WO2020067354A1 - Evacuation structure - Google Patents

Evacuation structure Download PDF

Info

Publication number
WO2020067354A1
WO2020067354A1 PCT/JP2019/037990 JP2019037990W WO2020067354A1 WO 2020067354 A1 WO2020067354 A1 WO 2020067354A1 JP 2019037990 W JP2019037990 W JP 2019037990W WO 2020067354 A1 WO2020067354 A1 WO 2020067354A1
Authority
WO
WIPO (PCT)
Prior art keywords
box
shaped structure
evacuation
drainage
water
Prior art date
Application number
PCT/JP2019/037990
Other languages
French (fr)
Japanese (ja)
Inventor
昌秀 渡部
公晴 吉田
Original Assignee
アルメックスPe株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルメックスPe株式会社 filed Critical アルメックスPe株式会社
Priority to AU2019347399A priority Critical patent/AU2019347399B2/en
Priority to JP2020502252A priority patent/JP6692008B1/en
Priority to SG11202102452XA priority patent/SG11202102452XA/en
Publication of WO2020067354A1 publication Critical patent/WO2020067354A1/en
Priority to PH12021550600A priority patent/PH12021550600A1/en
Priority to AU2021273634A priority patent/AU2021273634B2/en
Priority to AU2021273635A priority patent/AU2021273635B2/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63CLAUNCHING, HAULING-OUT, OR DRY-DOCKING OF VESSELS; LIFE-SAVING IN WATER; EQUIPMENT FOR DWELLING OR WORKING UNDER WATER; MEANS FOR SALVAGING OR SEARCHING FOR UNDERWATER OBJECTS
    • B63C9/00Life-saving in water
    • B63C9/06Floatable closed containers with accommodation for one or more persons inside
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/14Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate against other dangerous influences, e.g. tornadoes, floods
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather

Definitions

  • the present invention relates to an evacuation structure or the like that can float and secure an evacuation space during floods including tsunamis and floods.
  • Patent Document 1 discloses a floatable shelter formed of styrene foam.
  • the floor of the shelter is provided with an outlet that penetrates the floor and penetrates the bottom of the shelter, and it is described that seawater that has entered the room can be discharged to the outside via the outlet.
  • Patent Document 2 discloses that a weight is provided on a protruding body projecting below a spherical shelter in a state of free drift. By forming the protruding body and the weight with a material having a higher specific gravity than the sphere, it is possible to prevent the spherical shelter from rolling over.
  • the outlet of the outlet opening at the bottom of the shelter is located in seawater. Therefore, although the seawater may flow into the shelter from the outlet located in the seawater, the seawater flowing into the shelter is not discharged.
  • the weight for sinking the shelter into seawater is the total weight of the evacuees, plastic bottles, and the like in the shelter room, and is not a weight as a structure, and thus is unstable. The shelter is likely to roll over due to the movement of the center of gravity.
  • the draft which is the distance from the lowermost surface of the shelter to the water surface, that is, the shelter cannot roll over to the depth of seawater, so the shelter rolls over. Easy to do.
  • Patent Document 2 may have good stability, but is difficult to manufacture due to its complicated structure including spheres and protrusions. Also, if the sphere forming the shelter chamber is flooded through the open hatch lid, it is extremely difficult to drain the sphere.
  • Some aspects of the present invention are directed to providing an easily manufactured evacuation structure that can be easily drained even if it is immersed in an evacuation chamber in an incompletely watertight box-shaped structure.
  • One embodiment of the present invention provides: An imperfectly watertight box-shaped structure with at least one hatch door; A float provided in the box-shaped structure, At least one drain pipe having one end open to the inside of the box-shaped structure and the other end opened to the outer wall of the box-shaped structure at a position above a full load line of the box-shaped structure; A check valve provided on the at least one drain pipe to prevent water from flowing into the box-shaped structure, and to be opened when water pressure of drainage from the box-shaped structure is applied; A valve, The present invention relates to an evacuation structure having:
  • a part of the float is submerged and buoyancy acts, so that a load line at the time when the maximum load capacity is mounted on the evacuation structure (load ⁇ water line:
  • the draft line (the position of the water surface outside the box-shaped structure) is set at a position below (LWL), and the evacuation structure can float.
  • LWL the position of the water surface outside the box-shaped structure
  • the drainpipe has a check valve with a valve that opens when water pressure of drainage from inside the box-shaped structure acts.
  • the drain pipe whose one end opening inside the box-shaped structure is submerged and the other end is located above the water surface outside the box-shaped structure. Therefore, it is possible to prevent the evacuation room in the box-shaped structure from being flooded. Moreover, since the drain pipe is provided with the check valve, it is possible to prevent water from flowing into the box-shaped structure through the drain pipe.
  • the float has a volume that does not completely submerge the box-shaped structure even if the box-shaped structure is filled with water.
  • a maximum load waterline which is a waterline, is calculated so as to be set at a position lower than the top surface of the box-shaped structure, as described later.
  • the box-shaped structure does not sink, and the evacuee stays in the box-shaped structure or escapes from the evacuation structure through at least one hatch door and waits. , Can be rescued.
  • the at least one drainpipe may open at one end at a height equal to or lower than the floor surface of the floor panel.
  • the water can be drained through a drain pipe that opens at a height equal to or lower than the floor. Therefore, it is possible to prevent the floor from being immersed in water.
  • the floor panel includes a through hole penetrating vertically, The one end of the at least one drain pipe may open to the drain storage chamber.
  • the water is quickly drained from the through hole penetrating the floor panel to the drainage storage chamber below the floor panel. Therefore, even if the amount of flooding is relatively large, it is possible to prevent the evacuation room above the floorboard from being flooded.
  • the water collected in the drainage storage room is drained to the outside of the box-shaped structure via a drainage pipe.
  • the other end of the at least one drain pipe has N drain outlets that open to the outer wall at N (N is an integer of 2 or more) different height positions whose height in the vertical direction is sequentially increased.
  • N is an integer of 2 or more
  • the at least one drain pipe may include N drain pipes including the N drain outlets and the N drain inlets that are separately communicated with the N drain outlets. That is, one drainage inlet may communicate with N drainage outlets, or each of the N drainage inlets may be separated and communicated with N drainage outlets.
  • the maximum load waterline at the time of the maximum load when the space inside the box-shaped structure at the time of full loading is filled with water may be a position lower than at least one of the N drainage outlets.
  • N drains of different heights higher than the water line are provided before the space inside the box-shaped structure at full load is filled with the flood.
  • the flooded water can continue to be drained from at least one of the outlets, preferably N drain outlets. Therefore, in a normal use form, the space inside the box-shaped structure is not filled with the flood, and a situation such as reaching the maximum load draft line MLWL cannot occur.
  • a weight for applying a restoring force to the box-shaped structure may be arranged below the full load line.
  • the weight functions as a balancer for preventing the evacuation structure from rolling over.
  • the outline of the cross section of the box-shaped structure is such that each horizontal width between the bottom and the top is larger than the horizontal width at a position between the bottom and the top. Is also preferably formed in a narrow polygon. In this case, even if the evacuation structure tries to roll over, it can be easily restored by the weight.
  • the box-shaped structure has a skeleton structure and a ceiling wall attached to an upper surface of the skeleton structure.
  • a handrail may be provided so as to surround a top surface area that can escape from the at least one hatch door provided on the box-shaped structure. In this way, the evacuee who has escaped to the outside of the ceiling wall via the hatch door can safely wait for rescue while being held by the handrail provided on the ceiling wall. Also, even if the ceiling wall is detached from the assembled structure, the evacuation person can continue to be mounted while the ceiling wall is floating like a raft.
  • the box-shaped structure may be configured such that the box-shaped structure has two outer walls facing each other in a cross-sectional view orthogonal to a longitudinal axis of the box-shaped structure.
  • a plurality of stabilizer boards that can protrude above the water surface outside the mold structure can be accommodated.
  • each of the plurality of stabilizer boards may be folded and housed in the box-shaped structure.
  • a space for accommodating the stabilizer panel can be secured without increasing the width of the evacuation structure.
  • each of the plurality of stabilizer boards may be rotatably supported outside the box-shaped structure, and may be accommodated in an upright state.
  • the inside of the evacuation structure is not occupied as a storage space for the plurality of stabilizer boards.
  • a plurality of stabilizer boards are accommodated with a gap between either one of the two outer walls, even if a drain pipe is provided on the outer wall, the other end of the drain pipe will be blocked. There is no.
  • At least one of the plurality of stabilizer boards is locked in an upright state, and at least one of the plurality of stabilizer boards is engaged by the locking portion.
  • a release operation unit that releases the stopped state by being operated inside the box-shaped structure may be further provided. In this way, the evacuees who have evacuated into the box-shaped structure at the time of evacuation operate the release operation unit inside the box-shaped structure after confirming the floating of the box-shaped structure, and connect the plurality of stabilizer boards to the box-shaped structure. It can protrude above the water surface outside the body.
  • the box-shaped structure may include a mounting portion for attaching a propulsion tool for applying a propulsive force to the box-shaped structure.
  • a propulsion tool for applying a propulsive force to the box-shaped structure.
  • the propulsion tool include an electric screw and a manual oar.
  • FIG. 13 (A) to 13 (D) are views showing a process of pulling out the stabilizer panel of the evacuation structure shown in FIG. 11 to a use position.
  • FIG. 13 (A) to 13 (D) are views showing a process of pulling out the stabilizer panel of the evacuation structure shown in FIG. 11 to a use position.
  • FIG. 13 (A) to 13 (D) are views showing a process of pulling out the stabilizer panel of the evacuation structure shown in FIG. 11 to a use position.
  • FIG. 13 (A) to 13 (D) are views showing a process of pulling out the stabilizer panel of the evacuation structure shown in FIG. 11 to a use position.
  • FIG. 13 (A) to 13 (D) are views showing a process of pulling out the stabilizer panel of the evacuation structure shown in FIG. 11 to a use position.
  • FIG. 13 (A) to 13 (D) are views showing a process of pulling out the stabilizer panel of the evacuation structure shown in FIG. 11 to a use position.
  • FIG. 15 is a perspective view, partially cut away, showing the inside of the box-shaped structure shown in FIG. 14. It is sectional drawing of a drain pipe. It is a figure showing arrangement of a drain pipe. It is a figure which shows the self-propelled evacuation structure which attached the screw to the box-shaped structure. It is a figure which shows the self-propelled evacuation structure using the oar which protrudes from a hatch door. It is a figure which shows the floating state of the ceiling wall, or the self-propelled state by all. It is a figure which shows the use condition of a stabilizer board. It is a side view which shows the state which accommodated the stabilizer board in the upright state. It is a figure which shows the release operation part of a stabilizer board. It is a side view which shows the use condition of a stabilizer board.
  • FIG. 1 shows an evacuation structure 1 according to a first embodiment of the present invention.
  • the evacuation structure 1 includes a box-shaped structure 6.
  • the box-shaped structure 6 includes, for example, the frame structure 2 and the outer wall 3.
  • the frame structure 2 is formed by a beam 2A such as a steel pipe or a column (not shown).
  • An outer wall 3 such as a steel plate is supported on, for example, six surfaces of the skeleton structure 2.
  • a hatch door 4 is provided on at least one surface, for example, four surfaces of the six outer walls 3, as shown in FIGS.
  • the hatch door 4 has a hatch frame 5 assembled to a hole formed in the outer wall 3 and is supported on the hatch frame 5 by a hinge or the like so as to be openable and closable.
  • the hatch door 4 is preferably sealed watertight to the hatch frame 5.
  • a base 2B made of steel or the like can be provided for connection with a foundation structure installed on the ground.
  • the base 2B may be connected to a structure below the floor, and the evacuation structure 1 may be installed above the floor.
  • the base 2B can be easily connected to the foundation or downstairs, preferably released by an operation in the box-shaped structure 6, and can float in the event of flood.
  • a float 10 is provided, for example, inside the box-shaped structure 6.
  • the float 10 is formed of a material having a density lower than that of water (specific gravity is less than 1), and for example, polystyrene having a density of 45 kg / m 3 is used.
  • a float 10A is arranged on a bottom wall 3A of the six outer walls 3. When most of the float 10A is submerged, buoyancy in which the evacuation structure 1 floats is secured as shown in FIG.
  • FIG. 1 shows a load line LWL (load water line).
  • the position of the full load line LWL is obtained as follows. First, the total weight of the evacuation structure 1 when fully loaded is determined. The total weight is the sum of the total weight of the evacuation structure 1 itself and the total weight of the evacuation structure 1 when it is fully loaded. The total weight of the evacuation structure 1 when it is fully loaded includes the estimated total weight of the maximum capacity (for example, the number of personnel x 65 kg) and the total weight of the loaded items (such as plastic bottles for drinks and rescue equipment). included.
  • the maximum capacity for example, the number of personnel x 65 kg
  • the total weight of the loaded items such as plastic bottles for drinks and rescue equipment.
  • the position of the full load waterline LWL is (the volume at which the evacuation structure 1 submerged at the depth H excludes water)
  • ⁇ (specific gravity of water) (The total weight of the evacuation structure 1 at full load) is obtained as the depth H.
  • water includes seawater, freshwater or brackish water in which seawater and freshwater are mixed.
  • the floor panel 20 is disposed inside the box-shaped structure 6 at a position above the full load line LWL of the box-shaped structure 6.
  • the space surrounded by the floor panel 20, the ceiling wall 3B, and the two side walls 3C and 3D is the maximum volume of the evacuation room 30.
  • the floor panel 20 has a floor surface 21 at a position higher than the full load line LWL.
  • the floor panel 20 includes one or more, for example, a plurality of drain ports 20A penetrating vertically.
  • a drainage storage chamber 40 is provided between the lower surface of the floor panel 20 and the upper surface of the float 10 ⁇ / b> A located below the floor panel 20.
  • a waterproof plate 41 is provided on the upper surface of the float 10A as a bottom plate of the drainage storage chamber 40. Thereby, the water in the drainage storage room 40 does not leak to the float 10A side.
  • the drainage storage chamber 40 is disposed inside the box-shaped structure 6 above the full load line LWL of the box-shaped structure 6. If the evacuation room 30 is flooded, the water is distributed to the drainage storage room 40 through the drainage opening 20A opened in the floor surface 21 of the floor panel 20. Therefore, even if the amount of flooding into the evacuation room 30 is relatively large, it is possible to prevent the evacuation room 30 above the floor panel 20 from being flooded.
  • the drainage storage chamber 40 is not limited to being provided in the entire area below the floor panel 20 as shown in FIG. 1, and may be provided in a part (for example, a peripheral area) below the floor panel 20.
  • a drain pipe 50 is provided for distributing the water collected in the drain storage chamber 40 to the outside of the box-shaped structure 6.
  • the drain pipe 50 has an inlet 50A at one end opening to the inside of the box-shaped structure 6, for example, the drainage storage chamber 40, and an outlet 50B at the other end opening outside the side walls 3C and 3D above the full load water line LWL.
  • the water collected in the drainage storage chamber 40 is drained to the outside of the box-shaped structure via the drainage pipe 50.
  • the outlet 50B of the drain pipe 50 is opened above the full load line LWL, the drain pipe is not subjected to the water pressure acting as the external pressure that inhibits drainage. Therefore, a smooth draining action in the drain pipe 50 is ensured.
  • the outlet 50B is set at a position lower than the inlet 50A, and it is particularly preferable that a water gradient is set from the inlet 50A to the outlet 50B. In this way, water is prevented from being stored in the evacuation room 30 above the floor panel 20.
  • one end of the drainage pipe 50 may be arranged so as to open at a position equal to or lower than the height of the floor surface 21 of the floor panel 20.
  • the drain pipe 50 can be provided with a check valve 60 for preventing inflow of water from outside the box-shaped structure 6. In this way, water is prevented from flowing into the box-shaped structure 6 through the drain pipe 50.
  • the check valve 60 can include a valve 61 that opens when the water pressure of the drainage from the drainage storage chamber 40 acts.
  • the valve 61 is rotatably suspended and supported by, for example, a hinge 62. Thereby, when the water pressure of the drainage from the drainage storage chamber 40 does not act, the valve 61 is drooped by its own weight and closes the outlet 50 ⁇ / b> B of the drainage pipe 50.
  • the valve 61 When a predetermined water pressure acts on the valve 61 due to the drainage from the drainage storage chamber 40, the valve 61 is rotated and opened in the direction of the arrow in FIG. In FIG. 3, a cover 63 that surrounds and protects the valve 61 and the hinge 62 is provided.
  • the check valve 60 may adopt another structure, and the cover 63 may not be provided.
  • the box-shaped structure 6 is a substantially rectangular parallelepiped as shown in FIG. 2, the drain pipe 50 and the check valve 60 are respectively provided on two side walls 3C and 3D parallel to the longitudinal axis of the substantially rectangular parallelepiped.
  • two end walls 3E and 3F orthogonal to the longitudinal axis of the substantially rectangular parallelepiped can be provided.
  • a weight 70 that applies a restoring force to the box-shaped structure 6 tilted by wind or waves can be arranged on the bottom wall 3A located below the full load line LWL.
  • the weight 70 functions as a balancer for preventing the evacuation structure 1 from rolling over. Therefore, the weight 70 is located at the center of the cross section of the evacuation structure 1 shown in FIG. Further, as shown in FIG. 2, when the box-shaped structure 6 is a substantially rectangular parallelepiped, the weight 70 is preferably arranged along the longitudinal axis of the substantially rectangular parallelepiped.
  • the float 10 has a volume that does not completely submerge the box-shaped structure 6 even when the float 10 is flooded in the box-shaped structure 6.
  • the evacuation room 30 shown in FIG. 1 is flooded, the total weight of the evacuation structure 1 increases, and the waterline rises to a position exceeding the full load waterline LWL.
  • the float 10B can be additionally provided in the evacuation room 30 of the box-shaped structure 6. Even if the evacuation structure 1 is flooded, the evacuation structure 1 does not completely submerge, so that the evacuation room 30 is not required to be completely watertight.
  • the float 10B is additionally provided inside the ceiling wall 3B, but it is preferable that the float 10B is additionally provided inside the floor 20, the two side walls 3C, 3D. Since the buoyancy increases in proportion to the volume of the additional float 10B that excludes water, the evacuation structure 1 can be prevented from being completely submerged. For this reason, in the present embodiment, a weight V ⁇ ⁇ ⁇ G (G is a gravitational acceleration) obtained by multiplying a volume V that excludes water by submerging all the floats 10A, 10A1, 10B, and 10B1 by a density ⁇ of water Is larger than the total weight of the evacuation structure 1.
  • G is a gravitational acceleration
  • the total weight of the evacuation structure 1 may or may not include the weight of the maximum number of persons and the weight of the equipment. Actually, since the members other than the float also exclude water, a buoyancy larger than V ⁇ ⁇ ⁇ G is obtained, and there may be a case where the weight other than the weight of the evacuation structure 1 itself can be ignored.
  • the box-shaped structure 6 may be incompletely watertight, which is not completely watertightly sealed, and does not need to allow a large amount of water to enter at a stretch over at least several hours to be evacuated.
  • the imperfectly watertight box-shaped structure 6 can naturally include an air hole on the structural principle, or an air hole may be arranged on the upper side of the box-shaped structure 6. Thus, even if the hatch door 4 is closed, the evacuees will not suffocate.
  • the float 10B1 at the position facing the hatch door 4 of the ceiling wall 3B is removable or the float 10B1 is not provided at that position, it does not hinder escape.
  • the evacuation structure 1 is not completely submerged in any posture, and the evacuation structure 1 is provided through at least one hatch door 4. If you escape outside and wait, you can save lives. Further, when the additional floats 10B are arranged on six surfaces surrounding the evacuation room 30, the floats 10B formed of a foam or the like can be used as a cushion material for protecting the evacuated person when shaking or rolling over.
  • the hatch door 4 can be provided on the bottom wall 3A, the ceiling wall 3B, and the two side walls 3C and 3D which are four surfaces parallel to the longitudinal axis of the substantially rectangular parallelepiped among the six outer walls 3. If the box-shaped structure 6 rolls over, it is stabilized in a posture in which one of the four surfaces parallel to the longitudinal axis of the box-shaped structure 6 faces upward. Therefore, if the hatch door 4 is provided on the bottom wall 3A, the ceiling wall 3B, and the two side walls 3C and 3D, which are four surfaces parallel to the longitudinal axis of the box-shaped structure 6, the box-shaped structure 6 can be turned over. Escape from the vehicle becomes easier. In FIG. 1, if the float 10A1 at the position facing the hatch door 4 on the bottom wall 3A, a part of the floor panel 20 and the waterproof plate 41 can be removed, or the float 10A1 is not provided at that position. , Does not hinder escape.
  • the hatch door 4 provided on one of the two side walls 3C, 3D is one of the two end walls 3E, 3F located at both ends in the direction of the longitudinal axis of the substantially rectangular parallelepiped. It can be arranged at a position biased to 3E.
  • the hatch door 4 provided on the other side 3D of the two side walls 3C and 3D can be arranged at a position biased on the other side 3F of the two end walls 3E and 3F. In this way, even if the evacuation structure 1 is vertically inverted so that one of the two end walls 3E and 3F becomes the top surface, the hatch door 4 provided on one of the two side walls 3C and 3D. Can easily be arranged above the water surface, and escape from the evacuation structure 1 becomes possible.
  • the ceiling wall 3B may have a handrail 80 that can be raised and raised by a hinge 81, for example. it can.
  • a handrail 80 that can be raised and raised by a hinge 81, for example. it can.
  • adjacent handrails 80 are connected by four connecting tools 82 in order to maintain the handrails 80 in an upright state.
  • FIG. 5 shows an evacuation structure 1A according to a second embodiment of the present invention.
  • the valve 61 of the check valve 60 is closed by external water pressure. Then, drainage via the drain pipe 50 becomes impossible.
  • the evacuation structure 1A shown in FIG. 5 has an additional drain pipe 90 for draining the evacuation chamber 30 when the evacuation chamber 30 is flooded and the waterline rises.
  • an additional drain pipe 90 is provided on at least one of the outer walls 3C to 3F intersecting with the floor panel 20, for example, the outer wall 3C.
  • One end 90 ⁇ / b> A of the drainage pipe 90 that opens at the lower part of the evacuation room 30 serves as a drainage inlet.
  • a plurality of branch ends (also referred to as drain outlets) 90B1 to 90Bm (m is an integer of 2 or more) which open to the outside of the outer wall 3C are drain outlets.
  • Each of the plurality of branch ends 90B1 to 90Bm has the same structure as the outlet 50B of the drain pipe 50. That is, each of the plurality of branch ends 90B1 to 90Bm has the check valve 60 (the valve 61 and the hinge 62) and the cover 63. Therefore, at the plurality of branch ends 90B1 to 90Bm, when the water pressure in the evacuation chamber 30 acts via the inlet 90A of the drain pipe 90, the valve 61 shown in FIG.
  • the reason for providing the plurality of branch ends 90B1 to 90Bm is that at least one of the plurality of branch ends 90B1 to 90Bm is disposed above the waterline even if the waterline is going to rise above the full load waterline LWL due to flooding in the evacuation room 30. Therefore, the flooded water can be drained by the water pressure in the evacuation room 30. This can prevent the draft line from rising above the full load draft line LWL.
  • FIGS. 6 and 7 show an evacuation structure 100 according to a third embodiment of the present invention.
  • the cross section of the evacuation structure 100 is a polygon having a larger number of corners than a quadrangle as in the first and second embodiments, for example, a substantially hexagon.
  • the evacuation structure 100 in the floating state has a horizontal width W1 of the bottom (bottom wall) 103A and a horizontal width W2 of the top (ceiling wall) 103B, and the bottom 103A and the top 103B. (W1 ⁇ W3, W2 ⁇ W3).
  • W1 ⁇ W3 even if the evacuation structure 100 tries to roll over, it is easier to restore to the upright state than the evacuation structures 1, 1A of the first and second embodiments.
  • the evacuation structure 100 includes a box-shaped structure 106 formed by, for example, a frame structure 102, wall materials (a bottom wall 103A, a ceiling wall 103B, side walls 103C and 103D) and a float 110.
  • the outline of the cross section of the box-shaped structure 106 is substantially hexagonal.
  • the exposed surface of the float 110 exposed to the outside may be covered with an iron plate or the like.
  • the hatch door 104 is arranged at the same position as the hatch door 4 of the first embodiment. That is, the hatch door 104 can be provided on the bottom wall 103A, the ceiling wall 103B, and the two side walls 103C and 103D which are four surfaces parallel to the longitudinal axis of the box-shaped structure 106.
  • the evacuation structure 100 rolls over, it is stabilized in a posture in which one of the four surfaces parallel to the longitudinal axis of the box-shaped structure 106 faces upward. Therefore, if the hatch door 104 is provided on the bottom wall 103A, the ceiling wall 103B, and the two side walls 103C and 103D which are four surfaces parallel to the longitudinal axis of the box-shaped structure 106, the escape from the evacuation structure 100 at the time of rollover. Becomes easier.
  • the floor panel 120 is disposed inside the box-shaped structure 106, and the weight 170 is disposed below the floor panel 120 and at a position avoiding the hatch door 104.
  • a handrail 180 is provided on the top 103B of the box-shaped structure 106, and can be folded like the handrail 80 of the first embodiment.
  • the box-shaped structure 106 can have the drain pipe 90 shown in FIG. 5, or can have a plurality of drain pipes 150 as shown in FIG.
  • Each of the plurality of drainage pipes 150 has one end 150A opened to the evacuation chamber 130 and the other end 150B opened to the side walls 103C and 103D of the box-shaped structure 106.
  • the openings of the other ends 150B of the plurality of drain pipes 150 are omitted.
  • each of the plurality of drain pipes 150 has a check valve 160 provided with a valve 161.
  • the plurality of drain pipes 150 are respectively arranged at different height positions.
  • the plurality of drainage pipes 150 operate similarly to the drainage pipes 90 of FIG. 5 having the branch ends 90B1 to 90Bm at different heights.
  • the drainage storage chamber 40 and the drainage pipe 50 shown in FIG. 5 can be provided. Thus, water is prevented from being stored in the evacuation room 130 above the floor surface of the floor panel 120.
  • FIGS. 8 to 10 show an evacuation structure 200 according to a fourth embodiment of the present invention.
  • the evacuation structure 200 has a profile of a cross section that is a polygon having a larger number of corners than a quadrangle as in the first and second embodiments, for example, a substantially octagon.
  • the horizontal width of the bottom (bottom wall) 203A and the horizontal width of the top (ceiling wall) 203B are larger than the horizontal width at the position between the bottom 203A and the top 203B. Is also narrow. In this case, even if the evacuation structure 200 tries to roll over, the evacuation structure 200 is more easily restored to the upright state than the evacuation structures 1, 1A of the first and second embodiments.
  • the evacuation structure 200 has a box-shaped structure 206 formed by, for example, a frame structure 202, wall materials (a bottom wall 203A, a ceiling wall 203B, side walls 203C and 203D), a float 210, and the like.
  • the outline of the cross section of the box-shaped structure 206 is substantially octagonal.
  • the hatch door 204 is arranged at the same position as the hatch door 4 of the first embodiment. That is, the hatch door 204 can be provided on the bottom wall 203A, the ceiling wall 203B, and the two side walls 203C and 203D which are four surfaces parallel to the longitudinal axis of the box-shaped structure 206.
  • the evacuation structure 200 rolls over, it is stabilized in a posture in which one of the four surfaces parallel to the longitudinal axis of the box-shaped structure 206 faces upward. Therefore, if the hatch door 204 is provided on the bottom wall 203A, the ceiling wall 203B, and the two side walls 203C and 203D which are four surfaces parallel to the longitudinal axis of the box-shaped structure 206, the escape from the evacuation structure 200 at the time of rollover. Becomes easier.
  • the floor panel 220 is disposed inside the box-shaped structure 206, and the weight 270 is disposed below the floor panel 220 and at a position avoiding the hatch door 204.
  • a handrail 280 is provided on the top 203 ⁇ / b> B of the box-shaped structure 206.
  • the handrail 280 may be foldable similarly to the handrail 80 of the first embodiment, but may be configured to be adjustable between a non-use position shown in FIG. 8 and a use position shown in FIG.
  • the box-shaped structure 206 can have the drain pipes 90 shown in FIG. 5 or, instead of the drain pipes 90, as shown in FIG. 10, a plurality of drain pipes similar to the plurality of drain pipes 150 of FIG. 250. 8 and 9, the openings at the other ends of the plurality of drain pipes 250 are omitted.
  • the plurality of drain pipes 250 operate similarly to the drain pipe 90 of FIG. 5 having the branch ends 90B1 to 90Bm at different heights.
  • the drainage storage chamber 40 and the drainage pipe 50 shown in FIG. 5 can be provided. Thus, water is prevented from being stored in the evacuation room 230 above the floor panel 220.
  • FIGS. 11 and 12 show an evacuation structure 300 according to a fifth embodiment of the present invention.
  • the evacuation structure 300 has the same structure as that of the fourth embodiment of the present invention, except for a structure for accommodating a stabilizer board 310 described below.
  • the stabilizer board 310 may be added to any of the evacuation structures according to the first to fourth embodiments of the present invention.
  • the evacuation structure 300 can accommodate a plurality of stabilizer boards 310 that can protrude horizontally from two opposing side walls 203C and 203D of the box-shaped structure 206 of the evacuation structure 300 in a cross-sectional view. .
  • the plurality of stabilizer boards 310 are horizontally projected from the two side walls 203C and 203D of the evacuation structure 300.
  • the resistance generated by the contact of the stabilizer board 310 with water prevents the evacuation structure 300 from rolling over and stabilizes the posture.
  • the stabilizer board 310 is preferably provided in a box-shaped structure having a polygonal longitudinal section and easy to roll over, as shown in each of FIGS.
  • the stabilizer boards 310 may be arranged in a plurality of stages at different height positions.
  • the plurality of stabilizer boards 310 can be accommodated in the box-shaped structure 206 of the evacuation structure 300.
  • the stabilizer board 310 may include first and second stabilizer boards 311 and 312 which are connected by hinges and are foldable.
  • the stabilizer board 310 is slid outward from the housed state shown in FIG. 13A, as shown in FIG. 13B. This sliding movement can be performed, for example, on the floor panel 220 shown in FIG.
  • FIG. 13 (C) the second stabilizer board 312 is rotated by 90 ° with respect to the first stabilizer board 311 to stand up. Thereafter, as shown in FIG.
  • the second stabilizer board 312 is further rotated by 90 ° with respect to the first stabilizer board 311 while sliding the stabilizer board 310.
  • the first and second stabilizer boards 311 and 312 can be set in the flat state, and the stabilizer board 310 can be protruded to the final position.
  • the stabilizer board 310 having a predetermined protruding length can be accommodated in the evacuation structure 300 without making the evacuation structure 300 uselessly large.
  • FIGS. 14 to 18 show an evacuation structure 400 according to a sixth embodiment of the present invention.
  • the evacuation structure 400 has a box-shaped structure 406.
  • the box-shaped structures 406 members having the same functions as those of the box-shaped structures 206 of the evacuation structure 200 according to the fourth embodiment of the present invention are denoted by the same reference numerals as those of the box-shaped structures 206. Description is omitted. Further, among the members already described as the box-shaped structure 206, members not changed as the box-shaped structure 406 are also provided in the box-shaped structure 406.
  • the box-shaped structure 406 has two hatch doors 204 on each of two outer walls 203 ⁇ / b> C and 203 ⁇ / b> D facing each other in a cross-sectional view perpendicular to the longitudinal axis. . That is, the box-shaped structure 406 includes six hatch doors 204, one on each of the bottom wall 203A and the ceiling wall 203B and two on each of the outer walls 203C and 203D. However, the number of hatch doors 204 is not limited to this.
  • the outer walls 203D of the three regions on both sides of the two hatch doors 204 are covered with stabilizer boards 450, 451, and 452. As shown in FIG. 24, when the stabilizer boards 450, 451, and 452 are rotated around the lower fulcrum, the outer wall 203D of the three regions is exposed.
  • the box-shaped structure 406 is provided on its ceiling wall 203B with a 280 that is folded when not in use as shown in FIG. 15 so as to be able to stand upright as shown in FIGS.
  • the handrail 280 can be fitted with a sunshade member 290 that covers the ceiling wall 203B.
  • a ladder 410 is provided on both outer walls 203D in addition to the ceiling hatch door 204 shown in FIG. 8 not shown in FIGS. Is also good.
  • the ladder 410 in a region of the outer wall 203D where the ladder 410 is provided and which is covered with the stabilizer board 452 can protrude through a through hole 452A formed in the stabilizer board 452.
  • the box-shaped structure 406 can accommodate a total of 12 people, for example, 6 people in each of two rows. However, the number of passengers can be changed.
  • fixed or movable chairs for example, fixed chairs 420 are arranged in three regions on both sides of the two hatch doors 204 as means capable of seating passengers.
  • a movable chair for example, a movable chair plate 421 as a means for occupants to be seated can rotate around a fulcrum 422.
  • the movable chair plate 421 is leaned over the fulcrum 422 and does not hinder the entrance.
  • the bottom hatch door 204 and the weight 270 are arranged so that the cross section thereof is flush with the substantially hexagonal bottom surface.
  • drain pipes 91 shown in FIG. 19 are arranged in a vertical and horizontal arrangement as shown in FIG. 20, and are arranged on the outer wall 203D exposed by the rotation of the stabilizer boards 450 to 452 as shown in FIG. (The drain pipe 91 is omitted in FIG. 24).
  • the full load water line LWL is set lower than the floor level FL of the box-shaped structure 406, as in FIGS. 1 and 5.
  • the uppermost level of the ceiling wall 203B of the box-shaped structure 406 is UML (Upper Most Level), and the lowermost level is LML (Lower Most Level).
  • the MLWL (Max Load Water Line) shown in FIG. 16 is a maximum load draft line of the box-shaped structure 406 that floats when the inside of the fully loaded box-shaped structure 406 is filled with water.
  • the maximum load draft line MLWL is located above the full load draft line LWL by a height h, but lower than the uppermost level UML.
  • Zones Z1 to Z8 shown in FIG. 20 indicate zones in which the height range from the floor level FL of the box-shaped structure 406 to the uppermost level UML of the ceiling wall 203B is divided into, for example, eight zones. , Zone Z8 is located at the top. In each of the zones Z1 to Z8, at least one drain pipe 91 is arranged in the vertical direction, and a plurality of drain pipes 91 are arranged at a predetermined pitch P in the horizontal direction. Note that this zone division is an example, and the height range in the internal space where the zones are set and the number of zones are not limited thereto.
  • N is an integer of 2 or more
  • N 9
  • the drain pipe 91 has one end 91A opened inside the box-shaped structure 406, the other end 91B opened on the outer wall 204D, and the valve 92 disposed therebetween.
  • the inner diameter of the drain pipe 91 is, for example, 52 mm.
  • the drain pipe 91 has, between one end 91A and the other end 91B, an annular projection 93 for narrowing the inner diameter and a plurality of local projections 94 projecting at a plurality of locations spaced apart in the circumferential direction.
  • a spherical valve 92 is disposed in a conduit between the annular projection 93 and the local projection 94.
  • the valve 92 moves to the local projection 94 side by the water pressure. Therefore, the water is drained through the area without the projection 94 in the circumferential direction.
  • the valve 92 moves toward the annular projection 93 by the water pressure. Therefore, the passage of the drain pipe 91 is closed by the spherical body 92 and the annular projection 93, and flooding is prevented.
  • the size of the evacuation structure 400 is, for example, approximately 5.8 mx 2.1 mx 2.3 m in length x height x width. Also, the total weight of the evacuation structure 400 is assumed to be 2400 kg by adding 350 kg for the frame structure, 260 kg for the float, 180 kg for the wall material, 350 kg for the weight 270, 840 kg for 12 crew members, and 420 kg for others.
  • the maximum load draft line MLWL is a draft line at the maximum load in which the total weight of the box-shaped structure 406 is further affected by the weight when the space inside the box-shaped structure 406 is filled with water. Such a situation is not normally assumed, but for ensuring safety, it is guaranteed that the box-shaped structure will not sink even at the maximum load exceeding the mounting weight.
  • the capacity of the space inside the box-shaped structure 406 is 12 m 3 when the average area excluding the crew and the chair is 8 m 2 and the height is 1.5 m. Flooded into this space, when this space was replaced by air (specific gravity 1.225 kg / m 3) in water (specific gravity 1000 kg / m 3), additional to determined by the following equation in a box-like structure 406 Gravity FW acts.
  • the height from the lowermost surface LML of the box-shaped structure 406 to the maximum load draft line MLWL is 0.3 m (the height from the lowermost surface LML of the box-shaped structure 406 to the full load line LWL) +0.8 m (full load draft line).
  • the height h) from LWL to the maximum load draft line MLWL is 1.1 m.
  • the total height of the box-shaped structure 406 is 2.1 m, and the position of the highest drain pipe 91 in FIG. 20 is 1.77 m (0.6 + 0.12 + 0.15 ⁇ 7) from the lowermost surface LML of the box-shaped structure 406. Height. From this, even if the inside of the box-shaped structure 406 is filled with water, the volume of the float is such that at least one other end of the N drain pipes 91 is located above the water surface outside the box-shaped structure 406. Further, it is understood that the volume is such that the box-shaped structure 406 is not completely submerged.
  • the maximum load draft line MLWL can be set below the floor surface FL.
  • all the drain outlets of the N drain pipes 91 shown in FIG. 20 are moved from the maximum load draft line MLWL.
  • the N drainage pipes 91 can always be used at the same time, so that the drainage speed can be further increased.
  • the maximum load draft line MLWL when the space inside the box-shaped structure 406 at full load shown in FIG. Is a position lower than at least one position.
  • the N drain outlets located at a position higher than the waterline are drawn.
  • the flooded water can continue to be drained from one, preferably a plurality of N drain outlets of different heights. Therefore, in a normal use mode, a situation in which the amount of flooding exceeds the amount of drainage and the space inside the box-shaped structure 406 is filled with flooding cannot occur. In other words, a situation that reaches the maximum load draft line MLWL cannot occur.
  • FIGS. 21 to 23 show an evacuation structure that can not only float but also move on its own.
  • the box-shaped structure 406 includes a mounting portion 430 for attaching a propulsion tool for applying a propulsive force to the box-shaped structure 406, for example, an electric screw 431. be able to.
  • the electric screw 431 is energized by being connected to a connector that is exposed by opening the door 432.
  • the mounting portions 430 can be provided at both ends in the longitudinal direction of the box-shaped structure 406 as shown in FIG.
  • the box-shaped structure 406 can be advanced in the directions of arrows A and B shown in FIG.
  • a clutch (mounting portion) 204 ⁇ / b> A serving as a fulcrum of the all 440 is provided on the hatch doors 204 on both sides of the box-shaped structure 406, in combination with the mounting portion 430 or in place of the mounting portion 430.
  • the oar (propelling device) 440 can protrude outward through the intermediary.
  • An evacuee inside the box-shaped structure 406 can advance the box-shaped structure 406 by manually rowing the all 440 with the clutch 204A as a fulcrum.
  • FIG. 23 shows a state in which an unexpected external force acts on the box-shaped structure 406, and the outer wall 203D and the like are separated from the frame structure and scattered on the water surface. Even in such a state, the ceiling wall 203B functions as a raft, and the safety of evacuees can be kept to a minimum.
  • FIGS. 24 to 27 show stabilizer boards 450 to 452 for improving the stability of the box-shaped structure 406.
  • each of the stabilizer boards 450 to 452 may be rotatably supported by, for example, an outer wall 203D of the box-shaped structure 406, and may be accommodated in an upright state.
  • the inside of the evacuation structure 400 is not occupied as the accommodation space for the plurality of stabilizer boards 450 to 452.
  • the plurality of stabilizer boards 450 to 452 are accommodated with a gap between one of the two outer walls 203D, the drain outlet at the other end of the drain pipe 91 provided on the outer wall is not blocked. .
  • a locking part 460 for locking at least one of the stabilizer boards 450 to 452, for example, the stabilizer board 450 in an upright state, and a state where the stabilizer board 450 is locked by the locking part 460 are shown.
  • the locking portion 460 locks the locked portion 453 attached to the upper portion of the stabilizer board 450.
  • the locking portion 460 is rotatable.
  • the release operation part 470 may include a handle 471 and a wire 472 connecting the handle 471 and the rotating part of the locking part 460. it can.
  • the evacuee who has evacuated into the box-shaped structure 406 during evacuation confirms the floating of the box-shaped structure 406, and then operates the release operation unit 470 inside the box-shaped structure 406 to cause the stabilizer board 450 Can be projected above the water surface outside the box-shaped structure 406. Thereby, the box-shaped structure 406 is stabilized on the water surface.
  • the rotation position of the stabilizer board 450 is regulated by the stopper 480, the situation where the stabilizer board 450 is rotated by, for example, 180 ° and cannot perform the stabilizing function is prevented.
  • the evacuation structure of the present invention has an outer wall covered with a surface protection material, especially when it is assumed that the structure is used in seawater.
  • the surface protective material preferably has rust resistance, waterproofness, ultraviolet light resistance, abrasion resistance, and / or design properties.
  • an aliphatic polyurea resin can be used.
  • Handrail 81 hinge, 82 connecting device, 90 additional drain pipe, 90A inlet, 90B1-90Bm drain outlet, 91 drain pipe, 91A one end, 91B other end, 92 valve, 93 flow Road opening, 94: valve stopper, 100: evacuation structure, 102: framework structure 103A: bottom wall, 103B: ceiling wall, 103C, 103D: side wall, 104: hatch door, 106: box-shaped structure, 110: float, 120: floor panel, 150: drain pipe, 150A: one end (entrance), 150B ... the other end (outlet), 160 ... check valve, 161 ... valve, 170 ... weight, 180 ... handrail, 200 ... evacuation structure, 202 ... frame structure, 203A ...

