WO2020070850A1 - Power conversion circuit and air conditioner - Google Patents

Power conversion circuit and air conditioner

Info

Publication number
WO2020070850A1
WO2020070850A1 PCT/JP2018/037149 JP2018037149W WO2020070850A1 WO 2020070850 A1 WO2020070850 A1 WO 2020070850A1 JP 2018037149 W JP2018037149 W JP 2018037149W WO 2020070850 A1 WO2020070850 A1 WO 2020070850A1
Authority
WO
WIPO (PCT)
Prior art keywords
reverse voltage
voltage application
switching element
switching elements
main circuit
Prior art date
Application number
PCT/JP2018/037149
Other languages
French (fr)
Japanese (ja)
Inventor
勇紀 江幡
橋本 浩之
Original Assignee
日立ジョンソンコントロールズ空調株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立ジョンソンコントロールズ空調株式会社 filed Critical 日立ジョンソンコントロールズ空調株式会社
Priority to PCT/JP2018/037149 priority Critical patent/WO2020070850A1/en
Priority to TW108103453A priority patent/TWI785198B/en
Publication of WO2020070850A1 publication Critical patent/WO2020070850A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration

Definitions

  • the present invention relates to a power conversion circuit and an air conditioner.
  • An auxiliary power supply having a lower voltage value than the DC voltage source; a reverse voltage applying switching element which is turned on at the time of reverse recovery of the return diode and has a withstand voltage lower than that of the main circuit switching element;
  • a main circuit switching control circuit for switching the main circuit switching element having a short pause period for turning off both of the circuit switching elements, and the reverse voltage application switching during a pause period starting from a time point when the main circuit switching element is turned off.
  • a reverse voltage application switching control circuit that turns on the element and turns off after the elapse of the pause period.
  • power loss can be suppressed when converting an AC voltage to a DC voltage.
  • FIG. 2 is a circuit diagram of the AC / DC converter according to the first embodiment of the present invention. It is a wave form diagram of each part in a 1st embodiment.
  • FIG. 5 is a circuit diagram of an AC / DC converter according to a second embodiment of the present invention. It is a wave form diagram of each part in a 1st embodiment. It is a schematic diagram of an air conditioner according to a third embodiment of the present invention.
  • DD1 to DD4 four reverse voltage application circuits 71 to 74, a converter control circuit 180 (control unit), a driver circuit 172, a reactor 174, a smoothing capacitor 176, a current detection unit 177, and a voltage detection unit 178.
  • the switching elements QD1 to QD4 and other switching elements to be described later are all MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors).
  • the gate-source voltages of the switching elements QD1 and QD2 are referred to as VgsQD1 and VgsQD2, respectively.
  • the AC power supply 162 is, for example, a commercial power supply, and an AC voltage output from the AC power supply 162 is applied between the AC terminals 60A and 60B.
  • Smoothing capacitor 176 is connected between DC terminals 62P and 62N, and smoothes output voltages of switching elements QD1 to QD4.
  • the terminal voltage of the smoothing capacitor 176 is called a main DC voltage VE (DC voltage).
  • the load device 164 is connected to the DC terminals 62P and 62N.
  • the switching elements QD1 and QD2 are connected in series between the DC terminals 62P and 62N. Similarly, switching elements QD3 and QD4 are also connected in series between DC terminals 62P and 62N.
  • One end of reactor 174 is connected to AC terminal 60A, and the other end of reactor 174 is connected to a connection point of switching elements QD1 and QD2.
  • the connection point between the switching elements QD3 and QD4 is connected to the AC terminal 60B.
  • the voltage instantaneous value at the other end of reactor 174 is referred to as AC voltage instantaneous value vs. AC terminal 60B as a reference.
  • the instantaneous value of the current flowing from the AC power supply 162 to the AC / DC converter 100 is referred to as the instantaneous value of the alternating current is.
  • the freewheel diodes DD1 to DD4 are connected in anti-parallel to the switching elements QD1 to QD4, respectively.
  • the reverse voltage applying circuits 71 to 74 are connected in parallel to the freewheel diodes DD1 to DD4, respectively.
  • the reverse voltage applying circuits 71 to 74 apply a reverse voltage lower than the main DC voltage VE to the freewheel diodes DD1 to DD4 when the corresponding freewheel diodes DD1 to DD4 perform reverse recovery, thereby suppressing the reverse recovery loss. .
  • Converter control circuit 180 includes main circuit control signals SD1 to SD4 for controlling ON / OFF states of switching elements QD1 to QD4, and reverse voltage control signals SE1 to SE4 for controlling operations of reverse voltage application circuits 71 to 74. Output.
  • converter control circuit 180 stores the target value of main DC voltage VE, and sets the duty ratio of switching elements QD1 to QD4 such that main DC voltage VE approaches the target value.
  • the driver circuit 172 buffers the main circuit control signals SD1 to SD4 and the reverse voltage control signals SE1 to SE4, and outputs the results as voltage signals VD1 to VD4 and VE1 to VE4.
  • the current detector 177 detects the AC instantaneous value is, and the voltage detector 178 detects the AC voltage instantaneous value vs.
  • the reverse voltage application circuit 71 will be described.
  • FIG. 1 it is assumed that the switching element QD1 is in the off state and a forward return current flows through the diode DD1.
  • a reverse voltage is applied to the diode DD1.
  • a reverse current flows due to the residual charge of the diode DD1.
  • This reverse current is called a reverse recovery current
  • the loss due to the reverse recovery current is called a reverse recovery loss.
  • the reverse voltage application circuit 71 is provided to cope with this problem. That is, when the reverse recovery current flows through the diode DD1, the reverse voltage application circuit 71 applies a reverse voltage lower than the main DC voltage VE to the diode DD1 to reduce the reverse recovery current and the reverse recovery loss. Is what you do.
  • the DC power supply 22 outputs a DC voltage VG lower than the main DC voltage VE at the DC terminals 62P and 62N described above.
  • the effective value of the main DC voltage VE is about 300 [V]
  • the DC voltage VG is 1/10 or less of the voltage, for example, 5V to 24V. [V] or so.
  • the resistor 24 and the capacitor 26 constitute a filter circuit for removing a noise component from the DC voltage VG.
  • Switching element 28 (reverse voltage application switching element) is turned on / off by voltage signal VE1 supplied from converter control circuit 180 via driver circuit 172.
  • the diode 30 is a freewheel diode of the switching element 28.
  • the diode 34 (reverse voltage application diode) is connected between the source terminal of the switching element 28 and the drain terminal of the switching element QD1 to prevent backflow.
  • the switching element 28 has a lower withstand voltage than the switching elements QD1 to QD4 in order to switch the DC voltage VG output from the DC power supply 22.
  • a diode having a shorter reverse recovery time than the freewheeling diodes DD1 to DD4 is employed.
  • a wide band gap semiconductor silicon carbide, gallium nitride, gallium oxide, or the like
  • the other reverse voltage applying circuits 72 to 74 are not shown, they are configured similarly to the reverse voltage applying circuit 71.
  • the synchronous rectification mode is an operation mode in which the on / off state of the switching elements QD1 to QD4 is switched every half cycle of the instantaneous AC voltage value vs according to the polarity of the instantaneous AC voltage value vs. That is, when instantaneous AC voltage value vs is a positive value, converter control circuit 180 turns on switching elements QD1 and QD4 and turns off switching elements QD2 and QD3.
  • the current flows through the reactor 174, the switching element QD1, the load device 164, and the switching element QD4 sequentially, and returns to the AC power supply 162.
  • converter control circuit 180 turns on switching elements QD2 and QD3 and turns off switching elements QD1 and QD4.
  • the current flows through the switching element QD3, the load device 164, the switching element QD2, and the reactor 174 sequentially, and returns to the AC power supply 162.
  • the synchronous rectification mode may be used when the delay of the current phase due to the reactor 174 is not significant, for example, when the amplitude value of the AC current instantaneous value is is less than a predetermined threshold.
  • the switching mode is an operation mode in which the power factor of the AC / DC converter 100 is to be improved.
  • converter control circuit 180 complementarily switches on / off states of switching elements QD1 and QD2 a plurality of times within a half cycle of AC voltage instantaneous value vs.
  • a dead time period occurs in which both the switching elements QD1 and QD2 are in the OFF state.
  • converter control circuit 180 controls the on / off states of switching elements QD3 and QD4 so as to be the same as those in the synchronous rectification mode described above.
  • converter control circuit 180 keeps switching element QD3 in the off state, keeps switching element QD4 in the on state, and complements the on / off state of switching elements QD1 and QD2. Switch multiple times.
  • the frequency fw may be about 2 to 3 times the frequency fs, It may be about several hundred times.
  • the frequency fw may be set to 10 kHz to 20 kHz.
  • switching elements QD1 and QD4 are both on and the switching elements QD2 and QD3 are both off, current flows as in the case of the synchronous rectification mode described above.
  • switching elements QD2 and QD4 are both on and switching elements QD1 and QD3 are both off, the current supplied from AC power supply 162 causes reactor 174, switching element QD2, and switching element QD4 to pass through. The sequence returns to the AC power supply 162 in sequence.
  • the reactor 174 is directly connected to the AC power supply 162 without passing through the load device 164, and a large current can flow through the reactor 174.
  • the energy supplied to the reactor 174 as a current is stored in the reactor 174 as a magnetic flux, and then supplied to the load device 164 as a current when both the switching elements QD1 and QD4 are turned on.
  • the synchronous rectification mode may be employed when the delay of the current phase due to the reactor 174 is conspicuous as deterioration of the power factor, for example, when the amplitude value of the instantaneous AC current value is is equal to or larger than the above-described threshold value.
  • converter control circuit 180 sets reverse voltage control signals SE1 to SE4 to high level in synchronization with the timing when freewheeling diodes DD1 to DD4 perform reverse recovery.
  • the reverse voltage applying circuits 71 to 74 apply a reverse voltage lower than the main DC voltage VE to the freewheel diodes DD1 to DD4 when the freewheel diodes DD1 to DD4 perform reverse recovery. Suppress.
  • FIG. 2 is a waveform diagram of each part of the AC / DC converter 100 in the switching mode.
  • main circuit control signals SD1 and SD2 are signals output from converter control circuit 180 to control switching elements QD1 and QD2, as described above.
  • the state before time t0 in FIG. 2 assumes that the polarity of the instantaneous alternating current value is is “positive” (the direction shown in FIG. 1) and the switching elements QD2 and QD4 are on. That is, in FIG. 1, it is assumed that the current flowing from the AC terminal 60A flows out of the AC terminal 60B via the reactor 174 and the switching elements QD2 and QD4 in sequence.
  • the gate-source voltage VgsQD1 of the switching element QD1 gradually rises from time t4 to time t10.
  • the gate-source voltage VgsQD1 does not change during a period until time t4, but this period is a delay time in the driver circuit 172.
  • voltage VgsQD1 gradually increases. This period is a period during which the gate-source capacitance of the switching element QD1 is charged.
  • the voltage VgsQD1 is substantially constant. This is because the mirror effect appears in the switching element QD1.
  • the period from time t6 to t8 is called a mirror period.
  • a reverse recovery current flows through the diode DD1.
  • the timing at which the reverse recovery current can actually occur varies depending on conditions such as the ambient temperature.
  • the gate-source voltage VgsQA1 of the switching element QA1 is stabilized, it is considered that the drain-source voltage is also stable, so the reverse recovery occurs within the period from time t0 to t10. it is conceivable that.
  • timings such as times t4, t6, t8, and t10 in the drawing vary depending on conditions such as ambient temperature and noise. Therefore, in the present embodiment, constants and the like of the respective components are set so that reverse recovery can occur until time t12, which is a time margin obtained by adding a margin to time t10.
  • the reverse voltage control signal SE1 is a signal that rises at time t1 and falls at time t12.
  • the driver circuit 172 (see FIG. 1) outputs a voltage signal VE1 (not shown) having substantially the same waveform as the reverse voltage control signal SE1, and the switching element 28 (see FIG. 1) is turned on / off by the voltage signal VE1.
  • the current flowing through the diode 34 in the reverse voltage application circuit 71 is called a current ig.
  • the current ig has a positive value during the period from time t1 to time t2.
  • the current ig during this period is a reverse recovery current that flows through the diode DD1 via the diode 34 when the diode DD1 enters the reverse recovery state.
  • the current ig has a negative value during the period from time t6 to time t8.
  • the current ig during this period is a reverse recovery current generated by the reverse recovery of the diode 34 itself.
  • the current ih indicated by a broken line in FIG. 2 is an example of a reverse recovery current flowing through the diode DD1 by the main DC voltage VE when the reverse voltage application circuit 71 is not provided.
  • the reverse recovery current (current ig during the period from time t1 to t2) generated in the diode DD1 and the reverse recovery current (current ig during the period from time t6 to t8) generated in the diode 34 are determined. Even if they are combined, the current value can be greatly reduced as compared with the reverse recovery current ih indicated by the broken line, whereby the reverse recovery loss can be significantly suppressed.
  • the AC / DC converter 100 includes the plurality of freewheel diodes (DD1 to DD4) connected in anti-parallel to each of the plurality of main circuit switching elements (QD1 to QD4), and at least a part thereof.
  • a reverse voltage lower than the DC voltage (VE) output to the load device (164) is supplied to the corresponding freewheeling diode. (DD1 to DD4), and a control unit (180) for controlling the reverse voltage application circuits (71 to 74).
  • FIG. 3 is a circuit diagram of an AC / DC converter 170 (power conversion circuit) according to the second embodiment of the present invention.
  • the AC / DC converter 170 converts AC power supplied from an AC power supply 162 (AC system) into DC power, and loads the load device. 164.
  • the AC / DC converter 170 includes reverse voltage applying circuits 51 to 54 instead of the reverse voltage applying circuits 71 to 74 in the first embodiment.
  • the reverse voltage application circuit 51 includes the capacitor 32.
  • the capacitor 32 is connected between the source terminal of the switching element 28 and the source terminal of the switching element QD1.
  • the other reverse voltage application circuits 52 to 54 have the same configuration as the reverse voltage application circuit 51.
  • the configuration of the AC / DC converter 170 other than that described above is the same as that of the AC / DC converter 100 of the first embodiment.
  • FIG. 4 is a waveform diagram of each part in the switching mode of the AC / DC converter 170.
  • the waveforms of the main circuit control signals SD1 and SD2 and the gate-source voltages VgsQD1 and VgsQD2 are those of the first embodiment (FIG. Reference).
  • the waveform of the reverse voltage control signal SE1 in the present embodiment is different from that of the first embodiment. That is, in the present embodiment, the reverse voltage control signal SE1 rises from a low level to a high level at time t0, and falls from a high level to a low level at time t2.
  • the reverse voltage control signal SE1 is maintained at the high level during the period from the time t1 to the time t12 when the diode DD1 is likely to be in the reverse recovery state (see FIG. 2).
  • the waveform of the voltage signal VE1 (see FIG. 1) supplied to the switching element 28 is disturbed.
  • the switching element 28 is turned off even though the diode DD1 is in the reverse recovery state.
  • a large reverse recovery current flows through the diode DD1 due to the main DC voltage VE, and the reverse recovery loss also increases.
  • the reverse voltage application circuit (51 to 54) in this embodiment is charged after the reverse voltage application switching element (28) is turned on, and is charged after the reverse voltage application switching element (28) is turned off.
  • the control unit (180) further includes a discharged capacitor (32), and the control unit (180) performs a reverse operation during a dead time period (t0 to t2) in which both the first and second main circuit switching elements (QD1 and QD2) are turned off.
  • the voltage application switching element (28) is set to the ON state, and the reverse voltage application switching element (28) is set to the OFF state before the dead time period (t0 to t2) ends.
  • the gaseous refrigerant that has flowed into the outdoor heat exchanger 963 exchanges heat with outdoor air supplied by the outdoor fan 965 and is condensed to be a liquid refrigerant.
  • This liquid refrigerant flows into the indoor unit 970 through the outdoor expansion valve 964 and the liquid pipe 984 in the fully opened state.
  • MOSFETs were applied as the switching elements 28 and QD1 to QD4.
  • the switching elements are not limited to MOSFETs, but may be IGBTs, bipolar transistors, or the like.
  • the reverse voltage applying circuits 51 to 54 and 71 to 74 are connected in parallel to all the freewheel diodes DD1 to DD4.
  • a reverse voltage application circuit may be connected only to the return diode.
  • the reverse voltage applying circuits 51, 52, 71, 72 corresponding to the switching elements QD1, QD2 whose on / off states are complementarily switched in the switching mode are provided, and the other reverse voltage applying circuits 53, 54, 73 are provided.
  • , 74 may be omitted. This is because the diodes DD1 and DD2 reversely connected to the switching elements QD1 and QD2 frequently perform reverse recovery as compared with the other diodes DD3 and DD4.
  • the cost of the AC / DC converters 100 and 170 can be reduced.
  • the reverse voltage control signal SE1 has fallen at or before the time t2 (see FIG. 2). However, the reverse voltage control signal SE1 may fall after time t2.
  • the converter control circuit 180 in each of the above embodiments may perform control to suppress the reverse recovery loss not only in the switching mode but also in either the synchronous rectification mode or the diode rectification mode of the above-described modification. That is, the converter control circuit 180 applies a reverse voltage lower than the main DC voltage VE to the freewheeling diodes DD1 to DD4 when the freewheeling diodes DD1 to DD4 perform reverse recovery in the synchronous rectification mode or the diode rectification mode, Thereby, the reverse recovery loss may be suppressed.
  • the off timing of the reverse voltage control signal SE1 may be a timing later than the time t2.
  • Switching element (reverse voltage application switching element) 32 Capacitor 34 Diode (reverse voltage application diode) 51 to 54, 71 to 74 Reverse voltage application circuit 100, 170 AC / DC converter (power conversion circuit) 162 AC power supply (AC system) 164 Load device 174 Reactor 180 Converter control circuit (control unit) DD1 to DD4 freewheeling diode QD1 switching element (first main circuit switching element) QD2 switching element (second main circuit switching element) QD3 switching element (third main circuit switching element) QD4 switching element (fourth main circuit switching element) VE Main DC voltage (DC voltage)

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)
  • Control Of Multiple Motors (AREA)

Abstract

In order to suppress power loss at a time of conversion of AC voltage to DC voltage, the present invention is provided with: a plurality of main circuit switching elements (QD1-QD4) for converting AC power supplied from an AC system (162) to DC power and supplying the DC power to a load device (164); a reactor (174) connected between the main circuit switching elements (QD1-QD4) and the AC system (162); a plurality of reflux diodes (DD1-DD4) that are connected in reverse parallel respectively to the plurality of main circuit switching elements (QD1-QD4); reverse voltage application circuits (71-74) that are each connected to at least one of the reflux diodes (DD1-DD4), and that apply reverse voltage lower than DC voltage (VE) to be outputted to the load device (164), to the corresponding reflux diodes (DD1-DD4) when the corresponding reflux diodes (DD1-DD4) are cut off; and a control unit (180) that controls the reverse voltage application circuits (71-74).

Description

電力変換回路および空気調和機Power conversion circuit and air conditioner
 本発明は、電力変換回路および空気調和機に関する。 The present invention relates to a power conversion circuit and an air conditioner.
 本技術分野の背景技術として、下記特許文献1の請求項1には、「直流電圧源に直列接続され負荷に電力を供給する二個一組の主回路スイッチング素子と、これら各主回路スイッチング素子に逆並列接続された還流ダイオードと、これら各還流ダイオードが遮断するにあたって、前記直流電圧源より小さな逆電圧を各還流ダイオードに印加する逆電圧印加回路とを備え、前記逆電圧印加回路は、前記直流電圧源より電圧値が低い補助電源と、前記還流ダイオードの逆回復時にオンし前記主回路スイッチング素子より耐圧が低い逆電圧印加スイッチング素子と、前記還流ダイオードより逆回復時間が短く高速な補助ダイオードとの直列接続にて構成され、二個一組の主回路スイッチング素子を互いにオン状態とオフ状態とを切替える際に両主回路スイッチング素子をともにオフする短時間の休止期間を有して前記主回路スイッチング素子を切り替える主回路スイッチング制御回路と、前記主回路スイッチング素子がオフした時点から始まる休止期間中に前記逆電圧印加スイッチング素子をオンさせ前記休止期間の経過後にオフさせる逆電圧印加スイッチング制御回路とを備えたことを特徴とする電力変換装置。」と記載されている。 As background art of the present technical field, claim 1 of Patent Document 1 below describes “a pair of main circuit switching elements connected in series to a DC voltage source and supplying power to a load, and each of these main circuit switching elements. A freewheel diode connected in anti-parallel to each of the freewheeling diodes, and a reverse voltage applying circuit for applying a reverse voltage smaller than the DC voltage source to each freewheeling diode when each of the freewheeling diodes shuts off. An auxiliary power supply having a lower voltage value than the DC voltage source; a reverse voltage applying switching element which is turned on at the time of reverse recovery of the return diode and has a withstand voltage lower than that of the main circuit switching element; When the main circuit switching elements are switched on and off with respect to each other, A main circuit switching control circuit for switching the main circuit switching element having a short pause period for turning off both of the circuit switching elements, and the reverse voltage application switching during a pause period starting from a time point when the main circuit switching element is turned off. And a reverse voltage application switching control circuit that turns on the element and turns off after the elapse of the pause period. "
特許第4204534号公報Japanese Patent No. 4204534
 しかし、特許文献1においては、交流電圧を直流電圧に変換する際に電力損失を抑制する点については特に言及されていない。
 この発明は上述した事情に鑑みてなされたものであり、交流電圧を直流電圧に変換する際に電力損失を抑制できる電力変換回路および空気調和機を提供することを目的とする。
However, Patent Literature 1 does not particularly mention that power loss is suppressed when converting an AC voltage to a DC voltage.
The present invention has been made in view of the above circumstances, and has as its object to provide a power conversion circuit and an air conditioner that can suppress power loss when converting an AC voltage to a DC voltage.
 上記課題を解決するため本発明の電力変換回路は、交流系統から供給された交流電力を直流電力に変換して負荷装置に供給する複数の主回路スイッチング素子と、前記主回路スイッチング素子と前記交流系統との間に接続されたリアクトルと、複数の前記主回路スイッチング素子の各々に逆並列接続された複数の還流ダイオードと、少なくとも一部の前記還流ダイオードに接続され、対応する前記還流ダイオードが遮断する際に、前記負荷装置に出力する直流電圧よりも低い逆電圧を、対応する前記還流ダイオードに印加する逆電圧印加回路と、前記逆電圧印加回路を制御する制御部と、を備えることを特徴とする。 In order to solve the above problems, a power conversion circuit according to the present invention includes a plurality of main circuit switching elements that convert AC power supplied from an AC system into DC power and supply the DC power to a load device; A reactor connected to a power system, a plurality of freewheeling diodes connected in anti-parallel to each of the plurality of main circuit switching elements, and a corresponding freewheeling diode connected to at least a part of the freewheeling diodes and shut off A reverse voltage lower than a DC voltage output to the load device, a reverse voltage application circuit that applies a reverse voltage to the corresponding freewheeling diode, and a control unit that controls the reverse voltage application circuit. And
 本発明によれば、交流電圧を直流電圧に変換する際に電力損失を抑制できる。 According to the present invention, power loss can be suppressed when converting an AC voltage to a DC voltage.
本発明の第1実施形態によるAC/DCコンバータの回路図である。FIG. 2 is a circuit diagram of the AC / DC converter according to the first embodiment of the present invention. 第1実施形態における各部の波形図である。It is a wave form diagram of each part in a 1st embodiment. 本発明の第2実施形態によるAC/DCコンバータの回路図である。FIG. 5 is a circuit diagram of an AC / DC converter according to a second embodiment of the present invention. 第1実施形態における各部の波形図である。It is a wave form diagram of each part in a 1st embodiment. 本発明の第3実施形態による空気調和機の模式図である。It is a schematic diagram of an air conditioner according to a third embodiment of the present invention.
[第1実施形態]
〈第1実施形態の構成〉
 図1は、本発明の第1実施形態によるAC/DCコンバータ100(電力変換回路)の回路図である。
 AC/DCコンバータ100は、交流電源162(交流系統)から供給された交流電力を直流電力に変換し、負荷装置164に供給するものである。AC/DCコンバータ100は、一対の交流端子60A,60Bと、直流端子62P,62Nと、4個のスイッチング素子QD1~QD4(第1~第4の主回路スイッチング素子)と、4個の還流ダイオードDD1~DD4と、4台の逆電圧印加回路71~74と、コンバータ制御回路180(制御部)と、ドライバ回路172と、リアクトル174と、平滑キャパシタ176と、電流検出部177と、電圧検出部178と、を備えている。
[First Embodiment]
<Configuration of First Embodiment>
FIG. 1 is a circuit diagram of an AC / DC converter 100 (power conversion circuit) according to a first embodiment of the present invention.
The AC / DC converter 100 converts AC power supplied from an AC power supply 162 (AC system) into DC power and supplies the DC power to the load device 164. The AC / DC converter 100 includes a pair of AC terminals 60A and 60B, DC terminals 62P and 62N, four switching elements QD1 to QD4 (first to fourth main circuit switching elements), and four return diodes. DD1 to DD4, four reverse voltage application circuits 71 to 74, a converter control circuit 180 (control unit), a driver circuit 172, a reactor 174, a smoothing capacitor 176, a current detection unit 177, and a voltage detection unit 178.
 なお、本実施形態においては、スイッチング素子QD1~QD4および後述する他のスイッチング素子は、全てMOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)である。スイッチング素子QD1,QD2のゲート・ソース間電圧を、各々VgsQD1,VgsQD2と呼ぶ。交流電源162は、例えば商用電源であり、交流端子60A,60B間には、交流電源162が出力する交流電圧が印加される。平滑キャパシタ176は、直流端子62P,62Nの間に接続され、スイッチング素子QD1~QD4の出力電圧を平滑する。この平滑キャパシタ176の端子電圧を主直流電圧VE(直流電圧)と呼ぶ。また、負荷装置164は、直流端子62P,62Nに接続されている。 In the present embodiment, the switching elements QD1 to QD4 and other switching elements to be described later are all MOSFETs (Metal-Oxide-Semiconductor Field-Effect Transistors). The gate-source voltages of the switching elements QD1 and QD2 are referred to as VgsQD1 and VgsQD2, respectively. The AC power supply 162 is, for example, a commercial power supply, and an AC voltage output from the AC power supply 162 is applied between the AC terminals 60A and 60B. Smoothing capacitor 176 is connected between DC terminals 62P and 62N, and smoothes output voltages of switching elements QD1 to QD4. The terminal voltage of the smoothing capacitor 176 is called a main DC voltage VE (DC voltage). The load device 164 is connected to the DC terminals 62P and 62N.
 スイッチング素子QD1,QD2は、直流端子62P,62Nの間に直列接続されている。同様に、スイッチング素子QD3,QD4も、直流端子62P,62Nの間に直列接続されている。交流端子60Aには、リアクトル174の一端が接続され、スイッチング素子QD1,QD2の接続点には、リアクトル174の他端が接続されている。また、スイッチング素子QD3,QD4の接続点は、交流端子60Bに接続されている。交流端子60Bを基準として、リアクトル174の他端の電圧瞬時値を、交流電圧瞬時値vsと呼ぶ。また、交流電源162からAC/DCコンバータ100に流れる電流瞬時値を、交流電流瞬時値isと呼ぶ。 The switching elements QD1 and QD2 are connected in series between the DC terminals 62P and 62N. Similarly, switching elements QD3 and QD4 are also connected in series between DC terminals 62P and 62N. One end of reactor 174 is connected to AC terminal 60A, and the other end of reactor 174 is connected to a connection point of switching elements QD1 and QD2. The connection point between the switching elements QD3 and QD4 is connected to the AC terminal 60B. The voltage instantaneous value at the other end of reactor 174 is referred to as AC voltage instantaneous value vs. AC terminal 60B as a reference. The instantaneous value of the current flowing from the AC power supply 162 to the AC / DC converter 100 is referred to as the instantaneous value of the alternating current is.
 還流ダイオードDD1~DD4は、各々スイッチング素子QD1~QD4に対して逆並列接続されている。そして、逆電圧印加回路71~74は、各々還流ダイオードDD1~DD4に並列接続されている。逆電圧印加回路71~74は、対応する還流ダイオードDD1~DD4が逆回復する際に、主直流電圧VEよりも低い逆方向電圧を該還流ダイオードDD1~DD4に印加し、逆回復損失を抑制する。 The freewheel diodes DD1 to DD4 are connected in anti-parallel to the switching elements QD1 to QD4, respectively. The reverse voltage applying circuits 71 to 74 are connected in parallel to the freewheel diodes DD1 to DD4, respectively. The reverse voltage applying circuits 71 to 74 apply a reverse voltage lower than the main DC voltage VE to the freewheel diodes DD1 to DD4 when the corresponding freewheel diodes DD1 to DD4 perform reverse recovery, thereby suppressing the reverse recovery loss. .
 コンバータ制御回路180は、スイッチング素子QD1~QD4のオン/オフ状態を制御する主回路制御信号SD1~SD4と、逆電圧印加回路71~74の動作を制御する逆電圧制御信号SE1~SE4と、を出力する。特に、コンバータ制御回路180は、主直流電圧VEの目標値を記憶しており、主直流電圧VEが目標値に近づくように、スイッチング素子QD1~QD4のデューティ比を設定する。ドライバ回路172は、主回路制御信号SD1~SD4と、逆電圧制御信号SE1~SE4と、をバッファリングし、その結果を電圧信号VD1~VD4,VE1~VE4として出力する。電流検出部177は、交流電流瞬時値isを検出し、電圧検出部178は交流電圧瞬時値vsを検出する。 Converter control circuit 180 includes main circuit control signals SD1 to SD4 for controlling ON / OFF states of switching elements QD1 to QD4, and reverse voltage control signals SE1 to SE4 for controlling operations of reverse voltage application circuits 71 to 74. Output. In particular, converter control circuit 180 stores the target value of main DC voltage VE, and sets the duty ratio of switching elements QD1 to QD4 such that main DC voltage VE approaches the target value. The driver circuit 172 buffers the main circuit control signals SD1 to SD4 and the reverse voltage control signals SE1 to SE4, and outputs the results as voltage signals VD1 to VD4 and VE1 to VE4. The current detector 177 detects the AC instantaneous value is, and the voltage detector 178 detects the AC voltage instantaneous value vs.
 次に、逆電圧印加回路71について説明する。
 図1において、スイッチング素子QD1がオフ状態であって、ダイオードDD1に順方向の還流電流が流れていたとする。ここで、スイッチング素子QD1がオン状態になると、ダイオードDD1には逆電圧が印加される。その際、ダイオードDD1の残留電荷によって逆方向電流が流れる。この逆方向電流は逆回復電流と呼ばれており、逆回復電流による損失は逆回復損失と呼ばれている。ダイオードDD1に逆回復電流が流れる際、ダイオードDD1に主直流電圧VEがそのまま印加されると、逆回復電流および逆回復損失が大きくなる。そこで、逆電圧印加回路71は、この問題に対応するために設けられている。すなわち、逆電圧印加回路71は、ダイオードDD1に逆回復電流が流れる際、ダイオードDD1に対して、主直流電圧VEよりも低い逆電圧を印加し、逆回復電流および逆回復損失を低減させようとするものである。
Next, the reverse voltage application circuit 71 will be described.
In FIG. 1, it is assumed that the switching element QD1 is in the off state and a forward return current flows through the diode DD1. Here, when the switching element QD1 is turned on, a reverse voltage is applied to the diode DD1. At this time, a reverse current flows due to the residual charge of the diode DD1. This reverse current is called a reverse recovery current, and the loss due to the reverse recovery current is called a reverse recovery loss. When the main DC voltage VE is directly applied to the diode DD1 when the reverse recovery current flows through the diode DD1, the reverse recovery current and the reverse recovery loss increase. Therefore, the reverse voltage application circuit 71 is provided to cope with this problem. That is, when the reverse recovery current flows through the diode DD1, the reverse voltage application circuit 71 applies a reverse voltage lower than the main DC voltage VE to the diode DD1 to reduce the reverse recovery current and the reverse recovery loss. Is what you do.
 逆電圧印加回路71の内部において、直流電源22は、上述した直流端子62P,62Nにおける主直流電圧VEよりも低い直流電圧VGを出力する。例えば、AC/DCコンバータ100を空気調和機に適用する場合には、主直流電圧VEの実効値は300[V]程度とし、直流電圧VGは、その1/10以下の電圧、例えば5V~24[V]程度にするとよい。抵抗器24およびキャパシタ26は、直流電圧VGからノイズ成分を除去するフィルタ回路を構成している。スイッチング素子28(逆電圧印加スイッチング素子)は、コンバータ制御回路180からドライバ回路172を介して供給された電圧信号VE1によってオン/オフ制御される。ダイオード30は、スイッチング素子28の還流ダイオードである。 (4) Inside the reverse voltage application circuit 71, the DC power supply 22 outputs a DC voltage VG lower than the main DC voltage VE at the DC terminals 62P and 62N described above. For example, when the AC / DC converter 100 is applied to an air conditioner, the effective value of the main DC voltage VE is about 300 [V], and the DC voltage VG is 1/10 or less of the voltage, for example, 5V to 24V. [V] or so. The resistor 24 and the capacitor 26 constitute a filter circuit for removing a noise component from the DC voltage VG. Switching element 28 (reverse voltage application switching element) is turned on / off by voltage signal VE1 supplied from converter control circuit 180 via driver circuit 172. The diode 30 is a freewheel diode of the switching element 28.
 ダイオード34(逆電圧印加ダイオード)は、スイッチング素子28のソース端子と、スイッチング素子QD1のドレイン端子との間に、逆流防止用に接続されている。
 スイッチング素子28は、直流電源22が出力する直流電圧VGのスイッチングを行うため、スイッチング素子QD1~QD4よりも耐圧の低いものを採用している。また、ダイオード34は、高速に動作させることが好ましいため、還流ダイオードDD1~DD4よりも逆回復時間が短いものを採用している。具体的には、ダイオード34として、ワイドバンドギャップ半導体(シリコンカーバイド、窒化ガリウム、酸化ガリウム等)を適用するとよい。なお、他の逆電圧印加回路72~74については図示を省略するが、これらは逆電圧印加回路71と同様に構成されている。
The diode 34 (reverse voltage application diode) is connected between the source terminal of the switching element 28 and the drain terminal of the switching element QD1 to prevent backflow.
The switching element 28 has a lower withstand voltage than the switching elements QD1 to QD4 in order to switch the DC voltage VG output from the DC power supply 22. Further, since it is preferable to operate the diode 34 at high speed, a diode having a shorter reverse recovery time than the freewheeling diodes DD1 to DD4 is employed. Specifically, a wide band gap semiconductor (silicon carbide, gallium nitride, gallium oxide, or the like) is preferably used as the diode 34. Although the other reverse voltage applying circuits 72 to 74 are not shown, they are configured similarly to the reverse voltage applying circuit 71.
〈第1実施形態の動作〉
 コンバータ制御回路180は、負荷の大きさ(例えば、交流電流瞬時値isの振幅値)に基づいて、複数の動作モードのうち何れかを選択可能である。ここで、選択可能な動作モードには、「同期整流モード」、および「スイッチング・モード」が含まれる。
<Operation of First Embodiment>
Converter control circuit 180 can select any one of a plurality of operation modes based on the magnitude of the load (for example, the amplitude value of AC instantaneous value is). Here, the selectable operation modes include a “synchronous rectification mode” and a “switching mode”.
(同期整流モード)
 同期整流モードは、スイッチング素子QD1~QD4のオン/オフ状態を、交流電圧瞬時値vsの極性に応じて、交流電圧瞬時値vsの半周期毎に切り換える動作モードである。すなわち、交流電圧瞬時値vsが正値であるとき、コンバータ制御回路180は、スイッチング素子QD1,QD4をオン状態にし、スイッチング素子QD2,QD3をオフ状態にする。これにより、交流電源162から電流が供給されると、その電流は、リアクトル174、スイッチング素子QD1、負荷装置164、スイッチング素子QD4を順次介して流れ、交流電源162に戻る。
(Synchronous rectification mode)
The synchronous rectification mode is an operation mode in which the on / off state of the switching elements QD1 to QD4 is switched every half cycle of the instantaneous AC voltage value vs according to the polarity of the instantaneous AC voltage value vs. That is, when instantaneous AC voltage value vs is a positive value, converter control circuit 180 turns on switching elements QD1 and QD4 and turns off switching elements QD2 and QD3. Thus, when a current is supplied from the AC power supply 162, the current flows through the reactor 174, the switching element QD1, the load device 164, and the switching element QD4 sequentially, and returns to the AC power supply 162.
 逆に、交流電圧瞬時値vsが負値であるとき、コンバータ制御回路180は、スイッチング素子QD2,QD3をオン状態にし、スイッチング素子QD1,QD4をオフ状態にする。これにより、交流電源162から電流が供給されると、その電流は、スイッチング素子QD3、負荷装置164、スイッチング素子QD2、リアクトル174を順次介して流れ、交流電源162に戻る。同期整流モードは、リアクトル174による電流位相の遅れが顕著ではない場合、例えば、交流電流瞬時値isの振幅値が所定の閾値未満である場合に採用するとよい。 Conversely, when AC instantaneous value vs is a negative value, converter control circuit 180 turns on switching elements QD2 and QD3 and turns off switching elements QD1 and QD4. Thus, when a current is supplied from the AC power supply 162, the current flows through the switching element QD3, the load device 164, the switching element QD2, and the reactor 174 sequentially, and returns to the AC power supply 162. The synchronous rectification mode may be used when the delay of the current phase due to the reactor 174 is not significant, for example, when the amplitude value of the AC current instantaneous value is is less than a predetermined threshold.
(スイッチング・モード)
 ところで、AC/DCコンバータ100は、リアクトル174を含むため、上述した同期整流モードでは、交流電流瞬時値isは交流電源162の電圧に対して遅れ位相になる。スイッチング・モードは、AC/DCコンバータ100の力率を改善しようとする動作モードである。すなわち、スイッチング・モードにおいては、コンバータ制御回路180は、交流電圧瞬時値vsの半周期内で、スイッチング素子QD1,QD2のオン/オフ状態を、相補的に複数回切り替える。なお、スイッチング素子QD1,QD2のオン/オフ状態を、相補的に切り替える際には、スイッチング素子QD1,QD2が共にオフ状態になるデッドタイム期間が生じる。また、コンバータ制御回路180は、スイッチング素子QD3,QD4のオン/オフ状態については、上述した同期整流モードにおける状態と同様になるように制御する。
(Switching mode)
By the way, since the AC / DC converter 100 includes the reactor 174, in the synchronous rectification mode described above, the instantaneous value of the AC current is delayed with respect to the voltage of the AC power supply 162. The switching mode is an operation mode in which the power factor of the AC / DC converter 100 is to be improved. In other words, in the switching mode, converter control circuit 180 complementarily switches on / off states of switching elements QD1 and QD2 a plurality of times within a half cycle of AC voltage instantaneous value vs. When the ON / OFF states of the switching elements QD1 and QD2 are complementarily switched, a dead time period occurs in which both the switching elements QD1 and QD2 are in the OFF state. Further, converter control circuit 180 controls the on / off states of switching elements QD3 and QD4 so as to be the same as those in the synchronous rectification mode described above.
 例えば、交流電圧瞬時値vsが正値であるとき、コンバータ制御回路180は、スイッチング素子QD3をオフ状態に保ち、スイッチング素子QD4をオン状態に保ち、スイッチング素子QD1,QD2のオン/オフ状態を相補的に複数回切り替える。ここで、スイッチング素子QD1,QD2のオン/オフ状態を切り換える周波数をfwとし、交流電圧瞬時値vsの周波数をfsとしたとき、周波数fwは周波数fsの2~3倍程度であってもよく、数百倍程度であってもよい。例えば、周波数fsが50Hzまたは60Hzであるとき、周波数fwは10kHz~20kHzにしてもよい。 For example, when AC voltage instantaneous value vs is a positive value, converter control circuit 180 keeps switching element QD3 in the off state, keeps switching element QD4 in the on state, and complements the on / off state of switching elements QD1 and QD2. Switch multiple times. Here, assuming that the frequency for switching the on / off state of the switching elements QD1 and QD2 is fw and the frequency of the AC voltage instantaneous value vs is fs, the frequency fw may be about 2 to 3 times the frequency fs, It may be about several hundred times. For example, when the frequency fs is 50 Hz or 60 Hz, the frequency fw may be set to 10 kHz to 20 kHz.
 ここで、スイッチング素子QD1,QD4が共にオン状態であってスイッチング素子QD2,QD3が共にオフ状態であれば、上述した同期整流モードの場合と同様に電流が流れる。一方、スイッチング素子QD2,QD4が共にオン状態であって、スイッチング素子QD1,QD3が共にオフ状態であれば、交流電源162から供給された電流は、リアクトル174、スイッチング素子QD2、およびスイッチング素子QD4を順次介して交流電源162に戻る。 Here, if the switching elements QD1 and QD4 are both on and the switching elements QD2 and QD3 are both off, current flows as in the case of the synchronous rectification mode described above. On the other hand, when switching elements QD2 and QD4 are both on and switching elements QD1 and QD3 are both off, the current supplied from AC power supply 162 causes reactor 174, switching element QD2, and switching element QD4 to pass through. The sequence returns to the AC power supply 162 in sequence.
 すなわち、この場合、負荷装置164を介することなく、交流電源162にリアクトル174を直結した状態になり、リアクトル174に大きな電流を流すことができる。リアクトル174に電流として供給されたエネルギーは、磁束としてリアクトル174に蓄えられ、その後にスイッチング素子QD1,QD4が共にオン状態になった際に、電流として負荷装置164に供給される。同期整流モードは、リアクトル174による電流位相の遅れが力率の悪化として顕著に現れる場合、例えば、交流電流瞬時値isの振幅値が上述した閾値以上である場合に採用するとよい。 In other words, in this case, the reactor 174 is directly connected to the AC power supply 162 without passing through the load device 164, and a large current can flow through the reactor 174. The energy supplied to the reactor 174 as a current is stored in the reactor 174 as a magnetic flux, and then supplied to the load device 164 as a current when both the switching elements QD1 and QD4 are turned on. The synchronous rectification mode may be employed when the delay of the current phase due to the reactor 174 is conspicuous as deterioration of the power factor, for example, when the amplitude value of the instantaneous AC current value is is equal to or larger than the above-described threshold value.
 同期整流モードにおいては、還流ダイオードDD1~DD4に流れる順方向電流が小さいため、逆回復電流も小さくなる。すると、逆電圧印加回路71~74の消費電力が逆回復損失よりも大きくなることがある。このような場合には、逆電圧印加回路71~74を非動作状態にすることが好ましい。そこで、コンバータ制御回路180は、同期整流モードおいては、逆電圧制御信号SE1~SE4をロウレベルに維持し、逆電圧印加回路71~74を非動作状態にする。 (4) In the synchronous rectification mode, since the forward current flowing through the freewheel diodes DD1 to DD4 is small, the reverse recovery current is also small. Then, the power consumption of the reverse voltage application circuits 71 to 74 may be larger than the reverse recovery loss. In such a case, it is preferable to make the reverse voltage application circuits 71 to 74 inactive. Therefore, in the synchronous rectification mode, converter control circuit 180 maintains the reverse voltage control signals SE1 to SE4 at low level, and turns off reverse voltage application circuits 71 to 74.
 一方、スイッチング・モードにおいては、還流ダイオードDD1~DD4に流れる順方向電流が大きいため、逆回復電流も大きくなる。そこで、スイッチング・モードにおいては、コンバータ制御回路180は、還流ダイオードDD1~DD4が逆回復する際に、そのタイミングに同期して逆電圧制御信号SE1~SE4をハイレベルに設定する。これにより、逆電圧印加回路71~74は、還流ダイオードDD1~DD4が逆回復する際に、主直流電圧VEよりも低い逆方向電圧を該還流ダイオードDD1~DD4に印加し、これによって逆回復損失を抑制する。 On the other hand, in the switching mode, since the forward current flowing through the freewheel diodes DD1 to DD4 is large, the reverse recovery current is also large. Therefore, in the switching mode, converter control circuit 180 sets reverse voltage control signals SE1 to SE4 to high level in synchronization with the timing when freewheeling diodes DD1 to DD4 perform reverse recovery. Thus, the reverse voltage applying circuits 71 to 74 apply a reverse voltage lower than the main DC voltage VE to the freewheel diodes DD1 to DD4 when the freewheel diodes DD1 to DD4 perform reverse recovery. Suppress.
 図2は、AC/DCコンバータ100のスイッチング・モードにおける各部の波形図である。
 図2において主回路制御信号SD1,SD2は、上述したように、スイッチング素子QD1,QD2を制御するために、コンバータ制御回路180が出力する信号である。図2の時刻t0以前の状態は、交流電流瞬時値isの極性が「正」(図1に示す方向)であって、スイッチング素子QD2,QD4がオン状態である場合を想定している。すなわち、図1において、交流端子60Aから流入した電流が、リアクトル174、スイッチング素子QD2,QD4を順次介して、交流端子60Bから流出している場合を想定している。
FIG. 2 is a waveform diagram of each part of the AC / DC converter 100 in the switching mode.
In FIG. 2, main circuit control signals SD1 and SD2 are signals output from converter control circuit 180 to control switching elements QD1 and QD2, as described above. The state before time t0 in FIG. 2 assumes that the polarity of the instantaneous alternating current value is is “positive” (the direction shown in FIG. 1) and the switching elements QD2 and QD4 are on. That is, in FIG. 1, it is assumed that the current flowing from the AC terminal 60A flows out of the AC terminal 60B via the reactor 174 and the switching elements QD2 and QD4 in sequence.
 図2の時刻t0以前においては、主回路制御信号SD2がハイレベルであるため、ゲート・ソース間電圧VgsQD2もハイレベルになっている。従って、スイッチング素子QD2(図1参照)は、上述したように、オン状態になっている。次に、図2の時刻t0において、主回路制御信号SD2は、ハイレベルからロウレベルに立ち下がり、スイッチング素子QD2のゲート・ソース間電圧VgsQD2は、時刻t0から徐々に立ち下がっている。このように、ゲート・ソース間電圧VgsQD2が立ち下がると、スイッチング素子QD2はオフ状態になる。すると、図1において交流端子60Aからリアクトル174を介して流入した電流は、ダイオードDD1、負荷装置164、スイッチング素子QD4を介して交流電源162に還流する。 以前 Before time t0 in FIG. 2, since the main circuit control signal SD2 is at a high level, the gate-source voltage VgsQD2 is also at a high level. Therefore, the switching element QD2 (see FIG. 1) is in the ON state as described above. Next, at time t0 in FIG. 2, the main circuit control signal SD2 falls from a high level to a low level, and the gate-source voltage VgsQD2 of the switching element QD2 gradually falls from time t0. As described above, when the gate-source voltage VgsQD2 falls, the switching element QD2 is turned off. Then, the current flowing from AC terminal 60A via reactor 174 in FIG. 1 is returned to AC power supply 162 via diode DD1, load device 164, and switching element QD4.
 次に、図2の時刻t2において主回路制御信号SD1がロウレベルからハイレベルに立ち上がると、スイッチング素子QD1のゲート・ソース間電圧VgsQD1は、その後の時刻t4~時刻t10にかけて、徐々に立ち上がっている。主回路制御信号SD1が時刻t2に立ち上がった後、時刻t4までの期間、ゲート・ソース間電圧VgsQD1には変化がみられないが、この期間は、ドライバ回路172における遅れ時間である。次に、時刻t4~t6の期間は徐々に電圧VgsQD1が上昇している。この期間は、スイッチング素子QD1のゲート・ソース間容量をチャージしている期間である。次に、時刻t6~t8の期間、電圧VgsQD1はほぼ一定になっている。これはスイッチング素子QD1にミラー効果が現れていることによる。そこで、時刻t6~t8の期間をミラー期間と呼ぶ。 Next, when the main circuit control signal SD1 rises from a low level to a high level at time t2 in FIG. 2, the gate-source voltage VgsQD1 of the switching element QD1 gradually rises from time t4 to time t10. After the main circuit control signal SD1 rises at time t2, the gate-source voltage VgsQD1 does not change during a period until time t4, but this period is a delay time in the driver circuit 172. Next, during the period from time t4 to time t6, voltage VgsQD1 gradually increases. This period is a period during which the gate-source capacitance of the switching element QD1 is charged. Next, during a period from time t6 to t8, the voltage VgsQD1 is substantially constant. This is because the mirror effect appears in the switching element QD1. Thus, the period from time t6 to t8 is called a mirror period.
 上述したように、ダイオードDD1(図1参照)に順方向の還流電流が流れている際、スイッチング素子QD1をオン状態にすると、ダイオードDD1には逆回復電流が流れる。実際に逆回復電流が発生し得るタイミングは、周囲温度等の条件によってばらつく。ここで、スイッチング素子QA1のゲート・ソース間電圧VgsQA1が安定する時刻t10においては、そのドレイン・ソース間電圧も安定していると考えられるため、逆回復は、時刻t0~t10の期間内に生じると考えられる。但し、図中の時刻t4,t6,t8,t10等のタイミングは、周囲温度やノイズ等の条件によってばらつく。そこで、本実施形態においては、時刻t10に対して若干の余裕を加えた時刻t12まで、逆回復が生じ得るものとして、各部品の定数等を設定している。 As described above, when the switching element QD1 is turned on while the forward return current flows through the diode DD1 (see FIG. 1), a reverse recovery current flows through the diode DD1. The timing at which the reverse recovery current can actually occur varies depending on conditions such as the ambient temperature. Here, at time t10 when the gate-source voltage VgsQA1 of the switching element QA1 is stabilized, it is considered that the drain-source voltage is also stable, so the reverse recovery occurs within the period from time t0 to t10. it is conceivable that. However, timings such as times t4, t6, t8, and t10 in the drawing vary depending on conditions such as ambient temperature and noise. Therefore, in the present embodiment, constants and the like of the respective components are set so that reverse recovery can occur until time t12, which is a time margin obtained by adding a margin to time t10.
 図2に示すように、逆電圧制御信号SE1は、時刻t1に立ち上がり、時刻t12に立ち下がる信号である。ドライバ回路172(図1参照)は、逆電圧制御信号SE1と略同一波形の電圧信号VE1(図示略)を出力し、スイッチング素子28(図1参照)は、該電圧信号VE1によってオン/オフされる。逆電圧印加回路71内のダイオード34に流れる電流を電流igと呼ぶ。図2に示す例において、電流igは、時刻t1~t2の期間内に正値になっている。この期間の電流igは、ダイオードDD1が逆回復状態になり、ダイオード34を介してダイオードDD1に流れた逆回復電流である。 (2) As shown in FIG. 2, the reverse voltage control signal SE1 is a signal that rises at time t1 and falls at time t12. The driver circuit 172 (see FIG. 1) outputs a voltage signal VE1 (not shown) having substantially the same waveform as the reverse voltage control signal SE1, and the switching element 28 (see FIG. 1) is turned on / off by the voltage signal VE1. You. The current flowing through the diode 34 in the reverse voltage application circuit 71 is called a current ig. In the example shown in FIG. 2, the current ig has a positive value during the period from time t1 to time t2. The current ig during this period is a reverse recovery current that flows through the diode DD1 via the diode 34 when the diode DD1 enters the reverse recovery state.
 また、電流igは、時刻t6~t8の期間内に負値になっている。この期間の電流igは、ダイオード34自体の逆回復によって生じた逆回復電流である。また、図2に破線で示す電流ihは、逆電圧印加回路71が無かった場合に、主直流電圧VEによってダイオードDD1に流れる逆回復電流の一例である。本実施形態によれば、ダイオードDD1に生じる逆回復電流(時刻t1~t2の期間内の電流ig)と、ダイオード34に生じる逆回復電流(時刻t6~t8の期間内の電流ig)と、を合わせても、破線で示す逆回復電流ihよりも大幅に電流値を下げることができ、これによって逆回復損失を大幅に抑制することができる。 {Circle around (4)} The current ig has a negative value during the period from time t6 to time t8. The current ig during this period is a reverse recovery current generated by the reverse recovery of the diode 34 itself. The current ih indicated by a broken line in FIG. 2 is an example of a reverse recovery current flowing through the diode DD1 by the main DC voltage VE when the reverse voltage application circuit 71 is not provided. According to the present embodiment, the reverse recovery current (current ig during the period from time t1 to t2) generated in the diode DD1 and the reverse recovery current (current ig during the period from time t6 to t8) generated in the diode 34 are determined. Even if they are combined, the current value can be greatly reduced as compared with the reverse recovery current ih indicated by the broken line, whereby the reverse recovery loss can be significantly suppressed.
〈第1実施形態の効果〉
 以上のように、本実施形態のAC/DCコンバータ100は、複数の主回路スイッチング素子(QD1~QD4)の各々に逆並列接続された複数の還流ダイオード(DD1~DD4)と、少なくとも一部の還流ダイオード(DD1~DD4)に接続され、対応する還流ダイオード(DD1~DD4)が遮断する際に、負荷装置(164)に出力する直流電圧(VE)よりも低い逆電圧を、対応する還流ダイオード(DD1~DD4)に印加する逆電圧印加回路(71~74)と、逆電圧印加回路(71~74)を制御する制御部(180)と、を備える。
 これにより、交流電圧を直流電圧に変換する際に逆回復電流および逆回復損失を小さくすることができ、電力損失を抑制できる。
<Effect of First Embodiment>
As described above, the AC / DC converter 100 according to the present embodiment includes the plurality of freewheel diodes (DD1 to DD4) connected in anti-parallel to each of the plurality of main circuit switching elements (QD1 to QD4), and at least a part thereof. When the corresponding freewheeling diodes (DD1 to DD4) are cut off and connected to the freewheeling diodes (DD1 to DD4), a reverse voltage lower than the DC voltage (VE) output to the load device (164) is supplied to the corresponding freewheeling diode. (DD1 to DD4), and a control unit (180) for controlling the reverse voltage application circuits (71 to 74).
Thereby, when converting the AC voltage to the DC voltage, the reverse recovery current and the reverse recovery loss can be reduced, and the power loss can be suppressed.
 また、本実施形態によれば、複数の主回路スイッチング素子(QD1~QD4)は、交流系統(162)の周波数よりも高い周波数でオン/オフ状態が切り替わることによってリアクトル(174)を交流系統(162)に断続的に直結する第1および第2の主回路スイッチング素子(QD1,QD2)と、交流系統(162)の周波数でオン/オフ状態が切り替わる第3および第4の主回路スイッチング素子(QD3,QD4)と、を有し、逆電圧印加回路(71,72)は、それぞれ、逆電圧を還流ダイオード(DD1,DD2)に印加する逆電圧印加スイッチング素子(28)を備え、第1および第2の主回路スイッチング素子(QD1,QD2)に対して並列接続されている。
 これにより、特にスイッチング回数が多い第1および第2の主回路スイッチング素子(QD1,QD2)における逆回復電流を小さくすることができる。
Further, according to the present embodiment, the plurality of main circuit switching elements (QD1 to QD4) switch the reactor (174) to the AC system by switching on / off at a frequency higher than the frequency of the AC system (162). 162), the first and second main circuit switching elements (QD1, QD2) intermittently and directly, and the third and fourth main circuit switching elements (ON / OFF) which switch on / off at the frequency of the AC system (162). QD3, QD4), and the reverse voltage application circuits (71, 72) each include a reverse voltage application switching element (28) for applying a reverse voltage to the freewheeling diodes (DD1, DD2), and It is connected in parallel to the second main circuit switching element (QD1, QD2).
This makes it possible to reduce the reverse recovery current in the first and second main circuit switching elements (QD1, QD2) having a particularly large number of switching times.
 また、本実施形態における制御部(180)は、動作モードとして、同期整流モードまたはスイッチング・モードの何れかを選択するものであり、同期整流モードは、交流系統(162)の周波数で第1ないし第4の主回路スイッチング素子(QD1~QD4)のオン/オフ状態を切り替える動作モードであり、スイッチング・モードは、交流系統(162)の周波数よりも高い周波数で第1および第2の主回路スイッチング素子(QD1,QD2)のオン/オフ状態を切り替え、交流系統(162)の周波数で第3および第4の主回路スイッチング素子(QD3,QD4)のオン/オフ状態を切り替える動作モードである。
 これにより、状況に応じた動作モードを選択することができ、状況に応じて電力損失を一層小さくすることができる。
In addition, the control unit (180) in the present embodiment selects either the synchronous rectification mode or the switching mode as the operation mode. In the synchronous rectification mode, the first to the first switching are performed at the frequency of the AC system (162). This is an operation mode for switching the ON / OFF state of the fourth main circuit switching elements (QD1 to QD4), and the switching mode includes the first and second main circuit switching at a frequency higher than the frequency of the AC system (162). This is an operation mode in which the on / off states of the elements (QD1, QD2) are switched, and the on / off states of the third and fourth main circuit switching elements (QD3, QD4) are switched at the frequency of the AC system (162).
Thereby, an operation mode according to the situation can be selected, and the power loss can be further reduced according to the situation.
 また、本実施形態によれば、制御部(180)は、第1および第2の主回路スイッチング素子(QD1,QD2)が共にオフ状態になるデッドタイム期間(t0~t2)中に逆電圧印加スイッチング素子(28)をオン状態に設定し、デッドタイム期間(t0~t2)の終了後に逆電圧印加スイッチング素子(28)をオフ状態に設定する。
 これにより、還流ダイオード(DD1,DD2)の逆回復中に直流電圧(VE)よりも低い逆電圧を、還流ダイオード(DD1,DD2)に印加できる可能性を高めることができる。
Further, according to the present embodiment, the control unit (180) applies the reverse voltage during the dead time period (t0 to t2) in which both the first and second main circuit switching elements (QD1, QD2) are turned off. The switching element (28) is set to the ON state, and after the dead time period (t0 to t2) ends, the reverse voltage applying switching element (28) is set to the OFF state.
Thereby, the possibility that a reverse voltage lower than the DC voltage (VE) can be applied to the freewheeling diodes (DD1, DD2) during the reverse recovery of the freewheeling diodes (DD1, DD2) can be increased.
 また、本実施形態によれば、逆電圧印加ダイオード(34)は、ワイドバンドギャップ半導体で構成されているため、逆電圧印加ダイオード(34)の逆回復時間を還流ダイオード(DA1~DA6)よりも短くすることができ、逆電圧印加回路(11~16)を高速に動作させることができる。 Further, according to the present embodiment, since the reverse voltage application diode (34) is made of a wide band gap semiconductor, the reverse recovery time of the reverse voltage application diode (34) is longer than that of the reflux diodes (DA1 to DA6). The length can be shortened, and the reverse voltage application circuits (11 to 16) can be operated at high speed.
[第2実施形態]
〈第2実施形態の構成〉
 図3は、本発明の第2実施形態によるAC/DCコンバータ170(電力変換回路)の回路図である。なお、以下の説明において、上述した第1実施形態の各部に対応する部分には同一の符号を付し、その説明を省略する場合がある。
 上述した第1実施形態のAC/DCコンバータ100(図1参照)と同様に、AC/DCコンバータ170は、交流電源162(交流系統)から供給された交流電力を直流電力に変換し、負荷装置164に供給するものである。AC/DCコンバータ170は、第1実施形態における逆電圧印加回路71~74に代えて、逆電圧印加回路51~54を備えている。
[Second embodiment]
<Configuration of Second Embodiment>
FIG. 3 is a circuit diagram of an AC / DC converter 170 (power conversion circuit) according to the second embodiment of the present invention. In the following description, portions corresponding to the respective portions of the above-described first embodiment are denoted by the same reference numerals, and description thereof may be omitted.
Similarly to the AC / DC converter 100 of the first embodiment (see FIG. 1), the AC / DC converter 170 converts AC power supplied from an AC power supply 162 (AC system) into DC power, and loads the load device. 164. The AC / DC converter 170 includes reverse voltage applying circuits 51 to 54 instead of the reverse voltage applying circuits 71 to 74 in the first embodiment.
 また、逆電圧印加回路51はキャパシタ32を備えている。キャパシタ32は、スイッチング素子28のソース端子と、スイッチング素子QD1のソース端子との間に接続されている。他の逆電圧印加回路52~54も、逆電圧印加回路51と同様に構成されている。上述した以外のAC/DCコンバータ170の構成は、第1実施形態のAC/DCコンバータ100と同様である。 (4) The reverse voltage application circuit 51 includes the capacitor 32. The capacitor 32 is connected between the source terminal of the switching element 28 and the source terminal of the switching element QD1. The other reverse voltage application circuits 52 to 54 have the same configuration as the reverse voltage application circuit 51. The configuration of the AC / DC converter 170 other than that described above is the same as that of the AC / DC converter 100 of the first embodiment.
〈第2実施形態の動作〉
 本実施形態においても、コンバータ制御回路180は、負荷の大きさ(例えば、交流電流瞬時値isの振幅値)に基づいて、複数の動作モードのうち何れかを選択可能である。そして、選択可能な動作モードには、「同期整流モード」、および「スイッチング・モード」が含まれる。これら動作モードの内容も、第1実施形態のものと同様である。
<Operation of Second Embodiment>
Also in the present embodiment, the converter control circuit 180 can select any one of a plurality of operation modes based on the size of the load (for example, the amplitude value of the instantaneous AC current value is). The selectable operation modes include a “synchronous rectification mode” and a “switching mode”. The contents of these operation modes are the same as those of the first embodiment.
 図4は、AC/DCコンバータ170のスイッチング・モードにおける各部の波形図であり、主回路制御信号SD1,SD2、ゲート・ソース間電圧VgsQD1,VgsQD2の波形は、第1実施形態のもの(図2参照)と同様である。但し、本実施形態における逆電圧制御信号SE1の波形は、第1実施形態のものとは異なる。すなわち、本実施形態において、逆電圧制御信号SE1は、時刻t0にロウレベルからハイレベルに立ち上がり、時刻t2にハイレベルからロウレベルに立ち下がる。 FIG. 4 is a waveform diagram of each part in the switching mode of the AC / DC converter 170. The waveforms of the main circuit control signals SD1 and SD2 and the gate-source voltages VgsQD1 and VgsQD2 are those of the first embodiment (FIG. Reference). However, the waveform of the reverse voltage control signal SE1 in the present embodiment is different from that of the first embodiment. That is, in the present embodiment, the reverse voltage control signal SE1 rises from a low level to a high level at time t0, and falls from a high level to a low level at time t2.
 但し、逆電圧制御信号SE1の立上がりタイミングは時刻t0以降であってもよく、立下りタイミングは時刻t2以前であってもよい。すなわち、逆電圧制御信号SE1は、デッドタイム期間t0~t2に立上がりタイミングと立下りタイミングとが現れる信号である。ドライバ回路172(図3参照)は、逆電圧制御信号SE1と略同一波形の電圧信号VE1(図示略)を出力し、スイッチング素子28(図3参照)は、該電圧信号VE1によってオン/オフされる。これにより、キャパシタ32の端子電圧VC1の波形は、図4に示すようなものになる。 {However, the rising timing of the reverse voltage control signal SE1 may be after time t0, and the falling timing may be before time t2. That is, the reverse voltage control signal SE1 is a signal whose rising timing and falling timing appear in the dead time period t0 to t2. The driver circuit 172 (see FIG. 3) outputs a voltage signal VE1 (not shown) having substantially the same waveform as the reverse voltage control signal SE1, and the switching element 28 (see FIG. 3) is turned on / off by the voltage signal VE1. You. Thus, the waveform of the terminal voltage VC1 of the capacitor 32 becomes as shown in FIG.
 すなわち、端子電圧VC1は、時刻t0から立ち上がり、時刻t2以前には一定値に安定している。端子電圧VC1が立ち上っている期間は、直流電源22(図1参照)から供給された電流によってキャパシタ32が充電されている。そして、端子電圧VC1は、時刻t2に逆電圧制御信号SE1が立ち下がった後、徐々に立ち下がる。端子電圧VC1が立ち下がっている期間は、キャパシタ32が放電されている。 That is, the terminal voltage VC1 rises from time t0 and is stable at a constant value before time t2. While the terminal voltage VC1 is rising, the capacitor 32 is charged by the current supplied from the DC power supply 22 (see FIG. 1). Then, the terminal voltage VC1 gradually falls after the reverse voltage control signal SE1 falls at time t2. While the terminal voltage VC1 is falling, the capacitor 32 is discharged.
 但し、逆回復電流が発生し得る時刻t2~t12の期間には、端子電圧VC1は、ダイオード34の順方向電圧降下VF(例えば0.6V)も高い値に保持されている。換言すれば、時刻t2~t12の期間内に、端子電圧VC1を順方向電圧降下VFよりも高い値に保持するように、キャパシタ32の静電容量が決定されている。このように、本実施形態によれば、主直流電圧VEよりも低い端子電圧VC1が、時刻t2~t12の期間内に、ダイオードDD1に逆電圧として印加され、これによって逆回復電流および逆回復損失を小さくすることができる。 However, during the period from time t2 to time t12 when a reverse recovery current can be generated, the terminal voltage VC1 is also maintained at a high value in the forward voltage drop VF (for example, 0.6 V) of the diode. In other words, the capacitance of the capacitor 32 is determined so that the terminal voltage VC1 is maintained at a value higher than the forward voltage drop VF during the period from time t2 to time t12. As described above, according to the present embodiment, the terminal voltage VC1 lower than the main DC voltage VE is applied as a reverse voltage to the diode DD1 during the period from the time t2 to the time t12, whereby the reverse recovery current and the reverse recovery loss Can be reduced.
 上述した第1実施形態においては、ダイオードDD1に逆回復状態になる可能性の高い時刻t1~t12の期間に逆電圧制御信号SE1をハイレベルに維持していた(図2参照)。しかし、この逆電圧制御信号SE1にノイズが重畳すると、スイッチング素子28に供給される電圧信号VE1(図1参照)の波形が乱れる。これにより、ダイオードDD1が逆回復状態であるにもかかわらず、スイッチング素子28がオフ状態になる可能性が生じる。このような状態が生じると、主直流電圧VEによってダイオードDD1に大きな逆回復電流が流れ、逆回復損失も増大する。 In the above-described first embodiment, the reverse voltage control signal SE1 is maintained at the high level during the period from the time t1 to the time t12 when the diode DD1 is likely to be in the reverse recovery state (see FIG. 2). However, when noise is superimposed on the reverse voltage control signal SE1, the waveform of the voltage signal VE1 (see FIG. 1) supplied to the switching element 28 is disturbed. Thus, there is a possibility that the switching element 28 is turned off even though the diode DD1 is in the reverse recovery state. When such a state occurs, a large reverse recovery current flows through the diode DD1 due to the main DC voltage VE, and the reverse recovery loss also increases.
 これに対して、本実施形態によれば、スイッチング素子28によってキャパシタ32を充電し、キャパシタ32の端子電圧VC1をダイオード34を介してダイオードDD1に印加することができる。これにより、ダイオードDD1の逆回復時に、ノイズ等によってスイッチング素子28がオフ状態になったとしても、安定した逆電圧である端子電圧VC1をダイオードDD1に印加し続けることができる。また、本実施形態においては、時刻t2またはそれ以前にスイッチング素子28をオフ状態にするため、スイッチング素子QD1の動作に対する逆電圧印加回路51の干渉を抑制することができる。 On the other hand, according to the present embodiment, the capacitor 32 is charged by the switching element 28, and the terminal voltage VC1 of the capacitor 32 can be applied to the diode DD1 via the diode 34. Thus, even when the switching element 28 is turned off due to noise or the like at the time of reverse recovery of the diode DD1, the terminal voltage VC1, which is a stable reverse voltage, can be continuously applied to the diode DD1. Further, in the present embodiment, since the switching element 28 is turned off at or before the time t2, it is possible to suppress interference of the reverse voltage application circuit 51 with the operation of the switching element QD1.
〈第2実施形態の効果〉
 以上のように、本実施形態のAC/DCコンバータ170は、第1実施形態のものと同様に、複数の主回路スイッチング素子(QD1~QD4)の各々に逆並列接続された複数の還流ダイオード(DD1~DD4)と、少なくとも一部の還流ダイオード(DD1~DD4)に接続され、対応する還流ダイオード(DD1~DD4)が遮断する際に、負荷装置(164)に出力する直流電圧(VE)よりも低い逆電圧を、対応する還流ダイオード(DD1~DD4)に印加する逆電圧印加回路(51~54)と、逆電圧印加回路(51~54)を制御する制御部(180)と、を備える。
 これにより、交流電圧を直流電圧に変換する際に逆回復電流および逆回復損失を小さくすることができ、電力損失を抑制できる。
<Effect of Second Embodiment>
As described above, similarly to the first embodiment, the AC / DC converter 170 of the present embodiment includes a plurality of freewheel diodes (QD1 to QD4) connected in anti-parallel to each of the plurality of main circuit switching elements (QD1 to QD4). DD1 to DD4) and at least a part of the freewheeling diodes (DD1 to DD4). When the corresponding freewheeling diodes (DD1 to DD4) are cut off, the DC voltage (VE) output to the load device (164) is reduced. A reverse voltage application circuit (51-54) for applying a low reverse voltage to the corresponding freewheeling diodes (DD1-DD4); and a control unit (180) for controlling the reverse voltage application circuit (51-54). .
Thereby, when converting the AC voltage to the DC voltage, the reverse recovery current and the reverse recovery loss can be reduced, and the power loss can be suppressed.
 また、本実施形態における逆電圧印加回路(51~54)は、逆電圧印加スイッチング素子(28)がオン状態になった後に充電され、逆電圧印加スイッチング素子(28)がオフ状態になった後に放電されるキャパシタ(32)をさらに備え、制御部(180)は、第1および第2の主回路スイッチング素子(QD1,QD2)が共にオフ状態になるデッドタイム期間(t0~t2)中に逆電圧印加スイッチング素子(28)をオン状態に設定し、かつ、デッドタイム期間(t0~t2)が終了する前に逆電圧印加スイッチング素子(28)をオフ状態に設定する。
 これにより、還流ダイオード(DD1~DD4)が逆回復するタイミングで逆電圧印加スイッチング素子(28)の動作が乱れたとしても、直流電圧(VE)よりも低い逆電圧を、対応する還流ダイオード(DD1~DD4)に着実に印加することができる。
The reverse voltage application circuit (51 to 54) in this embodiment is charged after the reverse voltage application switching element (28) is turned on, and is charged after the reverse voltage application switching element (28) is turned off. The control unit (180) further includes a discharged capacitor (32), and the control unit (180) performs a reverse operation during a dead time period (t0 to t2) in which both the first and second main circuit switching elements (QD1 and QD2) are turned off. The voltage application switching element (28) is set to the ON state, and the reverse voltage application switching element (28) is set to the OFF state before the dead time period (t0 to t2) ends.
Thereby, even if the operation of the reverse voltage application switching element (28) is disturbed at the timing when the freewheeling diodes (DD1 to DD4) reversely recover, the reverse voltage lower than the DC voltage (VE) is applied to the corresponding freewheeling diode (DD1). To DD4).
[第3実施形態]
 図6は、本発明の第3実施形態による空気調和機900の冷凍サイクル系統図である。
 図6に示すように、本実施形態の空気調和機900は、室外機960と、室内機970と、を備えるとともに、両者を接続するガス配管982と、液配管984と、を備えている。
[Third embodiment]
FIG. 6 is a refrigeration cycle system diagram of an air conditioner 900 according to a third embodiment of the present invention.
As shown in FIG. 6, the air conditioner 900 of the present embodiment includes an outdoor unit 960 and an indoor unit 970, and further includes a gas pipe 982 connecting the two, and a liquid pipe 984.
 そして、室外機960は、圧縮機961と、四方弁962と、室外熱交換器963と、室外膨張弁964と、を備えている。これらは、配管(符号なし)によって順次接続されている。また、室外機960は、室外ファン965と、室外ファンモータ966と、を備えている。室外ファン965は、室外ファンモータ966によって回転駆動され、室外熱交換器963を冷却する。 外 The outdoor unit 960 includes a compressor 961, a four-way valve 962, an outdoor heat exchanger 963, and an outdoor expansion valve 964. These are sequentially connected by piping (no reference numeral). The outdoor unit 960 includes an outdoor fan 965 and an outdoor fan motor 966. The outdoor fan 965 is driven to rotate by an outdoor fan motor 966, and cools the outdoor heat exchanger 963.
 また、室内機970は、室内熱交換器973と、室内膨張弁974と、を備えている。両者は、配管(符号なし)によって相互に接続されている。また、室内機970は、室内ファン975と、室内ファンモータ976と、を備えている。室内ファン975は室内ファンモータ976によって回転駆動され、室内熱交換器973を冷却する。室外機960に設けられた四方弁962は、冷媒の流れを切り替える弁であり、これにより冷房運転と暖房運転とが切り替わる。室外膨張弁964と室内膨張弁974とは、冷媒を減圧して低温低圧にする。 室内 The indoor unit 970 includes an indoor heat exchanger 973 and an indoor expansion valve 974. Both are connected to each other by a pipe (unsigned). The indoor unit 970 includes an indoor fan 975 and an indoor fan motor 976. The indoor fan 975 is driven to rotate by the indoor fan motor 976, and cools the indoor heat exchanger 973. The four-way valve 962 provided in the outdoor unit 960 is a valve that switches the flow of the refrigerant, and switches between the cooling operation and the heating operation. The outdoor expansion valve 964 and the indoor expansion valve 974 reduce the pressure of the refrigerant to a low temperature and low pressure.
 図6において、ガス配管982、液配管984等の配管に沿って示した実線の矢印は、空気調和機900の冷房運転における冷媒の流れを示している。
 冷房運転において、四方弁962は、実線で示すように、圧縮機961の吐出側と室外熱交換器963とを連通させ、圧縮機961の吸入側とガス配管982とを連通させる。圧縮機961から吐出される冷媒は、高温高圧のガス状であり、四方弁962を通過して、室外熱交換器963に流れる。室外熱交換器963に流入したガス状の冷媒は、室外ファン965によって供給される室外の空気と熱交換して凝縮され、液状の冷媒となる。この液状の冷媒は、全開状態の室外膨張弁964および液配管984を通過して、室内機970に流入する。
6, solid arrows shown along pipes such as the gas pipe 982 and the liquid pipe 984 indicate the flow of the refrigerant in the cooling operation of the air conditioner 900.
In the cooling operation, the four-way valve 962 communicates the discharge side of the compressor 961 with the outdoor heat exchanger 963, and communicates the suction side of the compressor 961 with the gas pipe 982, as indicated by the solid line. The refrigerant discharged from the compressor 961 is in a high-temperature and high-pressure gas state, passes through the four-way valve 962, and flows to the outdoor heat exchanger 963. The gaseous refrigerant that has flowed into the outdoor heat exchanger 963 exchanges heat with outdoor air supplied by the outdoor fan 965 and is condensed to be a liquid refrigerant. This liquid refrigerant flows into the indoor unit 970 through the outdoor expansion valve 964 and the liquid pipe 984 in the fully opened state.
 室内機970に流入した液状の冷媒は、室内膨張弁974によって減圧され、低温低圧のガス液混合状の冷媒となる。この低温低圧のガス液混合状の冷媒は、室内熱交換器973に流入して、室内ファン975によって供給される室内の空気と熱交換されて蒸発し、ガス状の冷媒となる。この際、室内の空気は、ガス液混合状の冷媒の蒸発潜熱によって冷却され、冷風が部屋内に送られる。その後、室内機120から流出したガス状の冷媒は、ガス配管982を通過し、室外機960に戻される。室外機960に戻されたガス状の冷媒は、四方弁962を通過し、圧縮機961に吸入され、再度ここで圧縮されることによって、一連の冷凍サイクルが形成される。 (4) The liquid refrigerant flowing into the indoor unit 970 is decompressed by the indoor expansion valve 974 and becomes a low-temperature low-pressure gas-liquid mixed refrigerant. The low-temperature low-pressure gas-liquid mixed refrigerant flows into the indoor heat exchanger 973, exchanges heat with indoor air supplied by the indoor fan 975, evaporates, and turns into a gaseous refrigerant. At this time, the air in the room is cooled by the latent heat of vaporization of the gas-liquid mixed refrigerant, and cool air is sent into the room. Thereafter, the gaseous refrigerant flowing out of the indoor unit 120 passes through the gas pipe 982 and is returned to the outdoor unit 960. The gaseous refrigerant returned to the outdoor unit 960 passes through the four-way valve 962, is drawn into the compressor 961, and is compressed again here, thereby forming a series of refrigeration cycles.
 圧縮機961は、冷媒を圧縮する圧縮機構146と、圧縮機構146を回転駆動するモータ144と、を備えている。また、AC/DCコンバータ150は、交流電源162から供給された交流電力を直流電力に変換しインバータ120に供給する。インバータ120は、供給された直流電力を任意の周波数の三相交流電力に変換し、モータ144を駆動する。なお、AC/DCコンバータ150の構成は、第1,第2実施形態のAC/DCコンバータ100,170(図1、図3参照)のうち何れかを適用することができる。
 これにより、本実施形態によれば、第1,第2実施形態と同様にAC/DCコンバータ150の電力損失を抑制でき、高効率な空気調和機900を実現することができる。
The compressor 961 includes a compression mechanism 146 for compressing the refrigerant, and a motor 144 for driving the compression mechanism 146 to rotate. In addition, AC / DC converter 150 converts AC power supplied from AC power supply 162 into DC power and supplies the DC power to inverter 120. Inverter 120 converts the supplied DC power into three-phase AC power having an arbitrary frequency, and drives motor 144. Note that the configuration of the AC / DC converter 150 can be applied to any of the AC / DC converters 100 and 170 (see FIGS. 1 and 3) of the first and second embodiments.
Thus, according to the present embodiment, similarly to the first and second embodiments, the power loss of the AC / DC converter 150 can be suppressed, and a highly efficient air conditioner 900 can be realized.
[変形例]
 本発明は上述した実施形態に限定されるものではなく、種々の変形が可能である。上述した実施形態は本発明を理解しやすく説明するために例示したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について削除し、もしくは他の構成の追加・置換をすることが可能である。また、図中に示した制御線や情報線は説明上必要と考えられるものを示しており、製品上で必要な全ての制御線や情報線を示しているとは限らない。実際には殆ど全ての構成が相互に接続されていると考えてもよい。上記実施形態に対して可能な変形は、例えば以下のようなものである。
[Modification]
The present invention is not limited to the embodiments described above, and various modifications are possible. The above-described embodiments are exemplarily illustrated for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described above. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of one embodiment can be added to the configuration of another embodiment. Further, a part of the configuration of each embodiment can be deleted, or another configuration can be added or replaced. Further, the control lines and information lines shown in the figure indicate those which are considered necessary for the description, and do not necessarily indicate all the control lines and information lines necessary for the product. In fact, it can be considered that almost all components are connected to each other. Possible modifications to the above embodiment are, for example, as follows.
(1)上記各実施形態においては、スイッチング素子28,QD1~QD4としてMOSFETを適用した例を説明したが、スイッチング素子は、MOSFETに限らず、IGBT、バイポーラトランジスタ等であってもよい。 (1) In each of the above embodiments, an example was described in which MOSFETs were applied as the switching elements 28 and QD1 to QD4. However, the switching elements are not limited to MOSFETs, but may be IGBTs, bipolar transistors, or the like.
(2)上記各実施形態(図1,図3参照)においては、全ての還流ダイオードDD1~DD4に対して、逆電圧印加回路51~54,71~74を並列に接続したが、一部の還流ダイオードに対してのみ、逆電圧印加回路を接続してもよい。例えば、スイッチング・モードにおいてオン/オフ状態が相補的に切り替えられるスイッチング素子QD1,QD2に対応する逆電圧印加回路51,52,71,72のみを設け、他の逆電圧印加回路53,54,73,74は省略してもよい。これは、スイッチング素子QD1,QD2に逆接続されたダイオードDD1,DD2は、他のダイオードDD3,DD4と比較して、逆回復が頻繁に発生するためである。このように、逆電圧印加回路51~54,71~74のうち一部のみを設けることにより、AC/DCコンバータ100,170のコストダウンを図ることができる。 (2) In each of the above embodiments (see FIGS. 1 and 3), the reverse voltage applying circuits 51 to 54 and 71 to 74 are connected in parallel to all the freewheel diodes DD1 to DD4. A reverse voltage application circuit may be connected only to the return diode. For example, only the reverse voltage applying circuits 51, 52, 71, 72 corresponding to the switching elements QD1, QD2 whose on / off states are complementarily switched in the switching mode are provided, and the other reverse voltage applying circuits 53, 54, 73 are provided. , 74 may be omitted. This is because the diodes DD1 and DD2 reversely connected to the switching elements QD1 and QD2 frequently perform reverse recovery as compared with the other diodes DD3 and DD4. Thus, by providing only some of the reverse voltage application circuits 51 to 54 and 71 to 74, the cost of the AC / DC converters 100 and 170 can be reduced.
(3)また、上記各実施形態において、逆電圧制御信号SE1は、時刻t2またはそれ以前に立ち下がっていた(図2参照)。しかし、逆電圧制御信号SE1を時刻t2以降に立ち下げるようにしてもよい。 (3) In each of the above embodiments, the reverse voltage control signal SE1 has fallen at or before the time t2 (see FIG. 2). However, the reverse voltage control signal SE1 may fall after time t2.
(4)上記各実施形態におけるAC/DCコンバータ100,170は、同期整流モードおよびスイッチング・モードの動作モードを有していたが、これらに加えて、または同期整流モードに代えて、ダイオード整流モードを選択できるようにしてもよい。ここで、ダイオード整流モードとは、4つの還流ダイオードDD1~DD4を用いて全波整流を行う動作モードである。ダイオード整流モードにおいては、コンバータ制御回路180は、主回路制御信号SD1~SD4を継続的にロウレベルに設定し、これによってスイッチング素子QD1~QD4を継続的にオフ状態にする。 (4) Although the AC / DC converters 100 and 170 in each of the above embodiments have the operation modes of the synchronous rectification mode and the switching mode, in addition to these or instead of the synchronous rectification mode, the diode rectification mode May be selectable. Here, the diode rectification mode is an operation mode in which full-wave rectification is performed using four return diodes DD1 to DD4. In the diode rectification mode, converter control circuit 180 continuously sets main circuit control signals SD1 to SD4 to a low level, and thereby continuously turns off switching elements QD1 to QD4.
(5)上記各実施形態におけるコンバータ制御回路180は、スイッチング・モードのみならず、同期整流モードまたは上述した変形例のダイオード整流モード何れにおいても、逆回復損失を抑制する制御を行ってもよい。すなわち、コンバータ制御回路180は、同期整流モードまたはダイオード整流モードにおいて、還流ダイオードDD1~DD4が逆回復する際に、主直流電圧VEよりも低い逆方向電圧を該還流ダイオードDD1~DD4に印加し、これによって逆回復損失を抑制するようにしてもよい。 (5) The converter control circuit 180 in each of the above embodiments may perform control to suppress the reverse recovery loss not only in the switching mode but also in either the synchronous rectification mode or the diode rectification mode of the above-described modification. That is, the converter control circuit 180 applies a reverse voltage lower than the main DC voltage VE to the freewheeling diodes DD1 to DD4 when the freewheeling diodes DD1 to DD4 perform reverse recovery in the synchronous rectification mode or the diode rectification mode, Thereby, the reverse recovery loss may be suppressed.
(6)上記第2実施形態において、ダイオード34に生じる逆回復電流がさほど大きいものではない場合、逆電圧制御信号SE1のオフタイミングは、時刻t2よりも後のタイミングにしてもよい。 (6) In the second embodiment, when the reverse recovery current generated in the diode 34 is not so large, the off timing of the reverse voltage control signal SE1 may be a timing later than the time t2.
(7)上記各実施形態において、還流ダイオードDD1~DD4は、スイッチング素子QD1~QD4とは別体のものであった。しかし、スイッチング素子が寄生ダイオードを有する場合は、寄生ダイオードを、還流ダイオードDD1~DD4として適用してもよい。 (7) In the above embodiments, the return diodes DD1 to DD4 are separate from the switching elements QD1 to QD4. However, when the switching element has a parasitic diode, the parasitic diode may be applied as the return diodes DD1 to DD4.
28 スイッチング素子(逆電圧印加スイッチング素子)
32 キャパシタ
34 ダイオード(逆電圧印加ダイオード)
51~54,71~74 逆電圧印加回路
100,170 AC/DCコンバータ(電力変換回路)
162 交流電源(交流系統)
164 負荷装置
174 リアクトル
180 コンバータ制御回路(制御部)
DD1~DD4 還流ダイオード
QD1 スイッチング素子(第1の主回路スイッチング素子)
QD2 スイッチング素子(第2の主回路スイッチング素子)
QD3 スイッチング素子(第3の主回路スイッチング素子)
QD4 スイッチング素子(第4の主回路スイッチング素子)
VE 主直流電圧(直流電圧)
28 Switching element (reverse voltage application switching element)
32 Capacitor 34 Diode (reverse voltage application diode)
51 to 54, 71 to 74 Reverse voltage application circuit 100, 170 AC / DC converter (power conversion circuit)
162 AC power supply (AC system)
164 Load device 174 Reactor 180 Converter control circuit (control unit)
DD1 to DD4 freewheeling diode QD1 switching element (first main circuit switching element)
QD2 switching element (second main circuit switching element)
QD3 switching element (third main circuit switching element)
QD4 switching element (fourth main circuit switching element)
VE Main DC voltage (DC voltage)

Claims (8)

  1.  交流系統から供給された交流電力を直流電力に変換して負荷装置に供給する複数の主回路スイッチング素子と、
     前記主回路スイッチング素子と前記交流系統との間に接続されたリアクトルと、
     複数の前記主回路スイッチング素子の各々に逆並列接続された複数の還流ダイオードと、
     少なくとも一部の前記還流ダイオードに接続され、対応する前記還流ダイオードが遮断する際に、前記負荷装置に出力する直流電圧よりも低い逆電圧を、対応する前記還流ダイオードに印加する逆電圧印加回路と、
     前記逆電圧印加回路を制御する制御部と、を備える
     ことを特徴とする電力変換回路。
    A plurality of main circuit switching elements for converting AC power supplied from the AC system into DC power and supplying the DC power to a load device;
    A reactor connected between the main circuit switching element and the AC system,
    A plurality of freewheeling diodes connected in anti-parallel to each of the plurality of main circuit switching elements;
    A reverse voltage application circuit that is connected to at least a part of the freewheeling diode and that applies a reverse voltage lower than a DC voltage output to the load device to the corresponding freewheeling diode when the corresponding freewheeling diode is cut off; ,
    And a control unit for controlling the reverse voltage application circuit.
  2.  複数の前記主回路スイッチング素子は、前記交流系統の周波数よりも高い周波数でオン/オフ状態が切り替わることによって前記リアクトルを前記交流系統に断続的に直結する第1および第2の主回路スイッチング素子と、前記交流系統の周波数でオン/オフ状態が切り替わる第3および第4の主回路スイッチング素子と、を有し、
     前記逆電圧印加回路は、それぞれ、前記逆電圧を前記還流ダイオードに印加する逆電圧印加スイッチング素子を備え、前記第1および第2の主回路スイッチング素子に対して並列接続されている
     ことを特徴とする請求項1に記載の電力変換回路。
    The plurality of main circuit switching elements are first and second main circuit switching elements that intermittently directly connect the reactor to the AC system by switching on / off at a frequency higher than the frequency of the AC system. And a third and fourth main circuit switching element whose on / off state is switched at the frequency of the AC system.
    The reverse voltage application circuits each include a reverse voltage application switching element that applies the reverse voltage to the freewheeling diode, and are connected in parallel to the first and second main circuit switching elements. The power conversion circuit according to claim 1.
  3.  複数の前記主回路スイッチング素子は、前記リアクトルに接続されるとともに相互に直列に接続された第1および第2の主回路スイッチング素子と、相互に直列に接続された第3および第4の主回路スイッチング素子と、を有し、
     前記制御部は、動作モードとして、同期整流モードまたはスイッチング・モードの何れかを選択するものであり、
     前記同期整流モードは、前記交流系統の周波数で前記第1ないし第4の主回路スイッチング素子のオン/オフ状態を切り替える動作モードであり、
     前記スイッチング・モードは、前記交流系統の周波数よりも高い周波数で前記第1および第2の主回路スイッチング素子のオン/オフ状態を切り替え、前記交流系統の周波数で前記第3および第4の主回路スイッチング素子のオン/オフ状態を切り替える動作モードであり、
     前記逆電圧印加回路は、それぞれ、前記逆電圧を前記還流ダイオードに印加する逆電圧印加スイッチング素子を備え、前記第1および第2の主回路スイッチング素子に対して並列接続されている
     ことを特徴とする請求項1に記載の電力変換回路。
    The plurality of main circuit switching elements are connected to the reactor and are connected in series with each other, and the third and fourth main circuits are connected in series with each other. And a switching element.
    The control unit is configured to select any of a synchronous rectification mode and a switching mode as an operation mode,
    The synchronous rectification mode is an operation mode for switching on / off states of the first to fourth main circuit switching elements at a frequency of the AC system,
    The switching mode switches on / off states of the first and second main circuit switching elements at a frequency higher than the frequency of the AC system, and switches the third and fourth main circuits at a frequency of the AC system. An operation mode for switching the on / off state of the switching element,
    The reverse voltage application circuits each include a reverse voltage application switching element that applies the reverse voltage to the freewheeling diode, and are connected in parallel to the first and second main circuit switching elements. The power conversion circuit according to claim 1.
  4.  前記第3および第4の主回路スイッチング素子には前記逆電圧印加回路は接続されていない
     ことを特徴とする請求項3に記載の電力変換回路。
    The power conversion circuit according to claim 3, wherein the reverse voltage application circuit is not connected to the third and fourth main circuit switching elements.
  5.  前記制御部は、前記第1および第2の主回路スイッチング素子が共にオフ状態になるデッドタイム期間中に前記逆電圧印加スイッチング素子をオン状態に設定し、前記デッドタイム期間の終了後に前記逆電圧印加スイッチング素子をオフ状態に設定する
     ことを特徴とする請求項3に記載の電力変換回路。
    The control unit sets the reverse voltage application switching element to an on state during a dead time period in which the first and second main circuit switching elements are both in an off state, and sets the reverse voltage after the dead time period ends. The power conversion circuit according to claim 3, wherein the applied switching element is set to an off state.
  6.  前記逆電圧印加回路は、
     対応する前記還流ダイオードからの電流の流入を抑制する逆電圧印加ダイオードと、
     前記逆電圧印加スイッチング素子がオン状態になった後に充電され、前記逆電圧印加スイッチング素子がオフ状態になった後に前記逆電圧印加ダイオードを介して放電されるキャパシタと、
     をさらに備え、
     前記制御部は、前記第1および第2の主回路スイッチング素子が共にオフ状態になるデッドタイム期間中に前記逆電圧印加スイッチング素子をオン状態に設定し、かつ、前記デッドタイム期間が終了する前に前記逆電圧印加スイッチング素子をオフ状態に設定する
     ことを特徴とする請求項3に記載の電力変換回路。
    The reverse voltage application circuit,
    A reverse voltage application diode for suppressing inflow of current from the corresponding return diode;
    A capacitor that is charged after the reverse voltage applying switching element is turned on and is discharged via the reverse voltage applying diode after the reverse voltage applying switching element is turned off;
    Further comprising
    The control unit sets the reverse voltage application switching element to an on state during a dead time period in which both the first and second main circuit switching elements are in an off state, and before the dead time period ends. The power conversion circuit according to claim 3, wherein the reverse voltage application switching element is set to an off state.
  7.  前記逆電圧印加回路は、対応する前記還流ダイオードからの電流の流入を抑制する逆電圧印加ダイオードを備え、
     前記逆電圧印加ダイオードは、ワイドバンドギャップ半導体で構成されている
     ことを特徴とする請求項3に記載の電力変換回路。
    The reverse voltage application circuit includes a reverse voltage application diode that suppresses inflow of current from the corresponding return diode,
    The power conversion circuit according to claim 3, wherein the reverse voltage application diode is formed of a wide band gap semiconductor.
  8.  請求項1ないし7の何れか一項に記載の電力変換回路を備える
     ことを特徴とする空気調和機。
    An air conditioner comprising the power conversion circuit according to any one of claims 1 to 7.
PCT/JP2018/037149 2018-10-04 2018-10-04 Power conversion circuit and air conditioner WO2020070850A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/037149 WO2020070850A1 (en) 2018-10-04 2018-10-04 Power conversion circuit and air conditioner
TW108103453A TWI785198B (en) 2018-10-04 2019-01-30 Power conversion circuit and air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/037149 WO2020070850A1 (en) 2018-10-04 2018-10-04 Power conversion circuit and air conditioner

Publications (1)

Publication Number Publication Date
WO2020070850A1 true WO2020070850A1 (en) 2020-04-09

Family

ID=70054570

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037149 WO2020070850A1 (en) 2018-10-04 2018-10-04 Power conversion circuit and air conditioner

Country Status (2)

Country Link
TW (1) TWI785198B (en)
WO (1) WO2020070850A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10327585A (en) * 1997-05-23 1998-12-08 Toshiba Corp Power converter
WO2006052032A1 (en) * 2004-11-15 2006-05-18 Kabushiki Kaisha Toshiba Power converter
WO2018074274A1 (en) * 2016-10-19 2018-04-26 日立ジョンソンコントロールズ空調株式会社 Power conversion device and air conditioner

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011121653A1 (en) * 2010-03-31 2011-10-06 日立アプライアンス株式会社 Converter, motor driving module, and refrigerating apparatus
JP5264849B2 (en) * 2010-09-27 2013-08-14 三菱電機株式会社 Power converter and refrigeration air conditioner
US8788103B2 (en) * 2011-02-24 2014-07-22 Nest Labs, Inc. Power management in energy buffered building control unit
JP5115636B2 (en) * 2011-05-02 2013-01-09 ダイキン工業株式会社 Power conversion circuit and air conditioner
US9742267B2 (en) * 2013-04-02 2017-08-22 Mitsubishi Electric Corporation Power conversion apparatus and refrigeration air-conditioning apparatus
JP5825319B2 (en) * 2013-10-16 2015-12-02 ダイキン工業株式会社 Power converter and air conditioner
KR101804713B1 (en) * 2013-10-18 2018-01-10 미쓰비시덴키 가부시키가이샤 Dc power source device, motor drive device, air conditioner, and refrigerator

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10327585A (en) * 1997-05-23 1998-12-08 Toshiba Corp Power converter
WO2006052032A1 (en) * 2004-11-15 2006-05-18 Kabushiki Kaisha Toshiba Power converter
WO2018074274A1 (en) * 2016-10-19 2018-04-26 日立ジョンソンコントロールズ空調株式会社 Power conversion device and air conditioner

Also Published As

Publication number Publication date
TWI785198B (en) 2022-12-01
TW202015324A (en) 2020-04-16

Similar Documents

Publication Publication Date Title
US9136757B2 (en) Power converter and refrigerating and air-conditioning apparatus
JP4984751B2 (en) Air conditioner converter
US9225258B2 (en) Backflow preventing means, power converting device, and refrigerating and air-conditioning apparatus
JP5638585B2 (en) DC power supply device, refrigeration cycle device, air conditioner and refrigerator
JP6877898B2 (en) Power converter and air conditioner equipped with it
JP5724451B2 (en) Power supply device and air conditioner
JP5031004B2 (en) Inverter drive device and refrigeration air conditioner
JPWO2017145339A1 (en) DC power supply and refrigeration cycle equipment
WO2020070850A1 (en) Power conversion circuit and air conditioner
KR101796741B1 (en) DC-DC converter for vehicle and air conditioner system for vehicle having the same
JP7145965B2 (en) Power conversion circuit and air conditioner
KR101850196B1 (en) Power conversion device, and cooling air conditioning device
JP7045529B2 (en) Power converter and air conditioner
JP6982254B2 (en) Power converter and air conditioner
JP6132911B2 (en) Backflow prevention device, power conversion device, motor drive device, and refrigeration air conditioner
JP2018007329A (en) Dc power supply and air conditioner
WO2020194407A1 (en) Power conversion device and air conditioner
JP5452579B2 (en) Inverter drive device, and refrigeration air conditioner, refrigerator, and refrigerator equipped with the same
EP2980973B1 (en) Backflow prevention device, power conversion device, and cooling air-conditioning device
JP2011036079A (en) Inverter driver and refrigeration and air-conditioning apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18936247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18936247

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP