Bの下方に設けられるトレイ204Bと、トレイ204Bに貯留された洗浄液を洗浄液供給部202Bへと循環させるための循環ライン206Bと、循環ライン206B上に設けられた循環ポンプ208Bと、を含む。
 洗浄液供給部202Bから洗浄部200Bに供給された洗浄液は、洗浄部200Bを通過した後、洗浄部200Bの下方のトレイ204Bに貯留される。トレイ204Bに貯留された洗浄液は、循環ポンプ208Bにより、循環ライン206Bを介して洗浄液供給部202Bに戻され、再度COガスの洗浄に用いられる。
 このように洗浄液を循環させることで、洗浄液を効果的に再利用できる。
 他方、図4に示す例示的な実施形態では、吸収液再生装置450Dは、洗浄液を循環させるための循環ライン206Dと、循環ライン206D上に設けられた循環ポンプ208Dと、を含む。
 洗浄ドラム250Dの液溜り部260Dに貯留された洗浄液は、循環ポンプ208Dにより、循環ライン206Dを介して洗浄液供給部202Dに戻されて、再度COガスの洗浄に用いられる。
 このように洗浄液を循環させることで、洗浄液を効果的に再利用できる。
 続けて、上記構成の洗浄部200に洗浄液を供給するための構成について説明する。
 本発明の幾つかの実施形態にかかる吸収液再生装置450は、図1~図5に示すように、コンプレッサ凝縮水ドラム150内のコンプレッサ凝縮水320を、洗浄液として洗浄部200に向けて導くように構成された第1洗浄液ライン810を備えていてもよい。第1洗浄液ライン810は、コンプレッサ凝縮水ドラム150の塔底部153から、洗浄部200へとコンプレッサ凝縮水320を導く。
 コンプレッサ凝縮水320は、還流水ドラム100の液相部に貯留された凝縮水310に比べて、CO吸収剤の濃度が低い。このため、上述のように、第1洗浄液ライン810を設けることで、コンプレッサ凝縮水320を洗浄液として有効活用できる。こうして、吸収液再生装置450系内の資源を用いて効率的に、CO吸収剤の系外への持ち出しを抑制できる。
 なお、コンプレッサ凝縮水320の全量を洗浄液として活用しない場合、洗浄液として用いられなかったコンプレッサ凝縮水320は、還流水ドラム100に戻してもよい。
 なお、図1~図4に示す例では、第1コンプレッサ凝縮水ドラム150-1~第nコンプレッサ凝縮水ドラム150-nの全てのコンプレッサ凝縮水ドラム150に第1洗浄液ライン810が設けられているが、この限りではなく、特定のコンプレッサ凝縮水ドラム150にのみ第1洗浄液ライン810が設けられていてもよい。
 図1,図3及び図5に示すように、循環ライン206が設けられていない吸収液再生装置450(450A,450C,450E)においては、第1洗浄液ライン810は、洗浄液供給部202にコンプレッサ凝縮水320を導くように構成される。
 これに対し、図2に示すように、循環ライン206Bが設けられている吸収液再生装置450Bにおいては、第1洗浄液ライン810Bは、洗浄液供給部202Bにコンプレッサ凝縮水320を導くように構成されていてもよいし、トレイ204Bにコンプレッサ凝縮水320を導くように構成されていてもよい。さらに、図4に示すように、循環ライン206Dが設けられている吸収液再生装置450Dにおいては、第1洗浄液ライン810Dは、洗浄液供給部202Dにコンプレッサ凝縮水320を導くように構成されていてもよいし、液溜り部260Dにコンプレッサ凝縮水320を導くように構成されていてもよい。
 他の実施形態では、コンプレッサ凝縮水320に替えて、または、コンプレッサ凝縮水320とともに、外部から供給される純水を洗浄液として用いてもよい。
 図1~図5に示す実施形態では、吸収液再生装置450(450A~450E)は、洗浄液としての純水850を洗浄部200に向けて導くように構成された第2洗浄液ライン860を備える。
 純水850には実質的にCO吸収剤は含まれていないため、上述のように、洗浄液として純水850を用いることで、一層効果的にCOガスを洗浄することが出来る。
 なお、図1,図3及び図5に示すように、循環ライン206が設けられていない吸収液再生装置450(450A,450C,450E)においては、第2洗浄液ライン860は洗浄液供給部202に純水850を導くように構成される。