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Structural Engineering (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Business, Economics & Management (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Check Valves (AREA)
  • Valve-Gear Or Valve Arrangements (AREA)
  • Undergarments, Swaddling Clothes, Handkerchiefs Or Underwear Materials (AREA)
  • Liquid Crystal (AREA)

Abstract

This evacuation structure (1) has: a box-type structure body (6) that is not completely watertight, and is provided with at least one hatch door (4); a float (10) provided to the box-type structure body (6); and at least one drainage pipe (50) that has one end (50A) opening in the interior of the box-type structure body (6) and another end (50B) opening in an outer wall (3C-3D) above the load waterline (LWL). The one or more drainage pipes (50) have a check valve (60) comprising a valve that stops the inflow of water into the interior of the box-type structure body (6), and opens when water pressure of the exhaust water from the interior of the box-type structure body (6) is applied.

Description

避難用構造物Evacuation structures
 本発明は、津波、洪水を含む水害時に浮上して避難用空間を確保することができる避難用構造物等に関する。 (4) The present invention relates to an evacuation structure or the like that can float and secure an evacuation space during floods including tsunamis and floods.
 水害時に浮上するシェルターが提案されている。特許文献1には、発泡スチロールで形成された浮遊可能なシェルターが開示されている。シェルターの床部には、床部を貫通し、シェルターの底部に貫通する排出口を設けられ、室内に入った海水が排出口を介して外部に排出可能であると説明されている。 シ ェ ル Shelters that float during floods have been proposed. Patent Document 1 discloses a floatable shelter formed of styrene foam. The floor of the shelter is provided with an outlet that penetrates the floor and penetrates the bottom of the shelter, and it is described that seawater that has entered the room can be discharged to the outside via the outlet.
 特許文献2には、自由漂流している状態で球体シェルターの下方に突出する突出体に錘を設けることが開示されている。突出体及び重りを球体よりも比重の大きい材質で形成することで、球体シェルターの横転を防止することができる。 Patent Document 2 discloses that a weight is provided on a protruding body projecting below a spherical shelter in a state of free drift. By forming the protruding body and the weight with a material having a higher specific gravity than the sphere, it is possible to prevent the spherical shelter from rolling over.
特許第6170262号公報Japanese Patent No. 6170262 特開2014-69778号公報JP 2014-69778 A
 特許文献1のシェルターでは、シェルターが海上を浮遊している時、シェルター底部に開口する排出口の出口は海水中に位置する。よって、海水中に位置する排出口からは、海水がシェルター内部に流入することはあっても、シェルター内部に流入した海水が排出されることはない。また、特許文献1の発泡スチロール製のシェルターでは、シェルターを海水に沈み込ませるための重りは、シェルター室内にある避難者、ペットボトル等の総重量であり、構造体としての重りではないので不安定であり、重心移動によりシェルターが横転し易い。また、排出口が貫通形成される床部の厚さを厚くしないと、シェルターの最下面から水面までの距離である喫水、つまりシェルターが海水に沈む深さを確保できないことからも、シェルターが横転し易い。 シ ェ ル In the shelter of Patent Document 1, when the shelter is floating on the sea, the outlet of the outlet opening at the bottom of the shelter is located in seawater. Therefore, although the seawater may flow into the shelter from the outlet located in the seawater, the seawater flowing into the shelter is not discharged. In addition, in the styrofoam shelter disclosed in Patent Document 1, the weight for sinking the shelter into seawater is the total weight of the evacuees, plastic bottles, and the like in the shelter room, and is not a weight as a structure, and thus is unstable. The shelter is likely to roll over due to the movement of the center of gravity. Also, unless the thickness of the floor through which the discharge port is formed is made thicker, the draft, which is the distance from the lowermost surface of the shelter to the water surface, that is, the shelter cannot roll over to the depth of seawater, so the shelter rolls over. Easy to do.
 特許文献2のシェルターは、安定性は良好かもしれないが、球体と突出体とを含む複雑な構造により製造が困難である。また、万一開放されたハッチ蓋を介して、シェルター室内を構成する球体内に浸水すると、球体外に排水することは極めて困難である。 シ ェ ル The shelter of Patent Document 2 may have good stability, but is difficult to manufacture due to its complicated structure including spheres and protrusions. Also, if the sphere forming the shelter chamber is flooded through the open hatch lid, it is extremely difficult to drain the sphere.
 本発明の幾つかの態様は、不完全水密性の箱型構造体内の避難室に浸水しても容易に排水できる製造が容易な避難用構造物を提供することを目的とする。 態 様 Some aspects of the present invention are directed to providing an easily manufactured evacuation structure that can be easily drained even if it is immersed in an evacuation chamber in an incompletely watertight box-shaped structure.
 (1)本発明の一態様は、
 少なくとも一つのハッチ扉を備えた不完全水密性の箱型構造体と、
 前記箱型構造体に設けられたフロートと、
 一端が前記箱型構造体の内部に開口し、他端が前記箱型構造体の満載喫水線よりも上方の位置にて前記箱型構造体の外壁に開口する少なくとも一つの排水管と、
 前記少なくとも一つの排水管に設けられ、前記箱型構造体の内部への水の流入を防止し、かつ、前記箱型構造体の内部からの排水の水圧が作用した時に開く弁を備える逆止弁と、
を有する避難用構造物に関する。
(1) One embodiment of the present invention provides:
An imperfectly watertight box-shaped structure with at least one hatch door;
A float provided in the box-shaped structure,
At least one drain pipe having one end open to the inside of the box-shaped structure and the other end opened to the outer wall of the box-shaped structure at a position above a full load line of the box-shaped structure;
A check valve provided on the at least one drain pipe to prevent water from flowing into the box-shaped structure, and to be opened when water pressure of drainage from the box-shaped structure is applied; A valve,
The present invention relates to an evacuation structure having:
 本発明の一態様(1)によれば、水害時には一部のフロートが水没して浮力が作用して、避難用構造物に上限の積載量が搭載されたときの満載喫水線(load water line:LWL)以下の位置に喫水線(箱型構造体外の水面の位置)が設定されて、避難用構造物は浮遊可能である。特に、排水管の他端は満載喫水線よりも上方の位置に開口しているので、排水管には排水を阻害する箱型構造体の外部からの水圧は作用しない。排水管は、箱型構造体の内部からの排水の水圧が作用した時に開く弁を備える逆止弁を有する。よって、箱型構造体の内部に開口する一端が水没し、かつ、他端が箱型構造体外の水面の上方に位置する排水管により、円滑な排水作用が確保される。従って、箱型構造体内の避難室が水浸しとなることを防止できる。しかも、排水管には逆止弁が設けられているので、排水管を介して箱型構造体の内部に水が流入することが防止される。 According to one embodiment (1) of the present invention, at the time of flood damage, a part of the float is submerged and buoyancy acts, so that a load line at the time when the maximum load capacity is mounted on the evacuation structure (load 構造 water line: The draft line (the position of the water surface outside the box-shaped structure) is set at a position below (LWL), and the evacuation structure can float. In particular, since the other end of the drainage pipe is opened at a position above the full load line, water pressure from outside the box-shaped structure that inhibits drainage does not act on the drainage pipe. The drainpipe has a check valve with a valve that opens when water pressure of drainage from inside the box-shaped structure acts. Therefore, a smooth draining action is ensured by the drain pipe whose one end opening inside the box-shaped structure is submerged and the other end is located above the water surface outside the box-shaped structure. Therefore, it is possible to prevent the evacuation room in the box-shaped structure from being flooded. Moreover, since the drain pipe is provided with the check valve, it is possible to prevent water from flowing into the box-shaped structure through the drain pipe.
 (2)本発明の一態様では、前記フロートは、前記箱型構造体内が浸水で満たされても、前記箱型構造体を完全に水没させない体積が確保されている。この時の喫水線である最大荷重喫水線(Max load water line:MLWL)は、後述する通り、箱型構造体の天面よりも低い位置に設定されるように計算される。こうすると、箱型構造体が沈没することはなく、避難者は、箱型構造体内にとどまるか、あるいは少なくとも一つのハッチ扉を介して避難用構造物の外部に脱出して待機していれば、救助可能となる。 (2) In one aspect of the present invention, the float has a volume that does not completely submerge the box-shaped structure even if the box-shaped structure is filled with water. At this time, a maximum load waterline (MLWL), which is a waterline, is calculated so as to be set at a position lower than the top surface of the box-shaped structure, as described later. In this case, the box-shaped structure does not sink, and the evacuee stays in the box-shaped structure or escapes from the evacuation structure through at least one hatch door and waits. , Can be rescued.
 (3)本発明の態様(1)または(2)では、
 前記箱型構造体の内部に配置され、前記満載喫水線よりも上方の位置に床面を有する床盤をさらに有し、
 前記少なくとも一つの排水管は、前記一端が前記床盤の前記床面以下の高さに開口していてもよい。
(3) In the aspect (1) or (2) of the present invention,
It further has a floor panel which is arranged inside the box-shaped structure and has a floor surface at a position above the full load water line,
The at least one drainpipe may open at one end at a height equal to or lower than the floor surface of the floor panel.
 本発明の一態様(3)によれば、箱型構造体内に水が流入しても、床面以下の高さに開口する排水管を介して排水できる。よって、床面上が水浸しになることを防止できる。 According to one embodiment (3) of the present invention, even when water flows into the box-shaped structure, the water can be drained through a drain pipe that opens at a height equal to or lower than the floor. Therefore, it is possible to prevent the floor from being immersed in water.
 (4)本発明の態様(3)では、
 前記床盤の下方の位置にて前記箱型構造体の内部に配置される排水貯蓄室をさらに有し、
 前記床盤は、上下に貫通する貫通孔を含み、
 前記少なくとも一つの排水管は、前記一端が前記排水貯蓄室に開口していてもよい。
(4) In the aspect (3) of the present invention,
Further having a drainage storage room disposed inside the box-shaped structure at a position below the floor panel,
The floor panel includes a through hole penetrating vertically,
The one end of the at least one drain pipe may open to the drain storage chamber.
 本発明の一態様(4)によれば、箱型構造体内に水が流入しても、床盤に貫通する貫通口から床盤の下方の排水貯蓄室に速やかに排水される。従って、浸水量が比較的大量であっても、床盤の上方の避難室が水浸しとなることを防止できる。排水貯蓄室に集められる水は、排水管を介して箱型構造体の外部に排水される。 According to one embodiment (4) of the present invention, even if water flows into the box-shaped structure, the water is quickly drained from the through hole penetrating the floor panel to the drainage storage chamber below the floor panel. Therefore, even if the amount of flooding is relatively large, it is possible to prevent the evacuation room above the floorboard from being flooded. The water collected in the drainage storage room is drained to the outside of the box-shaped structure via a drainage pipe.
 (5)本発明の一態様(1)~(4)では、
 前記少なくとも一つの排水管の前記他端は、鉛直方向での高さが順次高くなるN(Nは2以上の整数)個の異なる高さ位置にて前記外壁に開口するN個の排水出口を有することができる。不完全水密性の箱型構造体内に水が流入して、流入された水の分だけ重量が増加して喫水線が満載喫水線LWLよりも上方に移行しようとしても、排水管の一端から流入する水を、全N個の排水出口のうち喫水線よりも上方にて開口するいずれかの排水管の排水出口から排水し続けることができる。こうして、避難用構造物に流入した水を高さの異なる複数の排水出口を介して排出し続けることで、喫水線が満載喫水線LWLを超えないようにすることができる。
(5) In one aspect (1) to (4) of the present invention,
The other end of the at least one drain pipe has N drain outlets that open to the outer wall at N (N is an integer of 2 or more) different height positions whose height in the vertical direction is sequentially increased. Can have. Even if water flows into the imperfectly watertight box-shaped structure and the weight increases by the amount of the flowed water and the waterline tries to shift above the full waterline LWL, the water flowing from one end of the drainpipe. Can be continuously drained from the drain outlets of any of the drain pipes that open above the waterline among all N drain outlets. In this way, by continuously discharging the water that has flowed into the evacuation structure through the plurality of drain outlets having different heights, the water line can be prevented from exceeding the full load water line LWL.
 (6)本発明の一態様(4)では、
 前記少なくとも一つの排水管は、前記N個の排水出口と、前記N個の排水出口とそれぞれ分離されて連通するN個の排水入口と、を含むN個の排水管を有することができる。つまり、一つの排水入口がN個の排水出口に連通していても良いし、N個の排水入口をそれぞれN個の排水出口に分離させて連通させても良い。
(6) In one embodiment (4) of the present invention,
The at least one drain pipe may include N drain pipes including the N drain outlets and the N drain inlets that are separately communicated with the N drain outlets. That is, one drainage inlet may communicate with N drainage outlets, or each of the N drainage inlets may be separated and communicated with N drainage outlets.
 (7)本発明の一態様(5)または(6)では、
 満載時の前記箱型構造体の内部の空間が浸水で満たされた最大荷重の時の最大荷重喫水線は、前記N個の排水出口の少なくとも一つの位置よりも低い位置とすることができる。こうすると、満載時の箱型構造体の内部の空間が浸水で満たされる以前に、換言すれば最大荷重喫水線MLWLに到達する以前に、喫水線よりも高い位置にある高さの異なるN個の排水出口の少なくとも一つ、好ましくはN個の排水出口から、浸水した水を排水し続けることができる。よって、通常の使用形態では箱型構造体の内部の空間が浸水で満たされることはなく、最大荷重喫水線MLWLに到達するような事態も起こりえない。
(7) In one aspect (5) or (6) of the present invention,
The maximum load waterline at the time of the maximum load when the space inside the box-shaped structure at the time of full loading is filled with water may be a position lower than at least one of the N drainage outlets. In this way, before the space inside the box-shaped structure at full load is filled with the flood, in other words, before reaching the maximum load water line MLWL, N drains of different heights higher than the water line are provided. The flooded water can continue to be drained from at least one of the outlets, preferably N drain outlets. Therefore, in a normal use form, the space inside the box-shaped structure is not filled with the flood, and a situation such as reaching the maximum load draft line MLWL cannot occur.
 (8)本発明の一態様(1)~(7)では、前記満載喫水線の下方に、前記箱型構造体に復元力を付与する重りを配置することができる。この重りは、避難用構造物の横転防止のためのバランサーとして機能する。 (8) In one aspect (1) to (7) of the present invention, a weight for applying a restoring force to the box-shaped structure may be arranged below the full load line. The weight functions as a balancer for preventing the evacuation structure from rolling over.
 (9)本発明の一態様(8)では、前記箱型構造体の横断面の輪郭が、底部と頂部との各水平幅が、前記底部と前記頂部との間の位置での水平幅よりも狭い多角形に形成されることが好ましい。こうすると、避難用構造物が横転しようとしても重りによる復元がし易くなる。 (9) In one aspect (8) of the present invention, the outline of the cross section of the box-shaped structure is such that each horizontal width between the bottom and the top is larger than the horizontal width at a position between the bottom and the top. Is also preferably formed in a narrow polygon. In this case, even if the evacuation structure tries to roll over, it can be easily restored by the weight.
 (10)本発明の一態様(1)~(9)では、前記箱型構造体は、骨組み構造体と、前記骨組み構造体の上面に取り付けられる天井壁とを有し、前記天井壁は、前記箱型構造体に設けられる前記少なくとも一つのハッチ扉から脱出可能な天面領域を囲んで配置される手すりを有することができる。こうすると、ハッチ扉を介して天井壁の外部に脱出した避難者は、天井壁に設けられた手すりにつかまった状態で、安全に救助を待機することができる。また、万一組み構造体から天井壁が離脱されても、天井壁は筏のように浮上したまま避難者を搭載し続けることができる。 (10) In one aspect (1) to (9) of the present invention, the box-shaped structure has a skeleton structure and a ceiling wall attached to an upper surface of the skeleton structure. A handrail may be provided so as to surround a top surface area that can escape from the at least one hatch door provided on the box-shaped structure. In this way, the evacuee who has escaped to the outside of the ceiling wall via the hatch door can safely wait for rescue while being held by the handrail provided on the ceiling wall. Also, even if the ceiling wall is detached from the assembled structure, the evacuation person can continue to be mounted while the ceiling wall is floating like a raft.
 (11)本発明の一態様(1)~(10)では、前記箱型構造体は、前記箱型構造体の長手軸と直交する横断面視で対向している2つの外壁側より前記箱型構造体外の水面上に突出可能な複数のスタビライザー盤を収容することができる。箱型構造体の対向する2つの外壁側より複数のスタビライザー盤を箱型構造体外の水面上に突出させることで、箱型構造体の横転が防止されて姿勢が安定する。 (11) In one aspect (1) to (10) of the present invention, the box-shaped structure may be configured such that the box-shaped structure has two outer walls facing each other in a cross-sectional view orthogonal to a longitudinal axis of the box-shaped structure. A plurality of stabilizer boards that can protrude above the water surface outside the mold structure can be accommodated. By projecting a plurality of stabilizer boards from the two outer wall sides of the box-shaped structure above the water surface outside the box-shaped structure, the box-shaped structure is prevented from rolling over and the posture is stabilized.
 (12)本発明の一態様(11)では、前記複数のスタビライザー盤の各々は、前記箱型構造体内に折り畳まれて収納されてもよい。こうすると、避難用構造物の幅を大きくしなくてもスタビライザー盤を収納するスペースが確保される。 (12) In one aspect (11) of the present invention, each of the plurality of stabilizer boards may be folded and housed in the box-shaped structure. In this case, a space for accommodating the stabilizer panel can be secured without increasing the width of the evacuation structure.
 (13)本発明の一態様(11)では、前記複数のスタビライザー盤の各々は、前記箱型構造体外に回動自在に支持され、立設状態で収容されてもよい。こうすると、避難用構造物の内部が複数のスタビライザー盤の収容スペースとして占有されない。なお、複数のスタビライザー盤は2つの外壁のいずれか一方と空隙を隔てて収容されるようにすれば、その外壁に排水管が設けられたとしても、その排水管の他端が塞がれることがない。 (13) In one aspect (11) of the present invention, each of the plurality of stabilizer boards may be rotatably supported outside the box-shaped structure, and may be accommodated in an upright state. In this case, the inside of the evacuation structure is not occupied as a storage space for the plurality of stabilizer boards. In addition, if a plurality of stabilizer boards are accommodated with a gap between either one of the two outer walls, even if a drain pipe is provided on the outer wall, the other end of the drain pipe will be blocked. There is no.
 (14)本発明の一態様(13)では、前記複数のスタビライザー盤の少なくとも一つを立設状態で係止する係止部と、前記複数のスタビライザー盤の少なくとも一つが前記係止部によって係止された状態を、前記箱型構造体の内部で操作されることで解除する解除操作部と、をさらに有することができる。こうすると、避難時に箱型構造体内に避難した避難者は、箱型構造体の浮上を確認した後に、箱型構造体の内部で解除操作部を操作して、複数のスタビライザー盤を箱型構造体外の水面上に突出させることができる。 (14) In one aspect (13) of the present invention, at least one of the plurality of stabilizer boards is locked in an upright state, and at least one of the plurality of stabilizer boards is engaged by the locking portion. A release operation unit that releases the stopped state by being operated inside the box-shaped structure may be further provided. In this way, the evacuees who have evacuated into the box-shaped structure at the time of evacuation operate the release operation unit inside the box-shaped structure after confirming the floating of the box-shaped structure, and connect the plurality of stabilizer boards to the box-shaped structure. It can protrude above the water surface outside the body.
 (15)本発明の一態様(1)~(14)では、前記箱型構造体は、前記箱型構造体に推進力を付与する推進具を取り付ける取付部を備えることができる。推進具として、電動式スクリューや手動式オールを挙げることができる。推進具を取り付けることによって、水面上を自走可能な自走式避難用構造物を実現できる。 (15) In one aspect (1) to (14) of the present invention, the box-shaped structure may include a mounting portion for attaching a propulsion tool for applying a propulsive force to the box-shaped structure. Examples of the propulsion tool include an electric screw and a manual oar. By attaching the propulsion device, a self-propelled evacuation structure capable of self-propelling on the water surface can be realized.
本発明の第1実施形態である避難用構造物の断面図である。BRIEF DESCRIPTION OF THE DRAWINGS It is sectional drawing of the evacuation structure which is 1st Embodiment of this invention. 浮遊状態の避難用構造物を示す図である。It is a figure which shows the evacuation structure in a floating state. 排水管に設けられる逆止弁を示す図である。It is a figure which shows the check valve provided in a drain pipe. 万一避難室に浸水した時にも浮遊可能な避難用構造物を示す図である。It is a figure which shows the evacuation structure which can float even if it is flooded in the evacuation room. 本発明の第2実施形態である避難用構造物の断面図である。It is sectional drawing of the evacuation structure which is 2nd Embodiment of this invention. 本発明の第3実施形態である避難用構造物を示す図である。It is a figure which shows the evacuation structure which is 3rd Embodiment of this invention. 図6に示す避難用構造物の横断面図である。It is a cross-sectional view of the evacuation structure shown in FIG. 本発明の第4実施形態である避難用構造物を示す図である。It is a figure which shows the evacuation structure which is 4th Embodiment of this invention. 図8に示す避難用構造物の手すりを使用する状態を示す図である。It is a figure which shows the state which uses the handrail of the evacuation structure shown in FIG. 図8に示す避難用構造物の横断面図である。It is a cross-sectional view of the evacuation structure shown in FIG. 本発明の第5実施形態である避難用構造物を示す図である。It is a figure which shows the evacuation structure which is 5th Embodiment of this invention. 図11に示す避難用構造物の横断面図である。It is a cross-sectional view of the evacuation structure shown in FIG. 図13(A)~図13(D)は、図11に示す避難用構造物のスタビライザー盤を使用位置まで引き出す過程を示す図である。13 (A) to 13 (D) are views showing a process of pulling out the stabilizer panel of the evacuation structure shown in FIG. 11 to a use position. 本発明の第6実施形態である避難用構造物を示す図である。It is a figure which shows the evacuation structure which is 6th Embodiment of this invention. 図14の天井壁の手すりを折り畳んだ状態を示す図である。It is a figure which shows the state which folded the handrail of the ceiling wall of FIG. 図14に示す箱型構造体の縦断面図である。It is a longitudinal cross-sectional view of the box-shaped structure shown in FIG. 図14に示す箱型構造体の横断面図である。It is a cross-sectional view of the box-shaped structure shown in FIG. 図14に示す箱型構造体の内部を示す一部を切断した斜視図である。FIG. 15 is a perspective view, partially cut away, showing the inside of the box-shaped structure shown in FIG. 14. 排水管の断面図である。It is sectional drawing of a drain pipe. 排水管の配置を示す図である。It is a figure showing arrangement of a drain pipe. 箱型構造体にスクリューを取り付けた自走式避難用構造物を示す図である。It is a figure which shows the self-propelled evacuation structure which attached the screw to the box-shaped structure. ハッチ扉から突出するオールを使用した自走式避難用構造物を示す図である。It is a figure which shows the self-propelled evacuation structure using the oar which protrudes from a hatch door. 天井壁の浮遊またはオールによる自走状態を示す図である。It is a figure which shows the floating state of the ceiling wall, or the self-propelled state by all. スタビライザー盤の使用状態を示す図である。It is a figure which shows the use condition of a stabilizer board. スタビライザー盤を立設状態で収容した状態を示す側面図である。It is a side view which shows the state which accommodated the stabilizer board in the upright state. スタビライザー盤の解除操作部を示す図である。It is a figure which shows the release operation part of a stabilizer board. スタビライザー盤の使用状態を示す側面図である。It is a side view which shows the use condition of a stabilizer board.
 以下、本発明の好適な実施の形態について詳細に説明する。なお以下に説明する本実施形態は請求の範囲に記載された本発明の内容を不当に限定するものではなく、本実施形態で説明される構成の全てが本発明の解決手段として必須であるとは限らない。 Hereinafter, preferred embodiments of the present invention will be described in detail. Note that the present embodiment described below does not unduly limit the contents of the present invention described in the claims, and that all of the configurations described in the present embodiment are indispensable as means for solving the present invention. Not necessarily.
 1.第1実施形態
 図1は、本発明の第1実施形態である避難用構造物1を示す。図1において、避難用構造物1は、箱型構造体6を含む。箱型構造体6は、例えば骨組み構造体2と外壁3とにより構成される。骨組み構造体2は、例えば鋼管等の梁2Aや柱(図示せず)により形成される。骨組み構造体2の例えば六面には、例えば鋼板等の外壁3が支持される。六面の外壁3の少なくとも一面例えば四面には、図1及び図2に示すようにハッチ扉4が設けられる。ハッチ扉4は、外壁3に形成される穴部にハッチ枠5が組みつけられ、ハッチ枠5に対してヒンジ等により開閉可能に支持される。ハッチ扉4はハッチ枠5に対して水密にシールされることが好ましい。箱型構造体6の下部には、地上に設置される基礎構造と連結するための鋼材等で形成される土台2Bを設けることができる。土台2Bは階下の構造体と連結され、避難用構造物1が階上に設置されてもよい。土台2Bは、基礎又は階下との連結を容易に、好ましくは箱型構造体6内での操作により解除して、水害時には浮上可能である。
1. First Embodiment FIG. 1 shows an evacuation structure 1 according to a first embodiment of the present invention. In FIG. 1, the evacuation structure 1 includes a box-shaped structure 6. The box-shaped structure 6 includes, for example, the frame structure 2 and the outer wall 3. The frame structure 2 is formed by a beam 2A such as a steel pipe or a column (not shown). An outer wall 3 such as a steel plate is supported on, for example, six surfaces of the skeleton structure 2. A hatch door 4 is provided on at least one surface, for example, four surfaces of the six outer walls 3, as shown in FIGS. The hatch door 4 has a hatch frame 5 assembled to a hole formed in the outer wall 3 and is supported on the hatch frame 5 by a hinge or the like so as to be openable and closable. The hatch door 4 is preferably sealed watertight to the hatch frame 5. At the lower part of the box-shaped structure 6, a base 2B made of steel or the like can be provided for connection with a foundation structure installed on the ground. The base 2B may be connected to a structure below the floor, and the evacuation structure 1 may be installed above the floor. The base 2B can be easily connected to the foundation or downstairs, preferably released by an operation in the box-shaped structure 6, and can float in the event of flood.
 箱型構造体6の例えば内部にフロート10が設けられる。フロート10は密度が水よりも小さい(比重が1未満)材料で形成され、例えば密度45kg/mのポリスチレンが用いられる。図1では、六面の外壁3のうちの底壁3A上にフロート10Aが配置される。このフロート10Aの大部分が水没することで、図2に示すように避難用構造物1が浮遊する浮力が確保される。 A float 10 is provided, for example, inside the box-shaped structure 6. The float 10 is formed of a material having a density lower than that of water (specific gravity is less than 1), and for example, polystyrene having a density of 45 kg / m 3 is used. In FIG. 1, a float 10A is arranged on a bottom wall 3A of the six outer walls 3. When most of the float 10A is submerged, buoyancy in which the evacuation structure 1 floats is secured as shown in FIG.
 図1には、満載喫水線LWL(load water line)が示されている。満載喫水線LWLの位置は次の通り求められる。先ず、満載時の避難用構造物1の総重量が求められる。この総重量とは、避難用構造物1自体の総重量と、避難用構造物1内への満載時の総重量との和である。避難用構造物1内への満載時の総重量には、最大収容人員の想定される総体重(例えば人員数×65kg)や、搭載物(飲料用ペットボトルや救急用具等)の総重量が含まれる。そして、満載喫水線LWLの位置は、避難用構造物1が水没する深さをHとしたとき、(深さHで水没する避難用構造物1が水を排除する体積)×(水の比重)=(満載時の避難用構造物1の総重量)が成立する深さHとして求められる。なお、本明細書において、「水」とは、海水、淡水または海水と淡水とが混在した汽水等を含む。 FIG. 1 shows a load line LWL (load water line). The position of the full load line LWL is obtained as follows. First, the total weight of the evacuation structure 1 when fully loaded is determined. The total weight is the sum of the total weight of the evacuation structure 1 itself and the total weight of the evacuation structure 1 when it is fully loaded. The total weight of the evacuation structure 1 when it is fully loaded includes the estimated total weight of the maximum capacity (for example, the number of personnel x 65 kg) and the total weight of the loaded items (such as plastic bottles for drinks and rescue equipment). included. When the depth at which the evacuation structure 1 is submerged is H, the position of the full load waterline LWL is (the volume at which the evacuation structure 1 submerged at the depth H excludes water) × (specific gravity of water) = (The total weight of the evacuation structure 1 at full load) is obtained as the depth H. In this specification, “water” includes seawater, freshwater or brackish water in which seawater and freshwater are mixed.
 図1において、箱型構造体6の満載喫水線LWLよりも上方の位置にて、箱型構造体6の内部に床盤20が配置される。床盤20と、天井壁3Bと、2つの側壁3C,3Dとに囲まれた空間が、避難室30の最大体積である。床盤20は、満載喫水線LWLよりも高い位置に床面21を有する。床盤20は、上下に貫通する一つ以上例えば複数の排水口20Aを備える。床盤20の下面と、床盤20の下方に位置するフロート10Aの上面との間に、排水貯蓄室40が設けられる。本実施形態では、排水貯蓄室40の底板として、フロート10Aの上面には防水板41が設けられている。それにより、排水貯蓄室40内の水がフロート10A側に漏れることがない。排水貯蓄室40は、箱型構造体6の満載喫水線LWLよりも上方にて箱型構造体6の内部に配置される。万一避難室30に浸水すると、床盤20の床面21に開口する排水口20Aを介して排水貯蓄室40に配水される。従って、避難室30への浸水量が比較的大量であっても、床盤20の上方の避難室30が水浸しとなることを防止できる。なお、排水貯蓄室40は、図1のように床盤20の下方全域に設けるものに限らず、床盤20の下方の一部(例えば周縁領域)に設けても良い。 In FIG. 1, the floor panel 20 is disposed inside the box-shaped structure 6 at a position above the full load line LWL of the box-shaped structure 6. The space surrounded by the floor panel 20, the ceiling wall 3B, and the two side walls 3C and 3D is the maximum volume of the evacuation room 30. The floor panel 20 has a floor surface 21 at a position higher than the full load line LWL. The floor panel 20 includes one or more, for example, a plurality of drain ports 20A penetrating vertically. A drainage storage chamber 40 is provided between the lower surface of the floor panel 20 and the upper surface of the float 10 </ b> A located below the floor panel 20. In the present embodiment, a waterproof plate 41 is provided on the upper surface of the float 10A as a bottom plate of the drainage storage chamber 40. Thereby, the water in the drainage storage room 40 does not leak to the float 10A side. The drainage storage chamber 40 is disposed inside the box-shaped structure 6 above the full load line LWL of the box-shaped structure 6. If the evacuation room 30 is flooded, the water is distributed to the drainage storage room 40 through the drainage opening 20A opened in the floor surface 21 of the floor panel 20. Therefore, even if the amount of flooding into the evacuation room 30 is relatively large, it is possible to prevent the evacuation room 30 above the floor panel 20 from being flooded. The drainage storage chamber 40 is not limited to being provided in the entire area below the floor panel 20 as shown in FIG. 1, and may be provided in a part (for example, a peripheral area) below the floor panel 20.
 排水貯蓄室40に集められた水を箱型構造体6の外部に配水するために排水管50が設けられる。排水管50は、一端の入口50Aが箱型構造体6の内部例えば排水貯蓄室40に開口し、他端の出口50Bが満載喫水線LWLの上方にて側壁3C,3D外部に開口する。こうして、排水貯蓄室40に集められる水は、排水管50を介して箱型構造体の外部に排水される。特に、排水管50の出口50Bは満載喫水線LWLよりも上方に開口しているので、排水管には排水を阻害する外圧となる水圧は作用しない。よって、排水管50での円滑な排水作用が確保される。排水管50は、入口50Aよりも出口50Bが低い位置に設定され、特に入口50Aから出口50Bに向けて水勾配が設定されていることが好ましい。こうして、床盤20の上方の避難室30に水が貯まることが防止される。なお、排水貯蓄室40を設けずに、排水管50の一端を床盤20の床面21の高さ以下の位置に開口するように配置しても良い。 排水 A drain pipe 50 is provided for distributing the water collected in the drain storage chamber 40 to the outside of the box-shaped structure 6. The drain pipe 50 has an inlet 50A at one end opening to the inside of the box-shaped structure 6, for example, the drainage storage chamber 40, and an outlet 50B at the other end opening outside the side walls 3C and 3D above the full load water line LWL. Thus, the water collected in the drainage storage chamber 40 is drained to the outside of the box-shaped structure via the drainage pipe 50. In particular, since the outlet 50B of the drain pipe 50 is opened above the full load line LWL, the drain pipe is not subjected to the water pressure acting as the external pressure that inhibits drainage. Therefore, a smooth draining action in the drain pipe 50 is ensured. In the drain pipe 50, the outlet 50B is set at a position lower than the inlet 50A, and it is particularly preferable that a water gradient is set from the inlet 50A to the outlet 50B. In this way, water is prevented from being stored in the evacuation room 30 above the floor panel 20. Instead of providing the drainage storage chamber 40, one end of the drainage pipe 50 may be arranged so as to open at a position equal to or lower than the height of the floor surface 21 of the floor panel 20.
 本実施形態では、排水管50は、箱型構造体6の外部からの水の流入を防止する逆止弁60を備えることができる。こうして、排水管50を介して箱型構造体6の内部に水が流入することが防止される。特に、逆止弁60は、図3に示すように、排水貯蓄室40からの排水の水圧が作用した時に開く弁61を備えることができる。弁61は、例えばヒンジ62により回動自在に垂下して支持される。それにより、排水貯蓄室40からの排水の水圧が作用しない時には、弁61は弁61自体の自重により垂下されて、排水管50の出口50Bを閉鎖する。よって、常時は弁61により排水管50の出口50Bから入口50Aに向かう逆流は防止される。排水貯蓄室40からの排水により所定の水圧が弁61に作用すると、弁61は図3の矢印方向に回動して開放される。図3では、弁61やヒンジ62を包囲して保護するカバー63を設けている。逆止弁60は他の構造を採用しても良く、カバー63を設けなくても良い。なお、排水管50や逆止弁60は、図2に示すように、箱型構造体6が略直方体であるとき、その略直方体の長手軸と平行な2つの側壁3C,3Dにそれぞれ一つまたは複数設けることに加え、略直方体の長手軸と直交する2つの端壁3E,3Fにも設けることができる。 In the present embodiment, the drain pipe 50 can be provided with a check valve 60 for preventing inflow of water from outside the box-shaped structure 6. In this way, water is prevented from flowing into the box-shaped structure 6 through the drain pipe 50. In particular, as shown in FIG. 3, the check valve 60 can include a valve 61 that opens when the water pressure of the drainage from the drainage storage chamber 40 acts. The valve 61 is rotatably suspended and supported by, for example, a hinge 62. Thereby, when the water pressure of the drainage from the drainage storage chamber 40 does not act, the valve 61 is drooped by its own weight and closes the outlet 50 </ b> B of the drainage pipe 50. Therefore, the backflow from the outlet 50B of the drain pipe 50 toward the inlet 50A is always prevented by the valve 61. When a predetermined water pressure acts on the valve 61 due to the drainage from the drainage storage chamber 40, the valve 61 is rotated and opened in the direction of the arrow in FIG. In FIG. 3, a cover 63 that surrounds and protects the valve 61 and the hinge 62 is provided. The check valve 60 may adopt another structure, and the cover 63 may not be provided. When the box-shaped structure 6 is a substantially rectangular parallelepiped as shown in FIG. 2, the drain pipe 50 and the check valve 60 are respectively provided on two side walls 3C and 3D parallel to the longitudinal axis of the substantially rectangular parallelepiped. Alternatively, in addition to providing a plurality, two end walls 3E and 3F orthogonal to the longitudinal axis of the substantially rectangular parallelepiped can be provided.
 本実施形態では、満載喫水線LWLの下方に位置する底壁3Aに、風や波で傾く箱型構造体6に復元力を付与する重り70を配置することができる。この重り70は、避難用構造物1の横転防止のためのバランサーとして機能する。そのため、重り70は、図2に示す避難用構造物1の横断面の中心に位置する。また、図2に示すように、箱型構造体6が略直方体である場合には、重り70は、略直方体の長手軸に沿って配置することが好ましい。 In the present embodiment, a weight 70 that applies a restoring force to the box-shaped structure 6 tilted by wind or waves can be arranged on the bottom wall 3A located below the full load line LWL. The weight 70 functions as a balancer for preventing the evacuation structure 1 from rolling over. Therefore, the weight 70 is located at the center of the cross section of the evacuation structure 1 shown in FIG. Further, as shown in FIG. 2, when the box-shaped structure 6 is a substantially rectangular parallelepiped, the weight 70 is preferably arranged along the longitudinal axis of the substantially rectangular parallelepiped.
 本実施形態では、フロート10は、箱型構造体6内に浸水しても、箱型構造体6を完全に水没させない体積が確保されていることが好ましい。図1に示す避難室30に浸水すると、避難用構造物1の総重量が増加し、満載喫水線LWLを超える位置に喫水線が上昇する。その場合でも、避難用構造物1を完全に水没させないために、箱型構造体6の避難室30にフロート10Bを増設することができる。避難用構造物1に浸水があったとしても避難用構造物1が完全に水没することがないので、避難室30には完全水密性が求められない。本実施形態では、天井壁3Bの内側にフロート10Bを増設しているが、床盤20、2つの側壁3C,3Dの内側にもフロート10Bを増設することが好ましい。この増設フロート10Bが水を排除する体積に比例して浮力が増加するので、避難用構造物1を完全に水没させないようにすることができる。このために、本実施形態では、フロート10A,10A1,10B,10B1の全てが水没することで水を排除する体積Vに水の密度ρを乗じた重量V×ρ×G(Gは重力加速度)を、避難用構造物1の総重量よりも大きくしている。特に、フロート10は、箱型構造体6内に浸水しても、排水管50の出口50Bが箱型構造体外の水面の上方に位置するように、箱型構造体6を完全に水没させない体積が確保されている。なお、避難用構造物1の総重量には、最大搭載人数の体重や搭載設備の重量を含めても良いし、含めなくても良い。実際には、フロート以外の部材も水を排除するのでV×ρ×Gよりも大きな浮力が得られ、避難用構造物1自体の重量以外は無視しても良い場合がある。 In the present embodiment, it is preferable that the float 10 has a volume that does not completely submerge the box-shaped structure 6 even when the float 10 is flooded in the box-shaped structure 6. When the evacuation room 30 shown in FIG. 1 is flooded, the total weight of the evacuation structure 1 increases, and the waterline rises to a position exceeding the full load waterline LWL. Even in that case, in order to prevent the evacuation structure 1 from being completely submerged, the float 10B can be additionally provided in the evacuation room 30 of the box-shaped structure 6. Even if the evacuation structure 1 is flooded, the evacuation structure 1 does not completely submerge, so that the evacuation room 30 is not required to be completely watertight. In the present embodiment, the float 10B is additionally provided inside the ceiling wall 3B, but it is preferable that the float 10B is additionally provided inside the floor 20, the two side walls 3C, 3D. Since the buoyancy increases in proportion to the volume of the additional float 10B that excludes water, the evacuation structure 1 can be prevented from being completely submerged. For this reason, in the present embodiment, a weight V × ρ × G (G is a gravitational acceleration) obtained by multiplying a volume V that excludes water by submerging all the floats 10A, 10A1, 10B, and 10B1 by a density ρ of water Is larger than the total weight of the evacuation structure 1. In particular, the volume of the float 10 that does not completely submerge the box-shaped structure 6 so that even if the float 10 is submerged in the box-shaped structure 6, the outlet 50B of the drain pipe 50 is located above the water surface outside the box-shaped structure. Is secured. The total weight of the evacuation structure 1 may or may not include the weight of the maximum number of persons and the weight of the equipment. Actually, since the members other than the float also exclude water, a buoyancy larger than V × ρ × G is obtained, and there may be a case where the weight other than the weight of the evacuation structure 1 itself can be ignored.
 ここで、箱型構造体6は完全に水密シールされていない不完全水密性であってよく、避難される少なくとも数時間に亘って大量の水が一気に侵入されるものでなければよい。不完全水密性の箱型構造体6は構造原理上自ずと空気孔を含むことができ、あるいは箱型構造体6の上部側に空気孔を配置しても良い。それにより、ハッチ扉4を密閉しても避難者が窒息することはない。 Here, the box-shaped structure 6 may be incompletely watertight, which is not completely watertightly sealed, and does not need to allow a large amount of water to enter at a stretch over at least several hours to be evacuated. The imperfectly watertight box-shaped structure 6 can naturally include an air hole on the structural principle, or an air hole may be arranged on the upper side of the box-shaped structure 6. Thus, even if the hatch door 4 is closed, the evacuees will not suffocate.
 図4は、箱型構造体6内に浸水した状態での避難用構造物1の浮遊状態を示している。この場合、少なくとも天井壁3Bの天面は喫水線よりも上方の位置に確保される。従って、図4のような状態では、避難者は天井壁3Bのハッチ扉4を介して天井壁3Bの天面に脱出すればよい。このとき、天井壁3Bのハッチ扉4と対向する位置のフロート10B1は取外し可能とするか、あるいはその位置にフロート10B1を設けないでおくと、脱出の妨げとならない。 4 shows a floating state of the evacuation structure 1 in a state of being submerged in the box-shaped structure 6. In this case, at least the top surface of the ceiling wall 3B is secured at a position above the waterline. Therefore, in the state as shown in FIG. 4, the evacuees need only escape from the top surface of the ceiling wall 3B via the hatch door 4 of the ceiling wall 3B. At this time, if the float 10B1 at the position facing the hatch door 4 of the ceiling wall 3B is removable or the float 10B1 is not provided at that position, it does not hinder escape.
 上記の通り、避難室30内に増設フロート10Bを設けると、避難用構造物1が如何なる姿勢となっても完全に水没することはなく、少なくとも一つのハッチ扉4を介して避難用構造物1の外部に脱出して待機していれば、人命を救助可能となる。また、増設フロート10Bが避難室30を囲む六面に配置されると、発泡体などで形成されるフロート10Bは揺れや横転時に避難者を保護するクッション材として利用できる。 As described above, when the additional float 10 </ b> B is provided in the evacuation room 30, the evacuation structure 1 is not completely submerged in any posture, and the evacuation structure 1 is provided through at least one hatch door 4. If you escape outside and wait, you can save lives. Further, when the additional floats 10B are arranged on six surfaces surrounding the evacuation room 30, the floats 10B formed of a foam or the like can be used as a cushion material for protecting the evacuated person when shaking or rolling over.
 上述した通り、ハッチ扉4は、六面の外壁3うちの略直方体の長手軸と平行な四面である底壁3A、天井壁3B、及び2つの側壁3C,3Dに設けることができる。箱型構造体6が万一横転する場合、箱型構造体6の長手軸と平行な四面のいずれかが上向きとなる姿勢で安定する。従って、箱型構造体6の長手軸と平行な四面である底壁3Aと、天井壁3Bと、2つの側壁3C,3Dとにハッチ扉4を設けておけば、横転時に箱型構造体6からの脱出が容易となる。なお、図1において、底壁3Aのハッチ扉4と対向する位置のフロート10A1、床盤20及び防水板41の一部は取外し可能とするか、あるいはその位置にフロート10A1を設けないでおくと、脱出の妨げとならない。 As described above, the hatch door 4 can be provided on the bottom wall 3A, the ceiling wall 3B, and the two side walls 3C and 3D which are four surfaces parallel to the longitudinal axis of the substantially rectangular parallelepiped among the six outer walls 3. If the box-shaped structure 6 rolls over, it is stabilized in a posture in which one of the four surfaces parallel to the longitudinal axis of the box-shaped structure 6 faces upward. Therefore, if the hatch door 4 is provided on the bottom wall 3A, the ceiling wall 3B, and the two side walls 3C and 3D, which are four surfaces parallel to the longitudinal axis of the box-shaped structure 6, the box-shaped structure 6 can be turned over. Escape from the vehicle becomes easier. In FIG. 1, if the float 10A1 at the position facing the hatch door 4 on the bottom wall 3A, a part of the floor panel 20 and the waterproof plate 41 can be removed, or the float 10A1 is not provided at that position. , Does not hinder escape.
 本実施形態では、図2に示すように、2つの側壁3C,3Dの一方3Cに設けられるハッチ扉4は、略直方体の長手軸の方向で両端に位置する2つの端壁3E,3Fの一方3Eに偏った位置に配置することができる。同様に、2つの側壁3C,3Dの他方3Dに設けられるハッチ扉4は、2つの端壁3E,3Fの他方3Fに偏った位置に配置することができる。こうすると、2つの端壁3E,3Fの何れかかが天面となるように避難用構造物1が縦に反転しても、2つの側壁3C,3Dのいずれか一方に設けたハッチ扉4が水面より上に配置され易くなり、避難用構造物1からの脱出が可能となる。 In this embodiment, as shown in FIG. 2, the hatch door 4 provided on one of the two side walls 3C, 3D is one of the two end walls 3E, 3F located at both ends in the direction of the longitudinal axis of the substantially rectangular parallelepiped. It can be arranged at a position biased to 3E. Similarly, the hatch door 4 provided on the other side 3D of the two side walls 3C and 3D can be arranged at a position biased on the other side 3F of the two end walls 3E and 3F. In this way, even if the evacuation structure 1 is vertically inverted so that one of the two end walls 3E and 3F becomes the top surface, the hatch door 4 provided on one of the two side walls 3C and 3D. Can easily be arranged above the water surface, and escape from the evacuation structure 1 becomes possible.
 本実施形態では、少なくとも一つのハッチ扉4が図1または図4に示すように天井壁3Bに設けられる場合には、天井壁3Bは、例えばヒンジ81により立て起こし自在な手すり80を有することができる。こうすると、ハッチ扉4を介して天井壁3Bの外部に脱出した避難者は、天井壁3Bに設けられた手すり80を立て起こすことで、手すり80につかまった状態で、安全に救助を待機することができる。なお、図4では、立て起こされた状態で手すり80を維持するため、隣り合う手すり80同士が4つの連結具82で連結されている。 In the present embodiment, when at least one hatch door 4 is provided on the ceiling wall 3B as shown in FIG. 1 or FIG. 4, the ceiling wall 3B may have a handrail 80 that can be raised and raised by a hinge 81, for example. it can. In this way, the evacuee who has escaped to the outside of the ceiling wall 3B via the hatch door 4 raises the handrail 80 provided on the ceiling wall 3B, and is in a state of being caught by the handrail 80 and safely waiting for rescue. be able to. In FIG. 4, adjacent handrails 80 are connected by four connecting tools 82 in order to maintain the handrails 80 in an upright state.
 なお、上記のように本実施形態について詳細に説明したが、本発明の新規事項および効果から実体的に逸脱しない多くの変形が可能であることは当業者には容易に理解できるであろう。従って、このような変形例はすべて本発明の範囲に含まれるものとする。例えば、明細書又は図面において、少なくとも一度、より広義または同義な異なる用語と共に記載された用語は、明細書又は図面のいかなる箇所においても、その異なる用語に置き換えることができる。また本実施形態及び変形例の全ての組み合わせも、本発明の範囲に含まれる。 Although the present embodiment has been described in detail as described above, those skilled in the art can easily understand that many modifications that do not substantially depart from the novel matter and effects of the present invention are possible. Therefore, such modifications are all included in the scope of the present invention. For example, in the specification or the drawings, a term described at least once together with a broader or synonymous different term can be replaced with the different term in any part of the specification or the drawing. In addition, all combinations of the present embodiment and the modifications are also included in the scope of the present invention.
