WO2020067350A1 - 回転電機のロータ - Google Patents

回転電機のロータ Download PDF

Info

Publication number
WO2020067350A1
WO2020067350A1 PCT/JP2019/037984 JP2019037984W WO2020067350A1 WO 2020067350 A1 WO2020067350 A1 WO 2020067350A1 JP 2019037984 W JP2019037984 W JP 2019037984W WO 2020067350 A1 WO2020067350 A1 WO 2020067350A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
diameter side
rotor
outer diameter
magnet
Prior art date
Application number
PCT/JP2019/037984
Other languages
English (en)
French (fr)
Inventor
雅志 井上
泰佑 丸山
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Publication of WO2020067350A1 publication Critical patent/WO2020067350A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present invention relates to a rotor of a rotating electric machine mounted on an electric vehicle or the like.
  • a so-called IPM motor in which a plurality of permanent magnets are arranged at predetermined intervals in a circumferential direction inside a rotor core has been known as a rotor used in a rotating electric machine.
  • a means for fixing a permanent magnet to a rotor core in such an IPM motor for example, techniques described in Patent Literature 1 and Patent Literature 2 are known.
  • Patent Document 1 discloses a configuration in which a hole for caulking is provided on the outer diameter side of a rotor, the rotor core is caulked with a rivet pin, and the rotor core is deformed by pressing, thereby fixing the rotor core and the arc-shaped permanent magnet by surface contact. Is disclosed.
  • Patent Document 2 discloses that, when viewed from the front of a rotor core, both circumferential ends of an arc-shaped permanent magnet abut on support protrusions provided near both circumferential ends of a magnet insertion hole, so that the rotor core and the permanent magnet Is disclosed.
  • the present invention provides a rotor for a rotating electric machine that can prevent generation of excessive centrifugal stress on the outer peripheral surface of a rotor core during rotation of the rotor.
  • the present invention A substantially annular rotor core having a plurality of magnet insertion holes formed in a circumferential direction, A permanent magnet inserted into the magnet insertion hole, The permanent magnet, a foam sheet provided between the wall surface of the magnet insertion hole, A rotor of a rotating electric machine having Seen from the front of the rotor core,
  • the permanent magnet is An inner diameter side curved surface convexly curved toward the radially inner side of the rotor core, An outer diameter side curved surface convexly curved toward the radially inner side of the rotor core, Has,
  • the foamed sheet is disposed between at least one of the inner curved surface and the outer curved surface of the permanent magnet, and the wall surface of the magnet insertion hole,
  • the permanent magnet is fixed to the rotor core by contacting the other of the inner curved surface and the outer curved surface of the permanent magnet with the wall surface of the magnet insertion hole,
  • a gap is provided at the center in the circumferential direction of the permanent magnet between
  • FIG. 2 is a front view of the rotor of the rotary electric machine according to the first embodiment of the present invention.
  • FIG. 2 is an enlarged view around an outer diameter side magnet portion of FIG. 1. It is an enlarged drawing of the circumference of the outside diameter side magnet part of the rotor of the rotary electric machine of a 2nd embodiment of the present invention.
  • FIG. 13 is an enlarged view around the outer diameter side magnet portion of the rotor of the rotating electric machine according to the third embodiment of the present invention.
  • a rotor 10 of a rotary electric machine includes a rotor core 20 attached to an outer peripheral portion of a rotor shaft (not shown), and a plurality of rotor cores 20 formed inside the rotor core 20 at predetermined intervals in a circumferential direction. (In this embodiment, twelve), and is disposed on the inner peripheral side of a stator (not shown).
  • the rotor core 20 is formed by laminating a plurality of substantially annular electromagnetic steel sheets 200 having the same shape in the axial direction.
  • the rotor core 20 has a rotor shaft hole 21 that is concentric with the center of the circular ring C. Further, the center axis of each magnetic pole part 30 connecting the center of the circular ring C and the center of each magnetic pole part 30 is d-axis (d-axis in the figure), and the axis separated by 90 ° in electrical angle from the d-axis is q-axis.
  • the rotor core 20 has an outer diameter side magnet insertion hole 410 formed across the d axis on the outer diameter side of the rotor core 20 so as to correspond to each magnetic pole portion 30;
  • a pair of inner magnet-side magnet insertion holes 421 and 422 formed in a substantially C-shape extending radially outward across the d-axis on the inner-diameter side of the outer-magnet-side magnet insertion hole 410, and an inner-magnet-side magnet insertion hole 421. , 422, each having a pair of ribs 510, 520 extending in the radial direction, and a gap 60 formed between the pair of ribs 510, 520.
  • Each of the outer-diameter magnet insertion holes 410 and the inner-diameter magnet insertion holes 421 and 422 has an arc shape that is convex inward in the radial direction.
  • Each magnetic pole part 30 has a magnet part 300 including an outer diameter side magnet part 310 and an inner diameter side magnet part 320.
  • the outer diameter side magnet part 310 is inserted into the outer diameter side magnet insertion hole 410, and includes an outer diameter side permanent magnet 810 arranged so as to be convex inward in the radial direction.
  • the inner diameter side magnet part 320 is inserted into a pair of inner diameter side magnet insertion holes 421, 422, respectively, and is constituted by a pair of inner diameter side permanent magnets 821, 822 arranged so as to protrude radially inward.
  • the outer diameter side permanent magnet 810 and the pair of inner diameter side permanent magnets 821 and 822 are magnetized in the radial direction. Further, the outer diameter side permanent magnet 810 and the pair of inner diameter side permanent magnets 821 and 822 have different magnetization directions from the adjacent magnetic pole portions 30, and are arranged such that the magnetic pole portions 30 alternately have different magnetization directions in the circumferential direction. .
  • the pair of inner-diameter-side magnet insertion holes 421 and 422 are located on the left side with respect to the d axis.
  • the inner diameter side magnet insertion hole 421, the second inner diameter side magnet insertion hole 422 is disposed on the right side, and the pair of ribs 510 and 520 are arranged with the first rib 510 on the left side and the second rib 520 on the right side with the d axis interposed therebetween.
  • the pair of inner diameter side permanent magnets 821 and 822 have a first inner diameter side permanent magnet 821 on the left side and a second inner diameter side permanent magnet 822 on the right side with respect to the d-axis.
  • the distance D11 between the first inner permanent magnet 821 and the outer permanent magnet 810 and the distance D12 between the second inner permanent magnet 822 and the outer permanent magnet 810 are all changed from the q axis to the d axis. It gets longer as you get closer.
  • the rotor 10 can be prevented from increasing in size. Further, a magnetic path along the q-axis (hereinafter, also referred to as a q-axis magnetic path) in the rotor 10 can be widened and the reluctance torque of the rotating electric machine can be increased, so that the output performance of the rotating electric machine can be improved. Further, the magnetic flux generated by the first inner diameter side permanent magnet 821 and the second inner diameter side permanent magnet 822 and the outer diameter side permanent magnet 810 is easily concentrated on the d-axis, and the magnet torque of the rotating electric machine can be efficiently used. The output performance of the rotating electric machine can be improved.
  • the annular center C is defined as lower, and the outer diameter side in the d-axis direction is defined as upper. 2 to 4, the upper part of the rotor 10 is indicated by U, the lower part by D, the left side by L, and the right side by R.
  • the outer diameter side permanent magnet 810 has a circumferential center portion 810C, a circumferential left end portion 810L, and a circumferential right end portion 810R integrally formed, and has a radial direction having the same arc center C10. It has an inner diameter side curved surface 811 and an outer diameter side curved surface 812 having an arc shape convex toward the inside, a left end surface 813, and a right end surface 814.
  • the arc center C10 is located on the d-axis.
  • outer circumferential left end flat portions 815 and outer right right end flat portions 815L and 810R formed in a direction substantially orthogonal to the d-axis are provided on both circumferential end portions 810L and 810R of the outer diameter side curved surface 812 of the outer diameter side permanent magnet 810.
  • a section 816 is provided.
