WO2020070078A1 - Procédé de pilotage de modules de projection de faisceaux de lumiere pixellise pour vehicule - Google Patents

Procédé de pilotage de modules de projection de faisceaux de lumiere pixellise pour vehicule

Info

Publication number
WO2020070078A1
WO2020070078A1 PCT/EP2019/076482 EP2019076482W WO2020070078A1 WO 2020070078 A1 WO2020070078 A1 WO 2020070078A1 EP 2019076482 W EP2019076482 W EP 2019076482W WO 2020070078 A1 WO2020070078 A1 WO 2020070078A1
Authority
WO
WIPO (PCT)
Prior art keywords
projection
controlling
control device
data
road
Prior art date
Application number
PCT/EP2019/076482
Other languages
English (en)
Inventor
Hafid EL IDRISSI
Original Assignee
Valeo Vision
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Vision filed Critical Valeo Vision
Priority to EP19782969.0A priority Critical patent/EP3860878A1/fr
Priority to CN201980065120.0A priority patent/CN112805180A/zh
Priority to JP2021517983A priority patent/JP2022502782A/ja
Priority to KR1020217009600A priority patent/KR20210065116A/ko
Priority to US17/281,859 priority patent/US20220118901A1/en
Publication of WO2020070078A1 publication Critical patent/WO2020070078A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/02Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments
    • B60Q1/04Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights
    • B60Q1/06Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle
    • B60Q1/08Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor the devices being primarily intended to illuminate the way ahead or to illuminate other areas of way or environments the devices being headlights adjustable, e.g. remotely-controlled from inside vehicle automatically
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q9/00Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling
    • B60Q9/008Arrangement or adaptation of signal devices not provided for in one of main groups B60Q1/00 - B60Q7/00, e.g. haptic signalling for anti-collision purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q1/00Arrangement of optical signalling or lighting devices, the mounting or supporting thereof or circuits therefor
    • B60Q1/0017Devices integrating an element dedicated to another function
    • B60Q1/0023Devices integrating an element dedicated to another function the element being a sensor, e.g. distance sensor, camera
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • B60W40/11Pitch movement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/025Active steering aids, e.g. helping the driver by actively influencing the steering system after environment evaluation
    • B62D15/0265Automatic obstacle avoidance by steering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D15/00Steering not otherwise provided for
    • B62D15/02Steering position indicators ; Steering position determination; Steering aids
    • B62D15/029Steering assistants using warnings or proposing actions to the driver without influencing the steering system
    • B62D15/0295Steering assistants using warnings or proposing actions to the driver without influencing the steering system by overlaying a vehicle path based on present steering angle over an image without processing that image
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2300/00Indexing codes for automatically adjustable headlamps or automatically dimmable headlamps
    • B60Q2300/10Indexing codes relating to particular vehicle conditions
    • B60Q2300/13Attitude of the vehicle body
    • B60Q2300/136Roll
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60QARRANGEMENT OF SIGNALLING OR LIGHTING DEVICES, THE MOUNTING OR SUPPORTING THEREOF OR CIRCUITS THEREFOR, FOR VEHICLES IN GENERAL
    • B60Q2400/00Special features or arrangements of exterior signal lamps for vehicles
    • B60Q2400/50Projected symbol or information, e.g. onto the road or car body
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2420/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60W2420/40Photo or light sensitive means, e.g. infrared sensors
    • B60W2420/403Image sensing, e.g. optical camera
    • B60W2420/408
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/16Pitch
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/20Road profile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/50Barriers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2300/00Purposes or special features of road vehicle drive control systems
    • B60Y2300/10Path keeping
    • B60Y2300/12Lane keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60YINDEXING SCHEME RELATING TO ASPECTS CROSS-CUTTING VEHICLE TECHNOLOGY
    • B60Y2400/00Special features of vehicle units
    • B60Y2400/30Sensors
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/167Driving aids for lane monitoring, lane changing, e.g. blind spot detection

Definitions

  • the present invention relates to a method for controlling modules for projecting beams of pixelated light for a vehicle. It finds a particular application in the control of these projection modules so as to allow assistance in driving a vehicle.
  • a motor vehicle generally comprises a set of light beam projection modules, in general on the left and on the right, limited to the basic functionalities of more or less intelligent lighting and / or signaling means. , when driving at night or with reduced visibility, and / or in the context of unfavorable weather conditions.
  • a light beam projection module can be associated with one or more functions such as the so-called “main beam” function intended to illuminate the road or its surroundings with high intensity, and / or the so-called “function”. dipped beam “intended to illuminate the road or its surroundings at a shorter range without dazzling other users arriving in the opposite direction.
  • a first aspect of the invention relates to a method for controlling pixelated light beam projection modules of a host vehicle, comprising
  • the steering device is able, as a function of the data collected, to determine a polynomial function modeling the profile of the edge and of the center of the road;
  • control device determines a starting point Pd and an arrival point Pa of a pattern projection area
  • control device determines a distance De between an axis of the data / image acquisition means and the patterns, respectively for a right projection area and a left projection area;
  • control device determines the width Lm of the pattern.
  • the data / image acquisition means capable of collecting the necessary data in order to model the route profile is a camera, and / or a radar, and / or a lidar;
  • the image / data acquisition means when the image / data acquisition means detects an obstacle, it transmits the data relating to the obstacle in order to define a safety margin so as to avoid patterns being projected onto the obstacle;
  • the distance De can be configured as a function of the type of pattern
  • the control device controls the projection modules so that the patterns of the right and left projection areas are superimposed, in one and the same central projection area;
  • the patterns capable of being projected into the projection area can be circles, or squares, or triangles, or rectangles, or chevrons, or arrows, or more complex shapes, or numbers such as the display of a speedometer, or continuous or broken lines;
  • control device is able to dynamically increase the width Lm of the most distant patterns projected onto the road in order to correct the perspective effect
  • control device is associated with a set of sensors capable of determining the pitch of the host vehicle configured so as to compensate for the mechanical and / or digital calibration of the projection modules; In one embodiment, the control device is capable of compensating for the light intensity as a function of the projection distance of the patterns and of the “Fiat Beam” base beam;
  • control device associated with the data / image acquisition means is configured so as to determine whether the size of the host vehicle is able to pass between two obstacles by projecting said size between the two obstacles;
  • the orientation of the projection of the template of the host vehicle is dynamically relative to the angle of the steering system of said host vehicle;
  • the control device associated with the data / image acquisition means is capable of projecting an obstacle avoidance strategy;
  • control device associated with the data / image acquisition means is capable of projecting a set of patterns configured so as to establish a trajectory for the host vehicle at the time of lane narrowing in the work zone ;
  • piloting device associated with the navigation system of the “GPS” vehicle is capable of projecting a change of trajectory, in the form of road markings, for the host vehicle;
  • Another aspect of the invention relates to a light device for a motor vehicle intended to be controlled by a piloting device capable of implementing the method of piloting pixel beam light projection modules according to any one of the characteristics. previous;
  • an information fusion device is able to determine the relevance of each data item coming from the various sensors associated with the host vehicle, in order to transmit reliable decision-making data to the piloting device.
  • FIG. 1 illustrates a system according to an embodiment of the invention
  • FIG. 2 is a diagram illustrating the steps of a method according to the invention.
  • FIG. 3 illustrates the implementation of the method according to the invention in a first driving situation
  • FIG. 4 illustrates the implementation of the method according to the invention in a second driving situation
  • FIG. 5 illustrates the implementation of the method according to the invention in a third driving situation
  • Figure 1 shows a motor vehicle 100 comprising a system 1 10 comprising a sensor assembly 120, at least one control device 130 of projection modules 140 of light beams, said control device 130 being connected to the control unit 150 of vehicle 100.
  • Said control device 130 comprises at least one microcontroller associated with one or more memories as well as a graphics processing unit.
  • the motor vehicle 100 comprising such a system 110 will be considered subsequently as a host vehicle 100.
  • the projection module 140 is a high resolution module, in other words having a resolution greater than 1000 pixels. However, there are no restrictions attached to the technology used to produce the 140 projection modules.
  • a projection module 140 may for example include a monolithic source.
  • a monolithic source is called a matrix of monolithic electroluminescent elements (in English "monolithic array") arranged in at least two columns by at least two lines.
  • the electroluminescent elements can be grown from a common substrate and can be electrically connected so as to be selectively activatable, individually or by subset of electroluminescent elements.
  • the substrate can be predominantly made of semiconductor material.
  • the substrate may include one or more other materials, for example non-semiconductors (metals and insulators).
  • each electroluminescent element or group of electroluminescent elements can form a light pixel and can emit light when its or their material is supplied with electricity.
  • the configuration of such a monolithic matrix allows the arrangement of selectively activatable pixels very close to each other, compared to conventional light-emitting diodes intended to be soldered on printed circuit boards.
  • the monolithic matrix may include electroluminescent elements of which a main elongation dimension, namely the height, is substantially perpendicular to a common substrate, this height being equal to a micrometer.
  • the monolithic matrix or matrices capable of emitting light rays can be coupled to the control device 130 so as to control the generation and / or projection of a pixelated light beam by the projection module 140.
  • the control device 130 is thus able to individually control the light emission of each pixel of a matrix.
  • the projection module 140 may include a light source coupled to a matrix of mirrors.
  • the pixelated light source can be formed by the set of at least at least one light source formed by at least one light emitting diode emitting light and an array of optoelectronic elements, for example an array of micro-mirrors, also known by the acronym DMD, for "Digital Micro-mirror Device” in English, which directs the light rays coming from the light source by reflection towards an optical projection element.
  • DMD Digital Micro-mirror Device
  • an optical collection element can make it possible to collect the rays of at least one light source in order to concentrate them and direct them towards the surface of the matrix of micro-mirrors.
  • Each micro-mirror can pivot between two fixed positions, a first position in which the light rays are reflected towards the optical projection element, and a second position in which the light rays are reflected in a direction different from the projection optical element.
  • the two fixed positions are oriented in the same way for all the micro-mirrors and form with respect to a support reference plane of the matrix of micro-mirrors an angle characteristic of the matrix of micro-mirrors, defined in its specifications. Such an angle is generally less than 20 °, and can usually be about 12 °.
  • each micro-mirror reflecting part of the light rays incident on the matrix of micro-mirrors forms an elementary emitter of the pixelated light source, the actuation and the control of the change of position of the mirrors making it possible to selectively activate this elementary emitter to emit or not an elementary light beam.
  • the light beam projection module can be formed by a laser scanning system in which a laser source emits a laser beam towards scanning means configured so as to scan the surface d with the laser beam. a wavelength converter element, surface which is imaged by the optical projection element. The scanning of the beam can be accomplished by the scanning means at a sufficiently high speed so that the human eye does not perceive its movement in the projected image.
  • the synchronized piloting of the ignition of the laser source and of the beam scanning movement makes it possible to generate a matrix of elementary emitters which can be selectively activated at the surface of the wavelength converter element.
  • the scanning means can be a mobile micro-mirror for scanning the surface of the wavelength converter element by reflection of the laser beam.
  • the micro-mirrors mentioned as a scanning means are for example of the MEMS type, for “Micro-Electro-Mechanical Systems” in English or electromechanical microsystem.
  • the invention is not limited to such a scanning means and can use other kinds of scanning means, such as a series of mirrors arranged on a rotating element, the rotation of the element causing a scanning of the surface of transmission by the laser beam.
  • the light source can be a matrix and include at least one segment of light elements, such as light-emitting diodes or part of the surface of a monolithic light source.
  • FIG. 2 illustrates the steps of a process implemented by the sensor (s) and by the control device 130.
  • the method begins, for example when starting the host vehicle or when the route or crossing function is activated.
  • the set of sensors 120 of the host vehicle is able to collect a set of data.
  • at least one of the sensors is configured so as to collect the necessary data in order to model the profile of the road.
  • the data collected and the accuracy of this data depend on the nature of the sensor (s), whether it is a camera, a radar, or a lidar.
  • FIGS. 3 to 6 A totally different location of the camera and / or of the other means of acquiring data and / or images relating to route 160 extending in front of the host vehicle can also be envisaged. However, it seems obvious that a different localization of these so-called means will require it is up to the person skilled in the art to determine the various parameters and constants which will be described subsequently according to this new standard.
  • the present invention more specifically provides in a step 202 the determination of a polynomial function modeling the profile of the roadside.
  • the modeling of the profile of the roadside in the form of a polynomial makes it possible to represent the profiles of the roadside in a more or less precise manner according to the degree of the polynomial.
  • the camera 121 when the camera 121 has acquired an image of the road 160 extending in front of the host vehicle 100, said camera 121 is capable of transmitting the x and y coordinates to the control device 130 of the profile of the right edge 161, left 163 and center 162 of the road 160.
  • the control device 130 determines the distance Ai between the virtual projection of the axis Ac of camera 121 on the plane Pr of route 160 and respectively the right edge 161, left 163 and the center of route 160.
  • the parameters of the polynomial can vary dynamically.
  • the parameters are for example updated by the camera, or the radar, or the lidar, at a given frequency or upon detection of a variation in the profile of the road.
  • the invention provides for the use of a degree 3 polynomial function, thus proposing an optimized compromise between complexity and precision.
  • the road profiles in a FOV field of vision of a camera 121 are generally rarely more complex than a succession of two turns, and the use of polynomial functions of a degree greater than or equal to four would induce times important calculations in the data processing unit of the control device.
  • provision may be made for an adaptive selection of the degree of the polynomial function to be provided, with an adaptation in real time of the degree of the polynomial function as a function of the image considered.
  • the present invention is in no way restricted to the use of a polynomial function for the estimation of the profile of the roadside. It extends to any other type of function, for example trigonometric, logarithmic, exponential, etc.
  • the control device 130 determines in a step 203 a starting point Pd and an arrival point Pa d ' a projection area ZPd, ZPg, ZP of patterns 170.
  • the projection distance DP is defined as being the distance between the proximal point Pd and the distal point Pa of the projection area ZPd, ZPg, ZP.
  • Pd is a parameter which is predefined by default by the manufacturer of the host vehicle 100, but which can also be modifiable by the driver or the operator implementing said host vehicle.
  • Pa is a parameter which reaches its maximum value when no obstacle is detected by the data / image acquisition means.
  • a safety margin MS is then predefined by the control device 130 so as to avoid that patterns 170 are projected onto the obstacle 180.
  • the means of acquiring data and / or images relating to route 160 extending in front of the host vehicle 100 are capable of determining the type of obstacle 180. No less than six obstacle categories 180 are referenced. Thus the 0 corresponds to an unclassified object, 1 corresponds to an unknown small object, 2 corresponds to an unknown large object, 3 corresponds to a pedestrian, 4 corresponds to a bicycle, 5 corresponds to a car, and 6 corresponds to a truck.
  • the control device 130 determines in a step 204 a default distance De between the virtual projection on the plane Pr of the road of the axis Ac of the camera 121 and the projection zones ZPd, ZPg of patterns 170, respectively for a right projection area ZPd and a left projection area ZPg.
  • the virtual projection on the road map Pr of the virtual axis Ac of the camera 121 appears as an axis of symmetry between the projection zones Zpd and Zpg.
  • this distance De can be configured either as a function of the type of pattern 170 selected by the driver or the operator of the host vehicle 100.
  • the distance De 0 so that the projection zones ZPd and ZPg of patterns 170 overlap, so as to have one and the same projection area Zp.
  • the list of reasons 170 suitable for being projected into the projection area ZPd, ZPg, ZP is not exhaustive, it can be defined by the manufacturer of the host vehicle 100 and / or updated by the driver or the operator according to his needs.
  • a pattern type 170 capable of being projected by the right projection module 141 and the left projection module 143 there may be the projection of a circle, square, triangle, chevron, or of a continuous or broken line.
  • the control device 130 determines the width Lm of the pattern 170.
  • the method according to the invention is capable of dynamically increasing the width of the most distant patterns 170 projected on the road in order to correct the perspective effect.
  • the distance Dm between each projected pattern 170 is also configurable by the driver or the operator using said host vehicle 100, so as to provide better visual comfort.
  • the control device 130 comprises a step 206 intended to allow a self-calibration of the projection modules 140 so that the projection of a pattern 170 by the straight projection module 141 respectively and the left projection module 143 is symmetrical with respect to the virtual axis of the camera 121 projected onto the route 160.
  • This step of self-calibration of the projection modules 140 is also able to configure said modules mechanically and / or numerically. projection 140 so that the projection of a pattern 171, 173 by the right module 141 and the left module 143 respectively makes it possible to superimpose the two patterns 170 to form a single and unique pattern 172.
  • the beam relating to the low beam function is broken down with the juxtaposition of a lower part called the “Fiat Beam” base beam and an upper part called “Kink” intended to illuminate the road. 160 by avoiding the glare of other users.
  • the beam relating to the "main beam” function breaks down with the superimposition of the basic beam “Fiat Beam” and a central part “Flead Beam” with a restricted and more intense base.
  • the patterns 170 are intended to be projected with a beam from the low beam or the high beam.
  • control device 130 associated with a set of sensors 120 intended to determine the pitch 122 of the host vehicle 100 and take into account the altitude and / or roll of the projection module 140, is configured so as to compensate for the mechanical and / or digital calibration of the projection modules 140 so that the projection of the patterns 170 remains stable and comfortable for the driver and / or the operator implementing the host vehicle 100.
  • the control device is able to compensate for the light intensity as a function of the projection distance of the patterns and of the "Fiat Beam" base beam.
  • the piloting device is able to determine if the size of the vehicle is able to pass between two obstacles 180.
  • control device 130 associated with the data / image acquisition means is capable of projecting an obstacle avoidance strategy 180 (see FIG. 6).
  • control device 130 associated with the data / image acquisition means is capable of projecting a trajectory for the host vehicle 100 when the lane narrows in the work zone.
  • control device 130 associated with the vehicle navigation system "GPS" 123 is capable of projecting a change of trajectory for the host vehicle 100.
  • control device associated with the data / image acquisition means and / or line crossing detector is capable of projecting assistance to the trajectory so that the host vehicle 100 does not no longer bites the road signal lines and is a stable trajectory.
  • control device associated with the data / image acquisition means is capable of projecting a virtual marking on the road when they have disappeared or are not visible.
  • a device 180 for merging information is able to determine the relevance of each data item coming from the various sensors associated with the host vehicle 100, in order to transmit to the control unit 150 the vehicle 100 and consequently to the control device 130 reliable data for decision support.
  • the host vehicle 100 is able to be completely autonomous, so that no driver is required in order to follow a predetermined path.

Abstract

L'invention concerne un procédé de pilotage (130) de modules de projection (140, 141, 143) de faisceaux de lumière pixélisée d'un véhicule hôte (100), ledit véhicule hôte (100) comportant : - un ensemble de capteurs (120, 121, 122, 123), - au moins un dispositif de pilotage (130) de modules de projection (140) de faisceaux de lumière, caractérisé en ce qu'il comporte: - une étape (201), où des moyens d'acquisition de données/images (121) sont aptes à collecter un ensemble de données nécessaires afin de modéliser un profil d'une route (160) s'étendant devant le véhicule hôte (100); - une étape (202), où le dispositif de pilotage (130) est apte, en fonction des données collectées, à déterminer une fonction polynomiale modélisant le profil du bord (161, 163) et du centre (162) de la route (160); - à une étape (203), où le dispositif de pilotage (130) détermine un point de départ (Pd) et un point d'arrivé (Pa) d'une zone de projection (ZPd, ZPg, ZP) de motifs (170); - à une étape (204), où le dispositif de pilotage (130) détermine une distance (Dc) entre un axe (Ac) d'un moyen d'acquisition de données/images (121) et les motifs (170), respectivement pour une zone de projection droite ZPd et une zone de projection gauche ZPg; - à une étape 205, où le dispositif de pilotage (130) détermine la largeur (Lm) du motif (170) de sorte à projeter un ensemble de motifs.

Description

PROCÉDÉ DE PILOTAGE DE MODULES DE PROJECTION DE FAISCEAUX DE LUMIERE PIXELLISE POUR VEHICULE
[0001] La présente invention concerne un procédé de pilotage de modules de projection de faisceaux de lumière pixélisée pour véhicule. Elle trouve une application particulière dans le pilotage de ces modules de projection de sorte à permettre une assistance à la conduite d’un véhicule.
[0002] De nos jours, un véhicule automobile comprend généralement un ensemble de modules de projection de faisceaux de lumière, en général à gauche et à droite, limités aux fonctionnalités basiques de moyens d’éclairage et/ou de signalisation, plus ou moins intelligent, lors de la conduite de nuit ou avec une visibilité réduite, et/ou dans un contexte de conditions météorologiques défavorables.
[0003] Un module de projection de faisceau de lumière peut être associé à une ou plusieurs fonctions telles que la fonction dite « feu de route » destinée à éclairer la route ou ses abords avec une forte intensité, et/ou à la fonction dite « feu de croisement » destiné à éclairer la route ou ses abords à plus courte portée sans éblouir les autres usagers arrivant en sens inverse.
[0004] Parmi les systèmes connus d’assistance à la conduite pour véhicule automobile associés aux modules de projection de faisceaux de lumière, il existe notamment l’allumage automatique des feux de croisement en cas de luminosité extérieure insuffisante, et/ou le basculement automatique des feux de route en feux de croisement afin d’éviter l’éblouissement des autres usagers de la route.
[0005] L’essor de l’utilisation de module de projection basés sur des résolutions à haute définition dans le monde automobile, tels que les modules basés sur la technologie DMD, ou de la LED monolithique, ou du LCD ou encore du Laser Scanning, laissent présager de nouvelles possibilités et repoussent de plus en plus les limites du possible. Il s’avère donc nécessaire d’apporter de nouvelle fonctionnalités au conducteur et/ou passagers d’un véhicule automobile munis de ces nouveaux moyens.
[0006] La présente invention vise à apporter un meilleur confort visuel au conducteur et/ou aux passagers d’un véhicule automobile en leur apportant de nouvelles fonctionnalités d’assistance à la conduite pour de nouvelles expériences utilisateur. Un premier aspect de l’invention concerne un procédé de pilotage de modules de projection de faisceau de lumière pixélisée d’un véhicule hôte, comportant
- un ensemble de capteurs
- au moins un dispositif de pilotage de modules de projection de faisceaux de lumière,
caractérisé en ce qu’il comporte les étapes suivantes:
- une étape où des moyens d’acquisition de données/images sont aptes à collecter un ensemble de données nécessaires afin de modéliser un profil d’une route s’étendant devant le véhicule hôte;
- une étape où le dispositif de pilotage est apte, en fonction des données collectées, à déterminer une fonction polynomiale modélisant le profil du bord et du centre de la route;
- une étape où le dispositif de pilotage détermine un point de départ Pd et un point d’arrivé Pa d’une zone de projection de motifs;
- une étape où le dispositif de pilotage détermine une distance De entre un axe du moyen d’acquisition de données/images et les motifs, respectivement pour une zone de projection droite et une zone de projection gauche;
- une étape où le dispositif de pilotage détermine la largeur Lm du motif.
Dans un mode de réalisation, le moyen d’acquisition de données/images apte à collecter les données nécessaires afin de modéliser le profil de route est une caméra, et/ou un radar, et/ou un lidar ;
Selon un mode de réalisation de l’invention la modélisation du profil de la route résulte d’une fonction polynomiale de degré 1 , de la forme y = f(x) = Bi.x + Ai, lorsque ledit profil de route est rectiligne ;
Selon un mode de réalisation, la modélisation du profil de la route résulte d’une fonction polynomiale de degré 2, de la forme y = f(x) = Ci.x2 + Bi.x + Ai, lorsque ledit profil de route est parabolique, tel qu’un virage ;
Dans un mode de réalisation de l’invention, la modélisation du profil de la route résulte d’une fonction polynomiale de degré 3, de la forme y = f(x) = Di.x3 + Ci.x2 + Bi.x + A, lorsque ledit profil de route comprend un point d'inflexion, tel qu’une succession de deux virages ;
Dans un mode de réalisation, lorsque le moyen d’acquisition d’images/données détecte un obstacle, il transmet au dispositif de pilotage les données relatives à l’obstacle afin de définir une marge de sécurité de sorte à éviter que des motifs soient projetés sur l’obstacle ;
Dans un mode de réalisation, la distance De est paramétrable en fonction du type de motif ;
Dans un mode de réalisation, lorsque la distance De = 0, le dispositif de pilotage contrôle les modules de projection de sorte que les motifs des zones de projection droite et gauche se superposent, en une même et seule zone de projection centrale ; Dans un autre mode de réalisation, les motifs aptes à être projetés dans la zone de projections peuvent être des cercles, ou des carrés, ou des triangles, ou des rectangles, ou des chevrons, ou des flèches, ou des formes plus complexes, ou des nombres tels que l’affichage d’un compteur de vitesse, ou encore des lignes continues ou discontinues ;
Dans un autre mode de réalisation, le dispositif de pilotage est apte à augmenter dynamiquement la largeur Lm des motifs les plus éloignés projetés sur la route afin de corriger l’effet de perspective ;
Dans un autre mode de réalisation, le dispositif de pilotage est associé à un ensemble de capteurs apte à déterminer le tangage du véhicule hôte configuré de sorte à compenser la calibration mécanique et/ou numérique des modules de projection ; Dans un mode de réalisation, le dispositif de pilotage est apte à compenser l’intensité lumineuse en fonction de la distance de projection des motifs et du faisceau de base « Fiat Beam » ;
Dans un autre mode de réalisation, le dispositif de pilotage associé au moyen d’acquisition de données/images, est configuré de sorte à déterminer si le gabarit du véhicule hôte est apte à passer entre deux obstacles en projetant ledit gabarit entre les deux obstacles ;
Dans un mode de réalisation, l’orientation de la projection du gabarit du véhicule hôte est dynamiquement relative à l’angle du système de direction dudit véhicule hôte ; Dans un autre mode de réalisation, le dispositif de pilotage associé au moyen d’acquisition de données/images est apte à projeter une stratégie d’évitement d’obstacle ;
Dans un autre mode de réalisation, le dispositif de pilotage associé au moyen d’acquisition de données/images est apte à projeter un ensemble de motifs configuré de sorte à établir une trajectoire pour le véhicule hôte au moment du rétrécissement de voie en zone de travaux ; Dans un autre mode de réalisation, le dispositif de pilotage associé au système de navigation du véhicule « GPS », est apte à projeter un changement de trajectoire, sous la forme de fléchage au sol, pour le véhicule hôte ;
Un autre aspect de l’invention est relatif à un dispositif lumineux pour véhicule automobile destiné à être contrôlé par un dispositif de pilotage apte à mettre en œuvre le procédé de pilotage de modules de projection de faisceaux de lumière pixélisée selon l’une quelconque des caractéristiques précédentes ;
Dans un autre mode de réalisation, un dispositif de fusion des informations est apte à déterminer la pertinence de chaque donnée provenant des différents capteurs associés au véhicule hôte, afin de transmettre au dispositif de pilotage des données fiables d’aide à la décision.
[0007] D’autres caractéristiques et avantages de l’invention apparaîtront à l’examen de la description détaillée ci-après, et des dessins annexés sur lesquels :
- la figure 1 illustre un système selon un mode de réalisation de l’invention ;
- la figure 2 est un diagramme illustrant les étapes d’un procédé selon l’invention ;
- la figure 3 illustre la mise en œuvre du procédé selon l’invention dans une première situation de conduite ;
- la figure 4 illustre la mise en œuvre du procédé selon l’invention dans une deuxième situation de conduite ;
- la figure 5 illustre la mise en œuvre du procédé selon l’invention dans une troisième situation de conduite ;
- la figure 6 illustre la mise en œuvre du procédé selon l’invention dans une quatrième situation de conduite ;
[0008] La figure 1 présente un véhicule automobile 100 comportant un système 1 10 comprenant un ensemble de capteur 120, au moins un dispositif de pilotage 130 de modules de projection 140 de faisceaux de lumière, ledit dispositif de pilotage 130 étant connecté à l’unité de contrôle 150 du véhicule 100. Ledit dispositif de pilotage 130 comporte au moins un microcontrôleur associé à une ou plusieurs mémoires ainsi qu’une unité de traitement graphique. Dans le reste de la description, le véhicule automobile 100 comportant un tel système 1 10 sera considéré par la suite comme un véhicule hôte 100.
[0009] Le module de projection 140 est un module à haute résolution, autrement dit ayant une résolution supérieure à 1000 pixels. Toutefois, aucune restriction n’est attachée à la technologie utilisée pour la réalisation des modules de projection 140.
[0010] Un module de projection 140 peut par exemple comprendre une source monolithique. On appelle source monolithique une matrice d’éléments électroluminescents monolithique (en anglais « monolithic array ») agencés selon au moins deux colonnes par au moins deux lignes. Dans une matrice monolithique, les éléments électroluminescents peuvent être crûs depuis un substrat commun et peuvent être connectés électriquement de manière à être activables sélectivement, individuellement ou par sous-ensemble d’éléments électroluminescent. Le substrat peut être majoritairement en matériau semi- conducteur. Le substrat peut comporter un ou plusieurs autres matériaux, par exemple non semi-conducteurs (métaux et isolants). Ainsi, chaque élément électroluminescent ou groupe d’éléments électroluminescents peut former un pixel lumineux et peut émettre de la lumière lorsque son ou leur matériau est alimenté en électricité. La configuration d’une telle matrice monolithique permet l’agencement de pixels activables sélectivement très proches les uns des autres, par rapport aux diodes électroluminescentes classiques destinées à être soudées sur des plaques de circuits imprimés. La matrice monolithique peut comporter des éléments électroluminescents dont une dimension principale d’allongement, à savoir la hauteur, est sensiblement perpendiculaire à un substrat commun, cette hauteur étant égale au micromètre.
[001 1] La ou les matrices monolithiques, aptes à émettre des rayons lumineux, peuvent être couplées au dispositif de pilotage 130 de sorte à commander la génération et/ou la projection d’un faisceau lumineux pixélisé par le module de projection 140.
[0012] Le dispositif de pilotage 130 est ainsi apte à contrôler individuellement l’émission lumineuse de chaque pixel d’une matrice.
[0013] Alternativement à ce qui a été présenté ci-dessus, le module de projection 140 peut comprendre une source lumineuse couplée à une matrice de miroirs. Ainsi, la source lumineuse pixellisée peut être formée par l’ensemble d’au moins une source de lumière formée d’au moins une diode électroluminescente émettant de la lumière et une matrice d’éléments optoélectroniques, par exemple une matrice de micro-miroirs, également connue sous l’acronyme DMD, pour « Digital Micro-mirror Device » en anglais, qui dirige les rayons lumineux issus de la source lumière par réflexion vers un élément optique de projection. Le cas échéant, un élément optique de collection peut permettre de collecter les rayons de au moins une source de lumière afin de les concentrer et les diriger vers la surface de la matrice de micro-miroirs.
[0014] Chaque micro-miroir peut pivoter entre deux positions fixes, une première position dans laquelle les rayons lumineux sont réfléchis vers l’élément optique de projection, et une deuxième position dans laquelle les rayons lumineux sont réfléchis dans une direction différente de l’élément optique de projection. Les deux positions fixes sont orientées de la même manière pour tous les micro-miroirs et forment par rapport à un plan de référence support de la matrice de micro-miroirs un angle caractéristique de la matrice de micro-miroirs, défini dans ses spécifications. Un tel angle est généralement inférieur à 20°, et peut valoir usuellement environ 12°. Ainsi, chaque micro-miroir réfléchissant une partie des rayons lumineux incidents sur la matrice de micro-miroirs forme un émetteur élémentaire de la source lumineuse pixellisée, l’actionnement et le pilotage du changement de position des miroirs permettant d’activer sélectivement cet émetteur élémentaire pour émettre ou non un faisceau lumineux élémentaire.
[0015] En variante encore, le module de projection de faisceau de lumière peut être formé par un système à balayage laser dans lequel une source laser émet un faisceau laser vers des moyens de balayage configurés de sorte à balayer avec le faisceau laser la surface d’un élément convertisseur de longueur d’onde, surface qui est imagée par l’élément optique de projection. Le balayage du faisceau peut être accompli par les moyens de balayage à une vitesse suffisamment grande pour que l’œil humain ne perçoive pas son déplacement dans l’image projetée.
[0016] Le pilotage synchronisé de l’allumage de la source laser et du mouvement de balayage du faisceau permet de générer une matrice d’émetteurs élémentaires activables sélectivement au niveau de la surface de l’élément convertisseur de longueur d’onde. Les moyens de balayage peuvent être un micro-miroir mobile permettant de balayer la surface de l’élément convertisseur de longueur d’onde par réflexion du faisceau laser. Les micro-miroirs mentionnés comme moyen de balayage sont par exemple de type MEMS, pour « Micro- Electro-Mechanical Systems » en anglais ou microsystème électromécanique. Cependant l’invention n’est pas limitée à un tel moyen de balayage et peut utiliser d’autres sortes de moyen de balayage, telle qu’une série de miroirs agencés sur un élément rotatif, la rotation de l’élément engendrant un balayage de la surface de transmission par le faisceau laser.
[0017] En variante encore, la source lumineuse peut être matricielle et comprendre au moins un segment d’éléments lumineux, tels que des diodes électroluminescentes ou une partie de surface d’une source lumineuse monolithique.
[0018] La figure 2 illustre les étapes d’un procédé mis en œuvre par le ou les capteurs et par le dispositif de pilotage 130.
[0019] A une étape 200, le procédé débute, par exemple lors du démarrage du véhicule hôte ou lorsque la fonction de route ou de croisement est activée.
[0020] A une étape 201 , l’ensemble de capteurs 120 du véhicule hôte est apte à collecter un ensemble de données. En particulier, au moins un des capteurs est configuré de sorte à collecter les données nécessaires afin de modéliser le profil de la route. Les données collectées et la précision de ces données dépendent de la nature du ou des capteurs, selon qu’il s’agisse d’une caméra, d’un radar, ou d’un lidar.
[0021] Des méthodes connues de modélisation peuvent être appliquées en vue d’estimer le profil de la route, en fonction des images et/ou données acquises par une caméra, et/ou un radar, et/ou un lidar. Pour faciliter la compréhension du procédé et du système selon l’invention, seule une caméra 121 sera représentée, son fonctionnement et son interaction avec l’ensemble des autres éléments du système 100 sera décrit par la suite. Il faut toutefois noter que cette caméra 121 est schématisé aux figures 3 à 6 comme étant localisée à hauteur du rétroviseur centrale du véhicule. Une localisation totalement différente de la caméra et/ou des autres moyens d’acquisition de données et/ou d’images relatives à la route 160 s’étendant devant le véhicule hôte peut également être envisagée. Toutefois, il apparaît évident qu’une localisation différente de ces dits moyens nécessitera à l’homme du métier de déterminer les différents paramètres et constantes qui seront décrit par la suite en fonction de ce nouveau référentiel.
[0022] La présente invention prévoit plus spécifiquement à une étape 202 la détermination d’une fonction polynomiale modélisant le profil du bord de la route. La modélisation du profil du bord de la route sous forme d'un polynôme permet de représenter les profils du bord de la route de manière plus ou moins précise selon le degré du polynôme. On comprendra qu'une fonction polynomiale de degré 1 , de la forme y = f(x) = Bi.x + Ai, où Ai et Bi étant des paramètres, et x et y étant des coordonnées d'un point du bord de route dans le plan de la route (en considérant par approximation une route plane), permet de modéliser un profil de route rectiligne. Une fonction polynomiale de degré 2, de la forme y = f(x) = Ci.x2 + Bi.x + Ai, Ci, Bi et Ai étant des paramètres, permet de modéliser un profil de route parabolique, par exemple un virage. Une fonction polynomiale de degré 3, de la forme y = f(x) = Di.x3 + Ci.x2 + Bi.x + A, Di, Ci, Bi et Ai étant des paramètres, permet de modéliser un profil de route comprenant un point d'inflexion, par exemple une succession de deux virages.
[0023] Pour chacune de ces équations polynomiales précédemment définies, Ai est une constante itérative qui est relative à soit à un bord droit 161 de la route 160, dans cas i=1 , soit à un bord gauche 163 de la route 160, dans ce cas i=3, soit au centre 162 de la route 160, dans ce cas i=2. Bi est la constante itérative qui est relative à la représentation de la droite affine du bord droit 161 de la route 160, dans ce cas i=1 , ou du bord gauche 163 de la route, dans ce cas i=3, ou du centre 162 de la route 160, dans ce cas i=2. Ci est une constante itérative qui est relative à la représentation de la courbure du bord droit 161 de la route 160, dans ce cas i=1 , ou du bord gauche 163, dans ce cas i=3, ou du centre 162 de la route 160, dans ce cas i=2. Di est une constante itérative qui est relative à une double courbure du bord droit 161 de la route 160, dans ce cas i=1 , ou du bord gauche 163 de la route 160, dans ce cas i=3, ou du centre 162 de la route 160, dans ce cas i=2.
[0024] Ainsi, lorsque la caméra 121 a procédé à une acquisition d’une image de la route 160 s’étendant devant le véhicule hôte 100, ladite caméra 121 est apte à transmettre au dispositif de pilotage 130 les coordonnées x et y en fonction du profil du bord droit 161 , gauche 163 et centre 162 de la route 160. Le dispositif de pilotage 130 détermine la distance Ai entre la projection virtuelle de l’axe Ac de la caméra 121 sur le plan Pr de la route 160 et respectivement le bord droit 161 , gauche 163 et le centre de la route 160.
[0025] Selon un mode de réalisation, et comme détaillé ultérieurement, les paramètres du polynôme peuvent varier dynamiquement. Les paramètres sont par exemple mis à jour par la caméra, ou le radar, ou le lidar, à une fréquence donnée ou sur détection d'une variation du profil de la route. De manière préférentielle, l'invention prévoit l'utilisation d'une fonction polynomiale de degré 3, proposant ainsi un compromis optimisé entre complexité et précision. En effet, les profils de route dans un champ de vision FOV d'une caméra 121 sont généralement rarement plus complexes qu'une succession de deux virages, et l'utilisation de fonctions polynomiales d'un degré supérieur ou égal à quatre induirait des temps de calcul importants dans le l’unité de traitement de données du dispositif de pilotage. De manière alternative, il peut être prévu qu'une sélection adaptative du degré de la fonction polynomiale soit prévue, avec une adaptation en temps réel du degré de la fonction polynomiale en fonction de l'image considérée. Bien entendu, la présente invention n'est aucunement restreinte à l'utilisation d'une fonction polynomiale pour l'estimation du profil du bord de route. Elle s'étend à toute autre type de fonction, par exemple trigonométrique, logarithmique, exponentielle, etc.
[0026] Ainsi, lorsque les paramètres Ai, Bi, Ci, Di ont été définis en fonction du profil de la route, le dispositif de pilotage 130 détermine à une étape 203 un point de départ Pd et un point d’arrivé Pa d’une zone de projection ZPd, ZPg, ZP de motifs 170. La distance de projection DP se définit comme étant la distance entre le point proximal Pd et le point distal Pa de la zone de projection ZPd, ZPg, ZP. Pd est un paramètre qui est prédéfini par défaut par le constructeur du véhicule hôte 100, mais qui peut également être modifiable par le conducteur ou l’opérateur mettant en œuvre ledit véhicule hôte. Pa est un paramètre qui atteint sa valeur maximale lorsqu’aucun obstacle n’est détecté par le moyen d’acquisition de données/images. Ainsi, lorsqu’un obstacle 180 apparaît dans le champ de vision du moyen d’acquisition de données/images 121 une marge de sécurité MS est alors prédéfinie par le dispositif de pilotage 130 de sorte à éviter que des motifs 170 soient projetés sur l’obstacle 180. Les moyens d’acquisition de données et/ou d’images relatives à la route 160 s’étendant devant le véhicule hôte 100, sont apte à déterminer le type d’obstacles 180. Pas moins de six catégories d’obstacles 180 sont référencés. Ainsi le 0 correspond à un objet non classifié, 1 correspond à un objet inconnu de petite taille, 2 correspond à un objet inconnu de grande taille, 3 correspond à un piéton, 4 correspond à un vélo, 5 correspond à une voiture automobile, et 6 correspond à un camion.
[0027] Le dispositif de pilotage 130 détermine à une étape 204 une distance De par défaut entre la projection virtuelle sur le plan Pr de la route de l’axe Ac de la caméra 121 et les zones de projection ZPd, ZPg de motifs 170, respectivement pour une zone de projection droite ZPd et une zone de projection gauche ZPg. La projection virtuelle sur le plan de la route Pr de l’axe virtuelle Ac de la caméra 121 apparaît comme un axe de symétrie entre les zones de projection Zpd et Zpg. Toutefois, cette distance De est paramétrable soit en fonction du type de motif 170 sélectionné par le conducteur ou l’opérateur du véhicule hôte 100. En effet, dans une variante de réalisation, la distance De = 0 afin que les zone de projection ZPd et ZPg de motifs 170 se superposent, de sorte à avoir une seule et même zone de projection Zp.
[0028] La liste de motifs 170 aptes à être projeté dans la zone de projection ZPd, ZPg, ZP n’est pas exhaustive, celle-ci peut être défini par le constructeur du véhicule hôte 100 et/ou mise à jour par le conducteur ou l’opérateur en fonction de ses besoins. En exemple de type de motif 170 apte à être projeté par le module de projection droit 141 et le module de projection gauche 143, il peut y avoir la projection de cercle, carré, triangle, chevron, ou encore de ligne continue ou discontinue. Ainsi, à une étape 205, le dispositif de pilotage 130 détermine la largeur Lm du motif 170. Cette valeur est défini par défaut par le constructeur du véhicule hôte 100 mais est paramétrable par le conducteur ou l’opérateur mettant en service ledit véhicule hôte 100. Afin de compenser la potentielle faible résolution de certain module de projection 140, le procédé selon l’invention est apte à augmenter dynamiquement la largeur des motifs 170 les plus éloignés projetés sur la route afin de corriger l’effet de perspective. La distance Dm entre chaque motif 170 projeté est également paramétrable par le conducteur ou l’opérateur mettant en service ledit véhicule hôte 100, de sorte à apporter un meilleur confort visuel.
[0029] Le dispositif de pilotage 130 selon l’invention comporte une étape 206 destiné à permettre une auto-calibration des modules de projection 140 afin que la projection d’un motif 170 par respectivement le module de projection droit 141 et le module de projection gauche 143 soit symétrique par rapport à l’axe virtuelle de la caméra 121 projetée sur la route 160. Cette étape d’auto-calibration des modules de projection 140 est également apte à configurer mécaniquement et/ou numériquement lesdits modules de projection 140 de sorte que la projection d’un motif 171 , 173 par respectivement le module droit 141 et le module gauche 143 permet de superposer les deux motifs 170 pour former qu’un seul et unique motif 172.
[0030] Avec les modules de projection 140, le faisceau relatif à la fonction feu de croisement se décompose avec la juxtaposition d’une partie inférieure dite faisceau de base « Fiat Beam » et une partie supérieure dite « Kink » destiné à éclairer la route 160 en évitant l’éblouissement des autres usagers. De même, le faisceau relatif à la fonction « feu de route » se décompose avec la superposition du faisceau de base « Fiat Beam » et une partie centrale « Flead Beam » à base restreinte et plus intense. Les motifs 170 ont vocation à être projeté avec un faisceau issu du feu de croisement ou du feu de route.
[0031] Dans un mode de réalisation, le dispositif de pilotage 130, associé à un ensemble de capteurs 120 destinés à déterminer le tangage 122 du véhicule hôte 100 et tenir compte de l’altitude et/ou roulis du module de projection 140, est configuré de sorte à compenser la calibration mécanique et/ou numérique des modules de projection 140 afin que la projection des motifs 170 reste stable et confortable pour le conducteur et/ou l’opérateur mettant en œuvre le véhicule hôte 100.
[0032] Le dispositif de pilotage est apte à compenser l’intensité lumineuse en fonction de la distance de projection des motifs et du faisceau de base « Fiat Beam ».
[0033] Au moyen du procédé de pilotage selon l’invention, associé au moyen d’acquisition de données/images, le dispositif de pilotage est apte à déterminer si le gabarit du véhicule est apte à passer entre deux obstacles 180.
[0034] Dans un autre mode de réalisation, le dispositif de pilotage 130 associé au moyen d’acquisition de données/images est apte à projeter une stratégie d’évitement d’obstacle 180 (voir figure 6).
[0035] Dans un autre mode de réalisation, le dispositif de pilotage 130 associé au moyen d’acquisition de données/images est apte à projeter une trajectoire pour le véhicule hôte 100 au moment du rétrécissement de voie en zone de travaux.
[0036] Dans un autre mode de réalisation, le dispositif de pilotage 130 associé au système de navigation du véhicule « GPS » 123, est apte à projeter un changement de trajectoire pour le véhicule hôte 100.
[0037] Dans un autre mode de réalisation, le dispositif de pilotage associé au moyen d’acquisition de données/images et/ou de détecteur de franchissement de ligne, est apte à projeter une assistance à la trajectoire afin que le véhicule hôte 100 ne morde plus les ligne de signalisation de la route et est une trajectoire stable.
[0038] Dans un autre mode de réalisation, le dispositif de pilotage associé au moyen d’acquisition de données/images est apte à projeter un marquage virtuel sur la route lorsque celles-ci ont disparues ou non visible.
[0039] Dans une variante de réalisation de l’invention, un dispositif de fusion 180 des informations est apte à déterminer la pertinence de chaque donnée provenant des différents capteurs associés au véhicule hôte 100, afin de transmettre à l’unité de contrôle 150 du véhicule 100 et par voie de conséquence au dispositif de pilotage 130 des données fiables d’aide à la décision.
[0040] Dans un autre mode de réalisation de l’invention, le véhicule hôte 100 est apte à être totalement autonome, de sorte à nécessité aucun conducteur afin de suivre une trajectoire prédéterminée.

Claims

REVENDICATIONS
1 - Procédé de pilotage (130) de modules de projection (140, 141 , 143) de faisceaux de lumière pixélisée d’un véhicule hôte (100), ledit véhicule hôte (100) comportant
- un ensemble de capteurs (120, 121 , 122, 123),
- au moins un dispositif de pilotage (130) de modules de projection (140) de faisceaux de lumière,
caractérisé en ce qu’il comporte les étapes suivantes:
- à une étape (201 ), des moyens d’acquisition de données/images (121 ) sont aptes à collecter un ensemble de données nécessaires afin de modéliser un profil d’une route (160) s’étendant devant le véhicule hôte (100) ;
- à une étape (202), le dispositif de pilotage (130) est apte, en fonction des données collectées, à déterminer une fonction polynomiale modélisant le profil du bord (161 , 163) et du centre (162) de la route (160), de sorte que
- la modélisation du profil de la route résulte d’une fonction polynomiale de degré 1 , de la forme y = f(x) = Bi.x + Ai, lorsque ledit profil de route (160) est rectiligne ; ou que
- la modélisation du profil de la route (160) résulte d’une fonction polynomiale de degré 2, de la forme y = f(x) = Ci.x2 + Bi.x + Ai, lorsque ledit profil de route (160) est parabolique, tel qu’un virage ; ou que
- la modélisation du profil de la route (160) résulte d’une fonction polynomiale de degré 3, de la forme y = f(x) = Di.x3 + Ci.x2 + Bi.x + A, lorsque ledit profil de route (160) comprend un point d'inflexion, tel qu’une succession de deux virages ;
- à une étape (203), le dispositif de pilotage (130) détermine un point de départ (Pd) et un point d’arrivé (Pa) d’une zone de projection (ZPd, ZPg, ZP) de motifs (170) ;
- à une étape (204) le dispositif de pilotage (130) détermine une distance (De) entre un axe (Ac) d’un moyen d’acquisition de données/images (121 ) et les motifs (170), respectivement pour une zone de projection droite ZPd et une zone de projection gauche ZPg ;
- à une étape 205, le dispositif de pilotage (130) détermine la largeur (Lm) du motif (170). 2 - Procédé de pilotage de modules de projection (140, 141 , 143) selon la revendication 1 caractérisé en ce que, le moyen d’acquisition de données/images (121 ) apte à collecter les données nécessaires afin de modéliser le profil de route (160) est une caméra, et/ou un radar, et/ou un lidar.
3 - Procédé de pilotage de modules de projection (140, 141 , 143) selon l’une quelconque des revendications précédentes, caractérisé en ce que lorsque le moyen d’acquisition d’images/données (121 ) détecte un obstacle (180), il transmet au dispositif de pilotage (130) les données relatives à l’obstacle (180) afin de définir une marge de sécurité (MS) de sorte à éviter que des motifs (170) soient projetés sur l’obstacle (180).
4 - Procédé de pilotage de modules de projection (140, 141 , 143) selon l’une quelconque des revendications précédentes caractérisé en ce que la distance De est paramétrable en fonction du type de motif (170) projeté.
5 - Procédé de pilotage de modules de projection (140, 141 , 143) selon la revendication 4 caractérisé en ce que, lorsque la distance De = 0, le dispositif de pilotage (130) contrôle les modules de projection (140) de sorte que les motifs (170) des zones de projection (ZPd, ZPg) se superposent, en une même et seule zone de projection (Zp).
6 - Procédé de pilotage de modules de projection (140) selon l’une quelconque des revendications précédentes caractérisé en ce que les motifs (170) aptes à être projetés dans la zone de projection (ZPd, ZPg, ZP) peuvent être des cercles, ou des carrés, ou des triangles, ou des rectangles, ou des chevrons, ou des flèches, ou des formes plus complexes, ou des nombres tels que l’affichage d’un compteur de vitesse, ou encore des lignes continues ou discontinues.
7 - Procédé de pilotage de modules de projection (140) selon l’une quelconque des revendications précédentes caractérisé en ce que ledit procédé comprend une étape consistant à piloter le module de projection de sorte à augmenter dynamiquement la largeur (Lm) des motifs (170) les plus éloignés projetés sur la route (160) afin de corriger l’effet de perspective.
8 - Procédé de pilotage de modules de projection (140) selon l’une quelconque des revendications précédentes caractérisé en ce que, le dispositif de pilotage (130) est associé à un ensemble de capteurs apte à déterminer le tangage (122) du véhicule hôte (100) configuré de sorte à compenser la calibration mécanique et/ou numérique des modules de projection (140).
9 - Procédé de pilotage de module de projection (140) selon l’une quelconque des revendications précédentes, caractérisé en ce que ledit procédé comprend une étape consistant à piloter le module de projection de sorte à compenser l’intensité lumineuse en fonction de la distance de projection des motifs (170) et du faisceau de base « Fiat Beam ».
10 - Procédé de pilotage de module de projection (140) selon l’une quelconque des revendications précédentes caractérisé en ce que le dispositif de pilotage (130) associé au moyen d’acquisition de données/images (121 ), est configuré de sorte à déterminer si le gabarit du véhicule hôte est apte à passer entre deux obstacles (180) en projetant ledit gabarit entre les deux obstacles (180).
1 1 - Procédé de pilotage de modules de projection (140) selon la revendication 10 caractérisé en ce que l’orientation de la projection du gabarit du véhicule hôte (100) est dynamiquement relative à l’angle du système de direction dudit véhicule hôte (100).
12 - Procédé de pilotage de modules de projection (140) selon l’une quelconque des revendications précédentes caractérisé en ce que, ledit procédé comprend une étape consistant à piloter le module de projection de sorte à projeter une stratégie d’évitement d’obstacle (180).
13 - Procédé de pilotage de modules de projection (140) selon l’une quelconque des revendications précédentes caractérisé en ce que, le procédé comprend une étape consistant à piloter le module de projection de sorte à projeter un ensemble de motifs 170 configuré de sorte à établir une trajectoire pour le véhicule hôte 100 au moment du rétrécissement de voie en zone de travaux.
14 - Procédé de pilotage de modules de projection (140) selon l’une quelconque des revendications précédentes caractérisé en ce que, le procédé comprend une étape consistant à piloter le module de projection de sorte à projeter un changement de trajectoire, sous la forme de fléchage au sol, pour le véhicule hôte (100), lorsque le dispositif de pilotage est associé au système de navigation du véhicule « GPS » (123)..
15 - Dispositif lumineux pour véhicule automobile destiné à être contrôlé par un dispositif de pilotage (130) caractérisé en ce que ledit dispositif de pilotage (130) est apte à mettre en œuvre un procédé de pilotage de modules de projection (140, 141 , 143) de faisceaux de lumière pixélisée selon l’une quelconque des revendications précédentes. 16 - Dispositif lumineux pour véhicule automobile selon la revendication 15, caractérisé en ce que, un dispositif de fusion (190) des informations est apte à déterminer la pertinence de chaque donnée provenant des différents capteurs (120, 121 , 122, 123) associés au véhicule hôte (100), afin de transmettre au dispositif de pilotage (130) des données fiables d’aide à la décision.
PCT/EP2019/076482 2018-10-01 2019-09-30 Procédé de pilotage de modules de projection de faisceaux de lumiere pixellise pour vehicule WO2020070078A1 (fr)

Priority Applications (5)

Application Number Priority Date Filing Date Title
EP19782969.0A EP3860878A1 (fr) 2018-10-01 2019-09-30 Procédé de pilotage de modules de projection de faisceaux de lumiere pixellise pour vehicule
CN201980065120.0A CN112805180A (zh) 2018-10-01 2019-09-30 用于控制用于投射车辆的像素化光束的模块的方法
JP2021517983A JP2022502782A (ja) 2018-10-01 2019-09-30 車両用のピクセル化された光ビームを投影するためのモジュールを制御する方法
KR1020217009600A KR20210065116A (ko) 2018-10-01 2019-09-30 차량에서 픽셀화된 광 빔을 투사하기 위한 모듈을 제어하는 방법
US17/281,859 US20220118901A1 (en) 2018-10-01 2019-09-30 Method for controlling modules for projecting pixelated light beams for a vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1859087A FR3086901B1 (fr) 2018-10-01 2018-10-01 Procede de pilotage de modules de projection de faisceaux de lumiere pixellise pour vehicule
FR1859087 2018-10-01

Publications (1)

Publication Number Publication Date
WO2020070078A1 true WO2020070078A1 (fr) 2020-04-09

Family

ID=67441147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/076482 WO2020070078A1 (fr) 2018-10-01 2019-09-30 Procédé de pilotage de modules de projection de faisceaux de lumiere pixellise pour vehicule

Country Status (7)

Country Link
US (1) US20220118901A1 (fr)
EP (1) EP3860878A1 (fr)
JP (1) JP2022502782A (fr)
KR (1) KR20210065116A (fr)
CN (1) CN112805180A (fr)
FR (1) FR3086901B1 (fr)
WO (1) WO2020070078A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023186556A1 (fr) * 2022-03-31 2023-10-05 HELLA GmbH & Co. KGaA Procédé de fonctionnement de système d'aide au conducteur basé sur la lumière d'un véhicule à moteur
CN117074046A (zh) * 2023-10-12 2023-11-17 中汽研汽车检验中心(昆明)有限公司 高原环境下汽车实验室排放测试方法及装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011119923A1 (de) * 2011-11-28 2013-05-29 Son Hao Vu Beleuchtungssystem
US20130173232A1 (en) * 2010-04-20 2013-07-04 Conti Temic Microelectronic Gmbh Method for determining the course of the road for a motor vehicle
DE202013006071U1 (de) * 2013-07-05 2013-09-12 Stephan Kaut Projezierte Lichtgitter aus Fahrzeugen
DE102015201764A1 (de) * 2015-02-02 2016-08-04 Volkswagen Aktiengesellschaft Verfahren und Fahrerassistenzsystem zum Erzeugen einer Lichtverteilung durch ein Fahrzeug zur Ausgabe einer Fahranweisung
DE102015201766A1 (de) * 2015-02-02 2016-08-04 Volkswagen Aktiengesellschaft Verfahren zum Erzeugen einer Lichtverteilung zur Ausgabe einer Fahranweisung für ein erstes Fahrzeug
DE102016006919A1 (de) * 2016-06-07 2017-02-09 Daimler Ag Verfahren zum Betrieb eines Fahrzeugs
DE102016223650A1 (de) * 2016-11-29 2018-05-30 Continental Automotive Gmbh Leuchtsystem für ein Kraftfahrzeug und Verfahren dazu
WO2018162219A1 (fr) * 2017-03-09 2018-09-13 Bayerische Motoren Werke Aktiengesellschaft Véhicule automobile comprenant un module d'éclairage servant à générer un symbole

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4962865B2 (ja) * 2007-12-14 2012-06-27 トヨタ自動車株式会社 運転支援装置
FR3041739B1 (fr) * 2015-09-28 2019-10-04 Valeo Vision Systeme et procede d'eclairage
JP6500814B2 (ja) * 2016-03-07 2019-04-17 トヨタ自動車株式会社 車両用照明装置
US9919647B2 (en) * 2016-05-02 2018-03-20 Ford Global Technologies, Llc Intuitive haptic alerts
FR3055979B1 (fr) * 2016-09-15 2019-04-05 Valeo Vision Caracteristiques de faisceau lumineux pixelise
FR3056490B1 (fr) * 2016-09-29 2018-10-12 Valeo Vision Procede de projection d'une image par un systeme de projection d'un vehicule automobile, et systeme de projection associe
FR3056680B1 (fr) * 2016-09-29 2018-11-09 Valeo Vision Systeme d'eclairage pour vehicule automobile
KR102406502B1 (ko) * 2016-12-14 2022-06-10 현대자동차주식회사 차량의 협로 주행 안내 장치 및 방법
FR3062217B1 (fr) * 2017-01-20 2021-03-19 Valeo Vision Aboutage de sources lumineuses pixelisees

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130173232A1 (en) * 2010-04-20 2013-07-04 Conti Temic Microelectronic Gmbh Method for determining the course of the road for a motor vehicle
DE102011119923A1 (de) * 2011-11-28 2013-05-29 Son Hao Vu Beleuchtungssystem
DE202013006071U1 (de) * 2013-07-05 2013-09-12 Stephan Kaut Projezierte Lichtgitter aus Fahrzeugen
DE102015201764A1 (de) * 2015-02-02 2016-08-04 Volkswagen Aktiengesellschaft Verfahren und Fahrerassistenzsystem zum Erzeugen einer Lichtverteilung durch ein Fahrzeug zur Ausgabe einer Fahranweisung
DE102015201766A1 (de) * 2015-02-02 2016-08-04 Volkswagen Aktiengesellschaft Verfahren zum Erzeugen einer Lichtverteilung zur Ausgabe einer Fahranweisung für ein erstes Fahrzeug
DE102016006919A1 (de) * 2016-06-07 2017-02-09 Daimler Ag Verfahren zum Betrieb eines Fahrzeugs
DE102016223650A1 (de) * 2016-11-29 2018-05-30 Continental Automotive Gmbh Leuchtsystem für ein Kraftfahrzeug und Verfahren dazu
WO2018162219A1 (fr) * 2017-03-09 2018-09-13 Bayerische Motoren Werke Aktiengesellschaft Véhicule automobile comprenant un module d'éclairage servant à générer un symbole

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023186556A1 (fr) * 2022-03-31 2023-10-05 HELLA GmbH & Co. KGaA Procédé de fonctionnement de système d'aide au conducteur basé sur la lumière d'un véhicule à moteur
CN117074046A (zh) * 2023-10-12 2023-11-17 中汽研汽车检验中心(昆明)有限公司 高原环境下汽车实验室排放测试方法及装置
CN117074046B (zh) * 2023-10-12 2024-01-02 中汽研汽车检验中心(昆明)有限公司 高原环境下汽车实验室排放测试方法及装置

Also Published As

Publication number Publication date
CN112805180A (zh) 2021-05-14
JP2022502782A (ja) 2022-01-11
FR3086901A1 (fr) 2020-04-10
US20220118901A1 (en) 2022-04-21
FR3086901B1 (fr) 2020-11-13
KR20210065116A (ko) 2021-06-03
EP3860878A1 (fr) 2021-08-11

Similar Documents

Publication Publication Date Title
EP3305592B1 (fr) Systeme d'eclairage pour vehicule automobile
EP1437258B1 (fr) Système de commande de l'orientation en site d'un projecteur de véhicule et procédé de mise en oeuvre
FR3076680A1 (fr) Système de communication intervéhiculaire, système de véhicule, système d’éclairage de véhicule et véhicule
EP1437259B1 (fr) Système de commande de l'orientation en site d'un projecteur de véhicule et procédé de mise en oeuvre
WO2018050593A1 (fr) Dispositif lumineux de véhicule automobile comportant une source lumineuse pixélisée et procédé de projection d'un faisceau lumineux pixélisé par ledit dispositif lumineux de véhicule automobile
EP3860878A1 (fr) Procédé de pilotage de modules de projection de faisceaux de lumiere pixellise pour vehicule
FR2785434A1 (fr) Procede d'aide a la conduite d'un vehicule et dispositif de mise en oeuvre
WO2020008062A1 (fr) Adaptation d'une fonction de feu de route d'un véhicule automobile
FR3055431B1 (fr) Dispositif de projection d'une image pixelisee
EP3482254B1 (fr) Dispositif de génération d'images pour afficheur tête-haute et procédé de pilotage d'un tel dispositif
FR3055981B1 (fr) Controle de faisceau lumineux pixelise
EP3609742A1 (fr) Dispositif de signalisation lumineuse d'un changement de voie pour véhicule automobile
EP4077047A1 (fr) Procédé de contrôle d'un système d'éclairage d'un véhicule automobile
EP3860877B1 (fr) Procede de commande d'un dispositif d'eclairage pour l'emission d'un faisceau d'eclairage de la route non eblouissant
FR2926520A1 (fr) Systeme d'aide a la conduite integre dans le pare-brise d'un vehicule
WO2007042705A1 (fr) Projecteur pour vehicule automobile
WO2022180253A1 (fr) Procédé de contrôle d'un système d'éclairage d'un véhicule automobile
WO2022157339A1 (fr) Système d'éclairage de véhicule automobile muni d'un module lumineux apte à émettre un faisceau lumineux pixélisé
FR3101180A1 (fr) Dispositif et procédé destinés à alerter un conducteur d’un véhicule automobile
EP1215072B1 (fr) Installation d'assistance à la conduite pour un véhicule automobile
EP4251473A1 (fr) Procédé de contrôle d'un système d'éclairage mettant en oeuvre une fonction d'éclairage non éblouissant
FR2913127A1 (fr) Procede de detection d'un virage, procede de commande de l'eclairage d'un vehicule lors de la detection d'un virage et systeme de mise en oeuvre de ces procedes
FR3105143A1 (fr) Procédé de détection d’un état local de la route sur laquelle circule un véhicule automobile
FR3104087A1 (fr) Procédé et système de commande d’un système d’éclairage de véhicule automobile apte à commander le feu de route en fonction de conditions de roulage
FR3056488A1 (fr) Procede de commande d'affichage automatique d'un pictogramme representatif d'une situation d'eblouissement par un vehicule suivant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19782969

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021517983

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019782969

Country of ref document: EP

Effective date: 20210503