 一方、図2に示すように、循環ライン206Bが設けられている吸収液再生装置450Bにおいては、第2洗浄液ライン860Bは洗浄液供給部202Bに純水850を導くように構成されていてもよいし、トレイ204Bに純水850を導くように構成されていてもよい。さらに、図4に示すように、循環ライン206Dが設けられている吸収液再生装置450Dにおいては、第2洗浄液ライン860Dは洗浄液供給部202Dに純水850を導くように構成されていてもよいし、液溜り部260Dに純水850を導くように構成されていてもよい。
 また、吸収液再生装置450が、上述の第1洗浄液ライン810および第2洗浄液ライン860の両方を備える場合、洗浄液の供給のために使用するラインを選択可能とする構成を採用してもよい。
 図1~図5に示す吸収液再生装置450は、第1洗浄液ライン810又は第2洗浄液ライン860の少なくとも一方からの洗浄液が洗浄部200に導かれるように、洗浄液の供給ラインを選択可能に構成されたライン切換部880を備える。
 これにより、ライン切換部880によって、コンプレッサ凝縮水320、純水850、又はこれらの混合水の何れかから、使用する洗浄液を選択することができる。
 例えば、コンプレッサ凝縮水320が洗浄に適している場合は、コンプレッサ凝縮水320を優先的に用いることにより、吸収液再生装置450系内の資源を用いて効率的にCOガスの洗浄を行うことが出来る。一方、純水850が洗浄に適している場合は、純水850を優先的に用いることにより、より製品CO1000の残留CO吸収剤濃度を低下させることが出来る。さらに、コンプレッサ凝縮水320のCO吸収剤濃度が高くなり、COガスの洗浄に適さなくなった場合は、純水850を洗浄液として使うことが出来る。
 図1~図5に示すライン切換部880は、第1洗浄液ライン810に設けられた第1バルブ881と、第2洗浄液ライン860に設けられた第2バルブ882と、を含む。
また、上述のライン切換部880は、第1洗浄液ライン810から分岐して還流水ドラム100に接続される返送ライン812に設けられた第3バルブ883をさらに含む。
 これらの第1バルブ881、第2バルブ882及び第3バルブ883を適宜操作することで、洗浄部200へのコンプレッサ凝縮水320及び純水850のそれぞれの供給量を調節することができる。
 コンプレッサ凝縮水320のみを洗浄液として用いる場合には、第2バルブ882を閉じた状態で、コンプレッサ凝縮水320の適量を洗浄部200に供給するように、第1バルブ881の開度を調節する。また、コンプレッサ凝縮水320のうち洗浄液として用いない余剰分を還流水ドラム100に返送するように、第3バルブ883の開度を適宜調節する。なお、コンプレッサ凝縮水320の全量を洗浄液として洗浄部200に供給する場合には、第3バルブ883を閉じる。
 コンプレッサ凝縮水320及び純水850を混合して洗浄液として用いる場合には、コンプレッサ凝縮水320と純水850との混合比率が所望の値となるように、また、洗浄部に供給される洗浄液の量が適量となるように、第1バルブ881及び第2バルブ882の開度を調節する。また、コンプレッサ凝縮水320のうち洗浄液として用いない余剰分を還流水ドラム100に返送するように、第3バルブ883の開度を適宜調節する。なお、コンプレッサ凝縮水320の全量を洗浄液として洗浄部200に供給する場合には、第3バルブ883を閉じる。
 純水850のみを洗浄液として用いる場合には、第1バルブ881を閉じた状態で、純水850の適量を洗浄部200に供給するように、第2バルブ882の開度を調節する。また、コンプレッサ凝縮水320を還流水ドラム100に返送するように、第3バルブ883を開く。
 このように、ライン切換部880によって使用する洗浄液を適切に選択することで、吸収液再生装置450系内の資源を有効活用しながら、CO吸収剤の系外への持ち出しを効果的に抑制できる。
 次に、COガスを吸収したCO吸収液の再生方法について述べる。
 なお、以下で述べるCO吸収液の再生方法は、上述したCO回収装置400を用いて行ってもよい。
 幾つかの実施形態において、CO吸収液の再生方法は、再生塔50において、CO吸収液300を再生するステップS1と、再生塔50からの放出ガスを還流水ドラム100に導き、還流水ドラム100においてCOガスと凝縮水310とに分離するステップS2と、還流水ドラム100の気相部、または、気相部から流出したCOガスが流れるCO流路上に設けられた洗浄部200において、COガスを洗浄液に接触させて、COガスに含まれるCO吸収剤を除去するステップS3と、を備える。
