WO2020066843A1 - プラズマ処理装置及びプラズマ処理方法 - Google Patents
プラズマ処理装置及びプラズマ処理方法 Download PDFInfo
- Publication number
- WO2020066843A1 WO2020066843A1 PCT/JP2019/036799 JP2019036799W WO2020066843A1 WO 2020066843 A1 WO2020066843 A1 WO 2020066843A1 JP 2019036799 W JP2019036799 W JP 2019036799W WO 2020066843 A1 WO2020066843 A1 WO 2020066843A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plasma processing
- plasma
- dielectric window
- processing apparatus
- mounting
- Prior art date
Links
- 238000009832 plasma treatment Methods 0.000 title abstract 5
- 238000000034 method Methods 0.000 title description 12
- 238000003672 processing method Methods 0.000 claims description 5
- 239000010453 quartz Substances 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 26
- 230000005684 electric field Effects 0.000 description 14
- 239000004020 conductor Substances 0.000 description 6
- 238000009792 diffusion process Methods 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 239000012141 concentrate Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000003028 elevating effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 238000005268 plasma chemical vapour deposition Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
- H01J37/32211—Means for coupling power to the plasma
- H01J37/32229—Waveguides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32082—Radio frequency generated discharge
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/30—Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
- C23C16/34—Nitrides
- C23C16/345—Silicon nitride
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/455—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
- C23C16/45563—Gas nozzles
- C23C16/45565—Shower nozzles
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/458—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
- C23C16/4582—Rigid and flat substrates, e.g. plates or discs
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/505—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
- C23C16/509—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/44—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
- C23C16/50—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
- C23C16/511—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using microwave discharges
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32192—Microwave generated discharge
- H01J37/32211—Means for coupling power to the plasma
- H01J37/32238—Windows
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32715—Workpiece holder
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/0217—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon nitride not containing oxygen, e.g. SixNy or SixByNz
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02263—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
- H01L21/02271—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
- H01L21/02274—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67063—Apparatus for fluid treatment for etching
- H01L21/67069—Apparatus for fluid treatment for etching for drying etching
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/46—Generating plasma using applied electromagnetic fields, e.g. high frequency or microwave energy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/332—Coating
- H01J2237/3321—CVD [Chemical Vapor Deposition]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J2237/00—Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
- H01J2237/32—Processing objects by plasma generation
- H01J2237/33—Processing objects by plasma generation characterised by the type of processing
- H01J2237/334—Etching
- H01J2237/3341—Reactive etching
Definitions
- the present disclosure relates to a plasma processing apparatus and a plasma processing method.
- Patent Document 1 discloses a plasma processing apparatus that transmits microwaves inside a vacuum chamber via a waveguide to generate plasma inside the vacuum chamber.
- This plasma processing apparatus has a top plate and a dielectric.
- the top plate is provided in a portion of the vacuum chamber facing the waveguide, and a slit for introducing microwaves into the vacuum chamber is formed. The microwave passing through the slit on the vacuum chamber side surface is formed on the inner surface.
- the dielectric is a plate-shaped member provided on the vacuum chamber side of the top plate and transmitting microwaves. On the surface of the dielectric on the side of the vacuum chamber, projections and depressions made of ridges are periodically formed at a pitch of 7.5 to 30 mm.
- the technology according to the present disclosure makes plasma distribution uniform in plasma processing using plasma generated using electromagnetic waves in the VHF band.
- One embodiment of the present disclosure is a plasma processing apparatus that performs plasma processing on a processing target object, and includes: a mounting portion on which the processing target object is mounted; and a VHF band electromagnetic wave for plasma generation in the plasma processing apparatus.
- the dielectric window is an annular member provided so as to face the plasma processing space side of the mounting portion, and a plurality of convex portions projecting in the direction of the mounting portion are formed along the circumferential direction.
- the protrusion is formed on the mounting portion side so as to be arranged at intervals, and a circumferential width of the protrusion is 1 / to / of a wavelength of the electromagnetic wave in the dielectric window.
- the plasma distribution can be made uniform.
- FIG. 9 is a diagram illustrating a film thickness distribution when a film is actually formed by plasma processing when a projection is not formed on the dielectric window and the lower surface is flat. In the case where no projection is formed on the dielectric window and the lower surface is flat, the state of the inside of the processing chamber when plasma generation is actually performed under a nitrogen atmosphere by changing the plasma generation conditions is schematically shown.
- FIG. 9 is a diagram illustrating a film thickness distribution when a film is actually formed by plasma processing when a projection is not formed on the dielectric window and the lower surface is flat.
- a plate-shaped dielectric that transmits microwaves to a vacuum chamber has seven projections and depressions on the surface on the vacuum chamber side. It is formed periodically at a pitch of 0.5 to 30 mm. In this plasma processing apparatus, the plasma distribution is kept constant by providing a periodic uneven portion.
- VHF waves electromagnetic waves in the VHF band
- the present inventors have conducted intensive studies and found that, depending on the intensity of the electromagnetic wave and the pressure in the vacuum chamber in which the plasma is generated, the plasma distribution is biased in the circumferential direction, and the plasma distribution is not uniform.
- Patent Document 1 does not disclose or suggest anything in this regard.
- the technology according to the present disclosure makes plasma distribution uniform in plasma processing using plasma generated using VHF waves.
- FIG. 1 is a longitudinal sectional view illustrating a schematic configuration of a plasma processing apparatus 1 according to the present embodiment.
- the illustrated plasma processing apparatus 1 performs plasma processing on a wafer W as a processing target.
- the plasma used for the plasma processing is generated by VHF waves.
- the plasma processing performed by the plasma processing apparatus 1 is, for example, a film forming process, an etching process, or a doping process.
- the plasma processing apparatus 1 has a substantially cylindrical processing vessel 10 in which a plasma processing space S is formed.
- the processing vessel 10 is made of a metal material such as aluminum, and its inner wall is covered with a liner (not shown) having a sprayed coating made of a plasma-resistant material on the surface. Further, the processing container 10 is grounded.
- a through hole 10b is provided at the center of the top wall 10a of the processing container 10, and a cylindrical wall 10c whose internal cavity communicates with the through hole 10b is connected to the upper surface of the top wall 10a.
- the processing container 10 is provided with an exhaust port for exhausting the atmosphere in the processing container 10, specifically, the atmosphere in the plasma processing space S, for example, in the bottom wall 10d. . By exhausting air from the exhaust port, the plasma processing space S can be reduced in pressure to a predetermined degree of vacuum.
- a mounting table 11 as a mounting portion on which the wafer W is mounted is provided below the plasma processing space S in the processing chamber 10.
- the mounting table 11 is supported by a support member 12 erected at the center of the bottom of the processing container 10 via an insulating member 12a.
- the wafer W is transferred to the mounting table 11 between a temperature control mechanism, a gas flow path for supplying a heat transfer gas to the back surface of the wafer W, and a transfer arm (not shown).
- a transfer arm (not shown).
- an elevating pin or the like that moves up and down is provided.
- the mounting table 11 may be provided with an electrostatic chuck for electrostatically attracting the wafer W.
- a showerhead electrode 13 made of metal such as aluminum and a dielectric window 14 are provided above the plasma processing space S of the mounting table 11 in the processing chamber 10 so as to face the mounting table 11.
- the showerhead electrode 13 is supported by the processing vessel 10 via the dielectric window 14, and a gas diffusion chamber 13a formed in a substantially disk shape is provided inside the showerhead electrode 13.
- a plurality of gas supply ports 13b communicating with the gas diffusion chamber 13a are provided at a lower portion of the shower head electrode 13, that is, at a portion on the side of the plasma processing space S.
- a gas supply pipe 15a is connected to the gas diffusion chamber 13a, and a gas supply source 15b is connected to the gas supply pipe 15a.
- the plasma processing gas supplied from the gas supply source 15b is supplied to the gas diffusion chamber 13a via the gas supply pipe 15a.
- the plasma processing gas supplied to the gas diffusion chamber 13a is supplied to the plasma processing space S through the gas supply port 13b.
- An antenna conductor 16 is connected to the center of the upper surface of the shower head electrode 13.
- the antenna conductor 16 is provided so as to pass through the center of the through hole 10b of the top wall 10a and the center of the cylindrical wall 10c, and is electrically connected to the VHF source 18 via the matching unit 17.
- the VHF source 18 outputs an electromagnetic wave in the VHF band (30 MHz to 300 MHz). Electromagnetic waves from the VHF source 18 are transmitted between the outer peripheral surface of the antenna conductor 16 and the inner peripheral surface of the cylindrical wall 10c, between the outer peripheral surface of the antenna conductor 16 and the surface forming the through hole 10b, and on the top wall 10a. The light propagates between the inner surface and the upper surface of the shower head electrode 13 in order, and reaches the dielectric window 14.
- the waveguide for introducing the VHF wave into the plasma processing apparatus 1 includes the outer peripheral surface of the antenna conductor 16, the inner peripheral surface of the cylindrical wall 10c, the surface forming the through hole 10b, the inner surface of the top wall 10a, and It consists of the upper surface of the shower head electrode 13 and the like.
- the above-mentioned waveguide may be filled with a dielectric such as quartz so that the electromagnetic wave can easily propagate.
- the dielectric window 14 is provided so as to face the plasma processing space S side of the mounting table 11 and to cover the outer peripheral surface of the shower head electrode 13.
- the dielectric window 14 also converts the VHF wave transmitted as described above into plasma processing.
- the light is transmitted through the space S.
- the dielectric window 14 has a plurality of projections 14a protruding in the direction of the mounting table 11, ie, downward, on the mounting table 11 side, that is, on the lower side. The details of the dielectric window 14 and the projection 14a will be described later.
- plasma is generated in the plasma processing space S by the VHF wave transmitted through the dielectric window 14.
- a high frequency power supply 20 for RF bias is electrically connected to the mounting table 11 via a matching unit 19 in order to draw ions and the like in the plasma into the wafer W.
- the high frequency power supply 20 for RF bias outputs high frequency power having a frequency of, for example, 400 kHz to 20 MHz.
- the shower head electrode 13 is grounded.
- the matching unit 19 and the high frequency power supply 20 for RF bias may not be provided depending on the characteristics of the plasma processing.
- the plasma processing apparatus 1 further includes a control unit 21.
- the control unit 21 is configured by, for example, a computer having a CPU, a memory, and the like, and has a program storage unit (not shown).
- the program storage unit stores programs for controlling the VHF generation source 18 and the like for various processes in the plasma processing apparatus 1. Note that the program may be recorded on a computer-readable storage medium, and may be installed in the control unit 21 from the storage medium.
- the dielectric window 14 will be described with reference to FIG. FIG. 2 is a bottom view of the dielectric window 14.
- the dielectric window 14 is an annular member.
- the dielectric window 14 is provided so as to be positioned outside the wafer W so as not to overlap with the wafer W on the mounting table 11 in a plan view. Therefore, when the outer diameter of the wafer W is 300 mm, the inner diameter of the dielectric window 14 is, for example, not less than 300 mm and not more than 450 mm.
- the radial width L1 of the dielectric window 14 is, for example, 40 mm or more and 60 mm or less, and the outer diameter of the dielectric window 14 is, for example, 350 mm or more and 500 mm or less.
- the dielectric window 14 is formed flat at the upper side, but has a plurality of convex portions 14a projecting downward at the lower side as described above. These convex portions 14a are provided so as to be arranged at equal intervals along the circumferential direction, and are formed in a rectangular shape in both a plan view and a sectional view, for example.
- the convex portion 14a has a dielectric width L2 in the circumferential direction so that the VHF wave from the VHF generation source 18 resonates in the convex portion 14a and an electric field is concentrated directly below the convex portion 14a and the convex portion 14a. It is 1 / to / of the wavelength ⁇ of the VHF wave in the body window 14.
- the “circumferential direction” means a direction perpendicular to the radial direction of the dielectric window 14.
- the “width of the convex portion 14a in the circumferential direction” is the length of the rectangular shape. It means the length of the side.
- the radial width of the projection 14a means the length of the short side of the rectangle, and is substantially the same as the radial width L1 of the dielectric window 14.
- the distance L3 between the adjacent convex portions 14a may be set to 1% or more of the wavelength ⁇ of the VHF wave in the dielectric window 14 (hereinafter, may be abbreviated to the wavelength ⁇ of the VHF wave in the dielectric). .
- the electric field can be concentrated on each of the protrusions 14a and directly below each of the protrusions 14a.
- the projection 14a is formed integrally with the annular main body 14b of the dielectric window 14.
- the thickness of the main body 14b is, for example, 10 to 12 mm.
- the dielectric window 14 is formed of a material having a high dielectric constant and easy to form, for example, alumina, quartz, or aluminum nitride.
- the wafer W is loaded into the processing container 10 and placed on the mounting table 11. Then, the inside of the processing container 10 is evacuated by an exhaust device (not shown), and the pressure in the plasma processing space S is adjusted to a predetermined pressure.
- the plasma processing gas is supplied from the gas supply source 15b to the plasma processing space S via the gas diffusion chamber 13a of the shower head electrode 13 at a predetermined flow rate.
- the plasma processing gas for example, an excitation gas such as an Ar gas is supplied.
- an excitation gas such as an Ar gas is supplied.
- a nitrogen gas or a silane gas is supplied as a plasma processing gas in addition to the above-described excitation gas.
- high frequency power for RF bias is supplied to the mounting table 11 by the high frequency power supply 20 for RF bias.
- a VHF wave is transmitted from the VHF source 18 to the dielectric window 14 via a waveguide section formed between the antenna conductor 16 and the processing container 10 and the like, and the dielectric window having the convex portion 14a is provided. 14 and is supplied to the plasma processing space S.
- circumferential deviation is suppressed as described later.
- the plasma processing is performed on the wafer W by radicals or the like generated by the plasma in which the circumferential deviation is suppressed.
- the supply of the plasma processing gas, the supply of the high-frequency power from the high-frequency power supply 20, and the supply of the VHF wave from the VHF generation source 18 are stopped. After that, the wafer W is unloaded from the processing container 10, and a series of processes related to the plasma process is completed.
- FIG. 3 is a diagram showing a film thickness distribution when a film is actually formed by plasma processing when the dielectric window 14 is not formed with the protrusions 14a and the lower surface is flat unlike the present embodiment. It is. In FIG. 3, the darker the black, the smaller the film thickness of the portion.
- FIG. 4 is different from the present embodiment in that when the projection 14a is not formed in the dielectric window 14 and the lower surface is flat, plasma generation conditions were changed and plasma generation was actually performed in a nitrogen atmosphere.
- FIG. 4 is a diagram schematically illustrating a state inside the processing container at the time. In FIG. 4, it means that the closer to white, the higher the plasma intensity.
- the output of the VHF wave and the pressure in the processing chamber 10 during plasma generation are 100 W and 500 mTorr in FIG. 4A, 200 W and 500 mTorr in FIG. 4B, and 500 W and 500 mTorr in FIG. 4C.
- Example 4 (D) was 100 W, 1000 mTorr
- FIG. 4 (E) was 200 W, 1000 mTorr
- FIG. 4 (F) was 500 W, 1000 mTorr.
- the thickness of the film obtained by the plasma processing is not uniform in the circumferential direction. Sometimes it became uniform. Specifically, the difference between the maximum value and the minimum value of the film thickness sometimes becomes about 5% or more of the average value of the film thickness. This is because, as shown in FIG. 4, plasma having no bias in the circumferential direction (for example, ring-shaped plasma) is not generated depending on the plasma generation conditions, and plasma having a bias in the circumferential direction is generated. it is conceivable that.
- a plurality of protrusions 14 a having a circumferential width of 8 to / of the in-dielectric wavelength ⁇ of the VHF wave are provided on the lower surface of the dielectric window 14. Therefore, the electric field due to the VHF wave concentrates on the projection 14a of the dielectric window 14 and the plasma processing space S immediately below the projection 14a regardless of the plasma generation conditions. In the part where the electric field is concentrated, the absorption efficiency of the electromagnetic wave into the plasma is high, and the reflected wave from the plasma is suppressed.
- the projections 14a for concentrating the electric field are provided at equal intervals along the circumferential direction in this manner, the distribution of the electric field for plasma generation directly below the dielectric window 14 in the entire dielectric window 14 depends on the plasma generation conditions. Regardless, there is no deviation in the circumferential direction. Therefore, the plasma generated by this electric field has circumferential deviation suppressed.
- a film forming process is performed as a plasma process using this plasma, a uniform film thickness can be obtained in the circumferential direction. Even when plasma processing other than film forming processing is performed, uniform processing results can be obtained in the circumferential direction.
- VHF waves are used instead of microwaves. Therefore, disadvantages caused by using microwaves can be improved. For example, since the height of the plasma processing space S can be reduced as compared with the case where microwaves are used, the processing container 10 can be downsized and the plasma processing apparatus 1 can be downsized. In addition, a metal showerhead electrode that does not cause abnormal discharge even when high frequency is used can be used.
- the convex portion 14a is formed by a protrusion integrally formed with the main body portion 14b, and the lower surface of the convex portion 14a is located below the lower surface of the main body portion 14b.
- the present invention is not limited thereto, and the convex portion 14a may be formed between recesses formed integrally with the main body portion 14b, and the lower surface of the convex portion 14a and the lower surface of the main body portion 14b may be aligned.
- the protrusions 14a of the dielectric window 14 are provided at equal intervals along the circumferential direction.
- the intervals at which the protrusions 14a are provided do not need to be strictly equal, and the electric field in the plasma processing space S immediately below the dielectric window 14 may be such that there is no deviation in the circumferential direction regardless of the plasma generation conditions.
- the distance L3 between the adjacent convex portions 14a is 1% or more of the dielectric wavelength ⁇ of the VHF wave. Therefore, the electric field can be concentrated on each of the protrusions 14a and directly below each of the protrusions 14a. As a result, a distribution having no deviation in the circumferential direction can be obtained more reliably as the electric field distribution immediately below the dielectric window 14.
- the radial width of the convex portion 14a may be 1 / to / of the wavelength ⁇ of the VHF wave in the dielectric.
- the width in the circumferential direction, not the width in the radial direction, of the convex portion 14a is set to 1 / to / of the wavelength ⁇ in the dielectric of the VHF wave. Is preferred.
- the angle formed by the long side of the rectangle forming the convex portion 14a and the radial direction of the dielectric window 14 in a plan view was vertical (90 °).
- the circumferential width of the projection 14a meant the length of the long side of the rectangle.
- the angle formed by the long side of the rectangle forming the projection 14a and the radial direction of the dielectric window 14 in a plan view may be 45 ° or more and less than 90 ° or more than 90 ° and 135 ° or less in plan view.
- the circumferential width of the convex portion 14a may mean the length of the long side of the rectangle or the length of the diagonal line of the rectangle.
- the length of the long side or diagonal of the rectangle forming the convex portion 14a in plan view is set to 1 / to / of the dielectric wavelength ⁇ of the VHF wave, so that the circumferential direction is uniform.
- a plasma processing result can be obtained.
- the shape of the projection 14a in a plan view was rectangular.
- the shape of the protrusion 14a in plan view is not limited thereto, and may be an ellipse.
- the circumferential width of the protrusion 14a means, for example, the length of the ellipse forming the protrusion 14a in the major axis direction in plan view.
- a plasma processing apparatus for performing plasma processing on a processing target body A mounting part on which the processing target is mounted, A waveguide for introducing a VHF band electromagnetic wave for plasma generation into the plasma processing apparatus; A dielectric window that transmits the electromagnetic waves introduced by the waveguide unit to a plasma processing space formed on the processing object mounting side of the mounting unit, The dielectric window is an annular member provided so as to face the plasma processing space side of the mounting portion, and a plurality of convex portions projecting in the direction of the mounting portion are formed along the circumferential direction.
- a width of the protrusion in a circumferential direction is 1 / to / of a wavelength of the electromagnetic wave in the dielectric window.
- the annular dielectric window is provided with a plurality of convex portions whose circumferential width is 1 / to / of the wavelength of the electromagnetic wave in the VHF band. Therefore, irrespective of the intensity of the electromagnetic wave or the pressure at the time of the plasma processing, the electromagnetic wave for plasma generation resonates in the convex portion, and the electric field concentrates on the convex portion.
- the absorption efficiency of the electromagnetic wave into the plasma is high, and the reflected wave from the plasma is suppressed. Since such protrusions are provided at equal intervals along the circumferential direction, the plasma distribution in the plasma processing can be made uniform.
- dielectric window is an annular member, and has an outer diameter of 350 mm to 500 mm and an inner diameter of 300 to 450 mm.
- a plasma processing method for performing plasma processing on an object to be processed using a plasma processing apparatus The plasma processing apparatus, A mounting part on which the processing target is mounted, A dielectric window that is transmitted through a plasma processing space formed on the processing object mounting side of the mounting section,
- the dielectric window is an annular member provided so as to face the plasma processing space side of the mounting section, and a plurality of protrusions projecting in the direction of the mounting section are arranged along the circumferential direction. So that it is formed on the mounting part side,
- the circumferential width of the protrusion is 1/8 to 3/8 of the wavelength of the VHF band electromagnetic wave for plasma generation in the dielectric window.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Analytical Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Electromagnetism (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma Technology (AREA)
- Drying Of Semiconductors (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
処理対象体をプラズマ処理するプラズマ処理装置であって、前記処理対象体が載置される載置部と、当該プラズマ処理装置内にプラズマ生成用のVHF帯の電磁波を導入する導波部と、前記導波部により導入された前記電磁波を、前記載置部の前記処理対象体載置側に形成されるプラズマ処理空間に透過させる誘電体窓と、を有し、前記誘電体窓は、前記載置部の前記プラズマ処理空間側と対向するように設けられた環状の部材であり、前記載置部の方向に突出する複数の凸部が周方向に沿って等間隔で並ぶように前記載置部側に形成され、前記凸部の周方向の幅は、前記誘電体窓内における前記電磁波の波長の1/8~3/8である。
Description
本開示は、プラズマ処理装置及びプラズマ処理方法に関する。
特許文献1には、導波管を介して真空チャンバ内部にマイクロ波を伝達させ、真空チャンバ内部でプラズマを発生させるプラズマ処理装置が開示されている。このプラズマ処理装置は、天板と誘電体とを有する。上記天板は、真空チャンバの導波管と対向する部分に設けられマイクロ波を真空チャンバ内部に導入するためのスリットが形成され、真空チャンバ側の面にスリットを通過した上記マイクロ波を内面に沿って伝播させる。また、上記誘電体は、上記天板の真空チャンバ側に設けられると共にマイクロ波を透過させる板状の部材である。そして、上記誘電体の真空チャンバ側の表面には、突条からなる凹凸部が7.5~30mmのピッチで周期的に形成されている。
本開示にかかる技術は、VHF帯の電磁波を用いて生成したプラズマによるプラズマ処理において、プラズマ分布を均一にする。
本開示の一態様は、処理対象体をプラズマ処理するプラズマ処理装置であって、前記処理対象体が載置される載置部と、当該プラズマ処理装置内にプラズマ生成用のVHF帯の電磁波を導入する導波部と、前記導波部により導入された前記電磁波を、前記載置部の前記処理対象体載置側に形成されるプラズマ処理空間に透過させる誘電体窓と、を有し、前記誘電体窓は、前記載置部の前記プラズマ処理空間側と対向するように設けられた環状の部材であり、前記載置部の方向に突出する複数の凸部が周方向に沿って等間隔で並ぶように前記載置部側に形成され、前記凸部の周方向の幅は、前記誘電体窓内における前記電磁波の波長の1/8~3/8である。
本開示によれば、VHF帯の電磁波を用いて生成したプラズマによるプラズマ処理において、プラズマ分布を均一にすることができる。
従来から、半導体ウェハ(以下、「ウェハ」という)等の処理対象体に対して、成膜処理やエッチング処理等のプラズマ処理を行うプラズマ処理装置が知られている。
特許文献1のプラズマ処理装置では、プラズマの生成にマイクロ波を用いており、マイクロ波を真空チャンバに透過させる板状の誘電体の、真空チャンバ側の表面に、突条からなる凹凸部が7.5~30mmのピッチで周期的に形成されている。このプラズマ処理装置では、周期的な凹凸部を設けることでプラズマ分布を一定に保つようにしている。
ところで、プラズマの生成に、マイクロ波ではなく、VHF帯の電磁波(以下、VHF波)を用いることがある。この場合、本発明者らが鋭意調査したところによれば、当該電磁波の強度やプラズマが生成される真空チャンバ内の圧力によっては、プラズマ分布に周方向の偏りが生じ、プラズマ分布が均一にならないことがある。
特許文献1は、この点に関し何らの開示も示唆もしていない。
特許文献1は、この点に関し何らの開示も示唆もしていない。
そこで、本開示にかかる技術は、VHF波を用いて生成したプラズマによるプラズマ処理において、プラズマ分布を均一にする。
以下、本実施形態にかかるプラズマ処理装置の構成について、図面を参照しながら説明する。なお、本明細書において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。
図1は、本実施形態に係るプラズマ処理装置1の概略の構成を示す縦断面図である。
図のプラズマ処理装置1は、処理対象体としてのウェハWに対してプラズマ処理を行うものである。プラズマ処理装置1では、プラズマ処理に用いられるプラズマはVHF波により生成される。また、プラズマ処理装置1が行うプラズマ処理は、例えば成膜処理やエッチング処理、ドーピング処理である。
図のプラズマ処理装置1は、処理対象体としてのウェハWに対してプラズマ処理を行うものである。プラズマ処理装置1では、プラズマ処理に用いられるプラズマはVHF波により生成される。また、プラズマ処理装置1が行うプラズマ処理は、例えば成膜処理やエッチング処理、ドーピング処理である。
プラズマ処理装置1は、内部にプラズマ処理空間Sが形成される略円筒状の処理容器10を有する。処理容器10は、アルミニウム等の金属材料から成り、その内壁が表面に耐プラズマ性の材料からなる溶射皮膜が形成されたライナ(図示せず)により覆われている。また、処理容器10は接地されている。この処理容器10の天壁10aの中央には、貫通孔10bが設けられており、天壁10aの上面には、内部の空洞が貫通孔10bに連通する筒状壁10cが接続されている。なお、図示は省略するが、処理容器10には、処理容器10内の雰囲気、具体的にはプラズマ処理空間S内の雰囲気を排出するための排気口が、例えば底壁10dに設けられている。上記排気口から排気することにより、プラズマ処理空間Sを予め定められた真空度まで減圧することができる。
処理容器10内におけるプラズマ処理空間Sの下方には、ウェハWが載置される載置部としての載置台11が設けられている。
載置台11は、処理容器10の底部中央に絶縁部材12aを介して立設された支持部材12により支持されている。図示はしていないが、載置台11には、温度制御機構、ウェハWの裏面に熱伝達用のガスを供給するガス流路、搬送アーム(図示せず)との間でウェハWを受け渡すために昇降する昇降ピン等が設けられている。さらに、載置台11には、ウェハWを静電吸着するための静電チャックが設けられていてもよい。
載置台11は、処理容器10の底部中央に絶縁部材12aを介して立設された支持部材12により支持されている。図示はしていないが、載置台11には、温度制御機構、ウェハWの裏面に熱伝達用のガスを供給するガス流路、搬送アーム(図示せず)との間でウェハWを受け渡すために昇降する昇降ピン等が設けられている。さらに、載置台11には、ウェハWを静電吸着するための静電チャックが設けられていてもよい。
処理容器10内における載置台11のプラズマ処理空間Sの上方には、載置台11と対向するように、アルミニウム等の金属製のシャワーヘッド電極13と誘電体窓14とが設けられている。
シャワーヘッド電極13は、誘電体窓14を介して処理容器10に支持されており、また、その内部には、略円盤状に形成されたガス拡散室13aが設けられている。シャワーヘッド電極13の下部すなわちプラズマ処理空間S側の部分には、ガス拡散室13aと連通するガス供給口13bが複数設けられている。さらに、ガス拡散室13aにはガス供給管15aが接続され、ガス供給管15aにはガス供給源15bが接続されている。ガス供給源15bから供給されたプラズマ処理用ガスは、ガス供給管15aを介してガス拡散室13aに供給される。ガス拡散室13aに供給されたプラズマ処理用ガスは、ガス供給口13bを通じてプラズマ処理空間Sに供給される。
シャワーヘッド電極13の上面中央には、アンテナ導体16が接続されている。アンテナ導体16は、天壁10aの貫通孔10b及び筒状壁10cの中心を通るよう設けられており、また、整合器17を介してVHF発生源18が電気的に接続されている。VHF発生源18は、VHF帯(30MHz~300MHz)の電磁波を出力する。
VHF発生源18からの電磁波は、アンテナ導体16の外周面と筒状壁10cの内周面との間、アンテナ導体16の外周面と貫通孔10bを形成する面との間、天壁10aの内側面とシャワーヘッド電極13の上面との間を順に伝播し、誘電体窓14に到達する。言い換えると、プラズマ処理装置1内にVHF波を導入する導波部は、アンテナ導体16の外周面、筒状壁10cの内周面、貫通孔10bを形成する面、天壁10aの内側面及びシャワーヘッド電極13の上面等から成る。上述の導波部は、電磁波が伝播し易いように石英等の誘電体で充填されていてもよい。
VHF発生源18からの電磁波は、アンテナ導体16の外周面と筒状壁10cの内周面との間、アンテナ導体16の外周面と貫通孔10bを形成する面との間、天壁10aの内側面とシャワーヘッド電極13の上面との間を順に伝播し、誘電体窓14に到達する。言い換えると、プラズマ処理装置1内にVHF波を導入する導波部は、アンテナ導体16の外周面、筒状壁10cの内周面、貫通孔10bを形成する面、天壁10aの内側面及びシャワーヘッド電極13の上面等から成る。上述の導波部は、電磁波が伝播し易いように石英等の誘電体で充填されていてもよい。
誘電体窓14は、載置台11のプラズマ処理空間S側と対向し且つシャワーヘッド電極13の外周面を覆うように設けられており、また、前述のように伝達してきたVHF波を、プラズマ処理空間Sに透過させる。この誘電体窓14は、載置台11の方向すなわち下方に突出する複数の凸部14aを、載置台11側すなわち下側に有する。誘電体窓14及び凸部14aの詳細については後述する。
プラズマ処理装置1では、誘電体窓14を透過したVHF波により、プラズマ処理空間Sにプラズマが生成される。このプラズマ中のイオン等をウェハWに引き込ませるため、載置台11には、整合器19を介してRFバイアス用の高周波電源20が電気的に接続されている。RFバイアス用の高周波電源20は、例えば400kHz~20MHzの周波数の高周波電力を出力する。なお、シャワーヘッド電極13は接地されている。整合器19及びRFバイアス用の高周波電源20はプラズマ処理の特性によっては設けなくてもよい。
さらに、プラズマ処理装置1には制御部21が設けられている。制御部21は、例えばCPUやメモリ等を備えたコンピュータにより構成され、プログラム格納部(図示せず)を有している。プログラム格納部には、プラズマ処理装置1における各種処理のためにVHF発生源18等を制御するためプログラムが格納されている。なお、上記プログラムは、コンピュータに読み取り可能な記憶媒体に記録されていたものであって、当該記憶媒体から制御部21にインストールされたものであってもよい。
続いて、図2を用いて誘電体窓14について説明する。図2は、誘電体窓14の下面図である。
図示するように、誘電体窓14は、円環状の部材である。この誘電体窓14は、平面視において、載置台11上のウェハWと重ならないように当該ウェハWより外側に位置するように設けられている。したがって、ウェハWの外径が300mmである場合、誘電体窓14の内径は例えば300mm以上450mm以下である。なお、この場合、誘電体窓14の径方向の幅L1は例えば40mm以上60mm以下であり、誘電体窓14の外径は例えば350mm以上500mm以下である。
図示するように、誘電体窓14は、円環状の部材である。この誘電体窓14は、平面視において、載置台11上のウェハWと重ならないように当該ウェハWより外側に位置するように設けられている。したがって、ウェハWの外径が300mmである場合、誘電体窓14の内径は例えば300mm以上450mm以下である。なお、この場合、誘電体窓14の径方向の幅L1は例えば40mm以上60mm以下であり、誘電体窓14の外径は例えば350mm以上500mm以下である。
この誘電体窓14は、上側は平坦に形成されているが、前述のように、下側は下方向に突出する複数の凸部14aが形成されている。これら凸部14aは、周方向に沿って等間隔で並ぶように設けられており、例えば、平面視及び断面視の双方において矩形状に形成されている。そして、凸部14aは、VHF発生源18からのVHF波が当該凸部14a内で共鳴し当該凸部14a及び当該凸部14aの直下に電界が集中するように、周方向の幅L2が誘電体窓14内におけるVHF波の波長λの1/8~3/8となっている。本例では、「周方向」とは、誘電体窓14の径方向と垂直な方向を意味する。そして、本例では、平面視において凸部14aを形成する矩形の長辺が誘電体窓14の径方向と垂直であるため、「凸部14aの周方向の幅」とは、上記矩形の長辺の長さを意味する。なお、本例では、凸部14aの径方向の幅は、上記矩形の短辺の長さを意味し、誘電体窓14の径方向の幅L1と略同一である。
また、互いに隣接する凸部14a間の距離L3は、誘電体窓14内におけるVHF波の波長λ(以下、VHF波の誘電体内波長λと省略することがある。)の1%以上としてもよい。これにより、凸部14aそれぞれ及びそれぞれの凸部14aの直下に電界を集中させることができる。
凸部14aは、誘電体窓14の環状の本体部14bに一体に成形される。本体部14bの厚さは例えば10~12mmである。
誘電体窓14は、誘電率が高く成形が容易な材料、例えば、アルミナや石英、窒化アルミにより形成される。
誘電体窓14は、誘電率が高く成形が容易な材料、例えば、アルミナや石英、窒化アルミにより形成される。
次に、プラズマ処理装置1におけるプラズマ処理について説明する。
まず、ウェハWが、処理容器10内に搬入され、載置台11上に載置される。そして、処理容器10内を排気装置(図示せず)により排気させ、プラズマ処理空間S内の圧力が予め定められた圧力に調整される。
その後、プラズマ処理用ガスが、ガス供給源15bからシャワーヘッド電極13のガス拡散室13a等を介してプラズマ処理空間Sに、予め定められた流量で供給される。プラズマ処理用ガスとしては、例えばArガス等の励起用ガスが供給される。また、プラズマ処理装置1で行うプラズマ処理がプラズマCVD処理である場合であってSiN膜を形成する場合、プラズマ処理用ガスとして、上述の励起用ガス以外に、窒素ガスやシランガスが供給される。
続いて、RFバイアス用の高周波電源20により載置台11にRFバイアス用の高周波電力が供給される。さらに、VHF波が、VHF発生源18から、アンテナ導体16と処理容器10との間等から構成される導波部を介して、誘電体窓14に伝達され、凸部14aを有する誘電体窓14を透過してプラズマ処理空間Sに供給される。
この凸部14aを有する誘電体窓14を透過したVHF波による電界によって生成されたプラズマでは、後述するように周方向偏りが抑制されている。
この凸部14aを有する誘電体窓14を透過したVHF波による電界によって生成されたプラズマでは、後述するように周方向偏りが抑制されている。
そして、周方向偏りが抑制されたプラズマにより発生したラジカル等によって、ウェハWにプラズマ処理が施される。
プラズマ処理が完了すると、プラズマ処理用ガスの供給と、高周波電源20からの高周波電力の供給と、VHF発生源18からのVHF波の供給とが停止される。その後、ウェハWが処理容器10から搬出されて、プラズマ処理に係る一連の処理が終了する。
プラズマ処理が完了すると、プラズマ処理用ガスの供給と、高周波電源20からの高周波電力の供給と、VHF発生源18からのVHF波の供給とが停止される。その後、ウェハWが処理容器10から搬出されて、プラズマ処理に係る一連の処理が終了する。
ここで、本実施形態の効果について説明する。
本実施形態では、誘電体窓14に凸部14aが設けられている。図3は、本実施形態と異なり、誘電体窓14に凸部14aが形成されておらず下面が平坦である場合に、実際にプラズマ処理により成膜を行ったときの膜厚分布を示す図である。図3では、黒色が濃いほど当該部分の膜厚が小さいことを意味する。図4は、本実施形態と異なり、誘電体窓14に凸部14aが形成されておらず下面が平坦である場合に、プラズマ生成条件を変えて、実際に窒素雰囲気下でプラズマ生成を行ったときの処理容器10内の様子を模式的に示す図である。図4では、白色に近いほどプラズマの強度が高いことを意味する。なお、プラズマ生成時のVHF波の出力と処理容器10内の圧力は、図4(A)では100W、500mTorr、図4(B)は200W、500mTorr、図4(C)では500W、500mTorrであった。また、図4(D)では100W、1000mTorr、図4(E)は200W、1000mTorr、図4(F)では500W、1000mTorrであった。
本実施形態では、誘電体窓14に凸部14aが設けられている。図3は、本実施形態と異なり、誘電体窓14に凸部14aが形成されておらず下面が平坦である場合に、実際にプラズマ処理により成膜を行ったときの膜厚分布を示す図である。図3では、黒色が濃いほど当該部分の膜厚が小さいことを意味する。図4は、本実施形態と異なり、誘電体窓14に凸部14aが形成されておらず下面が平坦である場合に、プラズマ生成条件を変えて、実際に窒素雰囲気下でプラズマ生成を行ったときの処理容器10内の様子を模式的に示す図である。図4では、白色に近いほどプラズマの強度が高いことを意味する。なお、プラズマ生成時のVHF波の出力と処理容器10内の圧力は、図4(A)では100W、500mTorr、図4(B)は200W、500mTorr、図4(C)では500W、500mTorrであった。また、図4(D)では100W、1000mTorr、図4(E)は200W、1000mTorr、図4(F)では500W、1000mTorrであった。
本実施形態と異なり、誘電体窓14に凸部14aが形成されておらず下面が平坦である場合、図3に示すように、プラズマ処理により得られた膜の厚さは、周方向において不均一となることがあった。具体的には、膜厚の最大値と最小値の差が膜厚の平均値の約5%以上となることがあった。これは、図4に示すように、プラズマ生成条件によっては、周方向に偏りを有さないプラズマ(例えばリング状のプラズマ)が生成されず、周方向で偏りを有するプラズマが生成されるため、と考えられる。
それに対し、本実施形態では、周方向の幅がVHF波の誘電体内波長λの1/8~3/8である複数の凸部14aが、誘電体窓14の下面に設けられている。したがって、VHF波による電界は、プラズマ生成条件によらず、誘電体窓14の凸部14a及びその直下のプラズマ処理空間Sに集中する。なお、電界が集中する部分では、電磁波のプラズマへの吸収効率が高く、プラズマからの反射波が抑制される。このように電界を集中させる凸部14aが周方向に沿って等間隔で並ぶように設けられているため、誘電体窓14全体において、その直下のプラズマ生成用の電界分布は、プラズマ生成条件によらず、周方向偏りを有さないものとなる。したがって、この電界により生成されたプラズマは、周方向偏りが抑制されたものとなる。また、このプラズマにより、プラズマ処理として成膜処理を行った場合、周方向において均一な膜厚を得ることができる。成膜処理以外のプラズマ処理を行った場合も、周方向において均一な処理結果を得ることができる。
また、本実施形態では、マイクロ波ではなくVHF波を用いている。したがって、マイクロ波を用いることによる不利を改善することができる。例えば、マイクロ波を用いる場合に比べて、プラズマ処理空間Sの高さを低くすることができるため、処理容器10を小型化させプラズマ処理装置1を小型化させることができる。また、高周波を用いても異常な放電が起きない金属製のシャワーヘッド電極を用いることができる。
以上の説明で用いた図では、凸部14aは本体部14bに一体に形成された突起により形成されており、凸部14aの下面は本体部14bの下面より下側に位置していた。これに限らず、凸部14aは本体部14bに一体に形成された凹所間で形成され、凸部14aの下面と本体部14bの下面が一致していていもよい。
なお、以上の説明では、誘電体窓14の凸部14aが周方向に沿って等間隔で設けられている、ものとした。ただし、凸部14aを設ける間隔は厳密に等しい必要はなく、誘電体窓14の直下のプラズマ処理空間Sの電界が、プラズマ生成条件によらず周方向の偏りがないものとなればよい。
また、本実施形態では、互いに隣接する凸部14a間の距離L3が、VHF波の誘電体内波長λの1%以上である。したがって、凸部14aそれぞれ及びそれぞれの凸部14aの直下に電界を集中させることができる。その結果、誘電体窓14の直下における電界分布として、周方向偏りを有さない分布をより確実に得ることができる。
なお、凸部14aに電界を集中させるため、凸部14aの径方向の幅をVHF波の誘電体内波長λの1/8~3/8にすることも考えられる。しかし、プラズマ処理装置1の大型化を避けるためには、凸部14aの径方向の幅ではなく、周方向の幅を、VHF波の誘電体内波長λの1/8~3/8にするすることが好ましい。
以上の例では、平面視において凸部14aを形成する矩形の長辺と誘電体窓14の径方向とが成す角度は垂直(90°)であった。そして、凸部14aの周方向の幅とは、上記矩形の長辺の長さを意味していた。これに限られず、平面視において凸部14aを形成する矩形の長辺と誘電体窓14の径方向とが成す角度が45°以上90°未満または90°超且つ135°以下であってもよい。この場合、凸部14aの周方向の幅は、上記矩形の長辺の長さを意味してもよいし、上記矩形の対角線の長さを意味してもよい。言い換えると、この場合、平面視において凸部14aを形成する矩形の長辺または対角線の長さをVHF波の誘電体内波長λの1/8~3/8とすることにより、周方向において均一なプラズマ処理結果を得ることができる。
また、以上の例では、平面視における凸部14aの形状は矩形であった。これに限らず、平面視における凸部14aの形状は楕円形であってもよい。この場合、凸部14aの周方向の幅は、例えば、平面視において凸部14aを形成する楕円形の長軸方向の長さを意味する。つまり、この場合、平面視において凸部14aを形成する楕円形の長軸方向の長さをVHF波の誘電体内波長λの1/8~3/8とすることにより、周方向において均一なプラズマ処理結果を得ることができる。
また、以上の例では、平面視における凸部14aの形状は矩形であった。これに限らず、平面視における凸部14aの形状は楕円形であってもよい。この場合、凸部14aの周方向の幅は、例えば、平面視において凸部14aを形成する楕円形の長軸方向の長さを意味する。つまり、この場合、平面視において凸部14aを形成する楕円形の長軸方向の長さをVHF波の誘電体内波長λの1/8~3/8とすることにより、周方向において均一なプラズマ処理結果を得ることができる。
今回開示された実施形態はすべての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の請求の範囲及びその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
なお、以下のような構成も本開示の技術的範囲に属する。
(1)処理対象体をプラズマ処理するプラズマ処理装置であって、
前記処理対象体が載置される載置部と、
当該プラズマ処理装置内にプラズマ生成用のVHF帯の電磁波を導入する導波部と、
前記導波部により導入された前記電磁波を、前記載置部の前記処理対象体載置側に形成されるプラズマ処理空間に透過させる誘電体窓と、を有し、
前記誘電体窓は、前記載置部の前記プラズマ処理空間側と対向するように設けられた環状の部材であり、前記載置部の方向に突出する複数の凸部が周方向に沿って等間隔で並ぶように前記載置部側に形成され、
前記凸部の周方向の幅は、前記誘電体窓内における前記電磁波の波長の1/8~3/8である、プラズマ処理装置。
前記(1)によれば、環状の誘電体窓に、周方向の幅がVHF帯の電磁波の波長の1/8~3/8である凸部が複数設けられている。そのため、上記電磁波の強度やプラズマ処理時の圧力によらず、プラズマ生成用の電磁波が凸部内において共振し、当該凸部に電界が集中する。電界が集中する部分では、電磁波のプラズマへの吸収効率が高く、プラズマからの反射波が抑制される。このような凸部が周方向に沿って等間隔で並ぶように設けられているため、プラズマ処理におけるプラズマ分布を均一にすることができる。
(1)処理対象体をプラズマ処理するプラズマ処理装置であって、
前記処理対象体が載置される載置部と、
当該プラズマ処理装置内にプラズマ生成用のVHF帯の電磁波を導入する導波部と、
前記導波部により導入された前記電磁波を、前記載置部の前記処理対象体載置側に形成されるプラズマ処理空間に透過させる誘電体窓と、を有し、
前記誘電体窓は、前記載置部の前記プラズマ処理空間側と対向するように設けられた環状の部材であり、前記載置部の方向に突出する複数の凸部が周方向に沿って等間隔で並ぶように前記載置部側に形成され、
前記凸部の周方向の幅は、前記誘電体窓内における前記電磁波の波長の1/8~3/8である、プラズマ処理装置。
前記(1)によれば、環状の誘電体窓に、周方向の幅がVHF帯の電磁波の波長の1/8~3/8である凸部が複数設けられている。そのため、上記電磁波の強度やプラズマ処理時の圧力によらず、プラズマ生成用の電磁波が凸部内において共振し、当該凸部に電界が集中する。電界が集中する部分では、電磁波のプラズマへの吸収効率が高く、プラズマからの反射波が抑制される。このような凸部が周方向に沿って等間隔で並ぶように設けられているため、プラズマ処理におけるプラズマ分布を均一にすることができる。
(2)互いに隣接する前記凸部間の距離は、前記電磁波の波長の1%以上である、上記(1)に記載のプラズマ処理装置。
(3)前記誘電体窓は、アルミナ、石英または窒化アルミにより形成されている、上記(1)または(2)に記載のプラズマ処理装置。
(4)前記誘電体窓は、円環状の部材であり、外径が350mm~500mm、内径が300~450mmである、上記(1)~(3)のいずれか1に記載のプラズマ処理装置。
(5)プラズマ処理装置を用いて処理対象体をプラズマ処理するプラズマ処理方法であって、
前記プラズマ処理装置は、
前記処理対象体が載置される載置部と、
前記載置部の前記処理対象体載置側に形成されるプラズマ処理空間に透過させる誘電体窓と、を有し、
前記誘電体窓は、前記載置部の前記プラズマ処理空間側と対向するように設けられた環状の部材であり、前記載置部の方向に突出する複数の凸部が周方向に沿って並ぶように前記載置部側に形成され、
前記凸部の周方向の幅は、前記誘電体窓内におけるプラズマ生成用のVHF帯の電磁波の波長の1/8~3/8であり、
当該プラズマ処理方法は、
前記プラズマ処理装置内に前記電磁波を導入する工程と、
導入された前記電磁波を、前記誘電体窓を介して前記プラズマ処理空間へ供給し、プラズマを生成する工程と、を有するプラズマ処理方法。
前記プラズマ処理装置は、
前記処理対象体が載置される載置部と、
前記載置部の前記処理対象体載置側に形成されるプラズマ処理空間に透過させる誘電体窓と、を有し、
前記誘電体窓は、前記載置部の前記プラズマ処理空間側と対向するように設けられた環状の部材であり、前記載置部の方向に突出する複数の凸部が周方向に沿って並ぶように前記載置部側に形成され、
前記凸部の周方向の幅は、前記誘電体窓内におけるプラズマ生成用のVHF帯の電磁波の波長の1/8~3/8であり、
当該プラズマ処理方法は、
前記プラズマ処理装置内に前記電磁波を導入する工程と、
導入された前記電磁波を、前記誘電体窓を介して前記プラズマ処理空間へ供給し、プラズマを生成する工程と、を有するプラズマ処理方法。
1 プラズマ処理装置
10 処理容器
11 載置台
14 誘電体窓
14a 凸部
L2 周方向の幅
S プラズマ処理空間
10 処理容器
11 載置台
14 誘電体窓
14a 凸部
L2 周方向の幅
S プラズマ処理空間
Claims (5)
- 処理対象体をプラズマ処理するプラズマ処理装置であって、
前記処理対象体が載置される載置部と、
当該プラズマ処理装置内にプラズマ生成用のVHF帯の電磁波を導入する導波部と、
前記導波部により導入された前記電磁波を、前記載置部の前記処理対象体載置側に形成されるプラズマ処理空間に透過させる誘電体窓と、を有し、
前記誘電体窓は、前記載置部の前記プラズマ処理空間側と対向するように設けられた環状の部材であり、前記載置部の方向に突出する複数の凸部が周方向に沿って等間隔で並ぶように前記載置部側に形成され、
前記凸部の周方向の幅は、前記誘電体窓内における前記電磁波の波長の1/8~3/8である、プラズマ処理装置。 - 互いに隣接する前記凸部間の距離は、前記電磁波の波長の1%以上である、請求項1に記載のプラズマ処理装置。
- 前記誘電体窓は、アルミナ、石英または窒化アルミにより形成されている、請求項1または2に記載のプラズマ処理装置。
- 前記誘電体窓は、円環状の部材であり、外径が350mm~500mm、内径が300~450mmである、請求項1~3のいずれか1項に記載のプラズマ処理装置。
- プラズマ処理装置を用いて処理対象体をプラズマ処理するプラズマ処理方法であって、
前記プラズマ処理装置は、
前記処理対象体が載置される載置部と、
前記載置部の前記処理対象体載置側に形成されるプラズマ処理空間に透過させる誘電体窓と、を有し、
前記誘電体窓は、前記載置部の前記プラズマ処理空間側と対向するように設けられた環状の部材であり、前記載置部の方向に突出する複数の凸部が周方向に沿って並ぶように前記載置部側に形成され、
前記凸部の周方向の幅は、前記誘電体窓内におけるプラズマ生成用のVHF帯の電磁波の波長の1/8~3/8であり、
当該プラズマ処理方法は、
前記プラズマ処理装置内に前記電磁波を導入する工程と、
導入された前記電磁波を、前記誘電体窓を介して前記プラズマ処理空間へ供給し、プラズマを生成する工程と、を有するプラズマ処理方法。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020217011720A KR102508230B1 (ko) | 2018-09-26 | 2019-09-19 | 플라스마 처리 장치 및 플라스마 처리 방법 |
US17/277,536 US11996268B2 (en) | 2018-09-26 | 2019-09-19 | Plasma processing apparatus and plasma processing method |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018180909A JP7090521B2 (ja) | 2018-09-26 | 2018-09-26 | プラズマ処理装置及びプラズマ処理方法 |
JP2018-180909 | 2018-09-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020066843A1 true WO2020066843A1 (ja) | 2020-04-02 |
Family
ID=69952374
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/036799 WO2020066843A1 (ja) | 2018-09-26 | 2019-09-19 | プラズマ処理装置及びプラズマ処理方法 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11996268B2 (ja) |
JP (1) | JP7090521B2 (ja) |
KR (1) | KR102508230B1 (ja) |
WO (1) | WO2020066843A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021241256A1 (ja) * | 2020-05-26 | 2021-12-02 | 東京エレクトロン株式会社 | プラズマ処理装置 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10158847A (ja) * | 1996-12-06 | 1998-06-16 | Toshiba Corp | マイクロ波励起によるプラズマ処理装置 |
JP2007109670A (ja) * | 2006-12-22 | 2007-04-26 | Tokyo Electron Ltd | プラズマ処理装置 |
US20080050537A1 (en) * | 2006-08-22 | 2008-02-28 | Valery Godyak | Inductive plasma source with high coupling efficiency |
US20080050292A1 (en) * | 2006-08-28 | 2008-02-28 | Valery Godyak | Plasma reactor with inductie excitation of plasma and efficient removal of heat from the excitation coil |
US20130065398A1 (en) * | 2011-09-12 | 2013-03-14 | Tokyo Electron Limited | Dry metal etching method |
WO2016098582A1 (ja) * | 2014-12-15 | 2016-06-23 | 東京エレクトロン株式会社 | プラズマ処理装置 |
Family Cites Families (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6106678A (en) * | 1996-03-29 | 2000-08-22 | Lam Research Corporation | Method of high density plasma CVD gap-filling |
US6184158B1 (en) * | 1996-12-23 | 2001-02-06 | Lam Research Corporation | Inductively coupled plasma CVD |
TW516113B (en) * | 1999-04-14 | 2003-01-01 | Hitachi Ltd | Plasma processing device and plasma processing method |
JP3787297B2 (ja) | 2001-10-31 | 2006-06-21 | 株式会社東芝 | プラズマ処理装置 |
JP4093212B2 (ja) * | 2004-07-23 | 2008-06-04 | 東京エレクトロン株式会社 | プラズマ処理装置 |
US8415884B2 (en) * | 2009-09-08 | 2013-04-09 | Tokyo Electron Limited | Stable surface wave plasma source |
WO2011034057A1 (ja) * | 2009-09-17 | 2011-03-24 | 東京エレクトロン株式会社 | プラズマ処理装置およびプラズマ処理装置用ガス供給機構 |
WO2012026286A1 (ja) * | 2010-08-27 | 2012-03-01 | 東京エレクトロン株式会社 | エッチング方法、基板処理方法、パターン形成方法、半導体素子の製造方法、および半導体素子 |
GB201021860D0 (en) * | 2010-12-23 | 2011-02-02 | Element Six Ltd | A microwave plasma reactor for diamond synthesis |
JP5882777B2 (ja) * | 2012-02-14 | 2016-03-09 | 東京エレクトロン株式会社 | 成膜装置 |
JP2014160557A (ja) * | 2013-02-19 | 2014-09-04 | Tokyo Electron Ltd | プラズマ処理装置 |
US9123661B2 (en) * | 2013-08-07 | 2015-09-01 | Lam Research Corporation | Silicon containing confinement ring for plasma processing apparatus and method of forming thereof |
JP6356415B2 (ja) * | 2013-12-16 | 2018-07-11 | 東京エレクトロン株式会社 | マイクロ波プラズマ源およびプラズマ処理装置 |
GB201410703D0 (en) * | 2014-06-16 | 2014-07-30 | Element Six Technologies Ltd | A microwave plasma reactor for manufacturing synthetic diamond material |
JP6807775B2 (ja) * | 2017-02-28 | 2021-01-06 | 東京エレクトロン株式会社 | 成膜方法及びプラズマ処理装置 |
JP6861535B2 (ja) * | 2017-02-28 | 2021-04-21 | 東京エレクトロン株式会社 | 処理方法及びプラズマ処理装置 |
JP6960351B2 (ja) * | 2018-02-19 | 2021-11-05 | 東京エレクトロン株式会社 | 処理方法 |
JP7071884B2 (ja) * | 2018-06-15 | 2022-05-19 | 東京エレクトロン株式会社 | エッチング方法及びプラズマ処理装置 |
JP7527928B2 (ja) * | 2019-12-02 | 2024-08-05 | エーエスエム・アイピー・ホールディング・ベー・フェー | 基板処理装置、基板処理方法 |
KR20220118798A (ko) * | 2021-02-19 | 2022-08-26 | 삼성전자주식회사 | 2차원 물질 증착 장치 |
-
2018
- 2018-09-26 JP JP2018180909A patent/JP7090521B2/ja active Active
-
2019
- 2019-09-19 US US17/277,536 patent/US11996268B2/en active Active
- 2019-09-19 KR KR1020217011720A patent/KR102508230B1/ko active IP Right Grant
- 2019-09-19 WO PCT/JP2019/036799 patent/WO2020066843A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10158847A (ja) * | 1996-12-06 | 1998-06-16 | Toshiba Corp | マイクロ波励起によるプラズマ処理装置 |
US20080050537A1 (en) * | 2006-08-22 | 2008-02-28 | Valery Godyak | Inductive plasma source with high coupling efficiency |
US20080050292A1 (en) * | 2006-08-28 | 2008-02-28 | Valery Godyak | Plasma reactor with inductie excitation of plasma and efficient removal of heat from the excitation coil |
JP2007109670A (ja) * | 2006-12-22 | 2007-04-26 | Tokyo Electron Ltd | プラズマ処理装置 |
US20130065398A1 (en) * | 2011-09-12 | 2013-03-14 | Tokyo Electron Limited | Dry metal etching method |
WO2016098582A1 (ja) * | 2014-12-15 | 2016-06-23 | 東京エレクトロン株式会社 | プラズマ処理装置 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021241256A1 (ja) * | 2020-05-26 | 2021-12-02 | 東京エレクトロン株式会社 | プラズマ処理装置 |
Also Published As
Publication number | Publication date |
---|---|
JP2020053245A (ja) | 2020-04-02 |
US20210351004A1 (en) | 2021-11-11 |
US11996268B2 (en) | 2024-05-28 |
KR102508230B1 (ko) | 2023-03-09 |
JP7090521B2 (ja) | 2022-06-24 |
KR20210058957A (ko) | 2021-05-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6818852B2 (en) | Microwave plasma processing device, plasma processing method, and microwave radiating member | |
US9574270B2 (en) | Plasma processing apparatus | |
US6158383A (en) | Plasma processing method and apparatus | |
TWI502619B (zh) | 用於電漿處理設備之電極、電漿處理設備、以及使用電漿處理設備產生電漿的方法 | |
TW201903818A (zh) | 使用模組化微波源的具有對稱且不規則的形狀的電漿 | |
KR100380513B1 (ko) | 플라즈마처리장치 | |
US20180127880A1 (en) | Microwave plasma source and microwave plasma processing apparatus | |
JP2012216525A (ja) | プラズマ処理装置及びプラズマ発生用アンテナ | |
WO2021033612A1 (ja) | クリーニング方法及びマイクロ波プラズマ処理装置 | |
WO2020066843A1 (ja) | プラズマ処理装置及びプラズマ処理方法 | |
US8753475B2 (en) | Plasma processing apparatus | |
KR20210042694A (ko) | 전자 빔 발생기, 이를 갖는 플라즈마 처리 장치 및 이를 이용한 플라즈마 처리 방법 | |
WO2002013249A1 (fr) | Antenne radiale et appareil de traitement de plasma comportant cette derniere | |
JP2003203869A (ja) | プラズマ処理装置 | |
WO2020059273A1 (ja) | プラズマ処理方法およびプラズマ処理装置 | |
US20200135430A1 (en) | Plasma processing apparatus and plasma processing method | |
KR102047160B1 (ko) | 플라즈마 성막 방법 및 플라즈마 성막 장치 | |
KR102679639B1 (ko) | 플라스마 처리 장치 및 플라스마 처리 방법 | |
JP2008182102A (ja) | 天板部材及びこれを用いたプラズマ処理装置 | |
KR102668439B1 (ko) | 플라즈마 처리 장치 및 플라즈마 처리 방법 | |
US20230326719A1 (en) | Film forming method and film forming apparatus | |
TW201946503A (zh) | 模組化高頻源 | |
JP2697464B2 (ja) | マイクロ波プラズマ処理装置 | |
US20230106303A1 (en) | Plasma processing apparatus and plasma processing method | |
JPH1197198A (ja) | プラズマ処理装置及びその方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19864568 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217011720 Country of ref document: KR Kind code of ref document: A |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19864568 Country of ref document: EP Kind code of ref document: A1 |