  • the outer-diameter magnet insertion hole 410 has an arc-shaped inner wall surface 411 that faces the inner-diameter curved surface 811 of the outer-diameter permanent magnet 810, and an arc that faces the outer-diameter curved surface 812 of the outer-diameter permanent magnet 810. It has an outer diameter side wall surface 412, a left wall surface 413, and a right wall surface 414. Further, at both ends in the circumferential direction of the outer diameter side wall surface 412 of the outer diameter side magnet insertion hole 410, the outer diameter facing the outer diameter left end flat portion 815 and the outer diameter right right end flat portion 816 of the outer diameter permanent magnet 810. A side left end flat wall surface 415 and an outer diameter side right end flat wall surface 416 are provided.
  • the outer diameter side permanent magnet 810 is inserted into the outer diameter side magnet insertion hole. 410, and the foamed sheet 90 is foamed by heating or the like.
  • the foam sheet 90 foams, the outer diameter side permanent magnet 810 is pressed to the inner diameter side, and the rotor core 20 is pressed in a state where the inner diameter side curved surface 811 is in contact with the inner diameter side wall surface 411 of the outer diameter side magnet insertion hole 410.
  • the foam sheet 90 is affixed to the outer-diameter left end flat portion 815 and the outer-diameter right end flat portion 816 of the outer-diameter permanent magnet 810, the outer-diameter permanent magnet 810 is removed in manufacturing the rotor 10.
  • the foamed sheet 90 is inserted into the radial-side magnet insertion hole 410, the foamed sheet 90 can be prevented from peeling off from the outer-diameter side permanent magnet 810.
  • the foam sheet 90 attached to the outer-diameter-side left-end flat portion 815 and the outer-diameter-side right-end flat portion 816 foams, variation in the pressing direction of the outer-diameter permanent magnet 810 toward the inner diameter can be reduced. Therefore, variation in the position where the outer diameter side permanent magnet 810 contacts the outer diameter side wall surface 412 of the outer diameter side magnet insertion hole 410 can be reduced, and variation in the position where the outer diameter side permanent magnet 810 is fixed to the rotor core 20 can be reduced. it can.
  • the foam sheet 90 is provided between the outer diameter side permanent magnet 810 and the outer diameter side left end flat wall surface 415 and the outer diameter side right end flat wall surface 416 of the outer diameter side magnet insertion hole 410, the rotor 10
  • the heat generated by the stator transmitted from the outer peripheral surface can be insulated by the foam sheet 90, and the temperature rise of the outer diameter side permanent magnet 810 can be suppressed.
  • the outer diameter side permanent magnet 810 and the outer diameter side magnet insertion hole 410 do not come into contact with each other at the circumferential central portion 810C of the outer diameter side permanent magnet 810, so that the outer peripheral surface of the rotor core 20 is excessively large when the rotor 10 rotates. Generation of centrifugal stress can be avoided. Furthermore, the deformation of the outer diameter side permanent magnet 810 and the rotor core 20 can be allowed by the gap G, so that the thermal stress of the outer diameter side permanent magnet 810 and the rotor core 20 can be reduced.
  • the outer diameter side permanent magnet 810, the first inner diameter side permanent magnet 821, and the second inner diameter side permanent magnet 822 are obtained by cutting a ring-shaped magnet formed by, for example, a hot working process in the radial direction.
  • An arc magnet can be used.
  • the crystal group of the ring-shaped magnet material that has been randomly oriented is radially oriented.
  • the compressive stress acts, and the crystal group of the ring-shaped magnet material is oriented in the same direction as the compressive stress direction.
  • an anisotropic ring-shaped magnet oriented in the radial direction is obtained.
  • the stress acting on the crystal group of the ring-shaped magnet material be uniform over the entire region.
  • the stress acting on the crystal group of the ring-shaped magnet material becomes non-uniform, and the degree of orientation of the ring-shaped magnet decreases. I will.
  • the thickness of the ring-shaped magnet material is not uniform, the stress acting on the crystals of the ring-shaped magnet material becomes uneven, and the degree of orientation of the ring-shaped magnet is reduced.
  • the value of (thickness of the ring-shaped magnet material) / (ring radius of the ring-shaped magnet material) must be within a predetermined range.
  • the plate thickness d21 of the first inner permanent magnet 821 and the plate thickness d22 of the second inner permanent magnet 822 are larger than the plate thickness d10 of the outer permanent magnet 810. Thereby, the magnet amount of the first inner diameter side permanent magnet 821 and the second inner diameter side permanent magnet 822 can be increased, and the magnet torque of the rotating electric machine can be increased, so that the output performance of the rotating electric machine can be improved.
  • the arc radius r21 of the first inner permanent magnet 821 and the second inner permanent magnet 822 are increased.
  • the arc radius r22 is larger than the arc radius r10 of the outer diameter side permanent magnet 810.
  • the arc radius r10 of the outer diameter side permanent magnet 810, the arc radius r21 of the first inner diameter side permanent magnet 821, and the arc radius r22 of the second inner diameter side permanent magnet 822 are the arc surfaces from the center of the arc to the inner circumference of the permanent magnet. Length.
  • d10 / r10 which is the ratio of the arc radius r10 of the outer diameter side permanent magnet 810 to the plate thickness d10 of the outer diameter side permanent magnet 810, the arc radius r21 of the first inner diameter side permanent magnet 821, and the first D21 / r21, which is the ratio of the plate thickness d21 of the inner diameter side permanent magnet 821, the arc radius r22 of the second inner side permanent magnet 822, and d22 / r, which is the ratio of the plate thickness d22 of the second inner side permanent magnet 822.
  • r22 is preferably substantially the same value within a predetermined range.
  • the arc radius r21 of the first inner permanent magnet 821 and the arc radius r22 of the second inner permanent magnet 822 are the same, and the plate thickness d21 of the first inner permanent magnet 821 and the second inner permanent magnet 821 are equal.
  • the plate thickness d22 of the magnets 822 is the same, and the first inner permanent magnet 821 and the second inner permanent magnet 822 have the same shape.
  • the outer-diameter permanent magnet 810 includes inner-diameter-side left-end flat portions 817 and inner-diameter-right-right flat portions 818 on both ends 810L and 810R in the circumferential direction of the inner-diameter curved surface 811 of the outer-diameter permanent magnet 810. Is provided.
  • the outer-diameter magnet insertion hole 410 is provided at both ends in the circumferential direction of the inner-diameter side wall surface 411 of the outer-diameter magnet insertion hole 410 with the inner-diameter-side left-end flat wall surface 417 facing the inner-diameter-side left-end flat portion 817 and the inner-diameter-right-right flat portion 818. And a flat wall surface 418 on the right end on the inner diameter side.
  • the outer diameter permanent magnet 810 is inserted into the outer diameter magnet insertion hole 410. It is inserted and the foam sheet 90 is foamed by heating or the like. When the foam sheet 90 foams, the outer diameter side permanent magnet 810 is pressed to the outer diameter side, and the outer diameter side curved surface 812 is in contact with the outer diameter side wall surface 412 of the outer diameter side magnet insertion hole 410. Are fixed to the rotor core 20.
  • the outer diameter side permanent magnet 810 is pressed to the outer diameter side and fixed to the rotor core 20, the outer diameter side permanent magnet 810 can be disposed on the outer diameter side, and the output performance of the rotating electric machine can be improved. Can be improved.
  • the outer diameter side permanent magnet 810 has a circumferential central portion 810C, a circumferential left end portion 810L, and a circumferential right end portion 810R integrally formed, and has a convex shape radially inward. It has an arc-shaped inner curved surface 811 and outer curved surface 812, a left end surface 813, and a right end surface 814.
  • the arc radius r11 of the inner diameter side curved surface 811 is smaller than the arc radius r10 of the outer diameter side curved surface 812, and the outer diameter side permanent magnet 810 is moved from the circumferential central portion 810C to both circumferential ends 810L, It has a substantially crescent shape in which the plate thickness decreases toward 810R.
  • the outer-diameter magnet insertion hole 410 has an arc-shaped inner wall surface 411 that faces the inner-diameter curved surface 811 of the outer-diameter permanent magnet 810, and an arc that faces the outer-diameter curved surface 812 of the outer-diameter permanent magnet 810. It has an outer diameter side wall surface 412, a left wall surface 413, and a right wall surface 414.
  • foaming occurs between the outer diameter side curved surface 812 of the outer circumferential side left end portion 810L and the outer right side end portion 810R of the outer diameter side permanent magnet 810 and the outer diameter side wall surface 412 of the outer diameter side magnet insertion hole 410, respectively.
  • a seat 90 is provided.
  • the outer diameter side permanent magnet 810 is moved to the outer diameter side.
  • the foam sheet 90 is inserted into the magnet insertion hole 410 and foamed by heating or the like.
  • the outer diameter side permanent magnet 810 is pressed to the inner diameter side, and the rotor core 20 is pressed in a state where the inner diameter side curved surface 811 is in contact with the inner diameter side wall surface 411 of the outer diameter side magnet insertion hole 410. It is fixed to.
  • the outer diameter side curved surface 812 of the outer circumferential side left end 810L and the outer circumferential right end 810R of the outer diameter side permanent magnet 810, and the outer diameter of the outer diameter side magnet insertion hole 410 are provided.
  • the outer diameter side permanent magnet 810 is provided between the outer diameter side permanent magnet 810 and the inner diameter side curved surface 811 of the outer diameter side permanent magnet 810 and the outer diameter side magnet insertion hole 410. It may be provided between the inner wall surface 411 and the inner wall surface 411.
  • the outer diameter side permanent magnet 810 is pressed to the outer diameter side, and the outer diameter side curved surface 812 contacts the outer diameter side wall surface 412 of the outer diameter side magnet insertion hole 410.
  • the permanent magnet 810 is fixed to the rotor core 20, so that the outer diameter side permanent magnet 810 can be arranged on the outer diameter side, and the output performance of the rotating electric machine can be improved.
  • the inner diameter side curved surface 811 and the outer diameter side curved surface 812 of the outer diameter side permanent magnet 810 each have a circular arc shape that is convex inward in the radial direction.
  • the shape is not limited to an arc shape, and may have an arbitrary shape that is convexly curved inward in the radial direction.
  • the outer diameter side permanent magnet 810 has been described, but the first inner diameter side permanent magnet 821 and the second inner diameter side permanent magnet 822 are the same as the outer diameter side permanent magnet 810. May be provided. Further, in the first to third embodiments, the first inner permanent magnet 821 and the second inner permanent magnet 822 of the inner magnet portion 320 can be omitted. That is, the magnet unit 300 may be composed of only the outer permanent magnet 810 of the outer magnet unit 310.
  • a substantially annular rotor core (rotor core 20) having a plurality of magnet insertion holes (outer diameter side magnet insertion holes 410) formed in a circumferential direction;
  • a permanent magnet (outside permanent magnet 810) inserted into the magnet insertion hole,
  • a foam sheet (foam sheet 90) provided between the permanent magnet and a wall surface (outer diameter side wall surface 412) of the magnet insertion hole;
  • a rotor (rotor 10) of a rotating electric machine comprising: Seen from the front of the rotor core,
  • the permanent magnet is An inner radius side curved surface (inner radius side curved surface 811) curved convexly inwardly in the radial direction of the rotor core;
  • An outer radius side curved surface (outer radius side curved surface 812) curved convexly inward in the radial direction of the rotor core;
  • the foamed sheet is disposed between at least one of the inner curved surface and the outer curved surface of the permanent magnet and
  • a gap is provided between the outer diameter side curved surface of the permanent magnet and the outer diameter side wall surface of the magnet insertion hole at the circumferential center of the permanent magnet. At the center in the circumferential direction, the permanent magnet does not contact the magnet insertion hole. Thereby, it is possible to avoid occurrence of excessive centrifugal stress on the outer peripheral surface of the rotor core when the rotor rotates. Further, since the deformation of the permanent magnet and the rotor core can be allowed by the gap, the thermal stress of the permanent magnet and the rotor core can be reduced.
  • the permanent magnet can be formed by the foamed sheet provided between at least one of the inner curved surface and the outer curved surface of the permanent magnet and the wall surface of the magnet insertion hole. The other side curved surface is fixed to the rotor core by abutting against the wall surface of the magnet insertion hole. Thereby, the permanent magnet can be fixed to the rotor core without having to inject a resin or the like into the magnet insertion hole.
  • the rotor of the rotary electric machine according to (1) The foamed sheet is disposed between the outer diameter side curved surface of both ends in the circumferential direction (both ends 810L and 810R in the circumferential direction) of the permanent magnet and the outer diameter side wall surface of the magnet insertion hole. Electric rotor.
  • the stator transmitted from the outer peripheral surface of the rotor can be used.
  • the generated heat can be insulated by the foamed sheet, and the temperature rise of the permanent magnet can be suppressed.
  • the permanent magnet is inserted into the magnet insertion hole in manufacturing the rotor. In doing so, it is possible to prevent the foamed sheet from peeling off from the permanent magnet.
  • the foam sheet disposed on the flat portion foams, it is possible to reduce the variation in the position where the permanent magnet abuts the inner wall surface of the magnet insertion hole. Thus, it is possible to reduce variation in the position where the permanent magnet is fixed to the rotor core.
  • the rotor of the rotary electric machine according to (1) The foam sheet is disposed between the inner diameter side curved surface of both ends in the circumferential direction (both ends 810L and 810R in the circumferential direction) of the permanent magnet and the inner diameter side wall surface (inner diameter side wall surface 411) of the magnet insertion hole.
  • a rotating electric machine rotor The foam sheet is disposed between the inner diameter side curved surface of both ends in the circumferential direction (both ends 810L and 810R in the circumferential direction) of the permanent magnet and the inner diameter side wall surface (inner diameter side wall surface 411) of the magnet insertion hole.
  • the permanent magnet since the foam sheet is provided between the inner diameter side curved surfaces of the circumferential end portions of the permanent magnet and the inner diameter side wall surface of the magnet insertion hole, the permanent magnet has the outer diameter side curved surface. Is fixed to the rotor core in a state in which it contacts the outer diameter side wall surface of the magnet insertion hole. Thereby, the permanent magnet can be arranged on the outer diameter side, and the output performance of the rotating electric machine can be improved.
  • the foamed sheet is disposed on the flat portion provided on the inner diameter side curved surface at both ends in the circumferential direction of the permanent magnet, the permanent magnet is inserted into the magnet insertion hole in manufacturing the rotor. At this time, it is possible to prevent the foamed sheet from peeling off from the permanent magnet. Further, since the foam sheet disposed on the flat portion foams, it is possible to reduce variation in the position where the permanent magnet abuts on the outer diameter side wall surface of the magnet insertion hole. Thus, it is possible to reduce variation in the position where the permanent magnet is fixed to the rotor core.
  • the rotor of the rotary electric machine according to any one of (1) to (5),
  • the inner diameter side curved surface and the outer diameter side curved surface of the permanent magnet have an arc shape convex toward the radial inside of the rotor core, and have the same arc center (arc center C10).
  • Rotating electric machine rotor Rotating electric machine rotor.
  • the inner diameter side curved surface and the outer diameter side curved surface of the permanent magnet both have an arc shape convex toward the radially inner side of the rotor core and have the same arc center.
  • An arc magnet obtained by radially cutting a ring-shaped magnet formed by molding using a hot working process or the like can be used as a permanent magnet. This makes it possible to use a permanent magnet having high-performance magnetization characteristics.
  • Rotor 20 Rotor core 410 Outer diameter side magnet insertion hole (magnet insertion hole) 411 inner diameter side wall surface 412 outer diameter side wall surface 810 outer diameter side permanent magnet (permanent magnet) 810C Circumferential center part 810L Circumferential left end (both circumferential ends) 810R Circumferential right end (circumferential ends) 811 inner diameter side curved surface 812 outer diameter side curved surface 815 outer diameter side left end flat part (flat part) 816 Outer diameter side right end flat part (flat part) 817 Flat part at the left end on the inner diameter side (flat part) 818 Inner diameter side right end flat part (flat part) 90 Foam sheet C10 Arc center G Gap

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

回転電機のロータ(10)は、磁石挿入孔(410)を有する略円環形状のロータコア(20)と、永久磁石(810)と、永久磁石(810)と磁石挿入孔(410)の壁面との間に設けられた発泡シート(90)と、を備える。永久磁石(810)は、ロータコア(20)の径方向内側に向かって凸状に湾曲した内径側湾曲面(811)及び外径側湾曲面(812)を有する。発泡シート(90)は、永久磁石(810)の内径側湾曲面(811)及び外径側湾曲面(812)の少なくとも一方と、磁石挿入孔(410)の壁面との間に配置され、永久磁石(810)の周方向中央部(810C)には、永久磁石(810)の外径側湾曲面(812)と、磁石挿入孔(410)の外径側壁面(412)との間に隙間部(G)が設けられている。

Description

回転電機のロータ
 本発明は、電動車両などに搭載される回転電機のロータに関する。
 従来から、回転電機に使用されるロータとして、ロータコアの内部に周方向に所定の間隔で複数個の永久磁石を配置した、いわゆるIPMモータが知られている。このようなIPMモータにおいて、永久磁石をロータコアに固定するための手段として、例えば、特許文献1や特許文献2に記載された技術が知られている。
 特許文献1には、ロータ外径側にかしめ用の孔を設け、ロータコアをリベットピンでかしめると同時に押圧によりロータコアを変形させることで、ロータコアと円弧形状の永久磁石を面接触で固定する構成が開示されている。
 特許文献2には、ロータコアの正面から見て、磁石挿入孔の周方向両端部付近に設けられた支持突起に円弧形状の永久磁石の周方向両端面を当接させることで、ロータコアと永久磁石を固定する構成が開示されている。
日本国特開2007-306688号公報 日本国特開2014-100048号公報
 しかしながら、特許文献1及び特許文献2の回転電機のロータでは、永久磁石の周方向中央部において、永久磁石の外径面とロータコアの磁石挿入孔の外径側壁面とが当接する。そのため、永久磁石に製造誤差があると、ロータが高速で回転する際に、永久磁石の遠心力により、ロータコアの外周面に過大な応力が発生する虞があった。
 本発明は、ロータの回転時に、ロータコアの外周面に過大な遠心応力が発生するのを回避できる回転電機のロータを提供する。
 本発明は、
 周方向に沿って複数形成された磁石挿入孔を有する略円環形状のロータコアと、
 前記磁石挿入孔に挿入された永久磁石と、
 前記永久磁石と、前記磁石挿入孔の壁面との間に設けられた発泡シートと、
を備えた回転電機のロータであって、
 前記ロータコアの正面から見て、
 前記永久磁石は、
 前記ロータコアの径方向内側に向かって凸状に湾曲した内径側湾曲面と、
 前記ロータコアの径方向内側に向かって凸状に湾曲した外径側湾曲面と、
を有し、
 前記発泡シートは、前記永久磁石の前記内径側湾曲面及び前記外径側湾曲面の少なくとも一方と、前記磁石挿入孔の前記壁面との間に配置され、
 前記永久磁石は、前記永久磁石の前記内径側湾曲面及び前記外径側湾曲面の他方が前記磁石挿入孔の前記壁面と当接することにより、前記ロータコアに固定されており、
 前記永久磁石の周方向中央部には、前記永久磁石の前記外径側湾曲面と、前記磁石挿入孔の外径側壁面との間に隙間部が設けられている。
 本発明によれば、ロータの回転時に、ロータコアの外周面に過大な遠心応力が発生するのを回避できる。
本発明の第1実施形態の回転電機のロータの正面図である。 図1の外径側磁石部周辺の拡大図である。 本発明の第2実施形態の回転電機のロータの外径側磁石部周辺の拡大図である。 本発明の第3実施形態の回転電機のロータの外径側磁石部周辺の拡大図である。
 以下、本発明の回転電機のロータの各実施形態を、添付図面に基づいて説明する。
 まず、本発明の第1実施形態の回転電機のロータについて図1~図2を参照しながら説明する。
 図1に示すように、一実施形態の回転電機のロータ10は、ロータシャフト(不図示)の外周部に取り付けられるロータコア20と、ロータコア20の内部に周方向に所定の間隔で形成された複数の磁極部30(本実施形態では12個)と、を備え、ステータ(不図示)の内周側に配置されている。
 ロータコア20は、同一形状の略円環状の電磁鋼板200が軸方向に複数積層されて形成されている。ロータコア20は、円環中心Cと同中心のロータシャフト孔21を有する。さらに、円環中心Cと各磁極部30の中心とを結ぶ、各磁極部30の中心軸をd軸(図中d-axis)、d軸に対し電気角で90°隔てた軸をq軸(図中q-axis)とした場合、ロータコア20は、各磁極部30に対応するように、ロータコア20の外径側にd軸を横切るように形成された外径側磁石挿入孔410と、外径側磁石挿入孔410の内径側にd軸を挟んで径方向外側に向かって広がる略ハの字状に形成された一対の内径側磁石挿入孔421、422と、内径側磁石挿入孔421、422のd軸側端部に形成され、それぞれ径方向に延びる一対のリブ510、520と、一対のリブ510、520間に形成された空隙部60と、を有する。外径側磁石挿入孔410及び内径側磁石挿入孔421、422は、いずれも径方向内側に凸となる円弧形状を有する。
 各磁極部30は、外径側磁石部310及び内径側磁石部320を含む磁石部300を有する。外径側磁石部310は、外径側磁石挿入孔410に挿入され、径方向内側に凸となるように配置された外径側永久磁石810から構成される。内径側磁石部320は、一対の内径側磁石挿入孔421、422にそれぞれ挿入され、径方向内側に凸となるように配置された一対の内径側永久磁石821、822から構成される。
 外径側永久磁石810及び一対の内径側永久磁石821、822は、径方向に磁化されている。また、外径側永久磁石810及び一対の内径側永久磁石821、822は、隣り合う磁極部30と磁化方向が異なり、磁極部30が周方向で交互に磁化方向が異なるように配置されている。
 ここで、ロータ10の正面視において、円環中心Cを下方、d軸方向外径側を上方として見て、一対の内径側磁石挿入孔421、422は、d軸に対して左側に第1内径側磁石挿入孔421、右側に第2内径側磁石挿入孔422が配置され、一対のリブ510、520は、d軸を挟んで左側に第1リブ510、右側に第2リブ520が配置され、一対の内径側永久磁石821、822は、d軸を挟んで左側に第1内径側永久磁石821、右側に第2内径側永久磁石822が配置されている。
 さらに、第1内径側永久磁石821と外径側永久磁石810との距離D11及び第2内径側永久磁石822と外径側永久磁石810との距離D12は、いずれも、q軸からd軸に近づくに従って長くなっている。
 これにより、磁極部30の周方向長さが大きくなることを抑制できるので、ロータ10が大型化するのを抑制できる。また、ロータ10におけるq軸に沿った磁路(以下、q軸磁路とも呼ぶ)を広くとることができ、回転電機のリラクタンストルクを大きくできるので、回転電機の出力性能を向上できる。さらに、第1内径側永久磁石821及び第2内径側永久磁石822と、外径側永久磁石810とによるマグネット磁束がd軸に集約されやすくなり、回転電機のマグネットトルクを効率的に利用でき、回転電機の出力性能を向上できる。
 以降、本明細書等では説明を簡単且つ明確にするために、ロータ10の正面視において、円環中心Cを下方、d軸方向外径側を上方と定義して説明する。図2~4には、ロータ10の上方をU、下方をD、左側をL、右側をR、として示す。
 図2に示すように、外径側永久磁石810は、周方向中央部810Cと、周方向左端部810Lと、周方向右端部810Rとが一体に形成され、同一の円弧中心C10を有する径方向内側に向かって凸状の円弧形状の内径側湾曲面811及び外径側湾曲面812と、左側端面813と、右側端面814と、を有する。円弧中心C10は、d軸上に位置している。さらに、外径側永久磁石810の外径側湾曲面812の周方向両端部810L、810Rには、d軸と略直交する向きに形成された外径側左端平坦部815及び外径側右端平坦部816が設けられている。
 外径側磁石挿入孔410は、外径側永久磁石810の内径側湾曲面811と対向する円弧形状の内径側壁面411と、外径側永久磁石810の外径側湾曲面812と対向する円弧形状の外径側壁面412と、左側壁面413と、右側壁面414と、を有する。さらに、外径側磁石挿入孔410の外径側壁面412の周方向両端部には、外径側永久磁石810の外径側左端平坦部815及び外径側右端平坦部816と対向する外径側左端平坦壁面415及び外径側右端平坦壁面416が設けられている。
 さらに、外径側永久磁石810の外径側左端平坦部815及び外径側右端平坦部816と、外径側磁石挿入孔410の外径側左端平坦壁面415及び外径側右端平坦壁面416との間には、それぞれ発泡シート90が設けられている。
 ロータ10の製造において、外径側永久磁石810の外径側左端平坦部815及び外径側右端平坦部816に発泡シート90を貼付した後、外径側永久磁石810を外径側磁石挿入孔410に挿入し、加熱等により発泡シート90を発泡させる。発泡シート90が発泡することによって、外径側永久磁石810は、内径側に押圧され、内径側湾曲面811が外径側磁石挿入孔410の内径側壁面411と当接した状態で、ロータコア20に固定される。
 これにより、外径側磁石挿入孔410に樹脂等を注入する必要なく、外径側永久磁石810をロータコア20に固定することができる。
 さらに、発泡シート90は、外径側永久磁石810の外径側左端平坦部815及び外径側右端平坦部816に貼付されているので、ロータ10の製造において、外径側永久磁石810を外径側磁石挿入孔410に挿入する際に、発泡シート90が外径側永久磁石810から剥がれるのを防止できる。また、外径側左端平坦部815及び外径側右端平坦部816に貼付された発泡シート90が発泡するので、外径側永久磁石810の内径側への押圧方向のバラつきを低減できる。よって、外径側永久磁石810が外径側磁石挿入孔410の外径側壁面412と当接する位置のバラつきを低減でき、外径側永久磁石810がロータコア20に固定される位置のバラつきを低減できる。
 また、外径側永久磁石810と、外径側磁石挿入孔410の外径側左端平坦壁面415及び外径側右端平坦壁面416との間に発泡シート90が設けられているので、ロータ10の外周面から伝わるステータで発生した熱を発泡シート90により断熱することができ、外径側永久磁石810の温度上昇を抑制できる。
 ここで、外径側永久磁石810の周方向中央部810Cには、外径側永久磁石810の外径側湾曲面812と、外径側磁石挿入孔410の外径側壁面412との間に隙間部Gが設けられている。
 これにより、外径側永久磁石810の周方向中央部810Cにおいて、外径側永久磁石810と外径側磁石挿入孔410は接触しないので、ロータ10の回転時に、ロータコア20の外周面に過大な遠心応力が発生することを回避できる。さらに、隙間部Gによって、外径側永久磁石810及びロータコア20の変形を許容できるので、外径側永久磁石810及びロータコア20の冷熱応力を低減できる。
 なお、外径側永久磁石810、第1内径側永久磁石821、及び第2内径側永久磁石822は、例えば、熱間加工プロセスを用いた成形により形成されたリング状磁石を径方向に切断した円弧磁石を用いることができる。
 一般に、熱間押出し成形等の熱間加工プロセスを用いた成形によりリング状磁石を形成する場合、熱間押出し成形することにより、ランダムに配向していたリング状磁石素材の結晶群に径方向の圧縮応力が作用し、リング状磁石素材の結晶群は、圧縮応力方向と同方向に配向する。その結果、径方向に配向した異方性リング状磁石が得られる。
 したがって、高性能な磁化特性を持ったリング状磁石を得るためには、リング状磁石素材の結晶群に作用する応力が全域で均一となることが望ましい。しかし、リング状磁石素材のリング半径が小さく、リング状磁石素材の肉厚が大きい場合は、リング状磁石素材の結晶群に作用する応力が不均一となり、リング状磁石の配向度が低下してしまう。また、リング状磁石素材の肉厚が不均一の場合も、リング状磁石素材の結晶群に作用する応力が不均一となり、リング状磁石の配向度が低下してしまう。よって、リング状磁石素材の結晶群に作用する応力が全域で均一となるためには、(リング状磁石素材の肉厚)/(リング状磁石素材のリング半径)の値が、所定範囲内にある必要があり、円弧磁石の磁石量を増やすに際し、高性能な磁化特性を持った円弧磁石を複数層に配置するには、板厚に応じて円弧磁石の円弧半径も大きくする必要がある。
 第1内径側永久磁石821の板厚d21及び第2内径側永久磁石822の板厚d22は、外径側永久磁石810の板厚d10よりも大きくなっている。これにより、第1内径側永久磁石821及び第2内径側永久磁石822の磁石量を増やすことができ、回転電機のマグネットトルクを大きくできるので、回転電機の出力性能を向上できる。
 また、第1内径側永久磁石821の板厚d21及び第2内径側永久磁石822の板厚d22を大きくした分、第1内径側永久磁石821の円弧半径r21及び第2内径側永久磁石822の円弧半径r22は、外径側永久磁石810の円弧半径r10よりも大きくなっている。これにより、高性能な磁化特性を持つ外径側永久磁石810、第1内径側永久磁石821、及び第2内径側永久磁石822を用いることができるので、回転電機の出力性能を向上できる。なお、外径側永久磁石810の円弧半径r10、第1内径側永久磁石821の円弧半径r21及び第2内径側永久磁石822の円弧半径r22は、円弧中心から永久磁石の内周側の円弧面までの長さとする。
 ここで、外径側永久磁石810の円弧半径r10と、外径側永久磁石810の板厚d10との比であるd10/r10と、第1内径側永久磁石821の円弧半径r21と、第1内径側永久磁石821の板厚d21との比であるd21/r21と、第2内径側永久磁石822の円弧半径r22と、第2内径側永久磁石822の板厚d22との比であるd22/r22とは、所定範囲で略同一の値であることが好ましい。より好ましくは、第1内径側永久磁石821の円弧半径r21と第2内径側永久磁石822の円弧半径r22とが同一、かつ、第1内径側永久磁石821の板厚d21と第2内径側永久磁石822の板厚d22が同一であり、第1内径側永久磁石821と第2内径側永久磁石822とが同一形状となっている。
[第2実施形態]
 続いて、本発明の第2実施形態のロータ10について図3を参照しながら説明する。なお、以下の説明において、第1実施形態のロータ10と同一の構成要素については同一の符号を付して説明を省略又は簡略化し、第1実施形態のロータ10との相違点について詳細に説明する。
 図3に示すように、外径側永久磁石810は、外径側永久磁石810の内径側湾曲面811の周方向両端部810L、810Rに、内径側左端平坦部817及び内径側右端平坦部818が設けられている。
 外径側磁石挿入孔410は、外径側磁石挿入孔410の内径側壁面411の周方向両端部に、内径側左端平坦部817及び内径側右端平坦部818と対向する内径側左端平坦壁面417及び内径側右端平坦壁面418が設けられている。
 さらに、外径側永久磁石810の内径側左端平坦部817及び内径側右端平坦部818と、外径側磁石挿入孔410の内径側左端平坦壁面417及び内径側右端平坦壁面418との間に、それぞれ発泡シート90が設けられている。
 ロータ10の製造において、外径側永久磁石810の内径側左端平坦部817及び内径側右端平坦部818に発泡シート90を貼付した後、外径側永久磁石810を外径側磁石挿入孔410に挿入し、加熱等により発泡シート90を発泡させる。発泡シート90が発泡することによって、外径側永久磁石810は、外径側に押圧され、外径側湾曲面812が外径側磁石挿入孔410の外径側壁面412と当接した状態で、ロータコア20に固定されている。
 これにより、外径側磁石挿入孔410に樹脂等を注入する必要なく、外径側永久磁石810をロータコア20に固定することができる。
 また、外径側永久磁石810は、外径側に押圧されて、ロータコア20に固定されているので、外径側永久磁石810をより外径側に配置することができ、回転電機の出力性能を向上できる。
[第3実施形態]
 続いて、本発明の第3実施形態のロータ10について図4を参照しながら説明する。なお、以下の説明において、第1実施形態のロータ10と同一の構成要素については同一の符号を付して説明を省略又は簡略化し、第1実施形態のロータ10との相違点について詳細に説明する。
 図4に示すように、外径側永久磁石810は、周方向中央部810Cと、周方向左端部810Lと、周方向右端部810Rとが一体に形成され、径方向内側に向かって凸状の円弧形状の内径側湾曲面811及び外径側湾曲面812と、左側端面813と、右側端面814と、を有する。さらに、内径側湾曲面811の円弧半径r11は、外径側湾曲面812の円弧半径r10よりも小さくなっており、外径側永久磁石810は、周方向中央部810Cから周方向両端部810L、810Rに向かって板厚が減少する、略三日月形状を有する。
 外径側磁石挿入孔410は、外径側永久磁石810の内径側湾曲面811と対向する円弧形状の内径側壁面411と、外径側永久磁石810の外径側湾曲面812と対向する円弧形状の外径側壁面412と、左側壁面413と、右側壁面414と、を有する。
 さらに、外径側永久磁石810の周方向左端部810L及び周方向右端部810Rの外径側湾曲面812と、外径側磁石挿入孔410の外径側壁面412との間には、それぞれ発泡シート90が設けられている。
 ロータ10の製造において、外径側永久磁石810の周方向左端部810L及び周方向右端部810Rの外径側湾曲面812に発泡シート90を貼付した後、外径側永久磁石810を外径側磁石挿入孔410に挿入し、加熱等により発泡シート90を発泡させる。発泡シート90が発泡することによって、外径側永久磁石810は、内径側に押圧され、内径側湾曲面811が外径側磁石挿入孔410の内径側壁面411と当接した状態で、ロータコア20に固定されている。
 なお、本実施形態においては、発泡シート90は、外径側永久磁石810の周方向左端部810L及び周方向右端部810Rの外径側湾曲面812と、外径側磁石挿入孔410の外径側壁面412との間に設けられているものとしたが、外径側永久磁石810の周方向左端部810L及び周方向右端部810Rの内径側湾曲面811と、外径側磁石挿入孔410の内径側壁面411との間に設けられていてもよい。この場合、第2実施形態と同様に、外径側永久磁石810は、外径側に押圧され、外径側湾曲面812が外径側磁石挿入孔410の外径側壁面412と当接した状態で、ロータコア20に固定されるので、外径側永久磁石810をより外径側に配置することができ、回転電機の出力性能を向上できる。
 なお、前述した実施形態は、適宜、変形、改良、等が可能である。
 例えば、第1実施形態~第3実施形態では、外径側永久磁石810の内径側湾曲面811及び外径側湾曲面812は、いずれも径方向内側に向かって凸状の円弧形状としたが、円弧形状に限らず、径方向内側に向かって凸状に湾曲した任意の形状を有していてもよい。
 また、第1実施形態~第3実施形態では、外径側永久磁石810について説明したが、第1内径側永久磁石821及び第2内径側永久磁石822についても、外径側永久磁石810と同様の構成を有していてもよい。さらに、第1実施形態~第3実施形態において、内径側磁石部320の第1内径側永久磁石821及び第2内径側永久磁石822は、省略することができる。すなわち、磁石部300は、外径側磁石部310の外径側永久磁石810のみからなっていてもよい。
 また、本明細書には少なくとも以下の事項が記載されている。なお、括弧内には、上記した実施形態において対応する構成要素等を示しているが、これに限定されるものではない。
 (1) 周方向に沿って複数形成された磁石挿入孔(外径側磁石挿入孔410)を有する略円環形状のロータコア(ロータコア20)と、
 前記磁石挿入孔に挿入された永久磁石(外径側永久磁石810)と、
 前記永久磁石と、前記磁石挿入孔の壁面(外径側壁面412)との間に設けられた発泡シート(発泡シート90)と、
を備えた回転電機のロータ(ロータ10)であって、
 前記ロータコアの正面から見て、
 前記永久磁石は、
 前記ロータコアの径方向内側に向かって凸状に湾曲した内径側湾曲面(内径側湾曲面811)と、
 前記ロータコアの径方向内側に向かって凸状に湾曲した外径側湾曲面(外径側湾曲面812)と、
を有し、
 前記発泡シートは、前記永久磁石の前記内径側湾曲面及び前記外径側湾曲面の少なくとも一方と、前記磁石挿入孔の前記壁面との間に配置され、
 前記永久磁石は、前記永久磁石の前記内径側湾曲面及び前記外径側湾曲面の他方が前記磁石挿入孔の前記壁面と当接することにより、前記ロータコアに固定されており、
 前記永久磁石の周方向中央部(周方向中央部810C)には、前記永久磁石の前記外径側湾曲面と、前記磁石挿入孔の外径側壁面(外径側壁面412)との間に隙間部(隙間部G)が設けられている、回転電機のロータ。
 (1)によれば、永久磁石の周方向中央部には、永久磁石の外径側湾曲面と、磁石挿入孔の外径側壁面との間に隙間部が設けられているので、永久磁石の周方向中央部において、永久磁石と磁石挿入孔は接触しない。これにより、ロータの回転時に、ロータコアの外周面に過大な遠心応力が発生することを回避できる。さらに、隙間部によって、永久磁石及びロータコアの変形を許容できるので、永久磁石及びロータコアの冷熱応力を低減できる。
 また、永久磁石の内径側湾曲面及び外径側湾曲面の少なくとも一方と、磁石挿入孔の壁面との間に設けられた発泡シートによって、永久磁石は、永久磁石の内径側湾曲面及び外径側湾曲面の他方が磁石挿入孔の壁面と当接することにより、ロータコアに固定されている。これにより、磁石挿入孔に樹脂等を注入する必要なく、永久磁石をロータコアに固定することができる。
 (2) (1)に記載の回転電機のロータであって、
 前記発泡シートは、前記永久磁石の周方向両端部(周方向両端部810L、810R)の前記外径側湾曲面と、前記磁石挿入孔の前記外径側壁面との間に配置される、回転電機のロータ。
 (2)によれば、永久磁石の周方向両端部の外径側湾曲面と、磁石挿入孔の外径側壁面の間に発泡シートが設けられているので、ロータの外周面から伝わるステータで発生した熱を発泡シートにより断熱することができ、永久磁石の温度上昇を抑制できる。
 (3) (2)に記載の回転電機のロータであって、
 前記永久磁石の前記周方向両端部の前記外径側湾曲面には、平坦部(外径側左端平坦部815、外径側右端平坦部816)が設けられており、
 前記発泡シートは、該平坦部に配置される、回転電機のロータ。
 (3)によれば、発泡シートは、永久磁石の周方向両端部の外径側湾曲面に設けられた平坦部に配置されているので、ロータの製造において、永久磁石を磁石挿入孔に挿入する際に、発泡シートが永久磁石から剥がれるのを防止できる。また、平坦部に配置された発泡シートが発泡するので、永久磁石が磁石挿入孔の内径側壁面と当接する位置のバラつきを低減できる。これにより、永久磁石がロータコアに固定される位置のバラつきを低減できる。
 (4) (1)に記載の回転電機のロータであって、
 前記発泡シートは、前記永久磁石の周方向両端部(周方向両端部810L、810R)の前記内径側湾曲面と、前記磁石挿入孔の内径側壁面(内径側壁面411)との間に配置される、回転電機のロータ。
 (4)によれば、永久磁石の周方向両端部の内径側湾曲面と、磁石挿入孔の内径側壁面との間に発泡シートが設けられているので、永久磁石は、外径側湾曲面が磁石挿入孔の外径側壁面と当接した状態で、ロータコアに固定される。これにより、永久磁石をより外径側に配置することができ、回転電機の出力性能を向上できる。
 (5) (4)に記載の回転電機のロータであって、
 前記永久磁石の前記周方向両端部の前記内径側湾曲面には、平坦部(内径側左端平坦部817、内径側右端平坦部818)が設けられており、
 前記発泡シートは、該平坦部に配置される、回転電機のロータ。
 (5)によれば、発泡シートは、永久磁石の周方向両端部の内径側湾曲面に設けられた平坦部に配置されているので、ロータの製造において、永久磁石を磁石挿入孔に挿入する際に、発泡シートが永久磁石から剥がれるのを防止できる。また、平坦部に配置された発泡シートが発泡するので、永久磁石が磁石挿入孔の外径側壁面と当接する位置のバラつきを低減できる。これにより、永久磁石がロータコアに固定される位置のバラつきを低減できる。
 (6) (1)~(5)のいずれかに記載の回転電機のロータであって、
 前記永久磁石の前記内径側湾曲面と前記外径側湾曲面とは、前記ロータコアの径方向内側に向かって凸状の円弧形状を有し、かつ、同一の円弧中心(円弧中心C10)を有する、回転電機のロータ。
 (6)によれば、永久磁石の内径側湾曲面と外径側湾曲面は、いずれもロータコアの径方向内側に向かって凸状の円弧形状を有し、かつ、同一の円弧中心を有するので、熱間加工プロセスを用いた成形等によって形成されたリング状磁石を径方向に切断した円弧磁石を永久磁石に用いることができる。これにより、高性能な磁化特性を持った永久磁石を用いることが可能となる。
 なお、本出願は、2018年9月28日出願の日本特許出願(特願2018-185523)に基づくものであり、その内容はここに参照として取り込まれる。
10 ロータ
20 ロータコア
410 外径側磁石挿入孔(磁石挿入孔)
411 内径側壁面
412 外径側壁面
810 外径側永久磁石(永久磁石)
810C 周方向中央部
810L 周方向左端部(周方向両端部)
810R 周方向右端部(周方向両端部)
811 内径側湾曲面
812 外径側湾曲面
815 外径側左端平坦部(平坦部)
816 外径側右端平坦部(平坦部)
817 内径側左端平坦部(平坦部)
818 内径側右端平坦部(平坦部)
90 発泡シート
C10 円弧中心
G 隙間部 

Claims (6)

  1.  周方向に沿って複数形成された磁石挿入孔を有する略円環形状のロータコアと、
     前記磁石挿入孔に挿入された永久磁石と、
     前記永久磁石と、前記磁石挿入孔の壁面との間に設けられた発泡シートと、
    を備えた回転電機のロータであって、
     前記ロータコアの正面から見て、
     前記永久磁石は、
     前記ロータコアの径方向内側に向かって凸状に湾曲した内径側湾曲面と、
     前記ロータコアの径方向内側に向かって凸状に湾曲した外径側湾曲面と、
    を有し、
     前記発泡シートは、前記永久磁石の前記内径側湾曲面及び前記外径側湾曲面の少なくとも一方と、前記磁石挿入孔の前記壁面との間に配置され、
     前記永久磁石は、前記永久磁石の前記内径側湾曲面及び前記外径側湾曲面の他方が前記磁石挿入孔の前記壁面と当接することにより、前記ロータコアに固定されており、
     前記永久磁石の周方向中央部には、前記永久磁石の前記外径側湾曲面と、前記磁石挿入孔の外径側壁面との間に隙間部が設けられている、回転電機のロータ。
  2.  請求項1に記載の回転電機のロータであって、
     前記発泡シートは、前記永久磁石の周方向両端部の前記外径側湾曲面と、前記磁石挿入孔の前記外径側壁面との間に配置される、回転電機のロータ。
  3.  請求項2に記載の回転電機のロータであって、
     前記永久磁石の前記周方向両端部の前記外径側湾曲面には、平坦部が設けられており、 前記発泡シートは、該平坦部に配置される、回転電機のロータ。
  4.  請求項1に記載の回転電機のロータであって、
     前記発泡シートは、前記永久磁石の周方向両端部の前記内径側湾曲面と、前記磁石挿入孔の内径側壁面との間に配置される、回転電機のロータ。
  5.  請求項4に記載の回転電機のロータであって、
     前記永久磁石の前記周方向両端部の前記内径側湾曲面には、平坦部が設けられており、 前記発泡シートは、該平坦部に配置される、回転電機のロータ。
  6.  請求項1~5のいずれか一項に記載の回転電機のロータであって、
     前記永久磁石の前記内径側湾曲面と前記外径側湾曲面とは、前記ロータコアの径方向内側に向かって凸状の円弧形状を有し、かつ、同一の円弧中心を有する、回転電機のロータ。 
PCT/JP2019/037984 2018-09-28 2019-09-26 回転電機のロータ WO2020067350A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-185523 2018-09-28
JP2018185523 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020067350A1 true WO2020067350A1 (ja) 2020-04-02

Family

ID=69950743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/037984 WO2020067350A1 (ja) 2018-09-28 2019-09-26 回転電機のロータ

Country Status (1)

Country Link
WO (1) WO2020067350A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123863A1 (ja) * 2020-12-09 2022-06-16 日本電産株式会社 回転電機

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007174872A (ja) * 2005-12-26 2007-07-05 Nitto Shinko Kk モータ磁性部材接着用加熱発泡シート
WO2014125599A1 (ja) * 2013-02-14 2014-08-21 三菱電機株式会社 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
JP2016105696A (ja) * 2016-03-07 2016-06-09 日立アプライアンス株式会社 永久磁石同期機
WO2016185829A1 (ja) * 2015-05-19 2016-11-24 三菱電機株式会社 回転子、回転電機および回転子の製造方法
WO2017163423A1 (ja) * 2016-03-25 2017-09-28 三菱電機株式会社 ロータ、電動機、圧縮機、および冷凍空調機
JP2018067978A (ja) * 2016-10-17 2018-04-26 日立オートモティブシステムズ株式会社 回転電機、および、回転電機の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007174872A (ja) * 2005-12-26 2007-07-05 Nitto Shinko Kk モータ磁性部材接着用加熱発泡シート
WO2014125599A1 (ja) * 2013-02-14 2014-08-21 三菱電機株式会社 永久磁石埋込型電動機、圧縮機及び冷凍空調装置
WO2016185829A1 (ja) * 2015-05-19 2016-11-24 三菱電機株式会社 回転子、回転電機および回転子の製造方法
JP2016105696A (ja) * 2016-03-07 2016-06-09 日立アプライアンス株式会社 永久磁石同期機
WO2017163423A1 (ja) * 2016-03-25 2017-09-28 三菱電機株式会社 ロータ、電動機、圧縮機、および冷凍空調機
JP2018067978A (ja) * 2016-10-17 2018-04-26 日立オートモティブシステムズ株式会社 回転電機、および、回転電機の製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022123863A1 (ja) * 2020-12-09 2022-06-16 日本電産株式会社 回転電機
DE112021006349T5 (de) 2020-12-09 2023-09-21 Nidec Corporation Elektrische drehmaschine

Similar Documents

Publication Publication Date Title
JP6507273B2 (ja) 永久磁石埋込型電動機のためのロータ及びそれを用いた電動機
CN104702003A (zh) 转子和具有该转子的电动发电机
WO2017141361A1 (ja) 回転電機及び回転電機の製造方法
US20140062245A1 (en) Rotor for rotating electric machine
JP2015053822A (ja) ロータ、および、ロータの製造方法
US20200106315A1 (en) Rotor core
US11646615B2 (en) Rotor of rotating electrical machine and arc magnet manufacturing method
WO2020067350A1 (ja) 回転電機のロータ
JP2015204680A (ja) 回転電機の回転子、及びこれを備えた回転電機
JP2014064471A (ja) 回転電機
US11233432B2 (en) Rotor
JP6013269B2 (ja) 永久磁石式回転電機
US20200227963A1 (en) Rotor core of rotating electrical machine
JP5900180B2 (ja) 回転電機の回転子鉄心
JP2015220846A (ja) 回転電機の回転子
US20200153301A1 (en) Rotor of rotating electrical machine
JP5495045B2 (ja) 回転電機の回転子
JP2018148605A (ja) 回転電機、スロット絶縁紙、回転電機の固定子の製造方法、及びスロット絶縁紙の製造方法
WO2020067349A1 (ja) 回転電機のロータ
JP2013143805A (ja) 回転電機のロータ、およびこれを備えた回転電機
JP6759893B2 (ja) 回転電機ロータ
JP2020108277A (ja) 回転電機のロータ
JP6176379B2 (ja) 永久磁石式回転電機
JP2020108275A (ja) 回転電機のロータ
WO2018070430A1 (ja) 同期リラクタンス型回転電機

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866529

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP