WO2020067475A1 - 断層画像生成装置、方法およびプログラム - Google Patents

断層画像生成装置、方法およびプログラム Download PDF

Info

Publication number
WO2020067475A1
WO2020067475A1 PCT/JP2019/038261 JP2019038261W WO2020067475A1 WO 2020067475 A1 WO2020067475 A1 WO 2020067475A1 JP 2019038261 W JP2019038261 W JP 2019038261W WO 2020067475 A1 WO2020067475 A1 WO 2020067475A1
Authority
WO
WIPO (PCT)
Prior art keywords
tomographic
image
tomographic image
feature point
images
Prior art date
Application number
PCT/JP2019/038261
Other languages
English (en)
French (fr)
Inventor
順也 森田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to EP19867935.9A priority Critical patent/EP3858244A4/en
Priority to JP2020549461A priority patent/JP7105314B2/ja
Publication of WO2020067475A1 publication Critical patent/WO2020067475A1/ja
Priority to US17/169,564 priority patent/US11961165B2/en
Priority to JP2022111139A priority patent/JP7275363B2/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/025Tomosynthesis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/04Positioning of patients; Tiltable beds or the like
    • A61B6/0407Supports, e.g. tables or beds, for the body or parts of the body
    • A61B6/0414Supports, e.g. tables or beds, for the body or parts of the body with compression means
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/44Constructional features of apparatus for radiation diagnosis
    • A61B6/4429Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units
    • A61B6/4452Constructional features of apparatus for radiation diagnosis related to the mounting of source units and detector units the source unit and the detector unit being able to move relative to each other
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/50Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications
    • A61B6/502Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment specially adapted for specific body parts; specially adapted for specific clinical applications for diagnosis of breast, i.e. mammography
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5205Devices using data or image processing specially adapted for radiation diagnosis involving processing of raw data to produce diagnostic data
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/52Devices using data or image processing specially adapted for radiation diagnosis
    • A61B6/5258Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise
    • A61B6/5264Devices using data or image processing specially adapted for radiation diagnosis involving detection or reduction of artifacts or noise due to motion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/52Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves
    • A61B8/5215Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data
    • A61B8/5223Devices using data or image processing specially adapted for diagnosis using ultrasonic, sonic or infrasonic waves involving processing of medical diagnostic data for extracting a diagnostic or physiological parameter from medical diagnostic data
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/005Specific pre-processing for tomographic reconstruction, e.g. calibration, source positioning, rebinning, scatter correction, retrospective gating
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10072Tomographic images
    • G06T2207/10112Digital tomosynthesis [DTS]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30068Mammography; Breast
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30168Image quality inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography

Definitions

  • the present disclosure relates to a tomographic image generation device, a method, and a program for capturing a subject at each of a plurality of source positions, acquiring a plurality of projection images, and generating a tomographic image from the plurality of projection images.
  • the simple imaging is an imaging method in which a subject is irradiated with radiation once to acquire one two-dimensional image which is a transmission image of the subject.
  • tomosynthesis imaging has a problem in that the reconstructed tomographic image is blurred due to the influence of body movement or the like of the subject due to the time difference between the imaging at each of the plurality of source positions.
  • the tomographic image is blurred in this way, it is difficult to find a small lesion such as calcification, which is useful for early detection of breast cancer, particularly when the breast is the subject.
  • Japanese Patent Application Laid-Open No. 2016-64119 discloses that while holding pixel values of a plurality of projection images acquired by tomosynthesis imaging, a position of a radiation source and a position of a radiation detector at the time of imaging for each of the plurality of projection images are disclosed.
  • the pixel values of the plurality of projection images are projected on the coordinate position on the desired tomographic plane of the subject to obtain a plurality of tomographic plane projection images, and the intersection of the edges and edges in the plurality of tomographic plane projection images And feature points, such as corners of edges, are detected, and misregistration between a plurality of tomographic plane projection images is corrected so as to match the detected feature points.
  • a method for generating an image has been proposed.
  • the projection image obtained by tomosynthesis imaging is obtained by radiation transmitted through the subject, and is an image in which a plurality of structures in the subject overlap.
  • the position of the radiation source changes, the direction of transmission of radiation through the subject will be different, and the appearance of feature points such as edges, intersections of edges, and corners of edges included in the projected image will be projected. It differs depending on the image. For example, a structure that appears as an intersection of edges in one projected image may be seen as a plurality of edges that do not have an intersection in another projected image. Therefore, when the feature points detected in the tomographic plane projection image are used as in the method described in Japanese Patent Application Laid-Open No. 2016-64119, the correspondence between the feature points cannot be determined with high accuracy. The accuracy of the correction is reduced, and as a result, a high-quality tomographic image may not be obtained.
  • the present disclosure has been made in view of the above circumstances, and has as its object to enable acquisition of a high-quality tomographic image in which body motion is accurately corrected.
  • the tomographic image generation device performs tomosynthesis imaging on a photographing device by moving a radiation source relative to a detection surface of a detection unit and irradiating a subject with radiation at a plurality of radiation source positions due to movement of the radiation source.
  • An image acquisition unit that acquires a plurality of projection images corresponding to each of the plurality of source positions generated by Reconstructing a tomographic image on each of a plurality of tomographic planes of the subject by reconstructing all or a part of the plurality of projection images,
  • a feature point detection unit that detects at least one feature point from the plurality of tomographic images;
  • a position shift amount deriving unit that derives a position shift amount between a plurality of projection images based on a body motion of a subject based on the feature point,
  • the reconstructing unit generates a corrected tomographic image on at least one tomographic plane of the subject by correcting the displacement and reconstructing a plurality of projection images.
  • “Move the radiation source relative to the detection unit” means either moving the radiation source alone, moving only the detection unit, or moving both the radiation source and the detection unit. Including.
  • Reconstructing all or a part of the plurality of projection images may be performed by using all of the plurality of projection images, and not all of the plurality of projection images but of the plurality of projection images Means that reconstruction may be performed using two or more projection images.
  • the plurality of projection images are projected on the corresponding tomographic plane based on the positional relationship between the radiation source position and the detection unit at the time of capturing each of the plurality of projection images.
  • the positional deviation amount deriving unit derives a positional deviation amount between a plurality of tomographic plane projection images based on a body motion of a subject as a positional deviation amount between a plurality of projection images on the basis of a feature point in a corresponding tomographic plane. It may be.
  • the displacement amount deriving unit sets a local region corresponding to a feature point in a plurality of tomographic plane projection images, and derives a displacement amount based on the local region. It may be.
  • the positional deviation amount deriving unit sets a plurality of first local regions including a feature point in the plurality of tomographic plane projection images, and the tomographic image in which the feature point is detected. , A second local region including a feature point is set, and the positional deviation amounts of the plurality of first local regions with respect to the second local region are respectively derived as temporary positional deviation amounts.
  • the positional deviation amount may be derived based on
  • the positional deviation amount deriving unit may derive a temporary positional deviation amount based on a region around the feature point in the second local region.
  • the “local area” is an area including a feature point in the tomographic image or the tomographic plane projected image, and may be an area of an arbitrary size smaller than the tomographic image or the tomographic plane projected image. Note that the local region needs to be larger than the range in which the body moves. When the body motion is large, it may be about 2 mm. For this reason, in the case of a tomographic image or a tomographic plane projection image in which the size of one pixel is 100 ⁇ m square, the local area may be an area of, for example, 50 ⁇ 50 pixels or 100 ⁇ 100 pixels around a feature point.
  • the “region around the feature point in the local region” means a region including the feature point in the local region and smaller than the local region.
  • the reconstruction unit reconstructs a plurality of projection images excluding the target projection image corresponding to the target tomographic plane projection image from which the positional deviation amount is to be derived. Is generated as a target tomographic image,
  • the displacement amount deriving unit may derive the displacement amount for the target tomographic plane projection image using the target tomographic image.
  • the feature point detection unit detects a plurality of feature points from a plurality of tomographic images
  • a corresponding tomographic plane corresponding to the tomographic image in which each of the plurality of feature points is detected further includes a focal plane determining unit that determines whether or not the focal plane is a focal plane.
  • the displacement amount deriving unit may derive the displacement amount in the corresponding tomographic plane determined as the focal plane.
  • the tomographic image generation device further includes a combining unit that combines two or more tomographic images among the plurality of tomographic images to generate a combined two-dimensional image.
  • the feature point detection unit may detect a two-dimensional feature point in the combined two-dimensional image and detect a feature point corresponding to the two-dimensional feature point from a plurality of tomographic images.
  • the reconstructing unit reconstructs all or a part of the plurality of projection images while correcting the displacement amount, thereby performing the plurality of corrections on the plurality of tomographic planes of the subject.
  • Generated tomographic images as new tomographic images The feature point detection unit detects feature points from a plurality of new tomographic images, The displacement amount deriving unit derives a new displacement amount between the new plurality of projection images, The reconstructing unit may generate a new corrected tomographic image on at least one tomographic plane of the subject by reconstructing a plurality of projection images while correcting a new positional shift amount.
  • the reconstruction unit, the feature point detection unit, and the positional deviation amount derivation unit generate a new tomographic image, detect a feature point from a new tomographic image, and generate a new position. Derivation of the shift amount may be repeated until the new shift amount converges.
  • “Repeat until convergence” means that the process is repeated until the positional deviation amount between the new plurality of tomographic plane projection images becomes equal to or less than a predetermined threshold value.
  • the image quality of the region of interest including the feature point in the corrected tomographic image is evaluated, and based on the result of the image quality evaluation, whether the derived displacement amount is appropriate or inappropriate. May be further provided.
  • the position shift amount determination unit performs image quality evaluation of a region of interest including a feature point in the tomographic image, and performs image quality evaluation on the corrected tomographic image and a result on the tomographic image.
  • the result of the image quality evaluation may be compared with the result of the image quality evaluation, and the tomographic image having the better image quality evaluation result may be determined as the final tomographic image.
  • the tomographic image generation device further includes an evaluation function deriving unit that derives an evaluation function for performing image quality evaluation of a region of interest including a feature point in the corrected tomographic image,
  • the displacement amount deriving unit may derive a displacement amount for optimizing the evaluation function.
  • the subject may be a breast.
  • the positional deviation amount deriving unit includes at least one of a breast gland density, a breast size, an imaging time of tomosynthesis imaging, a compression pressure of the breast during tomosynthesis imaging, and an imaging direction of the breast.
  • the search range at the time of deriving the displacement amount may be changed in accordance with the above.
  • a tomosynthesis imaging in which a radiation source is relatively moved with respect to a detection surface of a detection unit and a subject is irradiated with radiation at a plurality of radiation source positions due to the movement of the radiation source is performed on an imaging device.
  • a tomographic image on each of a plurality of tomographic planes of the subject is generated, Detecting at least one feature point from the plurality of tomographic images, In a corresponding tomographic plane corresponding to a tomographic image in which a feature point is detected, a position shift amount between a plurality of projection images based on a body motion of a subject is derived based on the feature point, A corrected tomographic image on at least one tomographic plane of the subject is generated by correcting the displacement and reconstructing a plurality of projection images.
  • the tomographic image generation method according to the present disclosure may be provided as a program for causing a computer to execute the method.
  • a processor configured to execute the stored instructions, the processor comprising: The radiation source is moved relatively to the detection surface of the detection unit, and a plurality of tomosynthesis images generated by causing the imaging device to perform tomosynthesis imaging of irradiating the subject with radiation at a plurality of radiation source positions due to the movement of the radiation source are generated.
  • a tomographic image on each of a plurality of tomographic planes of the subject is generated, Detecting at least one feature point from the plurality of tomographic images, In a corresponding tomographic plane corresponding to a tomographic image in which a feature point is detected, a position shift amount between a plurality of projection images based on a body motion of a subject is derived based on the feature point, A process of generating a corrected tomographic image on at least one tomographic plane of the subject is executed by correcting the amount of displacement and reconstructing a plurality of projection images.
  • FIG. 1 is a view of the radiographic image capturing apparatus viewed from the direction of arrow A in FIG.
  • FIG. 1 is a diagram illustrating a schematic configuration of a tomographic image generation device realized by installing a tomographic image generation program in a computer according to the first embodiment.
  • Diagram for explaining acquisition of projection image Diagram for explaining generation of tomographic images Diagram for explaining detection of feature points from tomographic images
  • Diagram for explaining generation of tomographic plane projection image Diagram for explaining interpolation of pixel values of a tomographic image Diagram for explaining setting of region of interest Diagram showing region of interest set in tomographic plane projection image
  • FIG. 1 is a view of the radiographic image capturing apparatus viewed from the direction of arrow A in FIG.
  • FIG. 1 is a diagram illustrating a schematic configuration of a tomographic image generation device realized by installing a tomographic image generation program in a computer according to the first embodiment.
  • Diagram for explaining acquisition of projection image Diagram for explaining generation of tomographic images Diagram for explaining detection of feature points from to
  • FIG. 7 is a diagram illustrating an image in a region of interest when no body motion occurs in the first embodiment.
  • FIG. 5 is a diagram illustrating an image in a region of interest when a body motion occurs in the first embodiment.
  • Diagram for explaining search range of region of interest Diagram showing feature points in three-dimensional space
  • Diagram showing display screen of corrected tomographic image 4 is a flowchart illustrating processing performed in the first embodiment.
  • FIG. 14 is a diagram illustrating an image in a region of interest when no body motion occurs in the second embodiment.
  • FIG. 10 is a diagram illustrating an image in a region of interest when a body motion occurs in the second embodiment.
  • Diagram for explaining the area around feature points The figure which shows typically the process performed in 3rd Embodiment
  • Diagram for explaining generation of feature point map 11 is a flowchart illustrating processing performed in the fifth embodiment.
  • Diagram showing warning display The figure which shows the schematic structure of the tomographic image generation apparatus implement
  • the figure for demonstrating the setting of the region of interest in 7th Embodiment. 11 is a flowchart illustrating processing performed in the seventh embodiment.
  • FIG. 1 is a schematic configuration diagram of a radiographic image capturing apparatus to which a tomographic image generating apparatus according to a first embodiment of the present disclosure is applied
  • FIG. 2 is a diagram of the radiographic image capturing apparatus as viewed from the direction of arrow A in FIG.
  • the radiographic image capturing apparatus 1 captures a subject's breast M from a plurality of source positions to obtain tomographic images by performing tomosynthesis of the breast and obtain a plurality of radiation images, that is, a plurality of projection images. It is a mammography photographing device that performs.
  • the radiographic image capturing apparatus 1 includes an image capturing unit 10, a computer 2 connected to the image capturing unit 10, and a display unit 3 and an input unit 4 connected to the computer 2.
  • the imaging unit 10 includes an arm unit 12 connected to a base (not shown) by a rotation shaft 11.
  • An imaging table 13 is attached to one end of the arm 12, and a radiation irradiator 14 is attached to the other end thereof so as to face the imaging table 13.
  • the arm unit 12 is configured to be able to rotate only the end to which the radiation irradiating unit 14 is attached, so that it is possible to fix the imaging table 13 and rotate only the radiation irradiating unit 14. Has become.
  • the rotation of the arm 12 is controlled by the computer 2.
  • a radiation detector 15 such as a flat panel detector is provided inside the imaging table 13.
  • the radiation detector 15 has a detection surface 15A for radiation such as X-rays.
  • a charge amplifier for converting a charge signal read from the radiation detector 15 into a voltage signal, a correlated double sampling circuit for sampling a voltage signal output from the charge amplifier, and a voltage signal A circuit board or the like provided with an AD (Analog Digital) conversion unit for converting into a digital signal is also provided.
  • AD Analog Digital
  • the radiation detector 15 corresponds to a detection unit. In the present embodiment, the radiation detector 15 is used as the detection unit.
  • the radiation detector 15 is not limited to the radiation detector 15 as long as the radiation can be detected and converted into an image.
  • the radiation detector 15 can repeatedly record and read out a radiation image, and may use a so-called direct radiation detector that directly converts radiation such as X-rays into electric charges. May be temporarily converted into visible light, and the visible light may be converted into a charge signal, that is, a so-called indirect radiation detector may be used.
  • a so-called TFT reading method in which a radiation image signal is read by turning on and off a TFT (Thin Film Transistor) switch, or a radiation image signal by irradiating read light. It is desirable to use a so-called optical reading method in which the data is read out, but the present invention is not limited to this, and another method may be used.
  • An X-ray source 16 that is a radiation source is housed inside the radiation irradiation unit 14.
  • the computer 2 controls the timing at which the X-ray source 16 emits X-rays as radiation and the X-ray generation conditions in the X-ray source 16, that is, the selection of the target and filter materials, the tube voltage, and the irradiation time.
  • the arm 12 has a compression plate 17 disposed above the imaging table 13 for pressing and pressing the breast M, a support 18 for supporting the compression plate 17, and a support 18 in the vertical direction in FIGS.
  • a moving mechanism 19 for moving in the direction is provided.
  • the distance between the compression plate 17 and the imaging table 13, that is, the compression thickness is input to the computer 2.
  • the display unit 3 is a display device such as a CRT (Cathode Ray Tube) or a liquid crystal monitor, and includes a projection image and a two-dimensional image acquired as described later, a generated tomographic image, a message necessary for operation, and the like. Is displayed. Note that the display unit 3 may include a speaker that outputs sound.
  • CTR Cathode Ray Tube
  • liquid crystal monitor includes a projection image and a two-dimensional image acquired as described later, a generated tomographic image, a message necessary for operation, and the like. Is displayed.
  • the display unit 3 may include a speaker that outputs sound.
  • the input unit 4 includes an input device such as a keyboard, a mouse, or a touch panel, and receives an operation of the radiation image capturing apparatus 1 by an operator. In addition, an instruction for inputting various types of information such as imaging conditions and correcting the information necessary for performing tomosynthesis imaging is also accepted. In the present embodiment, each unit of the radiation image capturing apparatus 1 operates according to information input by the operator from the input unit 4.
  • the computer 2 has the tomographic image generation program according to the present embodiment installed therein.
  • the computer may be a workstation or personal computer directly operated by an operator, or a server computer connected to the workstation or a personal computer via a network.
  • the tomographic image generation program is recorded and distributed on a recording medium such as a DVD (Digital Versatile Disc) or a CD-ROM (Compact Disc Only Memory), and is installed in the computer from the recording medium.
  • a recording medium such as a DVD (Digital Versatile Disc) or a CD-ROM (Compact Disc Only Memory)
  • it is stored in a storage device of a server computer connected to a network or a network storage in a state where it can be accessed from the outside, and is downloaded and installed on the computer as required.
  • FIG. 3 is a diagram showing a schematic configuration of a tomographic image generating apparatus realized by installing the tomographic image generating program according to the first embodiment in the computer 2.
  • the tomographic image generating apparatus includes a CPU (Central Processing Unit) 21, a memory 22, and a storage 23 as a standard computer configuration.
  • CPU Central Processing Unit
  • the storage 23 is composed of a storage device such as a hard disk drive or an SSD (Solid State Drive), and stores various information including a program for driving each unit of the radiation image capturing apparatus 1 and a tomographic image generation program. Also, a projection image acquired by tomosynthesis imaging, a tomographic image and a tomographic plane projection image generated as described later are stored.
  • a storage device such as a hard disk drive or an SSD (Solid State Drive)
  • various information including a program for driving each unit of the radiation image capturing apparatus 1 and a tomographic image generation program. Also, a projection image acquired by tomosynthesis imaging, a tomographic image and a tomographic plane projection image generated as described later are stored.
  • the memory 22 temporarily stores programs and the like stored in the storage 23 in order to cause the CPU 21 to execute various processes.
  • the tomographic image generation program includes, as processing to be executed by the CPU 21, image acquisition processing for causing the radiographic image capturing apparatus 1 to perform tomosynthesis imaging to acquire a plurality of projection images of the breast M corresponding to each of the plurality of radiation source positions.
  • Reconstruction processing for generating a tomographic image on each of a plurality of tomographic planes of the breast M, which is a subject, by reconstructing all or a part of the plurality of projection images, detecting at least one feature point from the plurality of tomographic images Based on the positional relationship between the X-ray source 16 and the radiation detector 15 at the time of imaging for each of the plurality of projection images, the plurality of projection images are converted into tomographic images in which feature points are detected. Projection processing for projecting onto a corresponding corresponding tomographic plane to obtain a tomographic plane projection image corresponding to each of the plurality of projection images.
  • a positional deviation amount deriving process for deriving a positional deviation amount between a plurality of tomographic plane projection images based on the body movement of the breast M, and correcting the positional deviation amount to reconstruct a plurality of projection images, thereby obtaining an image of the subject.
  • a reconstruction process for generating a corrected tomographic image on at least one tomographic plane and a display control process for displaying a tomographic image and the like on the display unit 3 are defined.
  • the computer 2 obtains the image acquisition unit 31, the reconstruction unit 32, the feature point detection unit 33, the projection unit 34, the displacement amount derivation unit 35, It functions as the display control unit 36.
  • the image acquisition unit 31 moves the X-ray source 16 by rotating the arm unit 12 around the rotation axis 11 when performing the image acquisition process, and performs tomosynthesis at a plurality of source positions due to the movement of the X-ray source 16.
  • X-rays are radiated to the breast M, which is a subject, under predetermined imaging conditions for imaging, and X-rays transmitted through the breast M are detected by the radiation detector 15, and a plurality of projection images Gi at a plurality of source positions are obtained.
  • FIG. 4 is a view for explaining acquisition of the projection image Gi.
  • the X-ray source 16 is moved to each of the source positions S1, S2,..., Sn, and the X-ray source 16 is driven at each of the source positions to irradiate the breast M with X-rays.
  • projection images G1, G2,..., Gn are obtained corresponding to the respective source positions S1 to Sn.
  • the same dose of X-rays is applied to the breast M.
  • the acquired plurality of projection images Gi are stored in the storage 23.
  • a plurality of projection images Gi may be acquired by a program separate from the tomographic image generation program and stored in the storage 23 or an external storage device.
  • the image acquisition unit 31 reads the plurality of projection images Gi stored in the storage 23 or the external storage device from the storage 23 or the external storage device for reconstruction processing or the like.
  • the source position Sc is a source position where the optical axis X0 of the X-ray emitted from the X-ray source 16 is orthogonal to the detection surface 15A of the radiation detector 15.
  • the source position Sc is referred to as a reference source position Sc
  • a projection image Gc obtained by irradiating the breast M with X-rays at the reference source position Sc is referred to as a reference projection image Gc.
  • the X-ray optical axis X0 is orthogonal to the detection surface 15A of the radiation detector 15” means that the X-ray optical axis X0 intersects the detection surface 15A of the radiation detector 15 at an angle of 90 degrees.
  • the present invention is not limited to this, and may include a case where a certain angle is crossed with 90 degrees.
  • the “X-ray optical axis X0 intersects with the detection surface 15A of the radiation detector 15 with an error of about ⁇ 3 degrees with respect to 90 degrees, the “X-ray optical axis X0 is not Orthogonal to the detection surface 15A of the detector 15 ".
  • a three-dimensional coordinate position in a three-dimensional space including the breast M is set, and a pixel value of a corresponding pixel position of the plurality of projection images Gi is reconstructed with respect to the set three-dimensional coordinate position.
  • the pixel value at that coordinate position is calculated.
  • the reconstructing unit 32 corrects the misregistration amount and reconstructs a plurality of projection images Gi when the misregistration amount based on the body movement of the breast M during tomosynthesis imaging is derived as described later. Then, a corrected tomographic image in which the body motion is corrected is generated.
  • the feature point detection unit 33 detects at least one feature point from the plurality of tomographic images Dj.
  • FIG. 6 is a diagram for explaining detection of a feature point.
  • detection of a feature point from one tomographic image Dk of a plurality of tomographic images Dj will be described.
  • the tomographic image Dk includes point-like structures E1 to E3 such as calcifications on the tomographic plane of the breast M from which the tomographic image Dk is obtained, and intersections E4 and E5 of edges such as intersections of blood vessels. It is.
  • the feature point detection unit 33 detects a point-like structure such as calcification as a feature point from the tomographic image Dk by using a known computer-aided image diagnosis (CAD: Computer Aided Diagnosis, hereinafter referred to as CAD) algorithm. Also, using the Harris corner detection method, an algorithm such as SIFT (Scale-Invariant Feature Transform), FAST (Features from Accelerated Segment Test) or SURF (Speeded Up Robust Feature), an edge or edge included in the tomographic image Dk. Are detected as feature points. For example, the feature point detection unit 33 detects the point-like structure E1 included in the tomographic image Dk illustrated in FIG. 6 as the feature point F1.
  • CAD Computer Aided Diagnosis
  • the feature point F1 is detected from one tomographic image Dk for explanation, but it is preferable to detect a plurality of feature points.
  • all of the point-like structures E1 to E3 and the intersections E4 and E5 included in the tomographic image Dk shown in FIG. 6 may be detected as feature points.
  • the feature point may be only one pixel in the tomographic image Dk, or may be a plurality of pixels indicating the position of the feature structure.
  • feature points are detected only from one tomographic image Dk, but it is assumed that a plurality of feature points are actually detected from each of a plurality of tomographic images.
  • the projection unit 34 is a tomographic plane corresponding to the tomographic image in which the feature point F1 is detected, based on the positional relationship between the radiation source position and the radiation detector 15 at the time of imaging for each of the plurality of projection images Gi.
  • a plurality of projection images Gi are projected on the tomographic plane.
  • the projection unit 34 acquires a tomographic plane projection image GTi corresponding to each of the plurality of projection images Gi.
  • acquisition of the tomographic plane projection image GTi will be described.
  • a feature point is detected in each of the plurality of tomographic images Dj
  • a plurality of projection images Gi are projected on each of a plurality of tomographic planes Tj corresponding to the plurality of tomographic images Dj.
  • a tomographic plane projection image GTi is generated.
  • FIG. 7 is a diagram for explaining the projection of the projection image.
  • FIG. 7 illustrates a case where one projection image Gi acquired at the source position Si is projected onto one tomographic plane Tj of the breast M.
  • a projected image Gi located on the straight line connecting the source position Si and the pixel position on the projected image Gi and the tomographic plane Tj intersects the straight line. Is projected.
  • the projection image Gi and the tomographic image generated on the tomographic plane Tj are composed of a plurality of pixels that are two-dimensionally discretely arranged at a predetermined sampling interval, and are grid points at a predetermined sampling interval.
  • the pixel is arranged in the.
  • a short line segment orthogonal to the projection image Gi and the tomographic plane Tj indicates a pixel dividing position. Therefore, in FIG. 7, the center position of the pixel separation position is a pixel position that is a grid point.
  • the coordinates (sxi, syi, szi) of the source position at the source position Si, the coordinates (pxi, pyi) of the pixel position Pi on the projection image Gi, and the coordinates (tx, ty) of the projection position on the tomographic plane Tj , Tz) is represented by the following equation (1).
  • the z-axis is in a direction perpendicular to the detection surface 15A of the radiation detector 15
  • the y-axis is in a direction parallel to the direction in which the X-ray source 16 moves on the detection surface of the radiation detector 15
  • the x-axis is set in a direction orthogonal to the y-axis.
  • Equation (1) pxi and pyi in equation (1) are defined as the pixel positions of the projection image Gi, and equation (1) is solved for tx and ty, so that the projection position on the tomographic plane Tj at which the pixel value of the projection image Gi is projected is obtained. Can be calculated. Therefore, by projecting the pixel values of the projection image Gi on the calculated projection position on the tomographic plane Tj, the tomographic plane projection image GTi is generated.
  • the intersection of the straight line connecting the source position Si and the pixel position on the projection image Gi and the tomographic plane Tj may not be the pixel position on the tomographic plane Tj.
  • the projection position Tj (tx, ty, tz) on the tomographic plane Tj may be located between the pixel positions O1 to O4 of the tomographic image Dj on the tomographic plane Tj.
  • the pixel value of each pixel position may be calculated by performing an interpolation operation using the pixel values of the projection images at a plurality of projection positions around each of the pixel positions O1 to O4.
  • a linear interpolation operation for weighting the pixel value of the projection image at the projection position according to the distance between the pixel position and a plurality of projection positions around the pixel position can be used.
  • any other method such as a non-linear bicubic interpolation calculation using pixel values of more projection positions around the pixel position and a B-spline interpolation calculation can be used.
  • the pixel value at the projection position closest to the pixel position may be used as the pixel value at the pixel position.
  • a tomographic plane projection image GTi having the pixel values obtained at all pixel positions on the tomographic plane Tj is generated in this way. Therefore, in one tomographic plane, the number of tomographic plane projection images GTi matches the number of projection images Gi.
  • the position shift amount deriving unit 35 derives a position shift amount between the plurality of tomographic plane projection images GTi based on the body movement of the breast M during tomosynthesis imaging. First, the positional deviation amount deriving unit 35 sets a local region corresponding to the feature point F1 as a region of interest for a plurality of tomographic plane projection images GTi. Specifically, a local region of a predetermined size centered on the coordinate position of the feature point F1 is set as the region of interest.
  • FIG. 9 is a diagram for explaining the setting of the region of interest. In FIG. 9, for the sake of explanation, it is assumed that three projection images G1 to G3 are projected on a tomographic plane Tj to generate tomographic plane projected images GT1 to GT3.
  • the positional deviation amount deriving unit 35 sets a region of interest Rf0 centered on the coordinate position of the feature point F1 in the tomographic image Dj on the tomographic plane Tj. Then, in each of the tomographic plane projection images GT1 to GT3, regions of interest R1 to R3 corresponding to the region of interest Rf0 are set. Note that the broken lines in FIG. 9 indicate boundaries between the regions of interest R1 to R3 and other regions. Therefore, the positions of the region of interest Rf0 and the regions of interest R1 to R3 coincide on the tomographic plane Tj.
  • FIG. 10 is a diagram showing regions of interest R1 to R3 set in the tomographic plane projection images GT1 to GT3.
  • the body movement is large, it may be about 2 mm.
  • the regions of interest R1 to R3 are, for example, 50 ⁇ 50 pixels or 100 ⁇ 100 pixels around the feature point F1. do it.
  • the positional deviation amount deriving unit 35 positions the regions of interest R1 to R3. At this time, the alignment is performed based on the region of interest set in the tomographic plane projection image as a reference.
  • a tomographic plane projection image reference tomographic image
  • Gs reference projection image
  • Positioning of another region of interest is performed based on the region of interest set in the plane projection image).
  • the positional deviation amount deriving unit 35 performs positioning of the regions of interest R1 and R3 with respect to the region of interest R2, and uses a shift vector representing the moving direction and the amount of movement of the regions of interest R1 and R3 with respect to the region of interest R2 as the positional deviation amount.
  • the positioning is performed by calculating the moving direction and the moving amount of the regions of interest R1 and R3 with respect to the region of interest R2 in a predetermined search range so that the correlation between the regions of interest R1 and R3 with respect to the region of interest R2 is maximized.
  • a normalized cross-correlation may be used as the correlation.
  • the shift vector is one less than the number of tomographic plane projection images. For example, if the number of tomographic plane projection images is 15, the number of shift vectors is 14, and if the number of tomographic plane projection images is 3, the number of shift vectors is 2.
  • FIG. 11 is a diagram showing images in the three regions of interest R1 to R3 when no body motion has occurred during the acquisition of the projection images G1 to G3.
  • the center positions of the regions of interest R1 to R3, that is, the positions P1 to P3 corresponding to the characteristic points F1 in the tomographic plane projection images GT1 to GT3 are shown, and the characteristic points F1 included in the regions of interest R1 to R3 are shown.
  • the image F2 is indicated by a large circle. As shown in FIG.
  • FIG. 12 is a view showing images in three regions of interest R1 to R3 when a body motion occurs during acquisition of the projection images G2 and G3 among the projection images G1 to G3.
  • the positions P1, P2 corresponding to the feature point F1 in the regions of interest R1, R2 and the regions of interest R1, R2 Coincides with the position of the image F2 of the feature point F1 included in. Therefore, the positional shift amount of the region of interest R1 with respect to the region of interest R2 is zero.
  • FIG. 13 is a diagram for explaining a change in the search range. As shown in FIG. 13, two types of search ranges, a small search range H1 and a large search range H2, are set as search ranges of the regions of interest R1 and R3 with respect to the region of interest R2 as a reference.
  • the body movement tends to increase during imaging.
  • the breast M is large, the body movement tends to increase during imaging.
  • the imaging direction of the breast M is MLO (Medio-Lateral @ Oblique, oblique inward and outward directions)
  • the body motion tends to be larger during imaging than in CC (Cranio-Caudal, head-to-tail direction).
  • the input unit 4 inputs at least one information of the density of the breast gland, the size of the breast M, the imaging time of tomosynthesis imaging, the compression pressure of the breast M during tomosynthesis imaging, and the imaging direction of the breast M for the breast M.
  • the positional deviation amount deriving unit 35 change the search range when the positional deviation amount is derived. Specifically, when the body motion tends to increase, a large search range H2 shown in FIG. 13 may be set. Conversely, when the body motion tends to be small, a small search range H1 shown in FIG. 13 may be set.
  • the positional deviation amounts of the plurality of tomographic plane projection images GTi are derived only for one feature point F1 detected on one tomographic plane Tj for explanation.
  • the displacement amount deriving unit 35 calculates a plurality of different feature points F (in this case, represented by black circles) in a three-dimensional space in the breast M represented by a plurality of tomographic images Dj.
  • the amount of displacement is derived for 10 feature points).
  • the displacement amount deriving unit 35 interpolates the displacement amounts of a plurality of different feature points F with respect to the coordinate position in the three-dimensional space for generating the tomographic image Dj. Accordingly, the positional deviation amount deriving unit 35 performs the positional deviation when reconstructing all the coordinate positions in the three-dimensional space for generating the tomographic image with respect to the tomographic plane projection image acquired in the state where the body motion has occurred. Derive the quantity.
  • the reconstructing unit 32 generates the corrected tomographic image Dhj in which the body motion has been corrected by reconstructing the projection image Gi while correcting the positional deviation amount thus derived. Specifically, when the reconstruction is based on the back projection method, pixels of the projection image Gi in which a positional shift has occurred are determined based on the derived positional shift amount by a corresponding pixel of another projected image. Is reconstructed by correcting the positional deviation so that is projected onto the position where the back projection is performed.
  • one displacement amount may be derived from a plurality of different feature points F.
  • a region of interest is set for each of the plurality of different feature points F, and the amount of positional deviation is derived assuming that the entire region of interest moves by the same amount in the same direction.
  • the displacement amount is derived such that the representative value (for example, the average value, the intermediate value, the maximum value, etc.) of the correlations for all the regions of interest between the tomographic plane projection images for which the displacement amount is to be derived is maximized. do it.
  • the three-dimensional space in the breast M represented by the plurality of tomographic images Dj is divided into a plurality of three-dimensional regions, and one displacement amount is derived from the plurality of feature points F for each region in the same manner as described above. It may be.
  • FIG. 15 is a diagram showing a display screen of the corrected tomographic image.
  • the display screen 40 displays a tomographic image Dj before body motion correction and a corrected tomographic image Dhj after body motion correction.
  • the label 41 “before correction” is given to the tomographic image Dj so that it can be seen that the body motion has not been corrected.
  • the “corrected” label 42 is given to the corrected tomographic image Dhj so that the body motion is corrected. Note that the label 41 may be assigned only to the tomographic image Dj, or the label 42 may be assigned only to the corrected tomographic image Dhj.
  • a broken line indicates that a structure included in the tomographic image Dj before correction is blurred, and a solid line indicates that a structure included in the corrected tomographic image Dhj is not blurred.
  • the tomographic image Dj and the corrected tomographic image Dhj display the same cross section.
  • a projection image Gi may be displayed in addition to the tomographic image Dj and the corrected tomographic image Dhj.
  • the operator can check the success or failure of the body movement correction by looking at the display screen 40. Further, when the body motion is too large, even if the tomographic image is generated by performing the reconstruction while correcting the positional deviation amount as in the present embodiment, the body motion cannot be corrected accurately, and May fail. In such a case, the tomographic image Dj may have higher image quality than the corrected tomographic image Dhj due to the failure of the body motion correction. For this reason, the input unit 4 may receive an instruction to store either the tomographic image Dj or the corrected tomographic image Dhj, and store the instructed image in the storage 23 or an external storage device.
  • FIG. 16 is a flowchart showing the processing performed in the first embodiment.
  • the image acquisition unit 31 causes the radiation image capturing apparatus 1 to perform tomosynthesis imaging to acquire a plurality of projection images Gi (step ST1).
  • the reconstruction unit 32 reconstructs all or a part of the plurality of projection images Gi to generate a plurality of tomographic images Dj (step ST2).
  • the feature point detection unit 33 detects at least one feature point from the plurality of tomographic images Dj (step ST3).
  • the positional deviation amount deriving unit 35 derives the positional deviation amount between the plurality of tomographic plane projection images GTi (step ST5). Further, the reconstructing unit 32 generates a corrected tomographic image Dhj by reconstructing the plurality of projection images Gi while correcting the displacement amount (step ST6). Then, the display control unit 36 displays the corrected tomographic image Dhj on the display unit 3 (step ST7), and ends the processing.
  • the generated corrected tomographic image Dhj is transmitted to an external storage device (not shown) and stored.
  • a plurality of projection images Gi obtained by tomosynthesis imaging are acquired, and all or some of the plurality of projection images Gi are reconstructed, and the plurality of tomographic planes Tj of the breast M are reconstructed.
  • a tomographic image Dj for each is generated.
  • at least one feature point is detected from the plurality of tomographic images Dj, and based on the positional relationship between the radiation source 15 and the radiation detector 15 for each of the plurality of projection images Gi, the plurality of projection images Gi are detected.
  • the tomographic image Dj includes only the structures included in the corresponding tomographic plane Tj. For this reason, structures on other tomographic planes included in the projection image Gi are not included in the tomographic image Dj. Therefore, according to the first embodiment, it is possible to accurately detect a feature point without being affected by structures on other tomographic planes. Therefore, it is possible to appropriately derive the displacement amount between the plurality of projection images Gi, and as a result, according to the present embodiment, obtain a high-quality corrected tomographic image Dhj with reduced influence of body motion can do.
  • the configuration of the tomographic image generation device according to the second embodiment is the same as the configuration of the tomographic image generation device according to the first embodiment shown in FIG. 3, and only the processing to be performed is different. Description is omitted.
  • the positional deviation amount is derived between the tomographic plane projection images GTi.
  • a region of interest Rf0 centered on the coordinate position of the feature point F1 is set in the tomographic image Dj, and the positional deviation amount of the region of interest Ri set in the tomographic plane projection image GTi with respect to the set region of interest Rf0. Is derived as a temporary displacement amount.
  • the third embodiment is different from the first embodiment in that a positional deviation amount between a plurality of tomographic plane projection images GTi is derived based on the derived temporary positional deviation amount.
  • the region of interest Ri set in the plurality of tomographic plane projection images GTi corresponds to a first local region
  • the region of interest Rf0 set in the tomographic image Dj corresponds to a second local region.
  • FIG. 17 is a diagram for explaining the derivation of the amount of displacement in the second embodiment.
  • the region of interest Rf0 and the regions of interest R1 to R3 in FIG. 17 are the same as the region of interest Rf0 and the regions of interest R1 to R3 shown in FIG. 9 and the like.
  • the positional deviation amount deriving unit 35 first sets the tomographic plane projection image GTi (GT1 to GT3 in FIG. 17) for the region of interest Rf0 based on the region of interest Rf0 set in the tomographic image Dj.
  • the obtained positional deviation amounts of the regions of interest R1 to R3 are derived as provisional positional deviation amounts.
  • the positions P1 to P3 corresponding to the feature point F1 and the position of the image F2 of the feature point F1 in all three regions of interest R1 to R3 Matches. For this reason, the shift vectors of the regions of interest R1 to R3 with respect to the region of interest Rf0 (hereinafter referred to as Vf1, Vf2, and Vf3), that is, the temporary displacement amounts are all zero.
  • FIG. 18 is a diagram showing images in three regions of interest R1 to R3 when a body motion occurs during acquisition of the projection images G2 and G3 among the projection images G1 to G3.
  • the positions P1, P2 corresponding to the feature point F1 in the regions of interest R1, R2 and the regions of interest R1, R2 Coincides with the position of the image F2 of the feature point F1 included in. For this reason, the displacement of the regions of interest R1 and R2 with respect to the region of interest Rf0 is zero.
  • the positional deviation amount deriving unit 35 derives the positional deviation amount between the tomographic plane projection images GTi based on the provisional positional deviation amount. Specifically, similarly to the first embodiment, the position is determined based on the projection image acquired at the reference source position Sc where the optical axis X0 of the X-ray from the X-ray source 16 is orthogonal to the radiation detector 15. The deviation amount is derived.
  • the positional deviation amount deriving unit 35 calculates the positional deviation amount between the tomographic plane projection image GT1 and the tomographic plane projection image GT2 as the region of interest R1, R2 with respect to the region of interest Rf0.
  • the positional deviation amount deriving unit 35 calculates the positional deviation amount between the tomographic plane projection image GT3 and the tomographic plane projection image GT2 based on the difference value Vf3-Vf2 between the shift vectors Vf3 and Vf2 of the regions of interest R3 and R2 with respect to the region of interest Rf0. Derive.
  • the tentative displacement amount between the region of interest Rf0 set in the tomographic image Dj and the regions of interest R1 to R3 set in the tomographic plane projection image GTi is derived, and the tentative position is calculated. Based on the shift amount, the position shift amount between the tomographic plane projection images GTi is derived.
  • the region of interest Rf0 is set in the tomographic image Dj, unlike the projection image Gi, only the structure on the tomographic plane from which the tomographic image Dj is obtained is included. Therefore, according to the second embodiment, the influence of the structure included in the tomographic plane other than the tomographic plane in which the feature point is set is reduced, and the displacement amount is derived.
  • the influence of the structure on the other tomographic plane can be further reduced, and the amount of displacement between the plurality of projection images Gi can be accurately derived.
  • the search range at the time of deriving the displacement amount may be changed according to at least one of the M imaging directions.
  • the shift vectors Vf1 to Vf3 of the regions of interest R1 to R3 with respect to the region of interest Rf0 are derived as temporary displacement amounts.
  • a surrounding area Ra0 smaller than the region of interest Rf0 may be set around the feature point F1 in Rf0, and the shift vector may be derived based on the surrounding area Ra0.
  • the shift vector may be derived using only the surrounding area Ra0.
  • the surrounding region Ra0 may be weighted more heavily than the regions other than the surrounding region Ra0 in the regions of interest R1 to R3.
  • the region of interest Rf0 is set in the tomographic image Dj.
  • the generated tomographic image may be different for each tomographic plane projection image GTi from which the tentative displacement amount is derived. Good.
  • this will be described as a third embodiment.
  • FIG. 20 is a diagram schematically showing processing performed in the third embodiment.
  • the projection image G1 of the fifteen projected images G1 to G15 is the target projection image
  • the tomographic plane projection image GT1 is the target tomographic plane projection image.
  • the reconstruction unit 32 reconstructs the projection images G2 to G15 other than the projection image G1 on the tomographic plane Tj to generate a tomographic image (referred to as Dj_1).
  • the feature point detection unit 33 detects feature points from the tomographic image Dj_1, the projection unit 34 generates tomographic plane projection images GT1 to GT15 from the projection images G1 to G15, and the positional deviation amount deriving unit 35 generates the tomographic image Dj_1.
  • a shift vector Vf1 of the region of interest R1 set in the tomographic plane projection image GT1 with respect to the region of interest Rf0_1 is derived as a temporary displacement amount.
  • the reconstruction unit 32 reconstructs the projection images G1, G3 to G15 other than the projection image G2 to generate a tomographic image (Dj_2). .
  • the feature point detection unit 33 detects feature points from the tomographic image Dj_2
  • the projection unit 34 generates tomographic plane projection images GT1 to GT15 from the projection images G1 to G15
  • the positional deviation amount deriving unit 35 generates the tomographic image Dj_2.
  • the shift vector Vf2 of the region of interest R2 set in the tomographic plane projection image GT2 with respect to the region of interest Rf0_2 is derived as a temporary displacement amount.
  • the target tomographic plane projection images are sequentially changed to derive temporary displacement amounts for all the tomographic plane projection images GTi, and the tomographic plane projection images are obtained from the temporary displacement amounts in the same manner as in the second embodiment.
  • the amount of displacement between GTi is derived.
  • the temporary displacement amount is derived using the tomographic image that is not affected by the target projection image. For this reason, the provisional displacement amount can be derived more accurately, and as a result, the displacement amount can be derived accurately.
  • the tomographic image when reconstructing a tomographic image excluding the target projection image, the tomographic image is generated by reconstructing all projection images Gi as shown in the following equation (2). It may be calculated by subtracting the corresponding pixel value Gp of the target projection image from the pixel value Dp of each pixel of the tomographic image Dj, and multiplying the subtracted pixel value by n / (n-1).
  • the method of Expression (2) is a simple method, the amount of calculation for generating a tomographic image excluding the target projection image can be reduced, so that the processing for deriving a temporary displacement amount can be performed at high speed. It can be carried out.
  • ⁇ Tomographic image excluding target projection image (Dp ⁇ Gp) ⁇ n / (n ⁇ 1) ⁇ (2)
  • FIG. 21 is a diagram showing a schematic configuration of a tomographic image generation device realized by installing the tomographic image generation program according to the fourth embodiment in the computer 2.
  • the tomographic image generation device according to the fourth embodiment combines two or more tomographic images of a plurality of tomographic images, or at least one of a plurality of tomographic images, and at least one of a plurality of projection images Gi to form a composite 2
  • the difference from the first embodiment is that a combining unit 37 that generates a two-dimensional image is further provided.
  • the synthesizing unit 37 generates a synthesized two-dimensional image by using, for example, a method described in JP-A-2014-128716.
  • the technique described in Japanese Patent Application Laid-Open No. 2014-128716 discloses a technique in which two or more tomographic images of a plurality of tomographic images, or at least one of a plurality of tomographic images and at least one projection image are arranged at a depth at which a tomographic plane in a subject is arranged. This is a method of generating a composite two-dimensional image by projecting in the vertical direction. Note that the method of generating the composite two-dimensional image is not limited to this.
  • two or more tomographic images of the plurality of tomographic images, or at least one of the plurality of tomographic images and at least one of the projection images are used in the depth direction in which the tomographic plane of the subject is lined up by using the minimum value projection method.
  • a composite two-dimensional image may be generated.
  • the feature point detection unit 33 first detects a two-dimensional feature point from a composite two-dimensional image. The detection of the two-dimensional feature points may be performed in the same manner as in the above embodiments. Then, the feature point detection unit 33 detects a feature point corresponding to a two-dimensional feature point from the plurality of tomographic images Dj with reference to a depth map created in advance.
  • the depth map is a map in which each position on the composite two-dimensional image is associated with depth information indicating the position of the tomographic plane corresponding to each position.
  • the depth map is created in advance using, for example, a method described in International Publication No. WO 2014/203531.
  • a synthesized two-dimensional image is divided into a plurality of local regions, and a correlation between each region obtained by the division and a plurality of tomographic images Dj is obtained.
  • the combined two-dimensional image C0 is divided into 6 ⁇ 8 local regions, and the correlation between each divided region and a plurality of tomographic images Dj is obtained.
  • a depth map is created by associating the depth from the reference position of the tomographic plane of the tomographic image Dj including the region with the largest correlation with the position of each region.
  • the reference position may be, for example, a contact surface of the breast M with the compression plate 17.
  • the position of the tomographic plane Tj when generating the tomographic image Dj is known. Therefore, the position of the tomographic plane corresponding to each local region in the composite two-dimensional image C0 can be specified by referring to the depth map.
  • the feature point detection unit 33 specifies the tomographic plane of the detected two-dimensional feature point with reference to the depth map. Then, feature points corresponding to the two-dimensional feature points are detected on the specified tomographic plane.
  • the amount of calculation for detecting a feature point is large.
  • two-dimensional feature points are detected from the composite two-dimensional image C0, and feature points corresponding to the two-dimensional feature points are detected from the plurality of tomographic images Dj with reference to the depth map. . For this reason, if a depth map is created in advance, the amount of calculation can be reduced and a feature point can be detected quickly.
  • the display control unit 36 may display the combined two-dimensional image on the display unit 3 together with the corrected tomographic image.
  • the configuration of the tomographic image generation device according to the fifth embodiment is the same as the configuration of the tomographic image generation device according to the first embodiment shown in FIG. 3, and only the processing performed is different. Detailed description is omitted.
  • detection of a feature point, acquisition of a tomographic plane projection image, derivation of a positional shift amount, and generation of a new corrected tomographic image are repeatedly performed using the corrected tomographic image Dhj as a new tomographic image. This is different from the first embodiment.
  • FIG. 23 is a flowchart showing the processing performed in the fifth embodiment.
  • the processing from step ST11 to step ST15 is the same as the processing from step ST1 to step ST5 shown in FIG. 16, and a detailed description thereof will be omitted.
  • the displacement amount deriving unit 35 determines whether the displacement amount has converged (step ST16). The determination as to whether or not the positional deviation amount has converged may be made by determining whether or not the positional deviation amount derived for each tomographic plane projection image GTi has become equal to or less than a predetermined threshold Th1.
  • the threshold value Th1 may be set to such a value that it can be said that the tomographic image is not affected by the body movement without further correcting the displacement amount.
  • the display control unit 36 displays the tomographic image (step ST17) since there is no need to correct the displacement amount, and the process ends.
  • step ST16 the reconstructing unit 32 generates the corrected tomographic image Dhj as a new tomographic image by reconstructing the plurality of projection images Gi while correcting the displacement amount (step ST18). .
  • the feature point detection unit 33 detects feature points from the plurality of new tomographic images, and in step ST14, the projection unit 34 acquires new tomographic plane projection images.
  • the displacement amount deriving unit 35 derives a new displacement amount between the new plurality of tomographic plane projection images, and in Step ST16, determines whether the displacement amount is equal to or less than a predetermined threshold Th1. Determine whether or not.
  • step ST16 is affirmed, the processing of step ST18 and steps ST13 to ST15 is repeated.
  • the corrected tomographic image is generated as a new tomographic image
  • the tomographic image displayed in step ST17 is a new tomographic image.
  • the derivation of a new positional shift based on a new tomographic image is repeated until the amount of the positional shift converges. For this reason, the displacement caused by the body motion can be appropriately removed more effectively, and as a result, a higher-quality tomographic image can be obtained.
  • the derivation of a new displacement based on a new tomographic image is repeated until the displacement is converged. You may.
  • the displacement amount derived by the displacement amount deriving unit 35 is compared with a predetermined threshold value, and only when the displacement amount exceeds the threshold value, the displacement amount is calculated. , The tomographic image may be reconstructed.
  • the threshold value may be set to such a value that the tomographic image is not affected by the body movement without correcting the displacement amount.
  • a warning display 45 for notifying that the body motion has exceeded the threshold value may be displayed on the display unit 3. By selecting YES or NO in the warning display 45, the operator can give an instruction as to whether or not to perform body motion correction.
  • a region of interest is set in the tomographic image Dj and the tomographic plane projection image GTi, and the moving direction and movement of the region of interest are set.
  • the amount is derived as a shift vector, that is, a position shift amount and a temporary position shift amount
  • the present invention is not limited to this.
  • the position shift amount may be derived without setting the region of interest.
  • FIG. 25 is a diagram showing a schematic configuration of a tomographic image generation apparatus realized by installing the tomographic image generation program according to the sixth embodiment in the computer 2.
  • the tomographic image generation device according to the sixth embodiment further includes a focal plane determining unit 38 that determines whether a corresponding tomographic plane corresponding to a tomographic image in which each of the plurality of feature points F is detected is a focal plane.
  • the first embodiment differs from the first embodiment in that the displacement amount deriving unit 35 derives the displacement amount on the corresponding tomographic plane determined as the focal plane. Note that the processing according to the sixth embodiment can be applied to the second to fifth embodiments, but only the case where the processing is applied to the first embodiment will be described here.
  • FIG. 26 is a diagram for explaining a ripple artifact.
  • a tomographic image corresponding to the upper and lower tomographic planes of the tomographic image D3 includes a ripple artifact of the structure 48.
  • the range of the ripple artifact increases and becomes blurred as the distance from the tomographic plane including the structure 48 increases. Note that the range in which the ripple artifact spreads corresponds to the range in which the X-ray source 16 moves.
  • the feature point F detected from the tomographic image Dj of the corresponding tomographic plane by the feature point detection unit 33 is a ripple artifact
  • the feature point F is blurred and spreads over a wide range. Therefore, the use of such a feature point F cannot accurately derive the amount of positional deviation.
  • the focal plane determining unit 38 determines whether the corresponding tomographic plane where the feature point F is detected is the focal plane, and determines that the focal plane is the focal plane.
  • the projection unit 34 generates the tomographic plane projection image GTi, and the positional deviation amount deriving unit 35 derives the positional deviation amount.
  • the amount of displacement is derived using the feature points detected on the corresponding tomographic plane determined to be the focal plane.
  • the focal plane determination unit 38 derives, for the feature points detected by the feature point detection unit 33, corresponding points corresponding to the feature points in a plurality of tomographic images.
  • FIG. 27 is a diagram for explaining the derivation of the corresponding points. As shown in FIG. 27, when a feature point F3 is detected in a certain tomographic image Dk, the positional deviation amount deriving unit 35 corresponds to the feature point F3 in a plurality of tomographic images located in the thickness direction of the tomographic image Dk. Corresponding points R1, R2, R3, R4,. In the following description, the reference number of the corresponding point is R.
  • the derivation of the corresponding point R may be performed by aligning the region of interest including the feature point F3 with a tomographic image other than the tomographic image Dk. Then, the focal plane determining unit 38 plots the pixel values of the feature point F3 and the corresponding point R in the order in which the tomographic planes are arranged.
  • FIG. 28 is a diagram illustrating a result of plotting pixel values of feature points and corresponding points. As shown in FIG. 28, the pixel values of the feature point and the corresponding point change so as to have a minimum value at the feature point due to the influence of the ripple artifact.
  • the feature point F3 is on the focal plane, the feature point F3 is not blurred and has a high luminance, that is, a small pixel value.
  • the pixel value is blurred and the pixel value is larger than the minimum value because the feature point F3 is a ripple artifact.
  • the focal plane determination unit 38 determines that the position of the tomographic plane where the characteristic point F3 is detected is the position P0 in FIG. 28 where the pixel value is the minimum, as a result of plotting the pixel values of the characteristic point F3 and the corresponding points. In some cases, the corresponding tomographic plane where the feature point F3 is detected is determined to be the focal plane. On the other hand, when the position of the tomographic plane where the feature point F3 is detected is the position P1 or the like shown in FIG. 28 where the pixel value is not minimum, it is determined that the corresponding tomographic plane where the feature point F3 is detected is not the focal plane.
  • the projection unit 34 generates the tomographic plane projection image GTi only in the corresponding tomographic plane determined to be the focal plane, as in the above-described embodiments.
  • the positional deviation amount deriving unit 35 derives the positional deviation amount of the tomographic plane projection image GTi on the corresponding tomographic plane determined to be the focal plane. That is, the positional deviation amount deriving unit 35 derives the positional deviation amount of the tomographic plane projection image GTi using the feature points detected on the corresponding tomographic plane determined to be the focal plane.
  • FIG. 29 is a flowchart showing the processing performed in the sixth embodiment. Note that the processing in steps ST21 to ST23 in FIG. 29 is the same as the processing in steps ST1 to ST3 in FIG. 16, and therefore detailed description is omitted here.
  • the focal plane determination unit 38 determines that the corresponding tomographic plane corresponding to the tomographic image in which each of the plurality of feature points detected by the feature point detection unit 33 is detected is a focus plane. It is determined whether or not it is a plane (focal plane determination; step ST24).
  • the projection unit 34 generates a tomographic plane projection image GTi on the corresponding tomographic plane determined to be the focal plane (step ST25), and the position shift amount deriving unit 35 determines the corresponding tomographic plane determined to be the focal plane. Using the feature points detected on the tomographic plane, the amount of displacement is derived (step ST26).
  • the reconstructing unit 32 generates a corrected tomographic image Dhj by reconstructing a plurality of projection images Gi while correcting the amount of displacement (step ST27). Then, the display control unit 36 displays the corrected tomographic image Dhj on the display unit 3 (step ST28), and ends the processing.
  • the generated corrected tomographic image Dhj is transmitted to an external storage device (not shown) and stored.
  • the displacement amount is derived on the corresponding tomographic plane determined to be the focal plane. For this reason, the amount of displacement can be derived accurately without being affected by ripple artifacts, and as a result, a corrected tomographic image Dhj in which the displacement has been corrected accurately can be generated.
  • whether or not the corresponding tomographic plane is the focal plane is determined using the plotting result of the pixel values of the feature points and the corresponding points.
  • the determination is not limited to this.
  • the difference between the feature point and the ripple artifact in the contrast with surrounding pixels is larger in the feature point. For this reason, the contrast between the characteristic point and the surrounding pixels at the corresponding point may be derived, and when the contrast of the characteristic point is the maximum, it may be determined that the corresponding tomographic plane where the characteristic point is detected is the focal plane. .
  • the pixel value at the position corresponding to the feature point in the projection image has a small variation between the projection images if the feature point is on the focal plane, but the feature point on the projection image if the feature point is not on the focal plane. Since there is a possibility of representing a structure other than the structure corresponding to, the variation between the projected images increases. For this reason, the variance value of the pixel value corresponding to the feature point between the projection images Gi is derived, and when the variance value is equal to or less than a predetermined threshold value, the corresponding tomographic plane where the feature point is detected is the focal plane. May be determined.
  • machine learning is performed by the focal plane determination unit 38 so as to output a determination result as to whether or not the corresponding tomographic plane that has detected the feature point is the focal plane.
  • the discriminator may be used to determine whether or not the corresponding tomographic plane where the characteristic point is detected is the focal plane.
  • FIG. 30 is a diagram showing a schematic configuration of a tomographic image generation device realized by installing the tomographic image generation program according to the seventh embodiment in the computer 2.
  • the tomographic image generation device according to the seventh embodiment performs image quality evaluation of a region of interest including a feature point in the corrected tomographic image Dhj, and based on the image quality evaluation result, determines whether the derived displacement amount is appropriate or inappropriate.
  • the second embodiment is different from the first embodiment in further including a misalignment amount judging section 39 for judging whether or not the position is the same. Note that the processing according to the seventh embodiment can be applied to the second to sixth embodiments, but only the case where the processing is applied to the first embodiment will be described here.
  • the displacement amount judging unit 39 determines the interest centered on the coordinate positions of a plurality of (two in this case) feature points F4 and F5 included in the corrected tomographic image Dhj as shown in FIG. Regions Rh1 and Rh2 are set. Then, a high-frequency image is generated by extracting high-frequency components in each of the regions of interest Rh1 and Rh2. The extraction of the high frequency component may be performed by performing a filtering process using a Laplacian filter or the like to generate a second derivative image, but is not limited to this. Further, the displacement amount judging section 39 derives the magnitude of the high-frequency components of the regions of interest Rh1 and Rh2.
  • the magnitude of the high-frequency component may be derived from the sum of squares of the pixel values of the high-frequency image, but is not limited thereto. Then, the position shift amount determination unit 39 derives the sum of the magnitudes of the high frequency components for all the regions of interest Rh1 and Rh2.
  • the misregistration amount determination unit 39 performs image quality evaluation based on the magnitude of the high frequency component. That is, the positional shift amount determination unit 39 determines whether or not the sum of the magnitudes of the high frequency components for all the regions of interest Rh1 and Rh2, which is derived as described above, is equal to or greater than the predetermined threshold Th2. judge.
  • the displacement amount determiner 39 determines that the displacement is appropriate, and when the sum is less than the threshold Th2, the displacement determiner 39 determines It is determined that the displacement amount is inappropriate.
  • the display control unit 36 displays the pre-correction tomographic image Dj on the display unit 3 instead of the corrected tomographic image Dhj. In this case, the tomographic image Dj before correction is transmitted to the external storage device instead of the corrected tomographic image Dhj.
  • FIG. 32 is a flowchart showing the processing performed in the seventh embodiment. It should be noted that the processing of steps ST31 to ST36 in FIG. 32 is the same as the processing of steps ST1 to ST6 in FIG. 16, and therefore detailed description is omitted here.
  • the position shift amount determination unit 39 evaluates the image quality of the region of interest including the feature point in the corrected tomographic image Dhj, and is derived based on the image quality evaluation result. It is determined whether or not the displacement amount is appropriate (step ST37).
  • the display control unit 36 displays the corrected tomographic image Dhj on the display unit 3 (step ST38), and ends the processing.
  • the generated corrected tomographic image Dhj is transmitted to an external storage device (not shown) and stored.
  • the display control unit 36 displays the tomographic image Dj on the display unit 3 (step ST39), and ends the processing. In this case, the tomographic image Dj is transmitted to an external storage device (not shown) and stored.
  • the positional deviation amount deriving unit 35 when deriving the positional deviation amount by the positional deviation amount deriving unit 35, it may not be possible to derive an appropriate positional deviation amount due to the influence of a structure other than a feature point.
  • the image quality of the corrected tomographic image Dhj is evaluated, and based on the image quality evaluation result, it is determined whether the displacement amount is appropriate or inappropriate. Therefore, it is possible to appropriately determine whether the derived positional deviation amount is appropriate or inappropriate. Further, when it is determined that the positional deviation amount is inappropriate, the tomographic image Dj before correction is displayed or stored, so that the correction generated based on the inappropriate positional deviation amount is performed. With the completed tomographic image Dhj, the possibility of erroneous diagnosis being performed can be reduced.
  • the image quality is evaluated based on the magnitude of the high-frequency component of the region of interest set in the corrected tomographic image Dhj.
  • the position shift amount determination unit 39 further evaluates the image quality of the region of interest including the feature points in the tomographic image Dj, and compares the image quality evaluation result of the corrected tomographic image Dhj with the image quality evaluation result of the tomographic image Dj. Then, the tomographic image with the higher image quality evaluation may be determined as the final tomographic image.
  • the final tomographic image is a tomographic image displayed on the display unit 3 or transmitted to an external device and stored.
  • the displacement amount derived by the displacement amount deriving unit 35 is compared with a predetermined threshold value, and the displacement amount exceeds the threshold value. Only in such a case, the tomographic image may be reconstructed while correcting the positional deviation amount.
  • FIG. 33 is a diagram showing a schematic configuration of a tomographic image generation device realized by installing the tomographic image generation program according to the eighth embodiment in the computer 2.
  • the tomographic image generation device according to the eighth embodiment includes an evaluation function deriving unit 50 that derives an evaluation function for performing image quality evaluation of a region of interest including a feature point in the corrected tomographic image Dhj, and a displacement amount deriving unit 35.
  • this embodiment is different from the first embodiment in that a position shift amount for optimizing the evaluation function is derived. Note that the processing according to the eighth embodiment can be applied to the second to sixth embodiments, but only the case where the processing is applied to the first embodiment will be described here.
  • the evaluation function deriving unit 50 generates a high-frequency image for the region of interest corresponding to the feature point F set by the displacement amount deriving unit 35 for the tomographic plane projection image GTi.
  • the high-frequency image may be generated by performing a filtering process using a Laplacian filter or the like and generating a second-order differential image, similarly to the position shift amount determination unit 39 in the seventh embodiment.
  • Let the pixel value of the derived high-frequency image in the region of interest be qkl. k represents the k-th projection image, and l represents the number of pixels in the ROI.
  • Wk be a conversion matrix for correcting the amount of displacement
  • ⁇ k be a conversion parameter in the conversion matrix.
  • the conversion parameter ⁇ k corresponds to the displacement amount.
  • the image quality evaluation value in the region of interest corresponding to the feature point F in the corrected tomographic image Dhj may be regarded as an added value of the size of the high-frequency image of the region of interest after the displacement correction in each of the projection images Gi. it can.
  • the evaluation function deriving unit 50 derives an evaluation function represented by the following equation (1).
  • the evaluation function Ec shown in the equation (1) is an evaluation function Ec for obtaining a conversion parameter ⁇ k for minimizing a value in parentheses on the right side to which minus is added so as to maximize the above addition result.
  • the evaluation function shown in Expression (1) has a plurality of local solutions. For this reason, a constraint is given to the range and average value of the conversion parameter ⁇ k. For example, a constraint condition is set such that the average of the conversion parameters ⁇ k for all projection images is set to 0.
  • the displacement amount deriving unit 35 derives the conversion parameter ⁇ k that minimizes the evaluation function Ec shown in the above equation (1), that is, the displacement amount.
  • the evaluation function deriving unit 50 that derives an evaluation function for performing image quality evaluation of a region of interest including a feature point in the corrected tomographic image Dhj is provided.
  • a position shift amount for optimizing the evaluation function is derived. Therefore, it is possible to reduce the possibility that an erroneous diagnosis is performed based on the corrected tomographic image Dhj generated based on the inappropriate displacement amount.
  • a region of interest is set in the tomographic image Dj and the tomographic plane projection image GTi in order to easily derive the positional deviation amount and the temporary positional deviation amount, and the moving direction and the moving direction of the region of interest.
  • the amount is derived as a shift vector, that is, a position shift amount and a temporary position shift amount, the present invention is not limited to this.
  • the position shift amount may be derived without setting the region of interest.
  • the projection unit 34 acquires the tomographic plane projection image GTi, and the positional deviation amount deriving unit 35 derives the positional deviation amount between the tomographic plane projection images GTi.
  • the position shift amount between the projection images Gi may be derived without acquiring the tomographic plane projection image GTi. In this case, in each of the above embodiments, the projection unit 34 becomes unnecessary. Further, the positional deviation amount deriving unit 35 may derive the positional deviation amount on the corresponding tomographic plane corresponding to the tomographic image in which the feature point F has been detected, based on the positional relationship of the projection image Gi.
  • the subject is the breast M.
  • the present invention is not limited to this, and it is a matter of course that any part such as the chest or abdomen of the human body may be the subject.
  • the image acquisition unit 31, the reconstruction unit 32, the feature point detection unit 33, the projection unit 34, the displacement amount derivation unit 35, the display control unit 36, the synthesis unit 37, and the focal plane determination unit As a hardware structure of a processing unit (Processing @ Unit) that executes various types of processing, such as a position shift amount determination unit 39 and an evaluation function deriving unit 50, the following various types of processors (Processors) may be used. it can.
  • the above-described various processors include a circuit after manufacturing an FPGA (Field Programmable Gate Array) or the like.
  • Dedicated electricity which is a processor having a circuit configuration specifically designed to execute a specific process such as a programmable logic device (Programmable Logic Device: PLD) or an ASIC (Application Specific Integrated Circuit) which can change the configuration. Circuit etc. are included.
  • One processing unit may be composed of one of these various processors, or a combination of two or more processors of the same type or different types (for example, a combination of a plurality of FPGAs or a combination of a CPU and an FPGA). ). Further, a plurality of processing units may be configured by one processor.
  • one processor is configured by a combination of one or more CPUs and software, There is a form in which this processor functions as a plurality of processing units.
  • SoC system-on-chip
  • the various processing units are configured using one or more of the above various processors as a hardware structure.
  • circuitry in which circuit elements such as semiconductor elements are combined can be used.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Health & Medical Sciences (AREA)
  • Radiology & Medical Imaging (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pathology (AREA)
  • Veterinary Medicine (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Public Health (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Quality & Reliability (AREA)
  • Physiology (AREA)
  • Pulmonology (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Abstract

断層画像生成装置、方法およびプログラムにおいて、体動が精度よく補正された高画質の断層画像を取得できるようにする。画像取得部が、トモシンセシス撮影時における複数の線源位置のそれぞれに対応する複数の投影画像を取得する。再構成部が、複数の投影画像の全部または一部を再構成することにより、被写体の複数の断層面のそれぞれにおける断層画像を生成する。特徴点検出部が、複数の断層画像から少なくとも1つの特徴点を検出する。位置ずれ量導出部が、特徴点が検出された断層画像に対応する対応断層面において、特徴点を基準として複数の投影画像間の位置ずれ量を導出する。再構成部が、位置ずれ量を補正して複数の投影画像を再構成することにより補正済み断層画像を生成する。

Description

断層画像生成装置、方法およびプログラム
 本開示は、複数の線源位置のそれぞれにおいて被写体を撮影して複数の投影画像を取得し、複数の投影画像から断層画像を生成する断層画像生成装置、方法およびプログラムに関するものである。
 近年、X線、ガンマ線等の放射線を用いた放射線画像撮影装置において、患部をより詳しく観察するために、放射線源を移動させて複数の線源位置から被写体に放射線を照射して撮影を行い、これにより取得した複数の投影画像を加算して所望の断層面を強調した断層画像を生成するトモシンセシス撮影が提案されている。トモシンセシス撮影では、撮影装置の特性および必要な断層画像に応じて、放射線源を放射線検出器と平行に移動させたり、円または楕円の弧を描くように移動させたりして、複数の線源位置において被写体を撮影することにより複数の投影画像を取得し、単純逆投影法あるいはフィルタ逆投影法等の逆投影法等を用いてこれらの投影画像を再構成して断層画像を生成する。
 このような断層画像を被写体における複数の断層面において生成することにより、断層面が並ぶ深さ方向に重なり合った構造を分離することができる。このため、従来の単純撮影により取得される2次元画像においては検出が困難であった病変を発見することが可能となる。なお、単純撮影とは、被写体に1回放射線を照射して、被写体の透過像である1枚の2次元画像を取得する撮影方法である。
 一方、トモシンセシス撮影は、複数の線源位置のそれぞれにおける撮影の時間差に起因する被写体の体動等の影響により、再構成された断層画像がぼけてしまうという問題もある。このように断層画像がぼけてしまうと、とくに乳房が被写体である場合において、乳癌の早期発見に有用な、微小な石灰化等の病変を発見することが困難となる。
 このため、トモシンセシス撮影により取得した投影画像から断層画像を生成するに際し、体動を補正する手法が提案されている。例えば、特開2016-64119号公報には、トモシンセシス撮影により取得した複数の投影画像の画素値を保持しつつ、複数の投影画像のそれぞれについての撮影時の線源位置と放射線検出器との位置関係に基づいて、複数の投影画像の画素値を被写体の所望とする断層面上の座標位置に投影して複数の断層面投影画像を取得し、複数の断層面投影画像においてエッジ、エッジの交点およびエッジの角部等の特徴点を検出し、検出した特徴点を一致させるように複数の断層面投影画像間の位置ずれを補正し、位置ずれが補正された複数の断層面投影画像から断層画像を生成する手法が提案されている。
 一方、トモシンセシス撮影により取得される投影画像は、被写体を透過した放射線により取得されるため、被写体内の複数の構造が重なり合った画像となっている。このため、放射線源の位置が変わると、被写体における放射線の透過方向が異なるものとなることから、投影画像に含まれるエッジ、エッジの交点およびエッジの角部等の特徴点の見え方が、投影画像に応じて異なるものとなる。例えば、ある投影画像においてはエッジの交点として見える構造が、別の投影画像では交点が存在しない複数のエッジとして見えるものとなることがある。したがって、特開2016-64119号公報に記載された手法のように、断層面投影画像において検出された特徴点を用いた場合、特徴点の対応関係を精度よく求めることができないため、位置ずれの補正の精度が低下し、その結果、高画質の断層画像が取得できなくなるおそれがある。
 本開示は上記事情に鑑みなされたものであり、体動が精度よく補正された高画質の断層画像を取得できるようにすることを目的とする。
 本開示による断層画像生成装置は、放射線源を検出部の検出面に対して相対的に移動させ、放射線源の移動による複数の線源位置において被写体に放射線を照射するトモシンセシス撮影を撮影装置に行わせることにより生成された、複数の線源位置のそれぞれに対応する複数の投影画像を取得する画像取得部と、
 複数の投影画像の全部または一部を再構成することにより、被写体の複数の断層面のそれぞれにおける断層画像を生成する再構成部と、
 複数の断層画像から少なくとも1つの特徴点を検出する特徴点検出部と、
 特徴点が検出された断層画像に対応する対応断層面において、特徴点を基準として、被写体の体動に基づく複数の投影画像間の位置ずれ量を導出する位置ずれ量導出部とを備え、
 再構成部は、位置ずれ量を補正して複数の投影画像を再構成することにより、被写体の少なくとも1つの断層面における補正済み断層画像を生成する。
 「放射線源を検出部に対して相対的に移動させる」とは、放射線源のみを移動する場合、検出部のみを移動する場合、および放射線源と検出部との双方を移動する場合のいずれをも含む。
 「複数の投影画像の全部または一部を再構成する」とは、複数の投影画像のすべてを用いて再構成を行ってもよく、複数の投影画像のすべてではなく、複数の投影画像のうちの2以上の投影画像を用いて再構成を行ってもよいことを意味する。
 なお、本開示による断層画像生成装置においては、複数の投影画像のそれぞれについての撮影時の線源位置と検出部との位置関係に基づいて、複数の投影画像を対応断層面に投影して、複数の投影画像のそれぞれに対応する断層面投影画像を取得する投影部をさらに備え、
 位置ずれ量導出部は、対応断層面において、特徴点を基準として、被写体の体動に基づく複数の断層面投影画像間の位置ずれ量を、複数の投影画像間の位置ずれ量として導出するものであってもよい。
 また、本開示による断層画像生成装置においては、位置ずれ量導出部は、複数の断層面投影画像において、特徴点に対応する局所領域を設定し、局所領域に基づいて位置ずれ量を導出するものであってもよい。
 また、本開示による断層画像生成装置においては、位置ずれ量導出部は、複数の断層面投影画像において、特徴点を含む複数の第1の局所領域を設定し、特徴点が検出された断層画像において、特徴点を含む第2の局所領域を設定し、第2の局所領域に対する複数の第1の局所領域の位置ずれ量を仮の位置ずれ量としてそれぞれ導出し、複数の仮の位置ずれ量に基づいて位置ずれ量を導出するものであってもよい。
 この場合、位置ずれ量導出部は、第2の局所領域における特徴点の周囲の領域に基づいて、仮の位置ずれ量を導出するものであってもよい。
 「局所領域」とは、断層画像または断層面投影画像における特徴点を含む領域であり、断層画像または断層面投影画像よりも小さい、任意の大きさの領域とすることができる。
なお、局所領域は、体動として動く範囲よりも大きくする必要がある。体動は大きい場合には2mm程度となることがある。このため、1画素の大きさが100μm四方の断層画像または断層面投影画像の場合、局所領域は、例えば特徴点の周辺の50×50画素、あるいは100×100画素等の領域とすればよい。
 「局所領域における特徴点の周囲の領域」とは、局所領域内における特徴点を含む、局所領域よりも小さい領域を意味する。
 また、本開示による断層画像生成装置においては、再構成部は、位置ずれ量を導出する対象となる対象断層面投影画像に対応する対象投影画像を除いた複数の投影画像を再構成して複数の断層画像を対象断層画像として生成し、
 位置ずれ量導出部は、対象断層画像を用いて対象断層面投影画像についての位置ずれ量を導出するものであってもよい。
 また、本開示による断層画像生成装置においては、特徴点検出部は、複数の断層画像から複数の特徴点を検出し、
 複数の特徴点のそれぞれが検出された断層画像に対応する対応断層面が、焦点面であるか否かを判別する焦点面判別部をさらに備え、
 位置ずれ量導出部は、焦点面と判別された対応断層面において位置ずれ量を導出するものであってもよい。
 また、本開示による断層画像生成装置においては、複数の断層画像のうちの2以上の断層画像を合成して、合成2次元画像を生成する合成部をさらに備え、
 特徴点検出部は、合成2次元画像における2次元特徴点を検出し、複数の断層画像から2次元特徴点に対応する特徴点を検出するものであってもよい。
 また、本開示による断層画像生成装置においては、再構成部は、位置ずれ量を補正しつつ複数の投影画像の全部または一部を再構成することにより、被写体の複数の断層面における複数の補正済み断層画像を、新たな複数の断層画像として生成し、
 特徴点検出部は、複数の新たな断層画像から特徴点を検出し、
 位置ずれ量導出部は、新たな複数の投影画像間の新たな位置ずれ量を導出し、
 再構成部は、新たな位置ずれ量を補正しつつ複数の投影画像を再構成することにより、被写体の少なくとも1つの断層面における新たな補正済み断層画像を生成するものであってもよい。
 また、本開示による断層画像生成装置においては、再構成部、特徴点検出部および位置ずれ量導出部は、新たな断層画像の生成、新たな断層画像からの特徴点の検出、および新たな位置ずれ量の導出を、新たな位置ずれ量が収束するまで繰り返すものであってもよい。
 「収束するまで繰り返す」とは、新たな複数の断層面投影画像間の位置ずれ量が、予め定められたしきい値以下となるまで繰り返すことを意味する。
 また、本開示による断層画像生成装置においては、補正済み断層画像における特徴点を含む関心領域の画質評価を行い、画質評価の結果に基づいて、導出された位置ずれ量が適切であるか不適切であるかを判断する位置ずれ量判断部をさらに備えるものであってもよい。
 また、本開示による断層画像生成装置においては、位置ずれ量判断部は、断層画像における特徴点を含む関心領域の画質評価を行い、補正済み断層画像についての画質評価の結果と、断層画像についての画質評価の結果とを比較し、画質評価の結果が良い方の断層画像を、最終的な断層画像に決定するものであってもよい。
 また、本開示による断層画像生成装置においては、補正済み断層画像における特徴点を含む関心領域の画質評価を行うための評価関数を導出する評価関数導出部をさらに備え、
 位置ずれ量導出部は、評価関数を最適化する位置ずれ量を導出するものであってもよい。
 また、本開示による断層画像生成装置においては、被写体が乳房であってもよい。
 また、本開示による断層画像生成装置においては、位置ずれ量導出部は、乳腺密度、乳房の大きさ、トモシンセシス撮影の撮影時間、トモシンセシス撮影時における乳房の圧迫圧、および乳房の撮影方向の少なくとも1つに応じて、位置ずれ量導出時の探索範囲を変更するものであってもよい。
 本開示による断層画像生成方法は、放射線源を検出部の検出面に対して相対的に移動させ、放射線源の移動による複数の線源位置において被写体に放射線を照射するトモシンセシス撮影を撮影装置に行わせることにより生成された、複数の線源位置のそれぞれに対応する複数の投影画像を取得し、
 複数の投影画像の全部または一部を再構成することにより、被写体の複数の断層面のそれぞれにおける断層画像を生成し、
 複数の断層画像から少なくとも1つの特徴点を検出し、
 特徴点が検出された断層画像に対応する対応断層面において、特徴点を基準として、被写体の体動に基づく複数の投影画像間の位置ずれ量を導出し、
 位置ずれ量を補正して複数の投影画像を再構成することにより、被写体の少なくとも1つの断層面における補正済み断層画像を生成する。
 なお、本開示による断層画像生成方法をコンピュータに実行させるためのプログラムとして提供してもよい。
 本開示による他の断層画像生成装置は、コンピュータに実行させるための命令を記憶するメモリと、
 記憶された命令を実行するよう構成されたプロセッサとを備え、プロセッサは、
 放射線源を検出部の検出面に対して相対的に移動させ、放射線源の移動による複数の線源位置において被写体に放射線を照射するトモシンセシス撮影を撮影装置に行わせることにより生成された、複数の線源位置のそれぞれに対応する複数の投影画像を取得し、
 複数の投影画像の全部または一部を再構成することにより、被写体の複数の断層面のそれぞれにおける断層画像を生成し、
 複数の断層画像から少なくとも1つの特徴点を検出し、
 特徴点が検出された断層画像に対応する対応断層面において、特徴点を基準として、被写体の体動に基づく複数の投影画像間の位置ずれ量を導出し、
 位置ずれ量を補正して複数の投影画像を再構成することにより、被写体の少なくとも1つの断層面における補正済み断層画像を生成する処理を実行する。
 本開示によれば、体動が精度よく補正された高画質の断層画像を取得できる。
本開示の第1の実施形態による断層画像生成装置を適用した放射線画像撮影装置の概略構成図 放射線画像撮影装置を図1の矢印A方向から見た図 第1の実施形態において、コンピュータに断層画像生成プログラムをインストールすることにより実現された断層画像生成装置の概略構成を示す図 投影画像の取得を説明するための図 断層画像の生成を説明するための図 断層画像からの特徴点の検出を説明するための図 断層面投影画像の生成を説明するための図 断層画像の画素値の補間を説明するための図 関心領域の設定を説明するための図 断層面投影画像に設定された関心領域を示す図 第1の実施形態において、体動が発生していない場合の関心領域内の画像を示す図 第1の実施形態において、体動が発生した場合の関心領域内の画像を示す図 関心領域の探索範囲を説明するための図 3次元空間における特徴点を示す図 補正済み断層画像の表示画面を示す図 第1の実施形態において行われる処理を示すフローチャート 第2の実施形態において、体動が発生していない場合の関心領域内の画像を示す図 第2の実施形態において、体動が発生した場合の関心領域内の画像を示す図 特徴点の周囲の領域を説明するための図 第3の実施形態において行われる処理を模式的に示す図 コンピュータに第4の実施形態による断層画像生成プログラムをインストールすることにより実現された断層画像生成装置の概略構成を示す図 特徴点マップの生成を説明するための図 第5の実施形態において行われる処理を示すフローチャート 警告表示を示す図 コンピュータに第6の実施形態による断層画像生成プログラムをインストールすることにより実現された断層画像生成装置の概略構成を示す図 リップルアーチファクトを説明するための図 対応点の導出を説明するための図 特徴点および対応点の画素値をプロットした結果を示す図 第6の実施形態において行われる処理を示すフローチャート コンピュータに第7の実施形態による断層画像生成プログラムをインストールすることにより実現された断層画像生成装置の概略構成を示す図 第7の実施形態における関心領域の設定を説明するための図 第7の実施形態において行われる処理を示すフローチャート コンピュータに第8の実施形態による断層画像生成プログラムをインストールすることにより実現された断層画像生成装置の概略構成を示す図
 以下、図面を参照して本開示の実施形態について説明する。図1は本開示の第1の実施形態による断層画像生成装置を適用した放射線画像撮影装置の概略構成図、図2は放射線画像撮影装置を図1の矢印A方向から見た図である。放射線画像撮影装置1は、乳房のトモシンセシス撮影を行って断層画像を生成するために、複数の線源位置から被写体である乳房Mを撮影して、複数の放射線画像、すなわち複数の投影画像を取得するマンモグラフィ撮影装置である。図1に示すように放射線画像撮影装置1は、撮影部10、撮影部10に接続されたコンピュータ2、並びにコンピュータ2に接続された表示部3および入力部4を備えている。
 撮影部10は、不図示の基台に対して回転軸11により連結されたアーム部12を備えている。アーム部12の一方の端部には撮影台13が、その他方の端部には撮影台13と対向するように放射線照射部14が取り付けられている。アーム部12は、放射線照射部14が取り付けられた端部のみを回転することが可能に構成されており、これにより、撮影台13を固定して放射線照射部14のみを回転することが可能となっている。なお、アーム部12の回転は、コンピュータ2により制御される。
 撮影台13の内部には、フラットパネルディテクタ等の放射線検出器15が備えられている。放射線検出器15はX線等の放射線の検出面15Aを有する。また、撮影台13の内部には、放射線検出器15から読み出された電荷信号を電圧信号に変換するチャージアンプ、チャージアンプから出力された電圧信号をサンプリングする相関2重サンプリング回路、および電圧信号をデジタル信号に変換するAD(Analog Digital)変換部等が設けられた回路基板等も設置されている。なお、放射線検出器15が検出部に対応する。また、本実施形態においては、検出部として放射線検出器15を用いているが、放射線を検出して画像に変換することができれば、放射線検出器15に限定されるものではない。
 放射線検出器15は、放射線画像の記録および読み出しを繰り返して行うことができるものであり、X線等の放射線を直接電荷に変換する、いわゆる直接型の放射線検出器を用いてもよいし、放射線を一旦可視光に変換し、その可視光を電荷信号に変換する、いわゆる間接型の放射線検出器を用いるようにしてもよい。また、放射線画像信号の読出方式としては、TFT(Thin Film Transistor)スイッチをオンおよびオフすることによって放射線画像信号が読み出される、いわゆるTFT読出方式のもの、または読取光を照射することによって放射線画像信号が読み出される、いわゆる光読出方式のものを用いることが望ましいが、これに限らずその他のものを用いるようにしてもよい。
 放射線照射部14の内部には、放射線源であるX線源16が収納されている。X線源16から放射線であるX線を照射するタイミングおよびX線源16におけるX線発生条件、すなわちターゲットおよびフィルタの材質の選択、管電圧並びに照射時間等は、コンピュータ2により制御される。
 また、アーム部12には、撮影台13の上方に配置されて乳房Mを押さえつけて圧迫する圧迫板17、圧迫板17を支持する支持部18、および支持部18を図1および図2の上下方向に移動させる移動機構19が設けられている。なお、圧迫板17と撮影台13との間隔、すなわち圧迫厚はコンピュータ2に入力される。
 表示部3は、CRT(Cathode Ray Tube)または液晶モニタ等の表示装置であり、後述するように取得された投影画像および2次元画像、並びに生成された断層画像の他、操作に必要なメッセージ等を表示する。なお、表示部3は音声を出力するスピーカを内蔵するものであってもよい。
 入力部4はキーボード、マウスまたはタッチパネル方式等の入力装置からなり、操作者による放射線画像撮影装置1の操作を受け付ける。また、トモシンセシス撮影を行うために必要な、撮影条件等の各種情報の入力および情報の修正の指示も受け付ける。本実施形態においては、操作者が入力部4から入力した情報に従って、放射線画像撮影装置1の各部が動作する。
 コンピュータ2には、本実施形態による断層画像生成プログラムがインストールされている。本実施形態においては、コンピュータは、操作者が直接操作するワークステーションあるいはパーソナルコンピュータでもよいし、それらとネットワークを介して接続されたサーバコンピュータでもよい。断層画像生成プログラムは、DVD(Digital Versatile Disc)、CD-ROM(Compact Disc Read Only Memory)等の記録媒体に記録されて配布され、その記録媒体からコンピュータにインストールされる。もしくは、ネットワークに接続されたサーバコンピュータの記憶装置、あるいはネットワークストレージに、外部からアクセス可能な状態で記憶され、要求に応じてコンピュータにダウンロードされ、インストールされる。
 図3はコンピュータ2に第1の実施形態による断層画像生成プログラムをインストールすることにより実現される断層画像生成装置の概略構成を示す図である。図3に示すように、断層画像生成装置は、標準的なコンピュータの構成として、CPU(Central Processing Unit)21、メモリ22およびストレージ23を備えている。
 ストレージ23は、ハードディスクドライブまたはSSD(Solid State Drive)等のストレージデバイスからなり、放射線画像撮影装置1の各部を駆動するためのプログラムおよび断層画像生成プログラムを含む各種情報が記憶されている。また、トモシンセシス撮影により取得された投影画像、並びに後述するように生成された断層画像および断層面投影画像も記憶される。
 メモリ22には、各種処理をCPU21に実行させるために、ストレージ23に記憶されたプログラム等が一時的に記憶される。断層画像生成プログラムは、CPU21に実行させる処理として、放射線画像撮影装置1にトモシンセシス撮影を行わせて、複数の線源位置のそれぞれに対応する乳房Mの複数の投影画像を取得する画像取得処理、複数の投影画像の全部または一部を再構成することにより、被写体である乳房Mの複数の断層面のそれぞれにおける断層画像を生成する再構成処理、複数の断層画像から少なくとも1つの特徴点を検出する特徴点検出処理、複数の投影画像のそれぞれについての撮影時のX線源16の位置と放射線検出器15との位置関係に基づいて、複数の投影画像を特徴点が検出された断層画像に対応する対応断層面に投影して、複数の投影画像のそれぞれに対応する断層面投影画像を取得する投影処理、対応断層面において、特徴点を基準として、乳房Mの体動に基づく複数の断層面投影画像間の位置ずれ量を導出する位置ずれ量導出処理、位置ずれ量を補正して複数の投影画像を再構成することにより、被写体の少なくとも1つの断層面における補正済み断層画像を生成する再構成処理、並びに断層画像等を表示部3に表示する表示制御処理を規定する。
 そして、CPU21が断層画像生成プログラムに従いこれらの処理を実行することで、コンピュータ2は、画像取得部31、再構成部32、特徴点検出部33、投影部34、位置ずれ量導出部35、および表示制御部36として機能する。
 画像取得部31は、画像取得処理を行うに際し、アーム部12を回転軸11の周りに回転させることによりX線源16を移動させ、X線源16の移動による複数の線源位置において、トモシンセシス撮影用の予め定められた撮影条件により被写体である乳房MにX線を照射し、乳房Mを透過したX線を放射線検出器15により検出して、複数の線源位置における複数の投影画像Gi(i=1~n、nは線源位置の数であり、例えばn=15)を取得する。
 図4は投影画像Giの取得を説明するための図である。図4に示すように、X線源16をS1、S2、・・・、Snの各線源位置に移動し、各線源位置においてX線源16を駆動して乳房MにX線を照射し、乳房Mを透過したX線を放射線検出器15により検出することにより、各線源位置S1~Snに対応して、投影画像G1、G2、・・・、Gnが取得される。なお、各線源位置S1~Snにおいては、同一の線量のX線が乳房Mに照射される。取得された複数の投影画像Giはストレージ23に保存される。また、断層画像生成プログラムとは別個のプログラムにより複数の投影画像Giを取得してストレージ23または外部保存装置に保存するようにしてもよい。この場合、画像取得部31は、ストレージ23または外部保存装置に保存された複数の投影画像Giを、再構成処理等のためにストレージ23または外部保存装置から読み出すものとなる。
 なお、図4において、線源位置Scは、X線源16から出射されたX線の光軸X0が放射線検出器15の検出面15Aと直交する線源位置である。線源位置Scを基準線源位置Scと称し、基準線源位置Scにおいて乳房MにX線を照射することにより取得される投影画像Gcを基準投影画像Gcと称するものとする。ここで、「X線の光軸X0が放射線検出器15の検出面15Aと直交する」とは、X線の光軸X0が放射線検出器15の検出面15Aに対して90度の角度で交わることを意味するが、これに限定されるものではなく、90度に対してある程度の誤差を持って交わる場合も含む。例えば、90度に対して±3度程度の誤差を持ってX線の光軸X0が放射線検出器15の検出面15Aと交わる場合も、本実施形態における「X線の光軸X0が放射線検出器15の検出面15Aと直交する」に含まれる。
 再構成部32は、複数の投影画像Giの全部または一部を再構成することにより、乳房Mの所望とする断層面を強調した断層画像を生成する。具体的には、再構成部32は、単純逆投影法あるいはフィルタ逆投影法等の周知の逆投影法等を用いて複数の投影画像Giの全部または一部を再構成して、図5に示すように、乳房Mの複数の断層面のそれぞれにおける複数の断層画像Dj(j=1~m)を生成する。この際、乳房Mを含む3次元空間における3次元の座標位置が設定され、設定された3次元の座標位置に対して、複数の投影画像Giの対応する画素位置の画素値が再構成されて、その座標位置の画素値が算出される。なお、再構成部32は、後述するようにトモシンセシス撮影中における乳房Mの体動に基づく位置ずれ量が導出されると、位置ずれ量を補正して複数の投影画像Giを再構成することにより、体動が補正された補正済み断層画像を生成する。
 特徴点検出部33は、複数の断層画像Djから少なくとも1つの特徴点を検出する。図6は特徴点の検出を説明するための図である。ここでは、複数の断層画像Djのうちの1つの断層画像Dkからの特徴点の検出について説明する。図6に示すように、断層画像Dkには、断層画像Dkを取得した乳房Mの断層面における石灰化等の点状構造物E1~E3および血管の交点等のエッジの交点E4,E5が含まれる。
 特徴点検出部33は、公知のコンピュータ支援画像診断(CAD: Computer Aided Diagnosis、以下CADと称する)のアルゴリズムを用いて、断層画像Dkから石灰化等の点状構造物を特徴点として検出する。また、Harrisのコーナー検出法、SIFT(Scale-Invariant Feature Transform)、FAST(Features from Accelerated Segment Test)あるいはSURF(Speeded Up Robust Features)等のアルゴリズムを用いて、断層画像Dkに含まれる、エッジ、エッジの交点およびエッジの角部等を特徴点として検出する。例えば、特徴点検出部33は、図6に示す断層画像Dkに含まれる点状構造物E1を特徴点F1として検出する。
 なお、ここでは説明のために1つの断層画像Dkから1つの特徴点F1のみを検出しているが、複数の特徴点を検出することが好ましい。例えば、図6に示す断層画像Dkに含まれる点状構造物E1~E3および交点E4,E5のすべてを特徴点として検出してもよい。なお、特徴点は断層画像Dkにおける1つの画素のみであってもよく、特徴となる構造の位置を表す複数の画素からなるものであってもよい。また、ここでは説明のため、1つの断層画像Dkからのみ特徴点を検出しているが、実際には複数の断層画像のそれぞれから複数の特徴点が検出されるものとする。
 投影部34は、複数の投影画像Giのそれぞれについての撮影時の線源位置と放射線検出器15との位置関係に基づいて、特徴点F1が検出された断層画像に対応する断層面である対応断層面に、複数の投影画像Giを投影する。そしてこれにより、投影部34は、複数の投影画像Giのそれぞれに対応する断層面投影画像GTiを取得する。以下、断層面投影画像GTiの取得について説明する。なお、本実施形態においては、複数の断層画像Djのそれぞれにおいて特徴点が検出されているため、複数の断層画像Djに対応する複数の断層面Tjのそれぞれに複数の投影画像Giが投影されて、断層面投影画像GTiが生成される。
 図7は投影画像の投影を説明するための図である。なお、図7においては、線源位置Siにおいて取得された1つの投影画像Giを、乳房Mにおける1つの断層面Tjに投影する場合について説明する。本実施形態においては、図7に示すように、線源位置Siと投影画像Gi上の画素位置とを結ぶ直線と、断層面Tjとが交差する位置に、この直線上に位置する投影画像Giの画素値を投影する。
 なお、投影画像Giおよび断層面Tjにおいて生成される断層画像は、所定のサンプリング間隔にて2次元状に離散的に配置された複数の画素からなるものであり、所定のサンプリング間隔となる格子点に画素が配置される。図7においては、投影画像Giおよび断層面Tjに直交する短い線分が、画素の区切り位置を示す。したがって、図7においては、画素の区切り位置の中央の位置が格子点である画素位置となる。
 ここで、線源位置Siにおける線源位置の座標(sxi,syi,szi)、投影画像Gi上の画素位置Piの座標(pxi,pyi)、および断層面Tjにおける投影位置の座標(tx,ty,tz)の関係は、下記の式(1)により表される。なお、本実施形態においては、放射線検出器15の検出面15Aに垂直な方向にz軸を、放射線検出器15の検出面においてX線源16が移動する方向と平行な方向にy軸を、y軸に直交する方向にx軸をそれぞれ設定するものとする。
 pxi=(tx×szi-sxi×tz)/(szi-tz)
 pyi=(ty×szi-syi×tz)/(szi-tz)   (1)
 したがって、式(1)におけるpxi,pyiを投影画像Giの画素位置とし、式(1)をtx,tyについて解くことにより、投影画像Giの画素値が投影される断層面Tj上の投影位置を算出することができる。したがって、算出した断層面Tj上の投影位置に投影画像Giの画素値を投影することにより、断層面投影画像GTiが生成される。
 この場合、線源位置Siと投影画像Gi上の画素位置とを結ぶ直線と断層面Tjとの交点が、断層面Tj上の画素位置とならない場合がある。例えば、図8に示すように、断層面Tj上の投影位置Tj(tx,ty,tz)が、断層面Tj上の断層画像Djの画素位置O1~O4の間に位置する場合がある。この場合、各画素位置O1~O4の周囲にある複数の投影位置における投影画像の画素値を用いた補間演算を行って各画素位置の画素値を算出すればよい。なお、補間演算としては、画素位置とその周囲にある複数の投影位置との距離に応じて、投影位置における投影画像の画素値に重み付けをする線形補間演算を用いることができる。またこれ以外に、画素位置の周囲におけるより多くの投影位置の画素値を用いた非線形のバイキュービック補間演算、およびB-スプライン補間演算等の任意の手法を用いることができる。また、補間演算の他、画素位置に最も近い投影位置の画素値をその画素位置の画素値として用いるようにしてもよい。これにより、投影画像Giについて、断層面Tjの全画素位置における画素値が求められる。本実施形態においては、複数の投影画像Giのそれぞれについて、このようにして断層面Tjの全画素位置において求められた画素値を有する断層面投影画像GTiが生成される。したがって、1つの断層面において、断層面投影画像GTiの数は投影画像Giの数と一致する。
 位置ずれ量導出部35は、トモシンセシス撮影中の乳房Mの体動に基づく、複数の断層面投影画像GTi間の位置ずれ量を導出する。まず、位置ずれ量導出部35は、複数の断層面投影画像GTiに対して、特徴点F1に対応する局所領域を関心領域として設定する。具体的には、特徴点F1の座標位置を中心とする予め定められた大きさの局所領域を関心領域として設定する。図9は関心領域の設定を説明するための図である。なお、図9においては、説明のために断層面Tjに3つの投影画像G1~G3が投影されて断層面投影画像GT1~GT3が生成されているものとする。図9に示すように、位置ずれ量導出部35は、断層面Tjにおける断層画像Djにおいて、特徴点F1の座標位置を中心とする関心領域Rf0を設定する。そして、断層面投影画像GT1~GT3のそれぞれにおいて、関心領域Rf0に対応する関心領域R1~R3を設定する。なお、図9における破線が関心領域R1~R3とそれ以外の領域との境界を示す。したがって、断層面Tj上において、関心領域Rf0および関心領域R1~R3の位置は一致することとなる。図10は断層面投影画像GT1~GT3に設定された関心領域R1~R3を示す図である。なお、体動は大きい場合には2mm程度となることがある。このため、1画素の大きさが100μm四方の断層画像または断層面投影画像の場合、関心領域R1~R3は、例えば特徴点F1の周辺の50×50画素、あるいは100×100画素等の領域とすればよい。
 さらに、位置ずれ量導出部35は、関心領域R1~R3の位置合わせを行う。この際、基準となる断層面投影画像に設定した関心領域を基準として位置合わせを行う。本実施形態においては、X線源16からのX線の光軸X0が放射線検出器15と直交する線源位置Scにおいて取得した基準投影画像(Gsとする)についての断層面投影画像(基準断層面投影画像とする)に設定した関心領域を基準として、他の関心領域の位置合わせを行う。
 ここで、図10に示す関心領域R2が基準断層面投影画像に設定されたものとする。この場合、位置ずれ量導出部35は、関心領域R2に対する関心領域R1,R3の位置合わせを行い、関心領域R2に対する関心領域R1,R3の移動方向および移動量を表すシフトベクトルを位置ずれ量として導出する。なお、位置合わせは、関心領域R2に対する関心領域R1,R3の相関が最大となるように、予め定められた探索範囲において、関心領域R2に対する関心領域R1,R3の移動方向および移動量を求めることを意味する。ここで、相関としては正規化相互相関を用いればよい。また、断層面投影画像GTiのうちの1つの基準断層面投影画像を基準としているため、シフトベクトルは断層面投影画像の数よりも1つ少ないものとなる。例えば断層面投影画像の数が15であれば、シフトベクトルの数は14となり、断層面投影画像の数が3であれば、シフトベクトルの数は2となる。
 図11は、投影画像G1~G3を取得する間に体動が発生していない場合の3つの関心領域R1~R3内の画像を示す図である。なお、図11においては、関心領域R1~R3の中心位置、すなわち断層面投影画像GT1~GT3における特徴点F1に対応する位置P1~P3を示し、関心領域R1~R3に含まれる特徴点F1の像F2を大きい丸印により示している。図11に示すように、投影画像G1~G3を取得する間に体動が発生していない場合、3つの関心領域R1~R3のすべてにおいて、特徴点F1に対応する位置P1~P3と、特徴点F1の像F2の位置とが一致する。このため、関心領域R2に対する関心領域R1,R3のシフトベクトル、すなわち位置ずれ量はいずれも0となる。
 図12は投影画像G1~G3のうち、投影画像G2および投影画像G3を取得する間に体動が発生した場合の3つの関心領域R1~R3内の画像を示す図である。図12においては、投影画像G1および投影画像G2を取得する間には体動が発生していないため、関心領域R1,R2における特徴点F1に対応する位置P1,P2と、関心領域R1,R2に含まれる特徴点F1の像F2の位置とが一致する。このため、関心領域R2に対する関心領域R1の位置ずれ量は0となる。一方、投影画像G2および投影画像G3を取得する間には体動が発生しているため、関心領域R3における特徴点F1に対応する位置P3と、関心領域R3に含まれる特徴点F1の像F2の位置とが一致しない。このため、関心領域R3は関心領域R2に対して移動量および移動方向が発生し、その結果、大きさおよび方向を有するシフトベクトルV10が位置ずれ量として導出される。
 なお、位置ずれ量を導出する際には、乳房Mについての乳腺密度、乳房Mの大きさ、トモシンセシス撮影の撮影時間、トモシンセシス撮影時における乳房Mの圧迫圧、および乳房の撮影方向の少なくとも1つに応じて、位置ずれ量導出時の探索範囲を変更してもよい。図13は探索範囲の変更を説明するための図である。図13に示すように、基準となる関心領域R2に対する関心領域R1,R3の探索範囲として、小さい探索範囲H1および大きい探索範囲H2の2種類の探索範囲が設定されている。
 ここで、乳腺密度が小さい場合、乳房Mにおける脂肪量が多くなるため、撮影時において体動が大きくなる傾向にある。また、乳房Mが大きい場合も、撮影時において体動が大きくなる傾向にある。また、トモシンセシス撮影の時間が長いほど、撮影時において体動が大きくなる傾向にある。また、乳房Mの撮影方向がMLO(Medio-Lateral Oblique、内外斜位方向)の場合、CC(Cranio-Caudal、頭尾方向)よりも、撮影時において体動が大きくなる傾向にある。
 このため、乳房Mについての乳腺密度、乳房Mの大きさ、トモシンセシス撮影の撮影時間、トモシンセシス撮影時における乳房Mの圧迫圧、および乳房Mの撮影方向の少なくとも1つの情報の入力部4からの入力を受けて、位置ずれ量導出部35は、位置ずれ量導出時の探索範囲を変更することが好ましい。具体的には、体動が大きくなる傾向の場合には、図13に示す大きい探索範囲H2を設定すればよい。逆に体動が小さくなる傾向の場合には、図13に示す小さい探索範囲H1を設定すればよい。
 なお、上記では説明のために1つの断層面Tjにおいて検出した1つの特徴点F1についてのみ、複数の断層面投影画像GTiの位置ずれ量を導出している。しかしながら、実際には、位置ずれ量導出部35は、図14に示すように、複数の断層画像Djにより表される乳房M内の3次元空間において複数の異なる特徴点F(ここでは黒丸で表す10個の特徴点)に関して位置ずれ量を導出する。これにより、体動が発生した状態で取得された投影画像に対応する断層面投影画像については、複数の異なる特徴点Fに関する位置ずれ量が導出される。位置ずれ量導出部35は、断層画像Djを生成する3次元空間の座標位置に対して、複数の異なる特徴点Fについての位置ずれ量を補間する。これにより、位置ずれ量導出部35は、体動が発生した状態で取得された断層面投影画像について、断層画像を生成する3次元空間のすべての座標位置について、再構成を行う際の位置ずれ量を導出する。
 そして再構成部32は、このようにして導出された位置ずれ量を補正しつつ、投影画像Giを再構成することにより、体動が補正された補正済み断層画像Dhjを生成する。具体的には、再構成が逆投影法を用いたものである場合、位置ずれが生じている投影画像Giの画素を、導出された位置ずれ量に基づいて、他の投影画像の対応する画素が逆投影される位置に投影されるように位置ずれを補正することにより、再構成を行う。
 なお、複数の異なる特徴点Fにおいて位置ずれ量を導出することに代えて、複数の異なる特徴点Fから1つの位置ずれ量を導出するようにしてもよい。この場合、複数の異なる特徴点Fのそれぞれに対して関心領域を設定し、関心領域の全体が同じ方向に同じ量だけ移動していると仮定して、位置ずれ量を導出する。この場合、位置ずれ量導出の対象となる断層面投影画像間におけるすべての関心領域についての相関の代表値(例えば平均値、中間値および最大値等)が最大となるように位置ずれ量を導出すればよい。ここで、断層面投影画像における個々の特徴点Fの信号対ノイズ比があまりよくない場合には、位置ずれ量の導出精度が悪くなる。しかしながら、このように複数の異なる特徴点Fから1つの位置ずれ量を導出することにより、個々の特徴点Fの信号対ノイズ比があまりよくない場合であっても、位置ずれ量の導出精度を向上させることができる。
 なお、複数の断層画像Djにより表される乳房M内の3次元空間を複数の3次元領域に分割し、領域毎に上記と同様に複数の特徴点Fから1つの位置ずれ量を導出するようにしてもよい。
 表示制御部36は、生成された補正済み断層画像を表示部3に表示する。図15は補正済み断層画像の表示画面を示す図である。図15に示すように、表示画面40には、体動補正前の断層画像Djおよび体動補正がなされた補正済み断層画像Dhjが表示される。断層画像Djには体動補正されていないことが分かるように、「補正前」のラベル41が付与されている。補正済み断層画像Dhjには体動補正されていることが分かるように、「補正後」のラベル42が付与されている。なお、断層画像Djに対してのみラベル41を付与してもよく、補正済み断層画像Dhjに対してのみラベル42を付与してもよい。なお、補正済み断層画像Dhjのみを表示してもよいことはもちろんである。図15において、補正前の断層画像Djに含まれる構造物がぼけていることを破線で示し、補正済み断層画像Dhjに含まれる構造物がぼけていないことを実線にて示している。
 また、断層画像Djおよび補正済み断層画像Dhjは同一の断面を表示することが好ましい。また、入力部4からの指示により表示する断層面を切り替える際に、断層画像Djおよび補正済み断層画像Dhjにおいて表示する断層面を連動させることが好ましい。また、断層画像Djおよび補正済み断層画像Dhjに加えて、投影画像Giを表示してもよい。
 操作者は、表示画面40を見て、体動補正の成否の確認を行うことができる。また、体動が大きすぎる場合には、本実施形態のように位置ずれ量を補正しつつ再構成を行って断層画像を生成しても、体動を精度よく補正できず、体動補正に失敗する場合がある。このような場合は、体動補正に失敗して補正済み断層画像Dhjよりも断層画像Djの方が高画質となる場合がある。このため、入力部4において、断層画像Djおよび補正済み断層画像Dhjのいずれを保存するかの指示を受け付け、指示された画像をストレージ23または外部保存装置に保存するようにしてもよい。
 次いで、第1の実施形態において行われる処理について説明する。図16は第1の実施形態において行われる処理を示すフローチャートである。操作者による処理開始の指示を入力部4が受け付けると、画像取得部31は放射線画像撮影装置1にトモシンセシス撮影を行わせて複数の投影画像Giを取得する(ステップST1)。そして、再構成部32が、複数の投影画像Giの全部または一部を再構成して複数の断層画像Djを生成する(ステップST2)。次いで、特徴点検出部33が、複数の断層画像Djから少なくとも1つの特徴点を検出する(ステップST3)。さらに、投影部34が、複数の投影画像Giのそれぞれについての撮影時の線源位置と放射線検出器15との位置関係に基づいて、複数の投影画像Giを特徴点F1が検出された断層画像に対応する対応断層面に投影して、複数の投影画像Giのそれぞれに対応する断層面投影画像GTiを取得する(ステップST4)。
 そして、位置ずれ量導出部35が、複数の断層面投影画像GTi間の位置ずれ量を導出する(ステップST5)。さらに、再構成部32が、位置ずれ量を補正しつつ、複数の投影画像Giを再構成することにより補正済み断層画像Dhjを生成する(ステップST6)。そして、表示制御部36が補正済み断層画像Dhjを表示部3に表示し(ステップST7)、処理を終了する。なお、生成された補正済み断層画像Dhjは、不図示の外部保存装置に送信され、保存される。
 このように、第1の実施形態によれば、トモシンセシス撮影による複数の投影画像Giが取得され、複数の投影画像Giの全部または一部が再構成されて、乳房Mの複数の断層面Tjのそれぞれにおける断層画像Djが生成される。そして、複数の断層画像Djから少なくとも1つの特徴点が検出され、複数の投影画像Giのそれぞれについての撮影時の線源位置と放射線検出器15との位置関係に基づいて、複数の投影画像Giが、特徴点が検出された断層画像に対応する対応断層面に投影されて、複数の投影画像Giのそれぞれに対応する断層面投影画像GTiが取得される。さらに、対応断層面において、特徴点を基準として複数の断層面投影画像間の位置ずれ量が導出され、位置ずれ量を補正して複数の投影画像Giを再構成することにより、補正済み断層画像Dhjが生成される。
 このように、第1の実施形態においては、投影画像Giまたは断層面投影画像GTiからではなく、複数の断層画像Djから特徴点を検出している。ここで、断層画像Djは対応する断層面Tjに含まれる構造物のみを含む。このため、投影画像Giに含まれるような他の断層面における構造物は断層画像Djには含まれないこととなる。したがって、第1の実施形態によれば、他の断層面の構造物に影響されることなく、精度よく特徴点を検出することができる。よって、複数の投影画像Gi間の位置ずれ量を適切に導出することができ、その結果、本実施形態によれば、体動の影響が低減された、高画質の補正済み断層画像Dhjを取得することができる。
 次いで、本開示の第2の実施形態について説明する。第2の実施形態による断層画像生成装置の構成は、図3に示す第1の実施形態による断層画像生成装置の構成と同一であり、行われる処理のみが異なるため、ここでは装置についての詳細な説明は省略する。上記第1の実施形態においては、断層面投影画像GTi間において位置ずれ量を導出している。第2の実施形態においては、断層画像Djにおいて特徴点F1の座標位置を中心とする関心領域Rf0を設定し、設定した関心領域Rf0に対する断層面投影画像GTiに設定した関心領域Riの位置ずれ量を仮の位置ずれ量として導出する。そして、導出した仮の位置ずれ量に基づいて、複数の断層面投影画像GTi間の位置ずれ量を導出するようにした点が第1の実施形態と異なる。なお、複数の断層面投影画像GTiに設定した関心領域Riが第1の局所領域に対応し、断層画像Djに設置した関心領域Rf0が第2の局所領域に対応する。
 図17は第2の実施形態における位置ずれ量の導出を説明するための図である。なお、図17における関心領域Rf0および関心領域R1~R3は、上記図9等に示した関心領域Rf0および関心領域R1~R3と同一である。第2の実施形態においては、位置ずれ量導出部35は、まず断層画像Djに設定した関心領域Rf0を基準として、関心領域Rf0に対する断層面投影画像GTi(図17においてはGT1~GT3)に設定した関心領域R1~R3の位置ずれ量を仮の位置ずれ量として導出する。投影画像G1~G3を取得する間に体動が発生していない場合、3つの関心領域R1~R3のすべてにおいて特徴点F1に対応する位置P1~P3と、特徴点F1の像F2の位置とが一致する。このため、関心領域Rf0に対する関心領域R1~R3のシフトベクトル(以下、Vf1,Vf2,Vf3とする)、すなわち仮の位置ずれ量はいずれも0となる。
 図18は投影画像G1~G3のうち、投影画像G2および投影画像G3を取得する間に体動が発生した場合の3つの関心領域R1~R3内の画像を示す図である。図18においては、投影画像G1および投影画像G2を取得する間には体動が発生していないため、関心領域R1,R2における特徴点F1に対応する位置P1,P2と、関心領域R1,R2に含まれる特徴点F1の像F2の位置とが一致する。このため、関心領域Rf0に対する関心領域R1,R2の位置ずれ量は0となる。一方、投影画像G2および投影画像G3を取得する間には体動が発生しているため、関心領域R3における特徴点F1に対応する位置P3と、関心領域R3に含まれる特徴点F1の像F2の位置とが一致しない。このため、関心領域R3は関心領域Rf0に対して移動量および移動方向が発生する。したがって、関心領域Rf0に対する関心領域R1,R2のシフトベクトルVf1,Vf2、すなわち、仮の位置ずれ量は0となるが、関心領域Rf0に対する関心領域R3のシフトベクトルVf3、すなわち仮の位置ずれ量は値を有するものとなる。
 第2の実施形態において、位置ずれ量導出部35は、仮の位置ずれ量に基づいて断層面投影画像GTi間の位置ずれ量を導出する。具体的には、上記第1の実施形態と同様に、X線源16からのX線の光軸X0が放射線検出器15と直交する基準線源位置Scにおいて取得した投影画像を基準として、位置ずれ量を導出する。ここで、投影画像G2を基準断層面投影画像とすると、位置ずれ量導出部35は、断層面投影画像GT1と断層面投影画像GT2との位置ずれ量を、関心領域Rf0に対する関心領域R1,R2のシフトベクトルVf1,Vf2の差分値Vf1-Vf2により導出する。また、位置ずれ量導出部35は、断層面投影画像GT3と断層面投影画像GT2との位置ずれ量を、関心領域Rf0に対する関心領域R3,R2のシフトベクトルVf3,Vf2の差分値Vf3-Vf2により導出する。
 このように、第2の実施形態においては、断層画像Djに設定した関心領域Rf0に対する、断層面投影画像GTiに設定した関心領域R1~R3との仮の位置ずれ量を導出し、仮の位置ずれ量に基づいて、断層面投影画像GTi間の位置ずれ量を導出するようにした。ここで、関心領域Rf0は断層画像Djに設定されているため、投影画像Giとは異なり、断層画像Djを取得した断層面にある構造物のみしか含まれていない。したがって、第2の実施形態によれば、特徴点を設定した断層面以外の断層面に含まれる構造物の影響を低減して、位置ずれ量が導出されることとなる。したがって、第2の実施形態によれば、他の断層面の構造物の影響をより低減して、複数の投影画像Gi間の位置ずれ量を精度よく導出することができ、その結果、第2の実施形態によれば、体動の影響が低減された、高画質の補正済み断層画像Dhjを取得することができる。
 なお、第2の実施形態においても、第1の実施形態と同様に、乳房Mについての乳腺密度、乳房Mの大きさ、トモシンセシス撮影の撮影時間、トモシンセシス撮影時における乳房Mの圧迫圧、および乳房Mの撮影方向の少なくとも1つに応じて、位置ずれ量導出時の探索範囲を変更してもよい。
 また、第2の実施形態においては、関心領域Rf0に対する関心領域R1~R3のシフトベクトルVf1~Vf3を仮の位置ずれ量として導出しているが、この際に、図19に示すように関心領域Rf0における特徴点F1の周囲に、関心領域Rf0よりも小さい周囲領域Ra0を設定し、周囲領域Ra0に基づいて、シフトベクトルを導出してもよい。この場合、周囲領域Ra0のみを用いてシフトベクトルを導出してもよい。また、関心領域R1~R3の間の相関を導出する際に、周囲領域Ra0に対して関心領域R1~R3における周囲領域Ra0以外の領域よりも大きい重み付けを行うようにしてもよい。
 また、上記第2の実施形態においては、断層画像Djに関心領域Rf0を設定しているが、仮の位置ずれ量を導出する断層面投影画像GTi毎に、生成する断層画像を異なるものとしてもよい。具体的には、仮の位置ずれ量を導出する対象となる対象断層面投影画像に対応する対象投影画像を除いて断層画像を生成することが好ましい。以下、これを第3の実施形態として説明する。
 図20は第3の実施形態において行われる処理を模式的に示す図である。なお、ここでは、乳房Mにおける断層面Tjにおいて、15の投影画像G1~G15のうちの投影画像G1を対象投影画像、断層面投影画像GT1を対象断層面投影画像として、投影画像G1についての仮の位置ずれ量を導出する場合について説明する。この場合、再構成部32において、断層面Tjにおいて投影画像G1以外の投影画像G2~G15を再構成して断層画像(Dj_1とする)を生成する。そして、特徴点検出部33が断層画像Dj_1から特徴点を検出し、投影部34が投影画像G1~G15から断層面投影画像GT1~GT15を生成し、位置ずれ量導出部35が、断層画像Dj_1に関心領域Rf0_1を設定し、関心領域Rf0_1に対する断層面投影画像GT1に設定した関心領域R1のシフトベクトルVf1を仮の位置ずれ量として導出する。
 なお、投影画像G2についての仮の位置ずれ量を導出する場合、再構成部32において、投影画像G2以外の投影画像G1,G3~G15を再構成して断層画像(Dj_2とする)を生成する。そして、特徴点検出部33が断層画像Dj_2から特徴点を検出し、投影部34が投影画像G1~G15から断層面投影画像GT1~GT15を生成し、位置ずれ量導出部35が、断層画像Dj_2に関心領域Rf0_2を設定し、関心領域Rf0_2に対する断層面投影画像GT2に設定した関心領域R2のシフトベクトルVf2を仮の位置ずれ量として導出する。
 そして、対象断層面投影画像を順次変更してすべての断層面投影画像GTiについての仮の位置ずれ量を導出し、仮の位置ずれ量から上記第2の実施形態と同様に、断層面投影画像GTi間の位置ずれ量を導出する。
 このように、第3の実施形態によれば、対象投影画像による影響がない断層画像を用いて仮の位置ずれ量が導出されることとなる。このため、仮の位置ずれ量をより精度よく導出することができ,その結果、位置ずれ量を精度よく導出することができる。
 なお、第3の実施形態においては、対象投影画像を除いた断層画像を再構成する際には、下記の式(2)に示すように、すべての投影画像Giを再構成することにより生成した断層画像Djの各画素の画素値Dpから対象投影画像の対応する画素値Gpを減算し、減算した画素値をn/(n-1)倍することにより算出してもよい。式(2)の手法は簡易な手法ではあるが、対象投影画像を除いた断層画像を生成するための演算量を低減することができるため、仮の位置ずれ量導出のための処理を高速に行うことができる。
 対象投影画像を除いた断層画像=(Dp-Gp)×n/(n-1) (2)
 次いで、本開示の第4の実施形態について説明する。図21はコンピュータ2に第4の実施形態による断層画像生成プログラムをインストールすることにより実現された断層画像生成装置の概略構成を示す図である。なお、図21において図3と同一の構成については図3と同一の参照番号を付与し、ここでは詳細な説明は省略する。第4の実施形態による断層画像生成装置は、複数の断層画像のうちの2以上の断層画像、または複数の断層画像の少なくとも1つと複数の投影画像Giの少なくとも1つとを合成して、合成2次元画像を生成する合成部37をさらに備えた点が第1の実施形態と異なる。
 第4の実施形態においては、合成部37は例えば特開2014-128716号公報に記載された手法を用いて合成2次元画像を生成する。特開2014-128716号公報に記載された手法は、複数の断層画像のうちの2以上の断層画像、または複数の断層画像の少なくとも1つと少なくとも1つの投影画像とを被写体における断層面が並ぶ深さ方向に投影することにより、合成2次元画像を生成する手法である。なお、合成2次元画像を生成する手法はこれに限定されるものではない。例えば、複数の断層画像のうちの2以上の断層画像、または複数の断層画像の少なくとも1つと投影画像の少なくとも1つとを被写体における断層面が並ぶ深さ方向において、最小値投影法を用いることにより合成2次元画像を生成してもよい。
 第4の実施形態においては、特徴点検出部33は、まず合成2次元画像から2次元特徴点を検出する。2次元特徴点の検出は上記各実施形態と同様に行えばよい。そして、特徴点検出部33は、予め作成された深さマップを参照して、複数の断層画像Djから2次元特徴点に対応する特徴点を検出する。
 深さマップとは、合成2次元画像上の各位置と、各位置に対応する断層面の位置を表す深さ情報とを対応づけたマップである。深さマップは、例えば国際公開第2014/203531号に記載された手法を用いて予め作成しておく。国際公開第2014/203531号に記載された手法は、まず、合成2次元画像を複数の局所領域に分割し、分割により得られる各領域と複数の断層画像Djとの相関を求める。例えば、図22に示すように、合成2次元画像C0を6×8の局所領域に分割し、分割した各領域について、複数の断層画像Djとの相関を求める。そして、相関が最も大きくなった領域を含む断層画像Djの断層面の基準位置からの深さを、各領域の位置と対応づけて深さマップを作成する。基準位置は、例えば乳房Mの圧迫板17との接触面とすればよい。ここで、断層画像Djを生成する際の断層面Tjの位置は既知である。このため、深さマップを参照すれば、合成2次元画像C0における各局所領域に対応する断層面の位置を特定することができる。
 第4の実施形態において、特徴点検出部33は、深さマップを参照して、検出した2次元特徴点の断層面を特定する。そして、特定した断層面において、2次元特徴点に対応する特徴点を検出する。
 ここで、複数の断層画像Djは情報量が多いため、特徴点の検出のための演算量が多くなる。第4の実施形態においては、合成2次元画像C0から2次元特徴点を検出し、深さマップを参照して複数の断層画像Djから2次元特徴点に対応する特徴点を検出するようにした。このため、深さマップを予め作成しておけば、演算量を低減して迅速に特徴点を検出することができる。
 なお、第4の実施形態においては、表示制御部36は、補正済み断層画像と併せて合成2次元画像を表示部3に表示するようにしてもよい。
 次いで、第5の実施形態について説明する。なお、第5の実施形態による断層画像生成装置の構成は、図3に示す第1の実施形態による断層画像生成装置の構成と同一であり、行われる処理のみが異なるため、ここでは装置についての詳細な説明は省略する。第5の実施形態においては、補正済み断層画像Dhjを新たな断層画像として、特徴点の検出、断層面投影画像の取得、位置ずれ量の導出および新たな補正済み断層画像の生成を繰り返し行うようにした点が第1の実施形態と異なる。
 図23は第5の実施形態において行われる処理を示すフローチャートである。なお、図23において、ステップST11~ステップST15までの処理は、図16に示すステップST1~ステップST5までの処理と同一であるため、ここでは詳細な説明は省略する。ステップST15において位置ずれ量が導出されると、位置ずれ量導出部35は、位置ずれ量が収束したか否かを判定する(ステップST16)。位置ずれ量が収束したか否かの判定は、各断層面投影画像GTiについて導出された位置ずれ量が予め定められたしきい値Th1以下となった否かを判定することにより行えばよい。しきい値Th1は、これ以上位置ずれ量を補正しなくても、断層画像に体動の影響がないといえる程度の値に設定すればよい。なお、複数の断層面投影画像GTiについて導出された位置ずれ量の平均値が、しきい値Th1以下となったか否かを判定することにより、位置ずれ量が収束したか否かの判定を行ってもよい。ステップST16が肯定されると、位置ずれ量を補正する必要はないことから、表示制御部36が断層画像を表示し(ステップST17)、処理を終了する。
 ステップST16が否定されると、再構成部32は、位置ずれ量を補正しつつ、複数の投影画像Giを再構成することにより補正済み断層画像Dhjを新たな断層画像として生成する(ステップST18)。そして、ステップST13の処理に戻り、特徴点検出部33が、複数の新たな断層画像から特徴点を検出し、ステップST14において、投影部34が新たな複数の断層面投影画像を取得し、ステップST15において、位置ずれ量導出部35が、新たな複数の断層面投影画像間の新たな位置ずれ量を導出し、ステップST16において、位置ずれ量が予め定められたしきい値Th1以下であるか否かを判定する。そして、ステップST16が肯定されるまで、ステップST18およびステップST13~ステップST15の処理が繰り返される。なお、補正済み断層画像が新たな断層画像として生成された場合、ステップST17において表示される断層画像は新たな断層画像となる。
 このように、第5の実施形態においては、新たな断層画像に基づく新たな位置ずれの導出を、位置ずれ量が収束するまで繰り返すようにした。このため、適切に体動に起因する位置ずれをより効果的に除去することができ、その結果、より高画質の断層画像を取得することができる。
 なお、上記第2の実施形態から第4の実施形態においても、第5の実施形態と同様に、新たな断層画像に基づく新たな位置ずれの導出を、位置ずれ量が収束するまで繰り返すようにしてもよい。
 また、上記各実施形態においては、位置ずれ量導出部35が導出した位置ずれ量を予め定められたしきい値と比較し、位置ずれ量がしきい値を超えた場合にのみ、位置ずれ量を補正しつつ、断層画像を再構成するようにしてもよい。なお、しきい値は、位置ずれ量を補正しなくても断層画像に体動の影響がないといえる程度の値に設定すればよい。この場合、図24に示すように、体動がしきい値を超えたことを通知するための警告表示45を表示部3に表示してもよい。操作者は警告表示45において、YESまたはNOを選択することにより、体動補正を行うか否かの指示を行うことができる。
 また、上記各実施形態においては、位置ずれ量および仮の位置ずれ量の導出を容易に行うために、断層画像Djおよび断層面投影画像GTiに関心領域を設定し、関心領域の移動方向および移動量をシフトベクトル、すなわち位置ずれ量および仮の位置ずれ量として導出しているが、これに限定されるものではない。関心領域を設定することなく、位置ずれ量を導出してもよい。
 次いで、本開示の第6の実施形態について説明する。図25はコンピュータ2に第6の実施形態による断層画像生成プログラムをインストールすることにより実現された断層画像生成装置の概略構成を示す図である。なお、図25において図3と同一の構成については図3と同一の参照番号を付与し、ここでは詳細な説明は省略する。第6の実施形態による断層画像生成装置は、複数の特徴点Fのそれぞれが検出された断層画像に対応する対応断層面が、焦点面であるか否かを判別する焦点面判別部38をさらに備え、位置ずれ量導出部35が、焦点面と判別された対応断層面において位置ずれ量を導出するようにした点が第1の実施形態と異なる。なお、第6の実施形態による処理は、第2から第5の実施形態にも適用可能であるが、ここでは第1の実施形態に適用した場合についてのみ説明する。
 ここで、トモシンセシス撮影により取得される断層画像においては、構造物が存在する断層画像以外の断層画像に、その構造物の映り込みが発生する。これをリップルアーチファクトという。図26はリップルアーチファクトを説明するための図である。図26に示すように、ある構造物48が断層画像D3に含まれていたとすると、断層画像D3の上下の断層面に対応する断層画像に、構造物48のリップルアーチファクトが含まれる。リップルアーチファクトは、構造物48が含まれる断層面から離れるほど範囲が広がり、かつぼけることとなる。なお、リップルアーチファクトが広がる範囲は、X線源16が移動する範囲と対応する。
 ここで、特徴点検出部33が対応断層面の断層画像Djから検出した特徴点Fがリップルアーチファクトであった場合、特徴点Fはぼけており、かつ広範囲に広がっているものとなる。このため、そのような特徴点Fを用いたのでは、位置ずれ量を精度よく導出することができない。
 このため、第6の実施形態においては、特徴点Fが検出された対応断層面が焦点面であるか否かを、焦点面判別部38が判別するようにし、焦点面であると判別された対応断層面において、投影部34が断層面投影画像GTiを生成し、位置ずれ量導出部35が位置ずれ量を導出するようにした。具体的には、焦点面であると判別された対応断層面において検出された特徴点を用いて、位置ずれ量を導出するようにした。以下、焦点面であるか否かの判別について説明する。
 焦点面判別部38は、特徴点検出部33が検出した特徴点について、複数の断層画像における特徴点に対応する対応点を導出する。図27は対応点の導出を説明するための図である。図27に示すように、ある断層画像Dkにおいて特徴点F3が検出されたとすると、位置ずれ量導出部35は、断層画像Dkの厚さ方向に位置する複数の断層画像において、特徴点F3に対応する対応点R1,R2,R3,R4…を導出する。なお、以降の説明においては、対応点の参照符号をRとする。対応点Rの導出は特徴点F3を含む関心領域と、断層画像Dk以外の断層画像との位置合せにより行えばよい。そして、焦点面判別部38は、特徴点F3および対応点Rの画素値を断層面が並ぶ順にプロットする。図28は特徴点および対応点の画素値をプロットした結果を示す図である。図28に示すように特徴点および対応点の画素値は、リップルアーチファクトの影響により、特徴点において極小値を有するように変化する。ここで、特徴点F3が焦点面にあれば、その特徴点F3はぼけておらず、輝度が高いすなわち画素値は小さいものとなる。一方、特徴点F3が焦点面にない場合、その特徴点F3はリップルアーチファクトであることから、画素値はぼけ、画素値は最小値よりも大きくなる。
 このため、焦点面判別部38は、特徴点F3および対応点の画素値をプロットした結果において、特徴点F3を検出した断層面の位置が、画素値が最小となる図28に示す位置P0である場合、特徴点F3を検出した対応断層面は焦点面であると判別する。一方、特徴点F3を検出した断層面の位置が、画素値が最小とはならない図28に示す位置P1等である場合、特徴点F3を検出した対応断層面は焦点面でないと判別する。
 投影部34は、焦点面であると判別された対応断層面のみにおいて、上記各実施形態と同様に断層面投影画像GTiを生成する。位置ずれ量導出部35は、焦点面であると判別された対応断層面において断層面投影画像GTiの位置ずれ量を導出する。すなわち、位置ずれ量導出部35は、焦点面であると判別された対応断層面において検出された特徴点を用いて、断層面投影画像GTiの位置ずれ量を導出する。
 次いで、第6の実施形態において行われる処理について説明する。図29は第6の実施形態において行われる処理を示すフローチャートである。なお、図29におけるステップST21~ステップST23の処理は、図16におけるステップST1~ステップST3の処理と同一であるため、ここでは詳細な説明は省略する。なお、第6の実施形態においては、複数の特徴点が検出されたものとする。特徴点検出部33が複数の特徴点を検出すると、焦点面判別部38が、特徴点検出部33が検出した複数の特徴点のそれぞれが検出された断層画像に対応する対応断層面が、焦点面であるか否かを判別する(焦点面判別;ステップST24)。そして、投影部34が、焦点面であると判別された対応断層面において、断層面投影画像GTiを生成し(ステップST25)、位置ずれ量導出部35が、焦点面であると判別された対応断層面において検出された特徴点を用いて、位置ずれ量を導出する(ステップST26)。
 さらに、再構成部32が、位置ずれ量を補正しつつ、複数の投影画像Giを再構成することにより補正済み断層画像Dhjを生成する(ステップST27)。そして、表示制御部36が補正済み断層画像Dhjを表示部3に表示し(ステップST28)、処理を終了する。なお、生成された補正済み断層画像Dhjは、不図示の外部保存装置に送信され、保存される。
 このように、第6の実施形態においては、焦点面であると判別された対応断層面において位置ずれ量を導出するようにした。このため、リップルアーチファクトの影響を受けることなく、精度よく位置ずれ量を導出することができ、その結果、精度よく位置ずれが補正された補正済み断層画像Dhjを生成することができる。
 なお、上記第6の実施形態においては、特徴点および対応点の画素値のプロット結果を用いて、対応断層面が焦点面であるか否かを判別しているが、焦点面であるか否かの判別はこれに限定されるものではない。特徴点とリップルアーチファクトとでは、周囲の画素とのコントラストの相違が特徴点の方が大きくなる。このため、特徴点および対応点における周囲の画素とのコントラストを導出し、特徴点についてのコントラストが最大である場合に、特徴点を検出した対応断層面が焦点面であると判別してもよい。また、投影画像における特徴点に対応する位置の画素値は、特徴点が焦点面にあれば投影画像間でのばらつきは小さいが、特徴点が焦点面にないと、投影画像上においては特徴点に対応する構造以外の構造を表す可能性があるため、投影画像間でのばらつきが大きくなる。このため、投影画像Gi間における特徴点に対応する画素値の分散値を導出し、分散値が予め定められたしきい値以下の場合に、特徴点を検出した対応断層面が焦点面であると判別してもよい。さらに、焦点面判別部38を、特徴点およびその周辺の画素値が入力されると、特徴点を検出した対応断層面が焦点面であるか否かの判別結果を出力するように機械学習がなされた判別器を有するものとし、特徴点を検出した対応断層面が焦点面であるか否かを判別器により判別するようにしてもよい。
 次いで、本開示の第7の実施形態について説明する。図30はコンピュータ2に第7の実施形態による断層画像生成プログラムをインストールすることにより実現された断層画像生成装置の概略構成を示す図である。なお、図30において図3と同一の構成については図3と同一の参照番号を付与し、ここでは詳細な説明は省略する。第7の実施形態による断層画像生成装置は、補正済み断層画像Dhjにおける特徴点を含む関心領域の画質評価を行い、画質評価結果に基づいて、導出された位置ずれ量が適切であるか不適切であるかを判断する位置ずれ量判断部39をさらに備えた点が第1の実施形態と異なる。なお、第7の実施形態による処理は、第2から第6の実施形態にも適用可能であるが、ここでは第1の実施形態に適用した場合についてのみ説明する。
 位置ずれ量判断部39は、画質評価を行うために、図31に示すように補正済み断層画像Dhjに含まれる複数(ここでは2つ)の特徴点F4,F5の座標位置を中心とする関心領域Rh1,Rh2を設定する。そして、関心領域Rh1,Rh2のそれぞれにおける高周波成分を抽出することにより高周波画像を生成する。高周波成分の抽出は、例えばラプラシアンフィルタ等によるフィルタリング処理を行って、2次微分画像を生成することにより行えばよいが、これに限定されるものではない。さらに、位置ずれ量判断部39は、関心領域Rh1,Rh2の高周波成分の大きさを導出する。高周波成分の大きさは、高周波画像の画素値の二乗和等により導出すればよいが、これに限定されるものではない。そして、位置ずれ量判断部39は、すべての関心領域Rh1,Rh2についての高周波成分の大きさを総和を導出する。
 ここで、位置ずれ量が適切に導出されることにより、位置ずれ補正が適切に行われていれば、補正済み断層画像Dhjにおいては、画像のぼけが少なくなり、高周波成分が多くなる。一方、導出された位置ずれ量が適切でないために、位置ずれ補正が不適切であると、補正済み断層画像Dhjにおいては、画像のぼけが多くなり、高周波成分が少なくなる。このため、第7の実施形態においては、位置ずれ量判断部39は、高周波成分の大きさに基づいて画質評価を行う。すなわち、位置ずれ量判断部39は、上述したように導出した、すべての関心領域Rh1,Rh2についての高周波成分の大きさの総和が、予め定められたしきい値Th2以上であるか否かを判定する。総和がしきい値Th2以上である場合に、位置ずれ量判断部39は、位置ずれ量が適切であると判断し、総和がしきい値Th2未満である場合に、位置ずれ量判断部39は、位置ずれ量が不適切であると判断する。位置ずれ量判断部39が、位置ずれ量が不適切であると判断した場合、表示制御部36は、補正済み断層画像Dhjに代えて、補正前の断層画像Djを表示部3に表示する。この場合、補正済み断層画像Dhjに代えて、補正前の断層画像Djが外部保存装置に送信される。
 次いで、第7の実施形態において行われる処理について説明する。図32は第7の実施形態において行われる処理を示すフローチャートである。なお、図32におけるステップST31~ステップST36の処理は、図16におけるステップST1~ステップST6の処理と同一であるため、ここでは詳細な説明は省略する。再構成部32が補正済み断層画像Dhjを生成すると、位置ずれ量判断部39が、補正済み断層画像Dhjにおける特徴点を含む関心領域の画質評価を行い、画質評価結果に基づいて、導出された位置ずれ量が適切であるか否かを判断する(ステップST37)。
 位置ずれ量が適切であった場合、表示制御部36が補正済み断層画像Dhjを表示部3に表示し(ステップST38)、処理を終了する。なお、生成された補正済み断層画像Dhjは、不図示の外部保存装置に送信され、保存される。一方、位置ずれ量が不適切であった場合、表示制御部36が断層画像Djを表示部3に表示し(ステップST39)、処理を終了する。この場合、断層画像Djが不図示の外部保存装置に送信され、保存される。
 ここで、位置ずれ量導出部35により位置ずれ量を導出するに際し、特徴点以外の構造の影響等により、適切な位置ずれ量を導出できない場合がある。第7の実施形態においては、補正済み断層画像Dhjの画質評価を行い、画質評価結果に基づいて、位置ずれ量が適切か不適切であるかを判断するようにした。このため、導出された位置ずれ量の適、不適を適切に判断することができる。また、位置ずれ量が不適切であると判断された場合には、補正前の断層画像Djを表示したり、保存したりするようにしたため、不適切な位置ずれ量に基づいて生成された補正済み断層画像Dhjにより、誤った診断が行われる可能性を低減できる。
 なお、上記第7の実施形態においては、補正済み断層画像Dhjに設定した関心領域の高周波成分の大きさに基づいて画質評価を行っているが、これに限定されるものではない。位置ずれ量判断部39において、断層画像Djにおける特徴点を含む関心領域の画質評価をさらに行い、補正済み断層画像Dhjについての画質評価の結果と、断層画像Djについての画質評価の結果とを比較し、画質評価が高い方の断層画像を、最終的な断層画像に決定するようにしてもよい。ここで、最終的な断層画像とは、表示部3に表示されたり、外部装置に送信されて保存されたりする断層画像である。
 なお、上記第6の実施形態および第7の実施形態においても、第5の実施形態と同様に、新たな断層画像に基づく新たな位置ずれの導出を、位置ずれ量が収束するまで繰り返すようにしてもよい。
 また、上記第6の実施形態および第7の実施形態においても、位置ずれ量導出部35が導出した位置ずれ量を予め定められたしきい値と比較し、位置ずれ量がしきい値を超えた場合にのみ、位置ずれ量を補正しつつ、断層画像を再構成するようにしてもよい。
 次いで、本開示の第8の実施形態について説明する。図33はコンピュータ2に第8の実施形態による断層画像生成プログラムをインストールすることにより実現された断層画像生成装置の概略構成を示す図である。なお、図33において図3と同一の構成については図3と同一の参照番号を付与し、ここでは詳細な説明は省略する。第8の実施形態による断層画像生成装置は、補正済み断層画像Dhjにおける特徴点を含む関心領域の画質評価を行うための評価関数を導出する評価関数導出部50を備え、位置ずれ量導出部35が、評価関数を最適化する位置ずれ量を導出するようにした点が第1の実施形態と異なる。なお、第8の実施形態による処理は、第2から第6の実施形態にも適用可能であるが、ここでは第1の実施形態に適用した場合についてのみ説明する。
 第8の実施形態において、評価関数導出部50は、位置ずれ量導出部35が断層面投影画像GTiに対して設定した、特徴点Fに対応する関心領域について、高周波画像を生成する。高周波画像の生成は、第7の実施形態における位置ずれ量判断部39と同様に、ラプラシアンフィルタ等によるフィルタリング処理を行って、2次微分画像を生成することにより行えばよい。導出した関心領域内の高周波画像の画素値をqklとする。kはk番目の投影画像であることを表し、lはROI内の画素数を表す。
 ここで、位置ずれ量を補正するための変換行列をWk、変換行列における変換パラメータをθkとする。変換パラメータθkが位置ずれ量に対応する。この場合、補正済み断層画像Dhjにおける特徴点Fに対応する関心領域における画質評価値は、投影画像Giのそれぞれにおける位置ずれ補正後の関心領域についての高周波画像の大きさの加算値と見なすことができる。この加算値が最大となるように、変換パラメータθk、すなわち位置ずれ量を導出することにより、適切に位置ずれ量が補正された補正済み断層画像Dhjを生成することができる。
 このため、評価関数導出部50は,下記の式(1)に示す評価関数を導出する。なお、式(1)に示す評価関数Ecは、上記加算結果を最大とすべく、マイナスを付与した右辺の括弧内の値を最小とするための変換パラメータθkを求める評価関数Ecとなっている。なお、式(1)に示す評価関数は、局所解が複数存在する。このため、変換パラメータθkの範囲および平均値に制約条件を付与する。例えば、すべての投影画像についての変換パラメータθkの平均を0とするような制約条件を付与する。より具体的には、変換パラメータθkが平行移動を表す移動ベクトルである場合、すべての投影画像Giについての移動ベクトルの平均値を0とする制約条件を付与する。そして、第8の実施形態においては、位置ずれ量導出部35は、上記式(1)に示す評価関数Ecを最小とするような変換パラメータθk、すなわち位置ずれ量を導出する。
Figure JPOXMLDOC01-appb-M000001
 このように、第8の実施形態においては、補正済み断層画像Dhjにおける特徴点を含む関心領域の画質評価を行うための評価関数を導出する評価関数導出部50を備え、位置ずれ量導出部35が、評価関数を最適化する位置ずれ量を導出するようにした。このため、不適切な位置ずれ量に基づいて生成された補正済み断層画像Dhjにより、誤った診断が行われる可能性を低減できる。
 なお、上記各実施形態においては、位置ずれ量および仮の位置ずれ量の導出を容易に行うために、断層画像Djおよび断層面投影画像GTiに関心領域を設定し、関心領域の移動方向および移動量をシフトベクトル、すなわち位置ずれ量および仮の位置ずれ量として導出しているが、これに限定されるものではない。関心領域を設定することなく、位置ずれ量を導出してもよい。
 また、上記各実施形態においては、投影部34により断層面投影画像GTiを取得し、位置ずれ量導出部35により断層面投影画像GTi間の位置ずれ量を導出しているが、これに限定されるものではない。断層面投影画像GTiを取得することなく、投影画像Gi間の位置ずれ量を導出するようにしてもよい。この場合、上記各実施形態において、投影部34は不要となる。また、位置ずれ量導出部35においては、特徴点Fが検出された断層画像に対応する対応断層面において、投影画像Giの位置関係に基づいて位置ずれ量を導出すればよい。
 また、上記各実施形態においては、被写体を乳房Mとしているが、これに限定されるものではなく、人体の胸部、または腹部等、任意の部位を被写体としてもよいことはもちろんである。
 また、上記各実施形態において、例えば、画像取得部31、再構成部32、特徴点検出部33、投影部34、位置ずれ量導出部35、表示制御部36、合成部37、焦点面判別部38、位置ずれ量判断部39、および評価関数導出部50といった各種の処理を実行する処理部(Processing Unit)のハードウェア的な構造としては、次に示す各種のプロセッサ(Processor)を用いることができる。上記各種のプロセッサには、上述したように、ソフトウェア(プログラム)を実行して各種の処理部として機能する汎用的なプロセッサであるCPUに加えて、FPGA(Field Programmable Gate Array)等の製造後に回路構成を変更可能なプロセッサであるプログラマブルロジックデバイス(Programmable Logic Device :PLD)、ASIC(Application Specific Integrated Circuit)等の特定の処理を実行させるために専用に設計された回路構成を有するプロセッサである専用電気回路等が含まれる。
 1つの処理部は、これらの各種のプロセッサのうちの1つで構成されてもよいし、同種または異種の2つ以上のプロセッサの組み合わせ(例えば、複数のFPGAの組み合わせまたはCPUとFPGAとの組み合わせ)で構成されてもよい。また、複数の処理部を1つのプロセッサで構成してもよい。
 複数の処理部を1つのプロセッサで構成する例としては、第1に、クライアントおよびサーバ等のコンピュータに代表されるように、1つ以上のCPUとソフトウェアとの組み合わせで1つのプロセッサを構成し、このプロセッサが複数の処理部として機能する形態がある。第2に、システムオンチップ(System On Chip:SoC)等に代表されるように、複数の処理部を含むシステム全体の機能を1つのIC(Integrated Circuit)チップで実現するプロセッサを使用する形態がある。このように、各種の処理部は、ハードウェア的な構造として、上記各種のプロセッサの1つ以上を用いて構成される。
 さらに、これらの各種のプロセッサのハードウェア的な構造としては、より具体的には、半導体素子等の回路素子を組み合わせた電気回路(Circuitry)を用いることができる。
   1  放射線画像撮影装置
   2  コンピュータ
   3  表示部
   4  入力部
   10  撮影部
   11  回転軸
   12  アーム部
   13  撮影台
   14  放射線照射部
   15  放射線検出器
   15A  検出面
   16  X線源
   17  圧迫板
   18  支持部
   19  移動機構
   21  CPU
   22  メモリ
   23  ストレージ
   31  画像取得部
   32  再構成部
   33  特徴点検出部
   34  投影部
   35  位置ずれ量導出部
   36  表示制御部
   37  合成部
   38  焦点面判別部
   39  位置ずれ量判断部
   40  表示画面
   41,42  ラベル
   45  警告表示
   48  構造物
   50  評価関数導出部
   C0  合成2次元画像
   Dj,Dk  断層画像
   Dhj  補正済み断層画像
   F1,F3,F4,F5  特徴点
   F2  特徴点の像
   Gi(i=1~n)  投影画像
   Gc  基準投影画像
   GTi(i=1~n)  断層面投影画像
   H1,H2  探索範囲
   M  乳房
   O1~O4  断層面上の画素位置
   P1~P3  投影画像の画素位置
   Rf0,R1~R3,Rh1,Rh2  関心領域
   Ra0  周囲領域
   Si(i=1~n)  線源位置
   Sc  基準線原位置
   Tj  断層面
   V10,Vf3  シフトベクトル
   X0  光軸

Claims (17)

  1.  放射線源を検出部の検出面に対して相対的に移動させ、前記放射線源の移動による複数の線源位置において被写体に放射線を照射するトモシンセシス撮影を撮影装置に行わせることにより生成された、前記複数の線源位置のそれぞれに対応する複数の投影画像を取得する画像取得部と、
     前記複数の投影画像の全部または一部を再構成することにより、前記被写体の複数の断層面のそれぞれにおける断層画像を生成する再構成部と、
     前記複数の断層画像から少なくとも1つの特徴点を検出する特徴点検出部と、
     前記特徴点が検出された断層画像に対応する対応断層面において、前記特徴点を基準として、前記被写体の体動に基づく前記複数の投影画像間の位置ずれ量を導出する位置ずれ量導出部とを備え、
     前記再構成部は、前記位置ずれ量を補正して前記複数の投影画像を再構成することにより、前記被写体の少なくとも1つの断層面における補正済み断層画像を生成する断層画像生成装置。
  2.  前記複数の投影画像のそれぞれについての撮影時の前記線源位置と前記検出部との位置関係に基づいて、前記複数の投影画像を前記対応断層面に投影して、前記複数の投影画像のそれぞれに対応する断層面投影画像を取得する投影部をさらに備え、
     前記位置ずれ量導出部は、前記対応断層面において、前記特徴点を基準として、前記被写体の体動に基づく前記複数の断層面投影画像間の位置ずれ量を、前記複数の投影画像間の位置ずれ量として導出する請求項1に記載の断層画像生成装置。
  3.  前記位置ずれ量導出部は、前記複数の断層面投影画像において、前記特徴点に対応する局所領域を設定し、該局所領域に基づいて前記位置ずれ量を導出する請求項2に記載の断層画像生成装置。
  4.  前記位置ずれ量導出部は、前記複数の断層面投影画像において、前記特徴点を含む複数の第1の局所領域を設定し、前記特徴点が検出された断層画像において、前記特徴点を含む第2の局所領域を設定し、前記第2の局所領域に対する前記複数の第1の局所領域の位置ずれ量を仮の位置ずれ量としてそれぞれ導出し、該複数の仮の位置ずれ量に基づいて前記位置ずれ量を導出する請求項2に記載の断層画像生成装置。
  5.  前記位置ずれ量導出部は、前記第2の局所領域における前記特徴点の周囲の領域に基づいて、前記仮の位置ずれ量を導出する請求項4に記載の断層画像生成装置。
  6.  前記再構成部は、前記位置ずれ量を導出する対象となる対象断層面投影画像に対応する対象投影画像を除いた前記複数の投影画像を再構成して前記複数の断層画像を対象断層画像として生成し、
     前記位置ずれ量導出部は、前記対象断層画像を用いて前記対象断層面投影画像についての前記位置ずれ量を導出する請求項4または5に記載の断層画像生成装置。
  7.  前記特徴点検出部は、前記複数の断層画像から複数の特徴点を検出し、
     前記複数の特徴点のそれぞれが検出された断層画像に対応する対応断層面が、焦点面であるか否かを判別する焦点面判別部をさらに備え、
     前記位置ずれ量導出部は、前記焦点面と判別された前記対応断層面において前記位置ずれ量を導出する請求項1から6のいずれか1項に記載の断層画像生成装置。
  8.  前記複数の断層画像のうちの2以上の断層画像を合成して、合成2次元画像を生成する合成部をさらに備え、
     前記特徴点検出部は、前記合成2次元画像における2次元特徴点を検出し、前記複数の断層画像から前記2次元特徴点に対応する前記特徴点を検出する請求項1から7のいずれか1項に記載の断層画像生成装置。
  9.  前記再構成部は、前記位置ずれ量を補正しつつ前記複数の投影画像の全部または一部を再構成することにより、前記被写体の複数の断層面における複数の前記補正済み断層画像を、新たな複数の断層画像として生成し、
     前記特徴点検出部は、前記複数の新たな断層画像から前記特徴点を検出し、
     前記位置ずれ量導出部は、前記新たな複数の投影画像間の新たな位置ずれ量を導出し、
     前記再構成部は、前記新たな位置ずれ量を補正しつつ前記複数の投影画像を再構成することにより、前記被写体の少なくとも1つの断層面における新たな補正済み断層画像を生成する請求項1から8のいずれか1項に記載の断層画像生成装置。
  10.  前記再構成部、前記特徴点検出部および前記位置ずれ量導出部は、前記新たな断層画像の生成、前記新たな断層画像からの前記特徴点の検出、および前記新たな位置ずれ量の導出を、前記新たな位置ずれ量が収束するまで繰り返す請求項9に記載の断層画像生成装置。
  11.  前記補正済み断層画像における前記特徴点を含む関心領域の画質評価を行い、該画質評価の結果に基づいて、導出された前記位置ずれ量が適切であるか不適切であるかを判断する位置ずれ量判断部をさらに備えた請求項1から10のいずれか1項に記載の断層画像生成装置。
  12.  前記位置ずれ量判断部は、前記断層画像における前記特徴点を含む関心領域の画質評価を行い、前記補正済み断層画像についての画質評価の結果と、前記断層画像についての画質評価の結果とを比較し、前記画質評価の結果が良い方の断層画像を、最終的な断層画像に決定する請求項11に記載の断層画像生成装置。
  13.  前記補正済み断層画像における前記特徴点を含む関心領域の画質評価を行うための評価関数を導出する評価関数導出部をさらに備え、
     前記位置ずれ量導出部は、前記評価関数を最適化する前記位置ずれ量を導出する請求項1から10のいずれか1項に記載の断層画像生成装置。
  14.  前記被写体が乳房である請求項1から13のいずれか1項に記載の断層画像生成装置。
  15.  前記位置ずれ量導出部は、乳腺密度、前記乳房の大きさ、前記トモシンセシス撮影の撮影時間、前記トモシンセシス撮影時における前記乳房の圧迫圧、および前記乳房の撮影方向の少なくとも1つに応じて、前記位置ずれ量導出時の探索範囲を変更する請求項14に記載の断層画像生成装置。
  16.  放射線源を検出部の検出面に対して相対的に移動させ、前記放射線源の移動による複数の線源位置において被写体に放射線を照射するトモシンセシス撮影を撮影装置に行わせることにより生成された、前記複数の線源位置のそれぞれに対応する複数の投影画像を取得し、
     前記複数の投影画像の全部または一部を再構成することにより、前記被写体の複数の断層面のそれぞれにおける断層画像を生成し、
     前記複数の断層画像から少なくとも1つの特徴点を検出し、
     前記特徴点が検出された断層画像に対応する対応断層面において、前記特徴点を基準として、前記被写体の体動に基づく前記複数の投影画像間の位置ずれ量を導出し、
     前記位置ずれ量を補正して前記複数の投影画像を再構成することにより、前記被写体の少なくとも1つの断層面における補正済み断層画像を生成する断層画像生成方法。
  17.  放射線源を検出部の検出面に対して相対的に移動させ、前記放射線源の移動による複数の線源位置において被写体に放射線を照射するトモシンセシス撮影を撮影装置に行わせることにより生成された、前記複数の線源位置のそれぞれに対応する複数の投影画像を取得する手順と、
     前記複数の投影画像の全部または一部を再構成することにより、前記被写体の複数の断層面のそれぞれにおける断層画像を生成する手順と、
     前記複数の断層画像から少なくとも1つの特徴点を検出する手順と、
     前記特徴点が検出された断層画像に対応する対応断層面において、前記特徴点を基準として、前記被写体の体動に基づく前記複数の投影画像間の位置ずれ量を導出する手順と、
     前記位置ずれ量を補正して前記複数の投影画像を再構成することにより、前記被写体の少なくとも1つの断層面における補正済み断層画像を生成する手順とをコンピュータに実行させる断層画像生成プログラム。
PCT/JP2019/038261 2018-09-27 2019-09-27 断層画像生成装置、方法およびプログラム WO2020067475A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP19867935.9A EP3858244A4 (en) 2018-09-27 2019-09-27 DEVICE, METHOD AND PROGRAM FOR TOMOGRAPHIC IMAGE GENERATION
JP2020549461A JP7105314B2 (ja) 2018-09-27 2019-09-27 断層画像生成装置、方法およびプログラム
US17/169,564 US11961165B2 (en) 2018-09-27 2021-02-08 Tomographic image generating apparatus, tomographic image generating method, and tomographic image generating program
JP2022111139A JP7275363B2 (ja) 2018-09-27 2022-07-11 位置ずれ量導出装置、方法およびプログラム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018182724 2018-09-27
JP2018-182724 2018-09-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/169,564 Continuation US11961165B2 (en) 2018-09-27 2021-02-08 Tomographic image generating apparatus, tomographic image generating method, and tomographic image generating program

Publications (1)

Publication Number Publication Date
WO2020067475A1 true WO2020067475A1 (ja) 2020-04-02

Family

ID=69949828

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2019/018632 WO2020066109A1 (ja) 2018-09-27 2019-05-09 断層画像生成装置、方法およびプログラム
PCT/JP2019/038261 WO2020067475A1 (ja) 2018-09-27 2019-09-27 断層画像生成装置、方法およびプログラム

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/018632 WO2020066109A1 (ja) 2018-09-27 2019-05-09 断層画像生成装置、方法およびプログラム

Country Status (4)

Country Link
US (1) US11961165B2 (ja)
EP (1) EP3858244A4 (ja)
JP (2) JP7105314B2 (ja)
WO (2) WO2020066109A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022106561A1 (de) 2021-03-24 2022-09-29 Fujifilm Corporation Bildverarbeitungsgerät, röntgensystem, bildverarbeitungsverfahren und bildverarbeitungsprogramm
DE102022106544A1 (de) 2021-03-24 2022-09-29 Fujifilm Corporation Bildverarbeitungsgerät, röntgensystem, bildverarbeitungsverfahren und bildverarbeitungsprogramm
WO2023171073A1 (ja) * 2022-03-08 2023-09-14 富士フイルム株式会社 画像処理装置、方法およびプログラム

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128716A (ja) 2008-11-21 2014-07-10 Hologic Inc トモシンセシスデータセットから2d画像を生成するためのシステムおよび方法
WO2014203531A1 (ja) 2013-06-21 2014-12-24 富士フイルム株式会社 画像表示装置、画像表示方法および画像表示プログラム
JP2016064118A (ja) * 2014-09-19 2016-04-28 富士フイルム株式会社 断層画像生成装置、方法およびプログラム
JP2016064119A (ja) 2014-09-19 2016-04-28 富士フイルム株式会社 断層画像生成装置、方法およびプログラム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012075862A (ja) 2010-09-08 2012-04-19 Fujifilm Corp 体動検出装置、方法およびプログラム
JP2015188604A (ja) * 2014-03-28 2015-11-02 富士フイルム株式会社 放射線画像撮影装置および方法並びにプログラム
US9861332B2 (en) 2014-09-19 2018-01-09 Fujifilm Corporation Tomographic image generation device and method, and recording medium
US10335107B2 (en) 2014-09-19 2019-07-02 Fujifilm Corporation Tomographic image generation device and method, and recording medium
JP6556005B2 (ja) 2015-09-29 2019-08-07 富士フイルム株式会社 断層画像生成装置、方法およびプログラム
JP6878935B2 (ja) 2017-02-10 2021-06-02 東洋製罐株式会社 印刷版ユニット及びこれを用いた印刷装置
JP6539363B2 (ja) 2017-04-07 2019-07-03 パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカPanasonic Intellectual Property Corporation of America 不正通信検知方法、不正通信検知システム及びプログラム
JP7122886B2 (ja) * 2018-06-25 2022-08-22 富士フイルム株式会社 撮影制御装置、方法およびプログラム
JP7134001B2 (ja) * 2018-07-03 2022-09-09 富士フイルム株式会社 画像表示装置、方法およびプログラム
JP7017492B2 (ja) * 2018-09-27 2022-02-08 富士フイルム株式会社 断層画像生成装置、方法およびプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014128716A (ja) 2008-11-21 2014-07-10 Hologic Inc トモシンセシスデータセットから2d画像を生成するためのシステムおよび方法
WO2014203531A1 (ja) 2013-06-21 2014-12-24 富士フイルム株式会社 画像表示装置、画像表示方法および画像表示プログラム
JP2016064118A (ja) * 2014-09-19 2016-04-28 富士フイルム株式会社 断層画像生成装置、方法およびプログラム
JP2016064119A (ja) 2014-09-19 2016-04-28 富士フイルム株式会社 断層画像生成装置、方法およびプログラム

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022106561A1 (de) 2021-03-24 2022-09-29 Fujifilm Corporation Bildverarbeitungsgerät, röntgensystem, bildverarbeitungsverfahren und bildverarbeitungsprogramm
DE102022106544A1 (de) 2021-03-24 2022-09-29 Fujifilm Corporation Bildverarbeitungsgerät, röntgensystem, bildverarbeitungsverfahren und bildverarbeitungsprogramm
WO2023171073A1 (ja) * 2022-03-08 2023-09-14 富士フイルム株式会社 画像処理装置、方法およびプログラム

Also Published As

Publication number Publication date
JP7105314B2 (ja) 2022-07-22
JP7275363B2 (ja) 2023-05-17
JP2022125356A (ja) 2022-08-26
JPWO2020067475A1 (ja) 2021-08-30
EP3858244A4 (en) 2021-11-17
EP3858244A1 (en) 2021-08-04
WO2020066109A1 (ja) 2020-04-02
US11961165B2 (en) 2024-04-16
US20210166443A1 (en) 2021-06-03

Similar Documents

Publication Publication Date Title
JP7275363B2 (ja) 位置ずれ量導出装置、方法およびプログラム
US10278660B2 (en) Medical imaging apparatus and method for displaying a selected region of interest
JP6165809B2 (ja) 断層画像生成装置、方法およびプログラム
JP6370280B2 (ja) 断層画像生成装置、方法およびプログラム
US10898145B2 (en) Image display device, image display method, and image display program
US20230277141A1 (en) Tomosynthesis imaging support apparatus, method, and program
EP3629295B1 (en) Tomographic image generation apparatus, method, and program
JP6185023B2 (ja) 断層画像生成装置、方法およびプログラム
JP7187678B2 (ja) 画像処理装置、方法およびプログラム
US11170541B2 (en) Depth map creation apparatus that creates a plurality of depth maps on the basis of a plurality of spatial frequency components and plurality of tomographic images
JP7105726B2 (ja) 画像処理装置、方法およびプログラム
JP7113790B2 (ja) 画像処理装置、方法およびプログラム
WO2023171073A1 (ja) 画像処理装置、方法およびプログラム
JP7208874B2 (ja) 撮影制御装置、方法およびプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867935

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020549461

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019867935

Country of ref document: EP

Effective date: 20210428