 2.第2実施形態
 図5は、本発明の第2実施形態に係る避難用構造物1Aを示す。第1実施形態では、避難室30に浸水して喫水線が満載喫水線LWLよりも上昇すると、逆止弁60の弁61が外部の水圧によって閉鎖される。そうすると、排水管50を介した排水が不可能となる。図5に示す避難用構造物1Aは、避難室30に浸水して喫水線が上昇した時に避難室30内を水抜きする追加の排水管90を有する。
2. Second Embodiment FIG. 5 shows an evacuation structure 1A according to a second embodiment of the present invention. In the first embodiment, when the waterline rises above the full load waterline LWL due to flooding in the evacuation room 30, the valve 61 of the check valve 60 is closed by external water pressure. Then, drainage via the drain pipe 50 becomes impossible. The evacuation structure 1A shown in FIG. 5 has an additional drain pipe 90 for draining the evacuation chamber 30 when the evacuation chamber 30 is flooded and the waterline rises.
 図5において、床盤20と交差する外壁3C~3Fの少なくとも一つ、例えば外壁3Cに、追加の排水管90が設けられる。この排水管90は、避難室30の下部に開口する一端90Aが排水入口となる。排水管90は、外壁3Cの外側に開口する複数の分岐端(排水出口とも言う)90B1~90Bm(mは2以上の整数)がそれぞれ排水出口となる。 In FIG. 5, an additional drain pipe 90 is provided on at least one of the outer walls 3C to 3F intersecting with the floor panel 20, for example, the outer wall 3C. One end 90 </ b> A of the drainage pipe 90 that opens at the lower part of the evacuation room 30 serves as a drainage inlet. In the drain pipe 90, a plurality of branch ends (also referred to as drain outlets) 90B1 to 90Bm (m is an integer of 2 or more) which open to the outside of the outer wall 3C are drain outlets.
 複数の分岐端90B1~90Bmの各々は、排水管50の出口50Bと同一の構造を有する。つまり、複数の分岐端90B1~90Bmの各々は、逆止弁60(弁61及びヒンジ62)とカバー63とを有する。よって、複数の分岐端90B1~90Bmでは、避難室30の水圧が排水管90の入口90Aを介して作用すると、図3に示す弁61が開放されて排水可能となる。 Each of the plurality of branch ends 90B1 to 90Bm has the same structure as the outlet 50B of the drain pipe 50. That is, each of the plurality of branch ends 90B1 to 90Bm has the check valve 60 (the valve 61 and the hinge 62) and the cover 63. Therefore, at the plurality of branch ends 90B1 to 90Bm, when the water pressure in the evacuation chamber 30 acts via the inlet 90A of the drain pipe 90, the valve 61 shown in FIG.
 複数の分岐端90B1~90Bmを設けた理由は、避難室30に浸水して喫水線が満載喫水線LWLよりも上昇しようとしても、複数の分岐端90B1~90Bmの少なくとも一つが喫水線よりも上方に配置されるので、避難室30内の水圧によって、浸水した水を排水させることができるからである。それにより、喫水線が満載喫水線LWLよりも上昇することを防止できる。 The reason for providing the plurality of branch ends 90B1 to 90Bm is that at least one of the plurality of branch ends 90B1 to 90Bm is disposed above the waterline even if the waterline is going to rise above the full load waterline LWL due to flooding in the evacuation room 30. Therefore, the flooded water can be drained by the water pressure in the evacuation room 30. This can prevent the draft line from rising above the full load draft line LWL.
 3.第3実施形態
 図6及び図7は、本発明の第3実施形態に係る避難用構造物100を示す。避難用構造物100は、横断面の輪郭が、第1、第2実施形態のような四角形よりも角数が多い多角形例えば略六角形である。特に、浮遊状態での避難用構造物100は、図6に示すように、底部(底壁)103Aの水平幅W1と頂部(天井壁)103Bの水平幅W2とが、底部103Aと頂部103Bとの間の位置での水平幅W3よりも狭い(W1<W3,W2<W3)。特にW1<W3であると、避難用構造物100が横転しようとしても、第1、第2実施形態の避難用構造物1、1Aよりも正立状態に復元し易くなる。
3. Third Embodiment FIGS. 6 and 7 show an evacuation structure 100 according to a third embodiment of the present invention. The cross section of the evacuation structure 100 is a polygon having a larger number of corners than a quadrangle as in the first and second embodiments, for example, a substantially hexagon. In particular, as shown in FIG. 6, the evacuation structure 100 in the floating state has a horizontal width W1 of the bottom (bottom wall) 103A and a horizontal width W2 of the top (ceiling wall) 103B, and the bottom 103A and the top 103B. (W1 <W3, W2 <W3). In particular, when W1 <W3, even if the evacuation structure 100 tries to roll over, it is easier to restore to the upright state than the evacuation structures 1, 1A of the first and second embodiments.
 避難用構造物100は、図7に示すように、例えば骨組み構造体102、壁材(底壁103A、天井壁103B、側壁103C,103D等)及びフロート110により形成される箱型構造体106を有し、箱型構造体106の横断面の輪郭は略六角形である。外部に露出するフロート110は、露出面が鉄板などで覆われても良い。ハッチ扉104は、第1実施形態のハッチ扉4と同様の位置に配置される。つまり、ハッチ扉104は、箱型構造体106の長手軸と平行な四面である底壁103A、天井壁103B及び2つの側壁103C,103Dに設けることができる。避難用構造物100が万一横転する場合、箱型構造体106の長手軸と平行な四面のいずれかが上向きとなる姿勢で安定する。従って、箱型構造体106の長手軸と平行な四面である底壁103A、天井壁103B及び2つの側壁103C,103Dにハッチ扉104を設けておけば、横転時に避難用構造物100からの脱出が容易となる。 As shown in FIG. 7, the evacuation structure 100 includes a box-shaped structure 106 formed by, for example, a frame structure 102, wall materials (a bottom wall 103A, a ceiling wall 103B, side walls 103C and 103D) and a float 110. The outline of the cross section of the box-shaped structure 106 is substantially hexagonal. The exposed surface of the float 110 exposed to the outside may be covered with an iron plate or the like. The hatch door 104 is arranged at the same position as the hatch door 4 of the first embodiment. That is, the hatch door 104 can be provided on the bottom wall 103A, the ceiling wall 103B, and the two side walls 103C and 103D which are four surfaces parallel to the longitudinal axis of the box-shaped structure 106. When the evacuation structure 100 rolls over, it is stabilized in a posture in which one of the four surfaces parallel to the longitudinal axis of the box-shaped structure 106 faces upward. Therefore, if the hatch door 104 is provided on the bottom wall 103A, the ceiling wall 103B, and the two side walls 103C and 103D which are four surfaces parallel to the longitudinal axis of the box-shaped structure 106, the escape from the evacuation structure 100 at the time of rollover. Becomes easier.
 箱型構造体106の内部には床盤120が配置され、床盤120の下方であってハッチ扉104を避けた位置に重り170が配置される。箱型構造体106の頂部103Bには手すり180が設けられ、第1実施形態の手すり80と同様に折りたたみ可能である。 床 The floor panel 120 is disposed inside the box-shaped structure 106, and the weight 170 is disposed below the floor panel 120 and at a position avoiding the hatch door 104. A handrail 180 is provided on the top 103B of the box-shaped structure 106, and can be folded like the handrail 80 of the first embodiment.
 箱型構造体106は、図5に示す排水管90を有することができ、あるいは排水管90に代えて、図7に示すように複数の排水管150を有することができる。複数の排水管150の各々は、一端150Aが避難室130に開口し、その他端150Bは箱型構造体106の側壁103C,103Dに開口している。なお、図6では複数の排水管150の他端150Bの開口は省略されている。また、複数の排水管150の各々は、弁161を備えた逆止弁160を有する。複数の排水管150は、それぞれ異なる高さ位置に配置されている。こうして、複数の排水管150は、異なる高さに分岐端90B1~90Bmを有する図5の排水管90と同様に作用する。図7の構造においても、図5に示す排水貯蓄室40及び排水管50を設けることができる。こうして、床盤120の床面よりも上方の避難室130に水が貯まることが防止される。 The box-shaped structure 106 can have the drain pipe 90 shown in FIG. 5, or can have a plurality of drain pipes 150 as shown in FIG. Each of the plurality of drainage pipes 150 has one end 150A opened to the evacuation chamber 130 and the other end 150B opened to the side walls 103C and 103D of the box-shaped structure 106. In FIG. 6, the openings of the other ends 150B of the plurality of drain pipes 150 are omitted. Further, each of the plurality of drain pipes 150 has a check valve 160 provided with a valve 161. The plurality of drain pipes 150 are respectively arranged at different height positions. Thus, the plurality of drainage pipes 150 operate similarly to the drainage pipes 90 of FIG. 5 having the branch ends 90B1 to 90Bm at different heights. Also in the structure of FIG. 7, the drainage storage chamber 40 and the drainage pipe 50 shown in FIG. 5 can be provided. Thus, water is prevented from being stored in the evacuation room 130 above the floor surface of the floor panel 120.
 4.第4実施形態
 図8~図10は、本発明の第4実施形態に係る避難用構造物200を示す。避難用構造物200は、横断面の輪郭が、第1、第2実施形態のような四角形よりも角数が多い多角形例えば略八角形である。特に、浮遊状態での避難用構造物200は、底部(底壁)203Aの水平幅と頂部(天井壁)203Bの水平幅とが、底部203Aと頂部203Bとの間の位置での水平幅よりも狭い。こうすると、避難用構造物200が横転しようとしても、第1、第2実施形態の避難用構造物1、1Aよりも正立状態に復元し易くなる。
4. Fourth Embodiment FIGS. 8 to 10 show an evacuation structure 200 according to a fourth embodiment of the present invention. The evacuation structure 200 has a profile of a cross section that is a polygon having a larger number of corners than a quadrangle as in the first and second embodiments, for example, a substantially octagon. In particular, in the evacuation structure 200 in a floating state, the horizontal width of the bottom (bottom wall) 203A and the horizontal width of the top (ceiling wall) 203B are larger than the horizontal width at the position between the bottom 203A and the top 203B. Is also narrow. In this case, even if the evacuation structure 200 tries to roll over, the evacuation structure 200 is more easily restored to the upright state than the evacuation structures 1, 1A of the first and second embodiments.
 避難用構造物200は、図10に示すように、例えば骨組み構造体202、壁材(底壁203A、天井壁203B、側壁203C,203D等)及びフロート210等により形成される箱型構造体206を有し、箱型構造体206の横断面の輪郭が略八角形である。ハッチ扉204は、第1実施形態のハッチ扉4と同様の位置に配置される。つまり、ハッチ扉204は、箱型構造体206の長手軸と平行な四面である底壁203A、天井壁203B及び2つの側壁203C,203Dに設けることができる。避難用構造物200が万一横転する場合、箱型構造体206の長手軸と平行な四面のいずれかが上向きとなる姿勢で安定する。従って、箱型構造体206の長手軸と平行な四面である底壁203A、天井壁203B及び2つの側壁203C,203Dにハッチ扉204を設けておけば、横転時に避難用構造物200からの脱出が容易となる。 As shown in FIG. 10, the evacuation structure 200 has a box-shaped structure 206 formed by, for example, a frame structure 202, wall materials (a bottom wall 203A, a ceiling wall 203B, side walls 203C and 203D), a float 210, and the like. , And the outline of the cross section of the box-shaped structure 206 is substantially octagonal. The hatch door 204 is arranged at the same position as the hatch door 4 of the first embodiment. That is, the hatch door 204 can be provided on the bottom wall 203A, the ceiling wall 203B, and the two side walls 203C and 203D which are four surfaces parallel to the longitudinal axis of the box-shaped structure 206. If the evacuation structure 200 rolls over, it is stabilized in a posture in which one of the four surfaces parallel to the longitudinal axis of the box-shaped structure 206 faces upward. Therefore, if the hatch door 204 is provided on the bottom wall 203A, the ceiling wall 203B, and the two side walls 203C and 203D which are four surfaces parallel to the longitudinal axis of the box-shaped structure 206, the escape from the evacuation structure 200 at the time of rollover. Becomes easier.
 箱型構造体206の内部には床盤220が配置され、床盤220の下方であってハッチ扉204を避けた位置に重り270が配置される。箱型構造体206の頂部203Bには手すり280が設けられる。手すり280は、第1実施形態の手すり80と同様に折りたたみ可能としてもよいが、図8に示す不使用時の位置と図9に示す使用時の位置とに位置調整できるようにしても良い。 床 The floor panel 220 is disposed inside the box-shaped structure 206, and the weight 270 is disposed below the floor panel 220 and at a position avoiding the hatch door 204. A handrail 280 is provided on the top 203 </ b> B of the box-shaped structure 206. The handrail 280 may be foldable similarly to the handrail 80 of the first embodiment, but may be configured to be adjustable between a non-use position shown in FIG. 8 and a use position shown in FIG.
 箱型構造体206は、図5に示す排水管90を有することができ、あるいは排水管90に代えて、図10に示すように、図7の複数の排水管150と同様な複数の排水管250を有することができる。なお、図8及び図9では複数の排水管250の他端の開口は省略されている。複数の排水管250は、異なる高さに分岐端90B1~90Bmを有する図5の排水管90と同様に作用する。図10の構造においても、図5に示す排水貯蓄室40及び排水管50を設けることができる。こうして、床盤220の上方の避難室230に水が貯まることが防止される。 The box-shaped structure 206 can have the drain pipes 90 shown in FIG. 5 or, instead of the drain pipes 90, as shown in FIG. 10, a plurality of drain pipes similar to the plurality of drain pipes 150 of FIG. 250. 8 and 9, the openings at the other ends of the plurality of drain pipes 250 are omitted. The plurality of drain pipes 250 operate similarly to the drain pipe 90 of FIG. 5 having the branch ends 90B1 to 90Bm at different heights. Also in the structure of FIG. 10, the drainage storage chamber 40 and the drainage pipe 50 shown in FIG. 5 can be provided. Thus, water is prevented from being stored in the evacuation room 230 above the floor panel 220.
 5.第5実施形態
 図11及び図12は、本発明の第5実施形態に係る避難用構造物300を示す。避難用構造物300は、以下で説明するスタビライザー盤310の収容構造を除いて、本発明の第4実施形態と同じ構造を有する。ただし、スタビライザー盤310は、本発明の第1実施形態~第4実施形態のいずれの避難用構造物に追加しても良い。
5. Fifth Embodiment FIGS. 11 and 12 show an evacuation structure 300 according to a fifth embodiment of the present invention. The evacuation structure 300 has the same structure as that of the fourth embodiment of the present invention, except for a structure for accommodating a stabilizer board 310 described below. However, the stabilizer board 310 may be added to any of the evacuation structures according to the first to fourth embodiments of the present invention.
 避難用構造物300は、避難用構造物300の箱型構造体206のうち、横断面視で対向する2つの側壁203C,203Dより水平に突出可能な複数のスタビライザー盤310を収容することができる。避難用構造物300の浮遊時には、避難用構造物300の2つの側壁203C,203Dより複数のスタビライザー盤310を水平に突出させる。こうすると、スタビライザー盤310が水と接触することで生ずる抵抗力により、避難用構造物300の横転が防止されて姿勢が安定する。スタビライザー盤310は、特に図6以降の各図に示すように縦断面が多角形で横転し易い箱型構造体に設けることが好ましい。スタビライザー盤310は、異なる高さ位置の複数段に配置しても良い。 The evacuation structure 300 can accommodate a plurality of stabilizer boards 310 that can protrude horizontally from two opposing side walls 203C and 203D of the box-shaped structure 206 of the evacuation structure 300 in a cross-sectional view. . When the evacuation structure 300 floats, the plurality of stabilizer boards 310 are horizontally projected from the two side walls 203C and 203D of the evacuation structure 300. In this case, the resistance generated by the contact of the stabilizer board 310 with water prevents the evacuation structure 300 from rolling over and stabilizes the posture. The stabilizer board 310 is preferably provided in a box-shaped structure having a polygonal longitudinal section and easy to roll over, as shown in each of FIGS. The stabilizer boards 310 may be arranged in a plurality of stages at different height positions.
 複数のスタビライザー盤310は、図13(A)に示すように、避難用構造物300の箱型構造体206に収容可能である。ここで、スタビライザー盤310は、図13(A)に示すように、ヒンジで連結されて折り畳み可能な第1,第2のスタビライザー盤311,312を含むことができる。スタビライザー盤310を突出させるには、図13(A)に示す収容状態から、図13(B)に示すようにスタビライザー盤310を外方にスライドさせる。このスライド移動は、例えば図10に示す床盤220上で行うことができる。次に、図13(C)に示すように、第2のスタビライザー盤312を第1のスタビライザー盤311に対して90°回転させて起立させる。その後、図13(D)に示すように、スタビライザー盤310をスライドさせながら、第2のスタビライザー盤312を第1のスタビライザー盤311に対してさらに90°回転させる。こうして、第1,第2のスタビライザー盤311,312を平板状態として、スタビライザー盤310を最終位置まで突出させることができる。このようにすると、避難用構造物300を無駄に大きくしなくても、所定の突出長となるスタビライザー盤310を避難用構造物300内に収容することができる。 As shown in FIG. 13A, the plurality of stabilizer boards 310 can be accommodated in the box-shaped structure 206 of the evacuation structure 300. Here, as shown in FIG. 13A, the stabilizer board 310 may include first and second stabilizer boards 311 and 312 which are connected by hinges and are foldable. To make the stabilizer board 310 protrude, the stabilizer board 310 is slid outward from the housed state shown in FIG. 13A, as shown in FIG. 13B. This sliding movement can be performed, for example, on the floor panel 220 shown in FIG. Next, as shown in FIG. 13 (C), the second stabilizer board 312 is rotated by 90 ° with respect to the first stabilizer board 311 to stand up. Thereafter, as shown in FIG. 13 (D), the second stabilizer board 312 is further rotated by 90 ° with respect to the first stabilizer board 311 while sliding the stabilizer board 310. In this way, the first and second stabilizer boards 311 and 312 can be set in the flat state, and the stabilizer board 310 can be protruded to the final position. In this way, the stabilizer board 310 having a predetermined protruding length can be accommodated in the evacuation structure 300 without making the evacuation structure 300 uselessly large.
 6.第6実施形態
 6.1. 外観および内部構造
 図14~図18は、発明の第6実施形態に係る避難用構造物400を示す。避難用構造物400は箱型構造体406を有する。箱型構造体406のうち、本発明の第4実施形態に係る避難用構造物200の箱型構造体206と同一機能を有する部材については、箱型構造体206と同一符号を付し、その説明を省略する。また、箱型構造体206として既に説明された部材のうち、箱型構造体406として変更されていない部材については、箱型構造体406にも備えられているものとする。
6. Sixth embodiment 6.1. Appearance and Internal Structure FIGS. 14 to 18 show an evacuation structure 400 according to a sixth embodiment of the present invention. The evacuation structure 400 has a box-shaped structure 406. Among the box-shaped structures 406, members having the same functions as those of the box-shaped structures 206 of the evacuation structure 200 according to the fourth embodiment of the present invention are denoted by the same reference numerals as those of the box-shaped structures 206. Description is omitted. Further, among the members already described as the box-shaped structure 206, members not changed as the box-shaped structure 406 are also provided in the box-shaped structure 406.
 箱型構造体406は、図14及び図15に示すように、その長手軸と直交する方向する横断面視で対向している2つの外壁203C及び203Dの各々に、2つのハッチ扉204を有する。つまり、箱型構造体406は、底壁203A及び天井壁203Bに各一つ、外壁203C及び203Dに各2つ、計6つのハッチ扉204を備える。ただし、ハッチ扉204の数はこれに限定されない。2つのハッチ扉204の両側の3つの領域の外壁203Dは、スタビライザー盤450、451、452で覆われている。図24に示すように、スタビライザー盤450、451、452を下部支点の周りに回転させると、3つの領域の外壁203Dが露出される。 As shown in FIGS. 14 and 15, the box-shaped structure 406 has two hatch doors 204 on each of two outer walls 203 </ b> C and 203 </ b> D facing each other in a cross-sectional view perpendicular to the longitudinal axis. . That is, the box-shaped structure 406 includes six hatch doors 204, one on each of the bottom wall 203A and the ceiling wall 203B and two on each of the outer walls 203C and 203D. However, the number of hatch doors 204 is not limited to this. The outer walls 203D of the three regions on both sides of the two hatch doors 204 are covered with stabilizer boards 450, 451, and 452. As shown in FIG. 24, when the stabilizer boards 450, 451, and 452 are rotated around the lower fulcrum, the outer wall 203D of the three regions is exposed.
 箱型構造体406は、その天井壁203Bに、図15に示すように不使用時には折り畳まれる280が、図14及び図18に示すように立設可能に設けられる。図14及び図18に示すように、手すり280には、天井壁203Bを覆う日除け部材290を装着可能である。箱型構造体406より天井壁203Bに避難する避難路として、図14及び図15では図示が省略されている図8に示す天井用ハッチ扉204に加え、両側の外壁203Dにラダー410を設けても良い。ラダー410が設けられる外壁203Dのうちスタビライザー盤452に覆われる領域のラダー410は、スタビライザー盤452に形成された貫通孔452Aを介して突出可能である。 The box-shaped structure 406 is provided on its ceiling wall 203B with a 280 that is folded when not in use as shown in FIG. 15 so as to be able to stand upright as shown in FIGS. As shown in FIGS. 14 and 18, the handrail 280 can be fitted with a sunshade member 290 that covers the ceiling wall 203B. As an evacuation route for evacuation from the box-shaped structure 406 to the ceiling wall 203B, a ladder 410 is provided on both outer walls 203D in addition to the ceiling hatch door 204 shown in FIG. 8 not shown in FIGS. Is also good. The ladder 410 in a region of the outer wall 203D where the ladder 410 is provided and which is covered with the stabilizer board 452 can protrude through a through hole 452A formed in the stabilizer board 452.
 図16及び図17に示すように、箱型構造体406には、例えば、2列の各列で6人、計12人が搭乗可能である。ただし、搭乗人数は変更可能である。本実施形態では、2つのハッチ扉204の両側の3つの領域には、それぞれ、搭乗者が着席できる手段として、固定または可動の椅子例えば固定椅子420が配置されている。2つのハッチ扉204と対向する2つの領域には、図16及び図18に示すように、それぞれ搭乗者が着席できる手段としての可動の椅子例えば可動椅子板421が支点422の廻りに回動可能に配置されている。可動椅子板421は、2つのハッチ扉204の使用時には、支点422の上方にて立て掛けられて、出入口の妨げとはならない。なお、図17に示すように、底面用ハッチ扉204及び重り270は、横断面が略六角形の底面と面一になるように配置されている。 As shown in FIGS. 16 and 17, the box-shaped structure 406 can accommodate a total of 12 people, for example, 6 people in each of two rows. However, the number of passengers can be changed. In the present embodiment, fixed or movable chairs, for example, fixed chairs 420 are arranged in three regions on both sides of the two hatch doors 204 as means capable of seating passengers. In the two areas facing the two hatch doors 204, as shown in FIGS. 16 and 18, a movable chair, for example, a movable chair plate 421 as a means for occupants to be seated can rotate around a fulcrum 422. Are located in When the two hatch doors 204 are used, the movable chair plate 421 is leaned over the fulcrum 422 and does not hinder the entrance. As shown in FIG. 17, the bottom hatch door 204 and the weight 270 are arranged so that the cross section thereof is flush with the substantially hexagonal bottom surface.
 6.2. 排水動作
 次に、図16、図19及び図20を用いて、箱型構造体406内に侵入した水の排水について説明する。本実施形態では、例えば図19に示す排水管91が、図20に示すような縦横配列で、図24に示すように、スタビライザー盤450~452の回動によって露出される外壁203Dに配置されている(図24では排水管91は省略されている)。
6.2. Drainage Operation Next, drainage of water that has entered the box-shaped structure 406 will be described with reference to FIGS. In this embodiment, for example, the drain pipes 91 shown in FIG. 19 are arranged in a vertical and horizontal arrangement as shown in FIG. 20, and are arranged on the outer wall 203D exposed by the rotation of the stabilizer boards 450 to 452 as shown in FIG. (The drain pipe 91 is omitted in FIG. 24).
 ここで、本実施形態においても、図16に示すように満載喫水線LWLが箱型構造体406の床面レベルFLよりも低く設定されていることは、図1及び図5と同様である。また、図16に示すように、箱型構造体406の天井壁203Bの最上面レベルをUML(Upper Most Level)とし、最下面レベルをLML(Lower Most Level))とする。図16に示すMLWL(Max Load Water Line)とは、満載された箱型構造体406の内部が浸水で満たされた時に浮上している箱型構造体406の最大荷重喫水線である。最大荷重喫水線MLWLは、満載喫水線LWLよりも高さhだけ上方に位置するが、最上面レベルUMLよりも低い。 Here, also in the present embodiment, as shown in FIG. 16, the full load water line LWL is set lower than the floor level FL of the box-shaped structure 406, as in FIGS. 1 and 5. Also, as shown in FIG. 16, the uppermost level of the ceiling wall 203B of the box-shaped structure 406 is UML (Upper Most Level), and the lowermost level is LML (Lower Most Level). The MLWL (Max Load Water Line) shown in FIG. 16 is a maximum load draft line of the box-shaped structure 406 that floats when the inside of the fully loaded box-shaped structure 406 is filled with water. The maximum load draft line MLWL is located above the full load draft line LWL by a height h, but lower than the uppermost level UML.
 図20に示すゾーンZ1~Z8は、箱型構造体406の床面レベルFLから天井壁203Bの最上面レベルUMLまでの高さ範囲を例えば8つに分割したゾーンを示し、ゾーンZ1が最下位、ゾーンZ8が最上位に位置する。ゾーンZ1~Z8の各ゾーンに、垂直方向で少なくとも一つの排水管91が配置され、水平方向では複数の排水管91が所定のピッチPで配置される。なお、このゾーン分割は一例であり、ゾーンが設定される内部空間内の高さ範囲や、ゾーン数は、これに限定されない。ここで、図20は、鉛直方向での高さが順次高くなるN(Nは2以上の整数)個、例えば=8個の異なる高さ位置に出口を有するN個の排水管91の例である。図20において、ゾーンZ1に配置される排水管91は床面レベルFLから例えば0.12mだけ上方に配置され、排水管91は鉛直方向で例えばピッチP=0.15mで配置されている。なお、図5に示すように床面21の下方でかつ満載喫水線LWLの上方に出口(他端)を有する排水管50を有する場合には、鉛直方向での高さが順次高くなるN=9個の異なる高さ位置に出口(他端)を有するN個の排水管の例となる。 Zones Z1 to Z8 shown in FIG. 20 indicate zones in which the height range from the floor level FL of the box-shaped structure 406 to the uppermost level UML of the ceiling wall 203B is divided into, for example, eight zones. , Zone Z8 is located at the top. In each of the zones Z1 to Z8, at least one drain pipe 91 is arranged in the vertical direction, and a plurality of drain pipes 91 are arranged at a predetermined pitch P in the horizontal direction. Note that this zone division is an example, and the height range in the internal space where the zones are set and the number of zones are not limited thereto. Here, FIG. 20 is an example of N (N is an integer of 2 or more) N drain pipes 91 having outlets at different height positions, the height of which in the vertical direction sequentially increases, for example, = 8. is there. In FIG. 20, the drain pipe 91 disposed in the zone Z1 is disposed above the floor level FL by, for example, 0.12 m, and the drain pipes 91 are disposed at a pitch P = 0.15 m in the vertical direction. In addition, as shown in FIG. 5, when the drain pipe 50 having an outlet (the other end) is provided below the floor surface 21 and above the full load water line LWL, the height in the vertical direction is sequentially increased N = 9. This is an example of N drain pipes having outlets (other ends) at different height positions.
 排水管91は、図19に示すように、箱型構造体406の内部に開口する一端91Aと、外壁204Dに開口する他端91Bと、それらの間に配置される弁92と、を有する。排水管91の内径は例えば52mmである。排水管91は、一端91Aと他端91Bとの間に、内径を狭める環状突起93と、周方向で間隔をおいた複数個所で突出する複数の局所突起94とを有する。環状突起93と局所突起94との間の管路に例えば球体の弁92が配置される。箱型構造体206の内部から外部に向けて排水する時には、弁92はその水圧で局所突起94側に移動する。よって、周方向で所突起94が無い領域を介して排水される。一方、箱型構造体206の外部から内部に向けて浸水する時には、弁92はその水圧で環状突起93側に移動する。よって、排水管91は球体92と環状突起93とにより通路が塞がれ、浸水が防止される。 As shown in FIG. 19, the drain pipe 91 has one end 91A opened inside the box-shaped structure 406, the other end 91B opened on the outer wall 204D, and the valve 92 disposed therebetween. The inner diameter of the drain pipe 91 is, for example, 52 mm. The drain pipe 91 has, between one end 91A and the other end 91B, an annular projection 93 for narrowing the inner diameter and a plurality of local projections 94 projecting at a plurality of locations spaced apart in the circumferential direction. For example, a spherical valve 92 is disposed in a conduit between the annular projection 93 and the local projection 94. When draining water from the inside of the box-shaped structure 206 to the outside, the valve 92 moves to the local projection 94 side by the water pressure. Therefore, the water is drained through the area without the projection 94 in the circumferential direction. On the other hand, when water is immersed in the box-shaped structure 206 from the outside to the inside, the valve 92 moves toward the annular projection 93 by the water pressure. Therefore, the passage of the drain pipe 91 is closed by the spherical body 92 and the annular projection 93, and flooding is prevented.
 避難用構造物400のサイズは、長さ×高さ×幅が、例えば概略で5.8m×2.1m×2.3mである。また、避難用構造物400の総重量は、骨組み構造体が350kg、フロートが260kg、壁材が180kg、重り270が350kg、搭乗員12名が840kg、その他420kgを加算して2400kgと想定する。 サ イ ズ The size of the evacuation structure 400 is, for example, approximately 5.8 mx 2.1 mx 2.3 m in length x height x width. Also, the total weight of the evacuation structure 400 is assumed to be 2400 kg by adding 350 kg for the frame structure, 260 kg for the float, 180 kg for the wall material, 350 kg for the weight 270, 840 kg for 12 crew members, and 420 kg for others.
 6.2.1. 満載喫水線LWL
 本実施形態で、床面FLの下方にあるフロートの総体積を5.3m(平均面積8.84m×高さ0.6m)とする。このとき、このフロートのみにより箱型構造体406に作用する浮力Fは、フロートの密度を24kg/mとし、水の密度を1000kg/mとすると、
 F=(フロートが水を排除した容積重さ)-(フロート自体の重さ)
   =5.3m×1000kg/m×9.81m/s
   -5.3m×24kg/m×9.18m/s
  =(1000-24)×5.3×9.81
  =50754(N)
6.2.1. Full load line LWL
In the present embodiment, the total volume of the float below the floor surface FL is 5.3 m 3 (average area 8.84 m 2 × height 0.6 m). At this time, the buoyancy F F acting on the box-like structure 406 only by the float, the density of the float and 24 kg / m 3, the density of water and 1000 kg / m 3,
F F = (weight of the float excluding water)-(weight of the float itself)
= 5.3 m 3 × 1000 kg / m 3 × 9.81 m / s 2
-5.3 m 3 × 24 kg / m 3 × 9.18 m / s 2
= (1000-24) × 5.3 × 9.81
= 50754 (N)
 一方、総重量2400である避難用構造物400と釣り合う浮力は2400×9.81=23544Nであるが、そのためには床面FLの下方にあるフロートの全体積5.3mの約46%(100×23544/50745)に相当する体積2.4mが沈没していれば足りる。よって、図16に示す通り、満載喫水線LWLは床面FLよりもの下方で、床面FLと最下面MLLと高さ0.6mのほぼ中間に位置することがわかる。図16では、最下面LMLから満載喫水線LWLまでの高さを0.3mとする。 On the other hand, the buoyancy that balances with the evacuation structure 400 having a total weight of 2400 is 2400 × 9.81 = 23544N, which is about 46% of the total volume 5.3 m 3 of the float below the floor surface FL ( It suffices that a volume of 2.4 m 3 corresponding to 100 × 23544/50745) is sunk. Therefore, as shown in FIG. 16, it can be seen that the full load draft line LWL is located below the floor surface FL and substantially in the middle between the floor surface FL, the lowermost surface MLL, and the height of 0.6 m. In FIG. 16, the height from the lowermost surface LML to the full load water line LWL is 0.3 m.
 6.2.2. 最大荷重喫水線MLWL
 次に、最大荷重喫水線MLWLを求める。最大荷重喫水線MLWLとは、箱型構造体406の総重量に、さらに箱型構造体406の内部の空間が水に満たされた時の重量が作用した最大荷重時の喫水線である。このような事態は通常は想定されないが、安全性確保のために、搭載重量を超える最大荷重の時にも箱型構造体が沈没しないことを保証している。
6.2.2. Maximum load draft line MLWL
Next, the maximum load draft line MLWL is obtained. The maximum load draft line MLWL is a draft line at the maximum load in which the total weight of the box-shaped structure 406 is further affected by the weight when the space inside the box-shaped structure 406 is filled with water. Such a situation is not normally assumed, but for ensuring safety, it is guaranteed that the box-shaped structure will not sink even at the maximum load exceeding the mounting weight.
 ここで、箱型構造体406の内部の空間の容量は、搭乗員や椅子を除いた平均面積を8mとし、高さを1.5mとすると、12mとなる。この空間に浸水して、この空間が空気(比重1.225kg/m)から水(比重1000kg/m)に置き換えられたときに、箱型構造体406には次の式で求まる追加の重力Fが作用する。
 F=(空間に進水した水の重さ)-(空間自体の重さ)
  =(8m×1000kg/m×9.81m/s
   -(8m×1.225kg/m×9.18m/s
  =(1000-1.225)×8×9.81
  =78384(N)
Here, the capacity of the space inside the box-shaped structure 406 is 12 m 3 when the average area excluding the crew and the chair is 8 m 2 and the height is 1.5 m. Flooded into this space, when this space was replaced by air (specific gravity 1.225 kg / m 3) in water (specific gravity 1000 kg / m 3), additional to determined by the following equation in a box-like structure 406 Gravity FW acts.
F W = (weight of water launched into space) − (weight of space itself)
= (8 m 3 × 1000 kg / m 3 × 9.81 m / s 2 )
-(8 m 3 × 1.225 kg / m 3 × 9.18 m / s 2 )
= (1000-1.225) × 8 × 9.81
= 78384 (N)
 ここで、最大荷重喫水線MLWLが図16の位置にあると仮定すると、満載喫水線LWLよりも高さh分の箱型構造体406が水に沈むことにより増加する浮力Fが生ずる。ここで、箱型構造体406の輪郭で区画される平均面積A=10mとすると、浮力Fは次のように示される。
 F=体積(h×A)×水の比重(1000kg/m)×9.81(m/s
   =98100×h
Here, when the maximum load waterline MLWL is assumed to be in the position of FIG. 16, load line buoyancy F A the box-like structure 406 of a height h min is increased by sinking in the water occurs than LWL. Here, assuming that the average area A defined by the outline of the box-shaped structure 406 is A = 10 m 2 , the buoyancy F A is expressed as follows.
F A = volume (h × A) × specific gravity of water (1000 kg / m 2 ) × 9.81 (m / s 2 )
= 98100 × h
 箱型構造体406が浮くためには、F=Fが成立する。
 よって、h=78384/98100=0.8mとなる。
 つまり、箱型構造体406の最下面LMLから最大荷重喫水線MLWLまでの高さは、0.3m(箱型構造体406の最下面LMLから満載喫水線LWLまでの高さ)+0.8m(満載喫水線LWLから最大荷重喫水線MLWLまでの高さh)=1.1mとなる。
In order for the box-shaped structure 406 to float, F W = F A holds.
Therefore, h = 78384/98100 = 0.8 m.
That is, the height from the lowermost surface LML of the box-shaped structure 406 to the maximum load draft line MLWL is 0.3 m (the height from the lowermost surface LML of the box-shaped structure 406 to the full load line LWL) +0.8 m (full load draft line). The height h) from LWL to the maximum load draft line MLWL is 1.1 m.
 箱型構造体406の全高は2.1mであり、図20中で最も高い排水管91の位置は箱型構造体406の最下面LMLから1.77m(0.6+0.12+0.15×7)の高さである。このことから、フロートの体積は、箱型構造体406内が浸水で満たされても、N個の排水管91の少なくとも一つの他端が箱型構造体406外の水面の上方に位置するように、箱型構造体406を完全に水没させない体積であることがわかる。 The total height of the box-shaped structure 406 is 2.1 m, and the position of the highest drain pipe 91 in FIG. 20 is 1.77 m (0.6 + 0.12 + 0.15 × 7) from the lowermost surface LML of the box-shaped structure 406. Height. From this, even if the inside of the box-shaped structure 406 is filled with water, the volume of the float is such that at least one other end of the N drain pipes 91 is located above the water surface outside the box-shaped structure 406. Further, it is understood that the volume is such that the box-shaped structure 406 is not completely submerged.
 なお、箱型構造体406の最下面LMLから床面FLまでの高さが大きければ、床面FLの下方に配置できるフロート体積は増大する。よって、最大荷重喫水線MLWLを床面FLの下方に設定することも可能である。こうすると、箱型構造体406の内部の空間が浸水で満たされた時の重量が作用した最大荷重時でも、図20に示すN個の排水管91の全ての排水出口を最大荷重喫水線MLWLよりも上方に配置することができる。それにより、N個の排水管91を常に同時に使用できるので、排水速度をより速めることが可能となる。 If the height from the lowermost surface LML of the box-shaped structure 406 to the floor surface FL is large, the float volume that can be arranged below the floor surface FL increases. Therefore, the maximum load draft line MLWL can be set below the floor surface FL. In this case, even at the time of the maximum load caused by the weight when the space inside the box-shaped structure 406 is filled with the flood, all the drain outlets of the N drain pipes 91 shown in FIG. 20 are moved from the maximum load draft line MLWL. Can also be located above. Thereby, the N drainage pipes 91 can always be used at the same time, so that the drainage speed can be further increased.
 6.2.3. 高さの異なる排水管の使用
 図16に示す満載時の箱型構造体406の内部の空間が浸水で満たされた最大荷重の時の最大荷重喫水線MLWLは、N個の排水管91の排水出口の少なくとも一つの位置よりも低い位置である。こうすると、満載時の箱型構造体406の内部の空間が浸水で満たされる以前に、換言すれば最大荷重喫水線MLWLに到達する以前に、喫水線よりも高い位置にあるN個の排水出口の少なくとも一つ、好ましくは高さの異なるN個の複数の排水出口から、浸水した水を排水し続けることができる。よって、通常の使用形態では、排水量よりも浸水量が上回って箱型構造体406の内部の空間が浸水で満たされるという事態は生じえない。換言すれば、最大荷重喫水線MLWLに到達するような事態は起こりえない。
6.2.3. Use of Drainage Pipes with Different Heights The maximum load draft line MLWL when the space inside the box-shaped structure 406 at full load shown in FIG. Is a position lower than at least one position. In this way, before the space inside the box-shaped structure 406 at full load is filled with water, in other words, before reaching the maximum load draft line MLWL, at least the N drain outlets located at a position higher than the waterline are drawn. The flooded water can continue to be drained from one, preferably a plurality of N drain outlets of different heights. Therefore, in a normal use mode, a situation in which the amount of flooding exceeds the amount of drainage and the space inside the box-shaped structure 406 is filled with flooding cannot occur. In other words, a situation that reaches the maximum load draft line MLWL cannot occur.
 6.3. 自走式避難用構造物
 図21~図23は、単に浮遊するだけでなく自走することができる避難用構造物を示している。先ず、図14、図15、図18及び図21に示すように、箱型構造体406は、箱型構造体406に推進力を付与する推進具例えば電動式スクリュー431を取り付ける取付部430を備えることができる。電動式スクリュー431は、扉432を開くことで露出されるコネクターに接続されることで通電される。図21に示すように、取付部430は、図21に示すように、箱型構造体406の長手方向の両端部に設けることができる。こうすると、図21に示す矢印A及びB方向に箱型構造体406を前進させることができる。
6.3. Self-propelled evacuation structure FIGS. 21 to 23 show an evacuation structure that can not only float but also move on its own. First, as shown in FIGS. 14, 15, 18, and 21, the box-shaped structure 406 includes a mounting portion 430 for attaching a propulsion tool for applying a propulsive force to the box-shaped structure 406, for example, an electric screw 431. be able to. The electric screw 431 is energized by being connected to a connector that is exposed by opening the door 432. As shown in FIG. 21, the mounting portions 430 can be provided at both ends in the longitudinal direction of the box-shaped structure 406 as shown in FIG. Thus, the box-shaped structure 406 can be advanced in the directions of arrows A and B shown in FIG.
 取付部430と併せて、あるいは取付部430に代えて、図22に示すように、箱型構造体406の例えば両側面のハッチ扉204に、オール440の支点となるクラッチ(取付部)204Aを介してオール(推進具)440を外方に突出させることができる。箱型構造体406の内部の避難者が、クラッチ204Aを支点としてオール440を手で漕ぐことで、箱型構造体406を前進させることができる。 As shown in FIG. 22, a clutch (mounting portion) 204 </ b> A serving as a fulcrum of the all 440 is provided on the hatch doors 204 on both sides of the box-shaped structure 406, in combination with the mounting portion 430 or in place of the mounting portion 430. The oar (propelling device) 440 can protrude outward through the intermediary. An evacuee inside the box-shaped structure 406 can advance the box-shaped structure 406 by manually rowing the all 440 with the clutch 204A as a fulcrum.
 あるいは、図23に示すように、天井壁203Bに避難した避難者がオール440を漕ぐために、天井壁203Bまたは手すり280にクラッチ(図示は省略)を設けても良い。なお、図23は、箱型構造体406に想定外の外力が作用し、外壁203D等が骨組み構造体から離脱して水面上に飛散した状態を示している。このような状態でも、天井壁203Bは筏として機能して、避難者の安全が最低限確保され得る。 Alternatively, as shown in FIG. 23, a clutch (not shown) may be provided on the ceiling wall 203B or the handrail 280 so that an evacuee who has evacuated to the ceiling wall 203B can row all the 440s. FIG. 23 shows a state in which an unexpected external force acts on the box-shaped structure 406, and the outer wall 203D and the like are separated from the frame structure and scattered on the water surface. Even in such a state, the ceiling wall 203B functions as a raft, and the safety of evacuees can be kept to a minimum.
 6.4. スタビライザー盤
 図24~図27は、箱型構造体406の安定性を向上させるスタビライザー盤450~452を示している。図24に示すように、スタビライザー盤450~452の各々は、箱型構造体406の例えば外壁203Dに回動自在に支持され、立設状態で収容されてもよい。こうすると、避難用構造物400の内部が複数のスタビライザー盤450~452の収容スペースとして占有されない。また、複数のスタビライザー盤450~452は2つの外壁203Dのいずれか一方と空隙を隔てて収容されるので、その外壁に設けられた排水管91の他端の排水出口が塞がれることがない。
6.4. Stabilizer Board FIGS. 24 to 27 show stabilizer boards 450 to 452 for improving the stability of the box-shaped structure 406. FIG. As shown in FIG. 24, each of the stabilizer boards 450 to 452 may be rotatably supported by, for example, an outer wall 203D of the box-shaped structure 406, and may be accommodated in an upright state. In this case, the inside of the evacuation structure 400 is not occupied as the accommodation space for the plurality of stabilizer boards 450 to 452. Further, since the plurality of stabilizer boards 450 to 452 are accommodated with a gap between one of the two outer walls 203D, the drain outlet at the other end of the drain pipe 91 provided on the outer wall is not blocked. .
 図25に示すように、スタビライザー盤450~452の少なくとも一つ例えばスタビライザー盤450を立設状態で係止する係止部460と、そのスタビライザー盤450が係止部460によって係止された状態を、箱型構造体406の内部で操作することで解除する解除操作部470と、をさらに有することができる。図26に示すように、係止部460は、スタビライザー盤450の上部に取り付けられた被係止部453を係止する。係止部460は回動自在である。係止部460を箱型構造体406の内部で操作するために、解除操作部470は、取っ手471と、取っ手471及び係止部460の回動部とを連結するワイヤー472とを含むことができる。こうすると、避難時に箱型構造体406内に避難した避難者は、箱型構造体406の浮上を確認した後に、箱型構造体406の内部で解除操作部470を操作して、スタビライザー盤450を箱型構造体406外の水面上に突出させることができる。それにより、箱型構造体406は水面上で安定する。この際、図27に示すように、スタビライザー盤450の回動位置はストッパー480により規制されるので、スタビライザー盤450が例えば180°回転して安定化機能を果たせなくなる事態が阻止される。 As shown in FIG. 25, a locking part 460 for locking at least one of the stabilizer boards 450 to 452, for example, the stabilizer board 450 in an upright state, and a state where the stabilizer board 450 is locked by the locking part 460 are shown. , A release operation section 470 that is released by operating inside the box-shaped structure 406. As shown in FIG. 26, the locking portion 460 locks the locked portion 453 attached to the upper portion of the stabilizer board 450. The locking portion 460 is rotatable. In order to operate the locking part 460 inside the box-shaped structure 406, the release operation part 470 may include a handle 471 and a wire 472 connecting the handle 471 and the rotating part of the locking part 460. it can. In this way, the evacuee who has evacuated into the box-shaped structure 406 during evacuation confirms the floating of the box-shaped structure 406, and then operates the release operation unit 470 inside the box-shaped structure 406 to cause the stabilizer board 450 Can be projected above the water surface outside the box-shaped structure 406. Thereby, the box-shaped structure 406 is stabilized on the water surface. At this time, as shown in FIG. 27, since the rotation position of the stabilizer board 450 is regulated by the stopper 480, the situation where the stabilizer board 450 is rotated by, for example, 180 ° and cannot perform the stabilizing function is prevented.
 なお、本発明の避難用構造物は、特に海水で使用されることを想定すると、外壁が表面保護材により被服されていることが好ましい。表面保護材は、防錆性、防水性、紫外線耐性、耐摩耗性、及び/又は意匠性を有することが好ましく、例えば脂肪族系のポリウレア樹脂を用いることができる。 In addition, it is preferable that the evacuation structure of the present invention has an outer wall covered with a surface protection material, especially when it is assumed that the structure is used in seawater. The surface protective material preferably has rust resistance, waterproofness, ultraviolet light resistance, abrasion resistance, and / or design properties. For example, an aliphatic polyurea resin can be used.
 1、1A…避難用構造物、2…骨組み構造体、2A…梁、3…外壁、3A…底壁、3B…天井壁、3C,3D…側壁、3E,3F…端壁、4…ハッチ扉、5…ハッチ枠、6…箱型構造体、10,10A,10A1,10B,10B1…フロート、20…床盤、20A…排出口(貫通孔)、21…床面、30…避難室、40…排水貯蓄室、50…排水管、50A…一端(入口)、50B…他端(排水出口)、60…逆止弁、61…弁、62…ヒンジ、63…カバー、70…重り、80…手すり、81…ヒンジ、82…連結具、90…追加の排水管、90A…入口、90B1~90Bm…排水出口、91…排水管、91A…一端、91B…他端、92…弁、93…流路開口、94…弁ストッパー、100…避難用構造物、102…骨組み構造体、103A…底壁、103B…天井壁、103C,103D…側壁、104…ハッチ扉、106…箱型構造体、110…フロート、120…床盤、150…排水管、150A…一端(入口)、150B…他端(出口)、160…逆止弁、161…弁、170…重り、180…手すり、200…避難用構造物、202…骨組み構造体、203A…底部(底壁)、203B…頂部(天井壁)、203C,203D…側壁、204…ハッチ扉、206…箱型構造体、210…フロート、220…床盤、250…排水管、260…逆止弁、270…重り、280…手すり、300…避難用構造物、290…日除け材、310…スタビライザー盤、311,312…第1,第2のスタビライザー盤、400…避難用構造物、406…箱型構造体、410…ラダー、420…固定椅子、421…可動椅子板、422…ヒンジ、430…取付部、431…スクリュー、432…扉、440…オール、450、451、452…スタビライザー盤、453…被係止部、460…係止部、470…解除操作部、471…取っ手、472…ワイヤー、480…ストッパー、LWL…満載喫水線、MLWL…最大荷重喫水線 1, 1A: evacuation structure, 2: frame structure, 2A: beam, 3: outer wall, 3A: bottom wall, 3B: ceiling wall, 3C, 3D: side wall, 3E, 3F: end wall, 4: hatch door 5, hatch frame, 6: box-shaped structure, 10, 10A, 10A1, 10B, 10B1: float, 20: floor panel, 20A: discharge port (through hole), 21: floor surface, 30: evacuation room, 40 ... drainage storage chamber, 50 ... drainage pipe, 50A ... one end (inlet), 50B ... other end (drainage outlet), 60 ... check valve, 61 ... valve, 62 ... hinge, 63 ... cover, 70 ... weight, 80 ... Handrail, 81 hinge, 82 connecting device, 90 additional drain pipe, 90A inlet, 90B1-90Bm drain outlet, 91 drain pipe, 91A one end, 91B other end, 92 valve, 93 flow Road opening, 94: valve stopper, 100: evacuation structure, 102: framework structure 103A: bottom wall, 103B: ceiling wall, 103C, 103D: side wall, 104: hatch door, 106: box-shaped structure, 110: float, 120: floor panel, 150: drain pipe, 150A: one end (entrance), 150B ... the other end (outlet), 160 ... check valve, 161 ... valve, 170 ... weight, 180 ... handrail, 200 ... evacuation structure, 202 ... frame structure, 203A ... bottom (bottom wall), 203B ... top ( Ceiling wall), 203C, 203D side wall, 204 hatch door, 206 box type structure, 210 float, 220 floor plate, 250 drain pipe, 260 check valve, 270 weight, 280 railing, 300: evacuation structure, 290: sunshade, 310: stabilizer board, 311, 312: first and second stabilizer boards, 400: evacuation structure, 406: box-shaped structure, 410 Ladder, 420: fixed chair, 421: movable chair plate, 422: hinge, 430: mounting part, 431: screw, 432 ... door, 440: all, 450, 451, 452: stabilizer board, 453: locked part, 460: Locking part, 470: Release operation part, 471: Handle, 472: Wire, 480: Stopper, LWL: Full load waterline, MLWL: Maximum load waterline

Claims (15)

  1.  少なくとも一つのハッチ扉を備えた不完全水密性の箱型構造体と、
     前記箱型構造体に設けられたフロートと、
     一端が前記箱型構造体の内部に開口し、他端が前記箱型構造体の満載喫水線よりも上方の位置にて前記箱型構造体の外壁に開口する少なくとも一つの排水管と、
     前記少なくとも一つの排水管に設けられ、前記箱型構造体の内部への水の流入を防止し、かつ、前記箱型構造体の内部からの排水時の水圧が作用した時に開く弁を備える逆止弁と、
    を有することを特徴とする避難用構造物。
    An imperfectly watertight box-shaped structure with at least one hatch door;
    A float provided in the box-shaped structure,
    At least one drain pipe having one end open to the inside of the box-shaped structure and the other end opened to the outer wall of the box-shaped structure at a position above a full load line of the box-shaped structure;
    A reverse valve including a valve provided on the at least one drain pipe to prevent water from flowing into the inside of the box-shaped structure and to open when water pressure during drainage from the inside of the box-shaped structure is applied; A stop valve,
    An evacuation structure comprising:
  2.  請求項1において、
     前記フロートは、前記箱型構造体内が浸水で満たされても、前記箱型構造体を完全に水没させない体積を有することを特徴とする避難用構造物。
    In claim 1,
    The evacuation structure, wherein the float has a volume that does not completely submerge the box-shaped structure even when the box-shaped structure is filled with water.
  3.  請求項1または2において、
     前記箱型構造体の内部に配置され、前記満載喫水線よりも上方の位置に床面を有する床盤をさらに有し、
     前記少なくとも一つの排水管は、前記一端が前記床盤の前記床面以下の高さに開口していることを特徴とする避難用構造物。
    In claim 1 or 2,
    It further has a floor panel which is arranged inside the box-shaped structure and has a floor surface at a position above the full load water line,
    The evacuation structure, wherein the at least one drainage pipe has one end opening at a height equal to or lower than the floor surface of the floor panel.
  4.  請求項3において、
     前記床盤の下方の位置にて前記箱型構造体の内部に配置される排水貯蓄室をさらに有し、
     前記床盤は、上下に貫通する貫通孔を含み、
     前記少なくとも一つの排水管は、前記一端が前記排水貯蓄室に開口していることを特徴とする避難用構造物。
    In claim 3,
    Further having a drainage storage room disposed inside the box-shaped structure at a position below the floor panel,
    The floor panel includes a through hole penetrating vertically,
    The evacuation structure, wherein the at least one drainage pipe has one end opened to the drainage storage chamber.
  5.  請求項1乃至4のいずれか一項において、
     前記少なくとも一つの排水管の前記他端は、鉛直方向での高さが順次高くなるN(Nは2以上の整数)個の異なる高さ位置にて前記外壁に開口するN個の排水出口を有することを特徴とする避難用構造物。
    In any one of claims 1 to 4,
    The other end of the at least one drain pipe has N drain outlets that open to the outer wall at N (N is an integer of 2 or more) different height positions whose height in the vertical direction is sequentially increased. An evacuation structure characterized by having.
  6.  請求項5において、
     前記少なくとも一つの排水管は、前記N個の排水出口と、前記N個の排水出口とそれぞれ分離されて連通するN個の排水入口と、を含むN個の排水管を有することを特徴とする避難用構造物。
    In claim 5,
    The at least one drainage pipe has N drainage pipes including the N drainage outlets and the N drainage inlets separated from and connected to the N drainage outlets. Evacuation structures.
  7.  請求項5または6において、
     満載時の前記箱型構造体の内部の空間が浸水で満たされた最大荷重の時の最大荷重喫水線は、前記N個の排水出口の少なくとも一つの位置よりも低い位置であることを特徴とする避難用構造物。
    In claim 5 or 6,
    The maximum load waterline at the time of the maximum load when the space inside the box-shaped structure at the time of full loading is filled with water is a position lower than at least one position of the N drain outlets. Evacuation structures.
  8.  請求項1乃至7のいずれか一項において、
     前記満載喫水線の下方に、前記箱型構造体に復元力を付与する重りを配置したことを特徴とする避難用構造物。
    In any one of claims 1 to 7,
    An evacuation structure, wherein a weight for providing a restoring force to the box-shaped structure is arranged below the full load line.
  9.  請求項8において、
     前記箱型構造体の横断面の輪郭は、底部及び頂部の各水平幅が、前記底部と前記頂部との間の位置での水平幅よりも狭い多角形に形成されていることを特徴とする避難用構造物。
    In claim 8,
    The outline of the cross section of the box-shaped structure is characterized in that each horizontal width at the bottom and the top is formed in a polygon narrower than the horizontal width at a position between the bottom and the top. Evacuation structures.
  10.  請求項1乃至9のいずれか一項において、
     前記箱型構造体は、骨組み構造体と、前記骨組み構造体の上面に取り付けられる天井壁とを有し、前記天井壁は、前記天井壁に設けられる前記少なくとも一つのハッチ扉から脱出可能な天面領域を囲んで配置される手すりを有することを特徴とする避難用構造物。
    In any one of claims 1 to 9,
    The box-shaped structure has a skeleton structure and a ceiling wall attached to an upper surface of the skeleton structure, and the ceiling wall is a ceiling that can escape from the at least one hatch door provided on the ceiling wall. An evacuation structure comprising a handrail arranged around a surface area.
  11.  請求項1乃至10のいずれか一項において、
     前記箱型構造体は、前記箱型構造体の長手軸と直交する横断面視で対向している2つの外壁より水平に突出可能な複数のスタビライザー盤を収容していることを特徴とする避難用構造物。
    In any one of claims 1 to 10,
    The box-shaped structure houses a plurality of stabilizer boards that can protrude horizontally from two outer walls facing each other in a cross-sectional view perpendicular to the longitudinal axis of the box-shaped structure. Structure.
  12.  請求項11において、
     前記複数のスタビライザー盤の各々は、前記箱型構造体内に折り畳まれて収納されることを特徴とする避難用構造物。
    In claim 11,
    The evacuation structure, wherein each of the plurality of stabilizer boards is folded and accommodated in the box-shaped structure.
  13.  請求項11において、
     前記複数のスタビライザー盤の各々は、前記箱型構造体外に回動自在に支持され、立設状態で収容されることを特徴とする避難用構造物。
    In claim 11,
    The evacuation structure, wherein each of the plurality of stabilizer boards is rotatably supported outside the box-shaped structure and accommodated in an upright state.
  14.  請求項13において、
     前記複数のスタビライザー盤の少なくとも一つを立設状態で係止する係止部と、
     前記複数のスタビライザー盤の少なくとも一つが前記係止部によって係止された状態を、前記箱型構造体の内部で操作することで解除する解除操作部と、
    をさらに有することを特徴とする避難用構造物。
    In claim 13,
    A locking portion for locking at least one of the plurality of stabilizer boards in an upright state,
    A release operation unit that releases a state in which at least one of the plurality of stabilizer boards is locked by the locking unit by operating inside the box-shaped structure,
    An evacuation structure, further comprising:
  15.  請求項1乃至14のいずれか一項において、
     前記箱型構造体は、前記箱型構造体に推進力を付与する推進具を取り付ける取付部を備えることを特徴とする避難用構造物。
    In any one of claims 1 to 14,
    The evacuation structure, wherein the box-shaped structure includes a mounting portion for attaching a propulsion tool for applying a propulsive force to the box-shaped structure.
PCT/JP2019/037990 2018-09-28 2019-09-26 Evacuation structure WO2020067354A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2019347399A AU2019347399B2 (en) 2018-09-28 2019-09-26 Evacuation structure
JP2020502252A JP6692008B1 (en) 2018-09-28 2019-09-26 Evacuation structure
SG11202102452XA SG11202102452XA (en) 2018-09-28 2019-09-26 Evacuation structure
PH12021550600A PH12021550600A1 (en) 2018-09-28 2021-03-17 Evacuation structure
AU2021273634A AU2021273634B2 (en) 2018-09-28 2021-11-26 Evacuation structure
AU2021273635A AU2021273635B2 (en) 2018-09-28 2021-11-26 Evacuation structure

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2018183277 2018-09-28
JP2018-183277 2018-09-28
JP2019097477 2019-05-24
JP2019-097477 2019-05-24

Publications (1)

Publication Number Publication Date
WO2020067354A1 true WO2020067354A1 (en) 2020-04-02

Family

ID=69953527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037990 WO2020067354A1 (en) 2018-09-28 2019-09-26 Evacuation structure

Country Status (6)

Country Link
JP (1) JP6692008B1 (en)
AU (3) AU2019347399B2 (en)
PH (1) PH12021550600A1 (en)
SG (1) SG11202102452XA (en)
TW (1) TWI809207B (en)
WO (1) WO2020067354A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6873527B1 (en) * 2021-01-22 2021-05-19 株式会社シェルタージャパン Shelter levitation device
WO2022158454A1 (en) * 2021-01-20 2022-07-28 株式会社シェルタージャパン Shelter flotation device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256563A (en) * 2005-03-18 2006-09-28 Hatachi Kogyo Kk Waterproof lifesaving container
JP2014061737A (en) * 2012-09-20 2014-04-10 Amemiya Engineering Kk Water surface floating shelter
JP2016047691A (en) * 2014-08-27 2016-04-07 株式会社高知丸高 Boat-type shelter and camping car
JP2016222231A (en) * 2016-02-02 2016-12-28 エアロファシリティー株式会社 Ship for evacuation
JP2017185952A (en) * 2016-04-07 2017-10-12 水島 孝 Spherical shelter for sea rescue

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2230745B (en) * 1989-03-04 1992-08-26 John George Brown A vehicle carrying ferry vessel having floodwater dumping means to enhance accident survivability
JP4882093B2 (en) * 2005-02-22 2012-02-22 林 武 Storm surge flooded building and its construction method
JP5596751B2 (en) * 2012-07-17 2014-09-24 通博 大江 Tsunami countermeasure evacuation facilities

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006256563A (en) * 2005-03-18 2006-09-28 Hatachi Kogyo Kk Waterproof lifesaving container
JP2014061737A (en) * 2012-09-20 2014-04-10 Amemiya Engineering Kk Water surface floating shelter
JP2016047691A (en) * 2014-08-27 2016-04-07 株式会社高知丸高 Boat-type shelter and camping car
JP2016222231A (en) * 2016-02-02 2016-12-28 エアロファシリティー株式会社 Ship for evacuation
JP2017185952A (en) * 2016-04-07 2017-10-12 水島 孝 Spherical shelter for sea rescue

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022158454A1 (en) * 2021-01-20 2022-07-28 株式会社シェルタージャパン Shelter flotation device
JP6873527B1 (en) * 2021-01-22 2021-05-19 株式会社シェルタージャパン Shelter levitation device
WO2022158455A1 (en) * 2021-01-22 2022-07-28 株式会社シェルタージャパン Shelter flotation device
JP2022112944A (en) * 2021-01-22 2022-08-03 株式会社シェルタージャパン Shelter floatation device

Also Published As

Publication number Publication date
AU2021273634B2 (en) 2023-03-16
SG11202102452XA (en) 2021-04-29
TWI809207B (en) 2023-07-21
AU2021273635A1 (en) 2021-12-16
JPWO2020067354A1 (en) 2021-02-15
AU2019347399A1 (en) 2021-03-18
AU2021273635B2 (en) 2023-03-16
TW202020280A (en) 2020-06-01
JP6692008B1 (en) 2020-05-13
AU2019347399B2 (en) 2021-12-16
AU2021273634A1 (en) 2021-12-16
PH12021550600A1 (en) 2021-11-29

Similar Documents

Publication Publication Date Title
AU2021273634B2 (en) Evacuation structure
US3883913A (en) Aquastabilized survival raft
US8689495B2 (en) Protective shelter
US10640183B2 (en) Ship having anti-sinking and anti-capsize device for emergency
JP3178947U (en) Moored floating flood rescue room
JP2008074385A (en) Tsunami shelter apparatus
JP2007177600A (en) Floating evacuation facility against tsunami and flood
EP2920052B1 (en) Arrangement and method for underwater activities
JP6552124B2 (en) Submersible shelter
WO2019230585A1 (en) Evacuation structure, and structure employing same, and mobile house
JP2017185952A (en) Spherical shelter for sea rescue
JP6514917B2 (en) shelter
KR102259705B1 (en) Artificial diving pool facility using waste ship
JP5390040B1 (en) Shelter for evacuation in case of flood
KR101105864B1 (en) Prefabrication type movable tank house
CN107646010B (en) Ship emergency exit device
JP2022060941A (en) Evacuation structure
JP2015004235A (en) Flood damage evacuation structure and building having the same
JP7040829B1 (en) Floating shelter
JP2024040608A (en) shelter
JP5283025B2 (en) Floating tsunami evacuation boat
JP2022060942A (en) Evacuation structure
JP2021116540A (en) Attic survival space

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020502252

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864971

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019347399

Country of ref document: AU

Date of ref document: 20190926

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864971

Country of ref document: EP

Kind code of ref document: A1