 ここで、COガスの洗浄に用いる洗浄液は、還流水ドラム100の液相部に貯留された凝縮水310に比べて、CO吸収剤の濃度が低い。
 このように、洗浄部200でCOガスの洗浄を行うことで(ステップS3)、CO吸収剤の系外への持ち出しを効果的に抑制できる。
 なお、ステップS3における洗浄液を用いたCOガスの洗浄は、還流水ドラム100で凝縮水310と分離された後のCOガスを洗浄可能であれば、種々の場所で実施することが可能である。
 例えば、図1及び図2に示すように、還流水ドラム100の気相部内に設けられた洗浄部200(200A,200B)において、COガスの洗浄を行ってもよい。この場合、還流水ドラム100の気相部内において洗浄部200の上方に位置する洗浄液供給部202から、洗浄部200に洗浄液を供給してもよい(ステップS4)。
 あるいは、COガスの洗浄場所は、図3及び図4に示すように、還流水ドラム100とは別に設けられた洗浄ドラム250(250C,250D)の気相部内に設けられた洗浄部200(200C,200D)であってもよいし、図5に示すように、何れかのコンプレッサ凝縮水ドラム150Eに設けられた洗浄部200Eであってもよい。
 また、図2に示すように、COガスの洗浄場所が還流水ドラム100の気相部内の洗浄部200Bである場合、洗浄部200の下方に配置されたトレイ204Bによって、洗浄部200からの洗浄液を貯留し(ステップS5)、トレイ204Bに貯留された洗浄液を、洗浄液供給部202へと循環させてもよい(ステップS6)。
 また、ステップS3において洗浄部200で用いる洗浄液は、コンプレッサ凝縮水ドラム150内のコンプレッサ凝縮水320、または、外部から供給される純水850の少なくとも一方を用いることができる。
 幾つかの実施形態において、図1~図5に示すように、第1洗浄液ライン810を介して、COガスから分離されたコンプレッサ凝縮水320をコンプレッサ凝縮水ドラム150から洗浄部200に導き、コンプレッサ凝縮水320を洗浄液として利用してもよい。
 また、ライン切換部880を用いて、第1洗浄液ライン810または第2洗浄液ライン860の少なくとも一方を洗浄液供給ラインとして選択してもよい。ライン切換部880を用いた供給ライン選択によって使用する洗浄液を適切に選択することで、吸収液再生装置450系内の資源を有効活用しながら、CO吸収剤の系外への持ち出しを効果的に抑制できる。
 以上、本発明の実施形態について説明したが、本発明は上記の形態に限定されるものではなく、本発明の目的を逸脱しない範囲での種々の変更が可能である。
1    吸収塔
3    塔底部
5    塔頂部
7    ミストエリミネータ
10   吸収部
11   気液接触部
12   CO吸収液供給部
20   水洗部
21   気液接触部
22   洗浄水供給部
24   洗浄水
26   チムニートレイ
28   液貯留部
29   洗浄水循環ライン
30   洗浄水循環ポンプ
40   リッチ吸収液供給ライン
42   リッチ吸収液循環ポンプ
44   リーン溶液送給ライン
46   リーン溶液送給ポンプ
50   再生塔
53   塔底部
55   塔頂部
62   飽和蒸気
64   リボイラライン
66   再生加熱器
68   ライン
70   放出部
72   リッチ吸収液供給部
74   充填部
76   チムニートレイ
80   還流部
82(82a~82d) トレイ
90   COガスライン
92   コンデンサ
94   還流水送給ライン
96   還流水循環ポンプ
100  還流水ドラム
103  塔底部
105  塔頂部
150  コンプレッサ凝縮水ドラム
153  塔底部
155  塔頂部
160  後処理装置
162  ガス供給ライン
164  コンプレッサ
166  冷却器
200  洗浄部
202  洗浄液供給部
204B トレイ
206  循環ライン
208B,208D 循環ポンプ
250  洗浄ドラム
253  塔底部
260  液溜り部
300  CO吸収液
302  リッチ吸収液
304  リーン吸収液
310  凝縮水
312  還流水
320  コンプレッサ凝縮水
400  回収装置
450  吸収液再生装置
500  排ガス
810  第1洗浄液ライン
812  返送ライン
850  純水
860  第2洗浄液ライン
880  ライン切換部
881  第1バルブ
882  第2バルブ
883  第3バルブ
1000 製品CO
 

Claims (15)

  1.  CO吸収液を再生するための再生塔と、
     前記再生塔からの放出ガスをCOガスと凝縮水とに分離し、前記凝縮水を前記再生塔に還流させるように構成された還流水ドラムと、
     前記還流水ドラムの気相部内、または、前記気相部から流出した前記COガスが流れるCO流路上に設けられ、前記COガスに含まれるCO吸収剤を洗浄液により除去するように構成された洗浄部と、
    を備え、
     前記洗浄液は、前記還流水ドラムの液相部に貯留された前記凝縮水に比べて、前記CO吸収剤の濃度が低い
    ことを特徴とする吸収液再生装置。
  2.  前記洗浄部は、前記還流水ドラムの前記気相部内に設けられ、
     前記還流水ドラムの前記気相部内において前記洗浄部に前記洗浄液を供給するように構成された洗浄液供給部を備える
    ことを特徴とする請求項1に記載の吸収液再生装置。
  3.  前記還流水ドラムの前記気相部において前記洗浄部の下方に配置され、前記洗浄部からの前記洗浄液を貯留可能に構成されたトレイと、
     前記トレイに貯留された前記洗浄液を、前記洗浄液供給部へと循環させるための循環ラインと、
    を備えることを特徴とする請求項2に記載の吸収液再生装置。
  4.  前記CO流路上において前記還流水ドラムとは別に設けられた洗浄ドラムをさらに備え、
     前記洗浄部は、前記洗浄ドラム内において、前記洗浄ドラムの下部に形成される前記洗浄液の液溜り部の上方に設けられ、
     前記洗浄ドラム内において前記洗浄部に前記洗浄液を供給するように構成された洗浄液供給部を備える
    ことを特徴とする請求項1に記載の吸収液再生装置。
  5.  前記液溜り部に貯留された前記洗浄液を、前記洗浄液供給部へと循環させるための循環ラインを備える
    ことを特徴とする請求項4に記載の吸収液再生装置。
  6.  前記CO流路上に設けられ、前記COガスを圧縮するためのコンプレッサと、
     前記CO流路上において前記コンプレッサの下流側で生じた凝縮水であるコンプレッサ凝縮水を、前記洗浄液として前記洗浄部に向けて導くように構成された第1洗浄液ラインと、
    を備えることを特徴とする、請求項1乃至5の何れか一項に記載の吸収液再生装置。
  7.  前記CO流路上において前記コンプレッサの下流側に位置し、前記COガスから分離した前記コンプレッサ凝縮水を貯留するためのコンプレッサ凝縮水ドラムを備え、
     前記第1洗浄液ラインは、前記コンプレッサ凝縮水ドラム内の前記コンプレッサ凝縮水を、前記洗浄液として前記洗浄部に向けて導くように構成された
    ことを特徴とする請求項6に記載の吸収液再生装置。
  8.  前記洗浄液としての純水を前記洗浄部に向けて導くように構成された第2洗浄液ライン
    を備える
    ことを特徴とする、請求項1乃至7の何れか一項に記載の吸収液再生装置。
  9.  前記洗浄液としての純水を前記洗浄部に向けて導くように構成された第2洗浄液ラインと、
     前記第1洗浄液ライン又は前記第2洗浄液ラインの少なくとも一方からの前記洗浄液が前記洗浄部に導かれるように、前記洗浄液の供給ラインを選択可能に構成されたライン切換部と、
    を備える
    ことを特徴とする、請求項6又は7に記載の吸収液再生装置。
  10.  前記CO吸収液と排ガスを接触させて前記COガスを除去する吸収塔と、
     請求項1乃至9の何れか一項に記載の吸収液再生装置と、
    を備えることを特徴とするCO回収装置。
  11.  再生塔において、CO吸収液を再生するステップと、
     前記再生塔からの放出ガスを還流水ドラムに導き、該還流水ドラムにおいてCOガスと凝縮水とに分離するステップと、
     前記還流水ドラムの気相部、または、前記気相部から流出した前記COガスが流れるCO流路上に設けられた洗浄部において、前記COガスを洗浄液に接触させて、前記COガスに含まれるCO吸収剤を除去するステップと、
    を備え、
     前記洗浄液は、前記還流水ドラムの液相部に貯留された前記凝縮水に比べて、前記CO吸収剤の濃度が低い
    ことを特徴とする吸収液再生方法。
  12.  前記洗浄部は、前記還流水ドラムの前記気相部内に設けられ、
     前記還流水ドラムの前記気相部内において前記洗浄部の上方に位置する洗浄液供給部から、前記洗浄部に前記洗浄液を供給するステップを備える
    ことを特徴とする請求項11に記載の吸収液再生方法。
  13.  前記還流水ドラムの前記気相部において前記洗浄部の下方に配置されたトレイによって、前記洗浄部からの前記洗浄液を貯留するステップと、
     前記トレイに貯留された前記洗浄液を、前記洗浄液供給部へと循環させるステップと、
    を備えることを特徴とする請求項12に記載の吸収液再生方法。
  14.  前記CO流路上に設けられたコンプレッサにより、前記COガスを圧縮するステップと、
     前記CO流路上において前記コンプレッサの下流側に位置するコンプレッサ凝縮水ドラムにより、前記COガスから分離した水をコンプレッサ凝縮水として貯留するステップと、
     第1洗浄液ラインを介して、前記コンプレッサ凝縮水ドラム内の前記コンプレッサ凝縮水を前記洗浄液として前記洗浄部に向けて導くステップと、
    を備えることを特徴とする、請求項11乃至13の何れか一項に記載の吸収液再生方法。
  15.  第2洗浄液ラインを介して、前記洗浄液としての純水を前記洗浄部に向けて導くステップと、
     前記第1洗浄液ライン又は前記第2洗浄液ラインの少なくとも一方からの前記洗浄液が前記洗浄部に導かれるように、前記洗浄液の供給ラインを選択するステップと、
    を備える
    ことを特徴とする、請求項14に記載の吸収液再生方法。
     
PCT/JP2019/038274 2018-10-10 2019-09-27 吸収液再生装置及びこれを備えたco2回収装置並びに吸収液再生方法 WO2020075538A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020550399A JP7171753B2 (ja) 2018-10-10 2019-09-27 吸収液再生装置及びこれを備えたco2回収装置並びに吸収液再生方法
EP19872002.1A EP3838379A4 (en) 2018-10-10 2019-09-27 ABSORPTION LIQUID REGENERATION DEVICE, CO2 RECOVERY DEVICE MUNI DUDIT ABSORPTION LIQUID REGENERATION DEVICE AND PROCESS
AU2019356719A AU2019356719B2 (en) 2018-10-10 2019-09-27 Absorption Liquid Regeneration Apparatus, CO2 Recovery Apparatus Including the Same, and Absorption Liquid Regeneration Method
CA3114746A CA3114746C (en) 2018-10-10 2019-09-27 Absorption liquid regeneration apparatus, c02 recovery apparatus including the same, and absorption liquid regeneration method
JP2022175221A JP7361182B2 (ja) 2018-10-10 2022-11-01 吸収液再生装置及びこれを備えたco2回収装置並びに吸収液再生方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US16/156,017 2018-10-10
US16/156,017 US11071943B2 (en) 2018-10-10 2018-10-10 Absorption liquid regeneration apparatus, CO2 recovery apparatus including the same, and absorption liquid regeneration method

Publications (1)

Publication Number Publication Date
WO2020075538A1 true WO2020075538A1 (ja) 2020-04-16

Family

ID=70162136

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/038274 WO2020075538A1 (ja) 2018-10-10 2019-09-27 吸収液再生装置及びこれを備えたco2回収装置並びに吸収液再生方法

Country Status (6)

Country Link
US (1) US11071943B2 (ja)
EP (1) EP3838379A4 (ja)
JP (2) JP7171753B2 (ja)
AU (1) AU2019356719B2 (ja)
CA (1) CA3114746C (ja)
WO (1) WO2020075538A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021090904A (ja) * 2019-12-09 2021-06-17 株式会社東芝 二酸化炭素回収システム及びその運転方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11628391B2 (en) 2020-04-15 2023-04-18 Mitsubishi Heavy Industries Engineering, Ltd. Carbon dioxide recovery apparatus

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008126154A (ja) * 2006-11-21 2008-06-05 Mitsubishi Heavy Ind Ltd 排気ガスの処理方法及び処理装置
JP2012223661A (ja) * 2011-04-14 2012-11-15 Mitsubishi Heavy Ind Ltd Co2回収システム及びco2ガス含有水分の回収方法
JP2014004578A (ja) * 2012-05-30 2014-01-16 Toshiba Corp 二酸化炭素回収システムおよびその運転方法
JP2016093788A (ja) * 2014-11-14 2016-05-26 株式会社東芝 二酸化炭素回収装置および二酸化炭素回収方法
JP2016215174A (ja) * 2015-05-26 2016-12-22 株式会社東芝 二酸化炭素回収システムおよび二酸化炭素回収システムの運転方法
JP2018187585A (ja) * 2017-05-10 2018-11-29 株式会社東芝 二酸化炭素回収システムおよび二酸化炭素回収システムの運転方法
WO2019168180A1 (ja) * 2018-03-01 2019-09-06 三菱重工エンジニアリング株式会社 Co2回収装置及びco2回収方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015039670A (ja) * 2013-08-22 2015-03-02 株式会社東芝 二酸化炭素分離回収システム及びその運転方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008126154A (ja) * 2006-11-21 2008-06-05 Mitsubishi Heavy Ind Ltd 排気ガスの処理方法及び処理装置
JP2012223661A (ja) * 2011-04-14 2012-11-15 Mitsubishi Heavy Ind Ltd Co2回収システム及びco2ガス含有水分の回収方法
US9050555B2 (en) 2011-04-14 2015-06-09 Mitsubishi Heavy Industries, Ltd. CO2 recovery system and recovery method for moisture containing CO2 gas
JP2014004578A (ja) * 2012-05-30 2014-01-16 Toshiba Corp 二酸化炭素回収システムおよびその運転方法
JP2016093788A (ja) * 2014-11-14 2016-05-26 株式会社東芝 二酸化炭素回収装置および二酸化炭素回収方法
JP2016215174A (ja) * 2015-05-26 2016-12-22 株式会社東芝 二酸化炭素回収システムおよび二酸化炭素回収システムの運転方法
JP2018187585A (ja) * 2017-05-10 2018-11-29 株式会社東芝 二酸化炭素回収システムおよび二酸化炭素回収システムの運転方法
WO2019168180A1 (ja) * 2018-03-01 2019-09-06 三菱重工エンジニアリング株式会社 Co2回収装置及びco2回収方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021090904A (ja) * 2019-12-09 2021-06-17 株式会社東芝 二酸化炭素回収システム及びその運転方法
US11583800B2 (en) 2019-12-09 2023-02-21 Kabushiki Kaisha Toshiba Carbon dioxide capturing system and operation method thereof
JP7402031B2 (ja) 2019-12-09 2023-12-20 株式会社東芝 二酸化炭素回収システム及びその運転方法

Also Published As

Publication number Publication date
JP2022189980A (ja) 2022-12-22
AU2019356719B2 (en) 2021-11-11
US11071943B2 (en) 2021-07-27
CA3114746A1 (en) 2020-04-16
AU2019356719A1 (en) 2021-03-11
JP7361182B2 (ja) 2023-10-13
JP7171753B2 (ja) 2022-11-15
EP3838379A1 (en) 2021-06-23
EP3838379A4 (en) 2021-11-24
US20200114305A1 (en) 2020-04-16
JPWO2020075538A1 (ja) 2021-09-02
CA3114746C (en) 2023-10-10

Similar Documents

Publication Publication Date Title
JP7361182B2 (ja) 吸収液再生装置及びこれを備えたco2回収装置並びに吸収液再生方法
WO2014041986A1 (ja) 脱硫装置およびそこで発生した凝縮水の使用方法
JP5703106B2 (ja) アミン回収システム及び二酸化炭素回収システム
JP5875245B2 (ja) Co2回収システム及びco2ガス含有水分の回収方法
JP2012236166A (ja) Co2回収装置およびco2回収方法
JP6016513B2 (ja) Co2回収装置およびco2回収方法
WO2014030388A1 (ja) Co2回収装置およびco2回収方法
JP6216259B2 (ja) Co2回収装置及びco2回収装置のろ過膜装置の洗浄方法
CA2860948C (en) Ammonia capturing by co2 product liquid in water wash liquid
JP5738137B2 (ja) Co2回収装置およびco2回収方法
JP2018001086A (ja) 二酸化炭素回収システムおよび排ガス処理方法
CN107551785B (zh) 酸性气体回收装置及酸性气体回收方法
JP6581768B2 (ja) Co2回収装置およびco2回収方法
JP6811759B2 (ja) Co2回収装置およびco2回収方法
US9914088B2 (en) CO2 recovery unit and CO2 recovery method
US9352273B2 (en) Dehydration-compression system and CO2 recovery system
Miyamoto et al. Absorption liquid regeneration apparatus, CO 2 recovery apparatus including the same, and absorption liquid regeneration method
JP6918718B2 (ja) 酸性ガス回収装置および酸性ガス回収方法
JP2019130531A (ja) 二酸化炭素回収システムおよび二酸化炭素回収システムの運転方法
WO2019087900A1 (ja) 酸性ガス除去装置及び酸性ガス除去方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19872002

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019356719

Country of ref document: AU

Date of ref document: 20190927

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019872002

Country of ref document: EP

Effective date: 20210318

ENP Entry into the national phase

Ref document number: 3114746

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020550399

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE