WO2020066474A1 - 核酸のハイブリダイゼーション度合を検出する方法、装置及びプログラム - Google Patents

核酸のハイブリダイゼーション度合を検出する方法、装置及びプログラム Download PDF

Info

Publication number
WO2020066474A1
WO2020066474A1 PCT/JP2019/034380 JP2019034380W WO2020066474A1 WO 2020066474 A1 WO2020066474 A1 WO 2020066474A1 JP 2019034380 W JP2019034380 W JP 2019034380W WO 2020066474 A1 WO2020066474 A1 WO 2020066474A1
Authority
WO
WIPO (PCT)
Prior art keywords
current value
oxidation wave
potential
hybridization
nucleic acid
Prior art date
Application number
PCT/JP2019/034380
Other languages
English (en)
French (fr)
Inventor
信太郎 高瀬
宏太 宮川
英治 宇佐美
Original Assignee
株式会社ヨコオ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ヨコオ filed Critical 株式会社ヨコオ
Priority to US17/267,746 priority Critical patent/US20210317512A1/en
Priority to JP2020548254A priority patent/JP7460528B2/ja
Priority to CN201980051873.6A priority patent/CN112567239A/zh
Priority to EP19867756.9A priority patent/EP3859323A4/en
Publication of WO2020066474A1 publication Critical patent/WO2020066474A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/6825Nucleic acid detection involving sensors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3276Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a hybridisation with immobilised receptors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3277Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction being a redox reaction, e.g. detection by cyclic voltammetry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/48Systems using polarography, i.e. measuring changes in current under a slowly-varying voltage

Definitions

  • the present invention relates to a method, an apparatus, and a program for detecting a hybridization degree of a nucleic acid.
  • ⁇ ⁇ Hybridization may be used to detect a nucleic acid having a specific sequence (eg, deoxyribonucleic acid (DNA) or ribonucleic acid (RNA)).
  • the nucleic acid is hybridized to a probe having a sequence that is complementary to the sequence of the nucleic acid.
  • the degree of hybridization of nucleic acids can be analyzed quantitatively by an electrochemical approach.
  • Non-Patent Document 1 describes an example of a method for quantitatively analyzing the hybridization degree of a nucleic acid by an electrochemical approach.
  • a voltammogram (oxidation wave and reduction wave) before hybridization and a voltammogram (oxidation wave and reduction wave) after hybridization of a sample containing microRNA (miRNA) are measured by cyclic voltammetry (CV).
  • CV cyclic voltammetry
  • the ratio I / I 0 of the current value I to the peak current value I 0 can function as an index for quantitatively analyzing the hybridization degree of the nucleic acid.
  • PNA peptide nucleic acid
  • the present inventor has studied that using the novel indicator different from the index (relationship of the peak current value I 0 and the current value I) described in Non-Patent Document 1, to quantitatively analyze the hybridization degree of nucleic acid did.
  • the peak current value I 0 and the current value I are almost equal (for example, when the amount of the nucleic acid in each sample is extremely small or the hybridization hardly occurs)
  • the peak current value I 0 and the current value I (Eg, ratio or difference) is difficult to accurately calculate, and it is difficult to quantitatively analyze the degree of hybridization of nucleic acids with high accuracy using the relationship between the peak current value I 0 and the current value I. is there.
  • One example of the object of the present invention is to obtain a novel index for quantitatively analyzing the hybridization degree of a nucleic acid.
  • Other objects of the present invention will become clear from the description of the present specification.
  • One embodiment of the present invention provides A method for detecting the degree of hybridization of nucleic acids using a first oxidation wave and a second oxidation wave, In the first oxidation wave, a first potential having a first current value in a range less than a potential at a peak current value of the first oxidation wave, and in the second oxidation wave, a peak current value of the second oxidation wave.
  • a method for detecting the degree of hybridization of a nucleic acid comprising calculating a potential difference between the second potential having the first current value in a range less than the potential.
  • Another aspect of the present invention provides An apparatus for detecting the degree of hybridization of nucleic acids using a first oxidation wave and a second oxidation wave, In the first oxidation wave, a first potential having a first current value in a range less than a potential at a peak current value of the first oxidation wave, and in the second oxidation wave, a peak current value of the second oxidation wave.
  • An apparatus for detecting a hybridization degree of a nucleic acid comprising a calculator for calculating a potential difference between the second potential having the first current value in a range less than the potential.
  • Yet another aspect of the present invention provides A program for causing a computer to function as an apparatus for detecting the degree of hybridization of nucleic acids using a first oxidation wave and a second oxidation wave, On the computer, In the first oxidation wave, a first potential having a first current value in a range less than a potential at a peak current value of the first oxidation wave, and in the second oxidation wave, a peak current value of the second oxidation wave. This is a program for calculating a potential difference between the second potential having the first current value in a range less than the potential.
  • a novel index for quantitatively analyzing the hybridization degree of a nucleic acid can be obtained.
  • FIG. 2 is a diagram for explaining the device according to the first embodiment.
  • FIG. 6 is a diagram for explaining an apparatus according to a second embodiment.
  • FIG. 3 is a diagram for explaining an example of reference data stored in a storage device shown in FIG.
  • FIG. 2 is a diagram illustrating a hardware configuration of the device.
  • FIG. 4 is a diagram illustrating a first modification of FIG. 1.
  • FIG. 4 is a diagram illustrating a second modification of FIG. 1.
  • FIG. 7 is a diagram illustrating a third modification of FIG. 1. It is a diagram illustrating a correlation analysis of miRNA hybridization of using analytical and potential difference ⁇ E of hybridization of the miRNA with the current ratio I / I 0.
  • the calculator 100, the determiner 110, and the storage unit 120 are not hardware-based components but functional-based blocks.
  • the calculator 100, the determination unit 110, and the storage unit 120 are a CPU of an arbitrary computer, a memory, a program for realizing the components of the drawing loaded in the memory, a storage medium such as a hard disk storing the program, and a network connection. It is realized by an arbitrary combination of hardware and software centering on the interface. There are various modifications in the method and apparatus for realizing the method.
  • FIG. 1 is a diagram for explaining an apparatus 10 according to the first embodiment.
  • the vertical axis represents the current (nA) of the voltammogram
  • the horizontal axis represents the potential (V) of the voltammogram.
  • the device 10 is for detecting the degree of nucleic acid hybridization using the first oxidation wave O1 and the second oxidation wave O2.
  • the device 10 includes a calculator 100.
  • the calculator 100 is for calculating a potential difference ⁇ E between the first potential E1 of the first oxidation wave O1 and the second potential E2 of the second oxidation wave O2.
  • the first potential E1 takes the first current value I1 in a range less than the potential Ep 0 at the peak current value I 0 of the first oxidation wave O1.
  • the second potential E2 takes the first current value I1 in a range less than the potential Ep 0 ′ at the peak current value I 0 ′ of the second oxidation wave O2.
  • the potential difference ⁇ E can be calculated by the calculator 100.
  • the potential difference ⁇ E can be an index for quantitatively analyzing the hybridization degree of the nucleic acid.
  • the current value I (second oxidation wave O2 peak current value I 0 and the second oxidation wave O2 of the first oxidation wave O1 is at the peak current value I 0 of the first oxidation wave O1
  • the second current value (current value I is taken) at the potential Ep 0 is almost equal, it is not necessary to calculate the relationship (for example, ratio or difference) between the peak current value I 0 and the current value I. . Therefore, even if the current value I of the peak current value I 0 and the second oxidation wave O2 of the first oxidation wave O1 almost equal, it is possible to analyze the hybridization degree of nucleic acid in quantitative accuracy.
  • the potential difference ⁇ E is such that the peak current value I 0 of the first oxidation wave O1 and the current value I of the second oxidation wave O2 are almost equal.
  • the current value I of the second oxidation wave O2 is equal to the first oxidation wave O1. even the less 110% 90% of the peak current value I 0, can be calculated.
  • the peak current value I 0 of the first oxidation wave O1 e.g., the first oxidation wave O1 in the vicinity of the peak current value I 0 is not steep
  • the peak current value I 0 and the current value I (Eg, ratio or difference) need not be calculated. Therefore, even when it is difficult to accurately measure the peak current value I 0, it is possible to analyze the hybridization degree of nucleic acid in quantitative accuracy.
  • the measurement system 20 measures the voltammogram C1 and the voltammogram C2 by cyclic voltammetry (CV).
  • the voltammogram C1 includes a first oxidation wave O1 and a first reduction wave R1.
  • the voltammogram C2 includes a second oxidation wave O2 and a second reduction wave R2.
  • the measurement system 20 may measure each voltammogram by a method other than CV, for example, differential pulse voltammetry (DPV). Also in this example, each voltammogram includes an oxidation wave. Therefore, the potential difference ⁇ E can be calculated by a method similar to the method described with reference to FIG.
  • DPV differential pulse voltammetry
  • the measurement system 20 has electrodes (working electrodes) for measuring the voltammogram C1 and the voltammogram C2.
  • the measurement system 20 may have a plurality of electrodes (a plurality of working electrodes).
  • the calculator 100 can calculate each of the plurality of potential differences ⁇ E for each of the plurality of electrodes.
  • the calculator 100 may statistically process the plurality of potential differences ⁇ E. For example, the calculator 100 may calculate a median value or an average value of the plurality of potential differences ⁇ E.
  • the first oxidation wave O1 indicates the measurement result of the measurement of one sample before hybridization
  • the second oxidation wave O2 indicates the measurement result of the one sample after hybridization.
  • One sample before hybridization may include a probe fixed to an electrode (working electrode) of the measurement system (one sample before hybridization may or may not include nucleic acid. ), And the one sample after the hybridization may contain a nucleic acid hybridized to the probe.
  • the first oxidation wave O1 and the second oxidation wave O2 indicate measurement results of microRNA (miRNA).
  • the miRNA may be extracted from blood.
  • the change due to hybridization of the miRNA voltammogram eg, oxidation wave
  • the potential difference ⁇ E can clearly occur. Therefore, the hybridization degree of miRNA can be quantitatively analyzed with high precision.
  • each oxidation wave may indicate a measurement result of a nucleic acid other than miRNA, for example, may indicate a measurement result of DNA, or may indicate a measurement result of RNA other than miRNA. Is also good.
  • the user of the device 10 can appropriately determine the first current value I1 according to various conditions (for example, the relationship between the first oxidation wave O1 and the second oxidation wave O2).
  • the first current value I1 is the variation of the potential difference Delta] E (e.g., standard deviation) may be selected from the current value range falls within a predetermined range, for example, the peak current value I 0 of the first oxidation wave O1 mAY 10% to 90% (e.g., the potential difference ⁇ E in 10% to 90% of the peak current value I 0 of the first oxidation wave O1 is in any of the current value of the first oxidation wave O1 It is within the average value of the potential difference ⁇ E within a certain range in the 90% or less than 10% of the peak current value I 0.).
  • the potential difference Delta] E e.g., standard deviation
  • each of the plurality of current value ratio I1 / I 0 may be calculated potential difference ⁇ E for.
  • the calculator 100 may statistically process the plurality of potential differences ⁇ E. For example, the calculator 100 may calculate a median value or an average value of the plurality of potential differences ⁇ E.
  • the potential of the electrode (working electrode) of the measurement system 20 can be reduced by the total negative charge ⁇ Q generated by the hybridized target nucleic acid.
  • an electric double layer having a capacitance C may be formed on the working electrode.
  • the reduction in the potential of the working electrode can be estimated as ⁇ Q / C. Therefore, the oxidation wave after the hybridization (the second oxidation wave O2 in the example shown in FIG. 1) is higher than the oxidation wave before the hybridization (the first oxidation wave O1 in the example shown in FIG. 1) by ⁇ Q / C. Can shift towards potential.
  • the potential difference ⁇ E is the shift amount from the oxidation wave before hybridization (first oxidation wave O1 in the example shown in FIG. 1) to the oxidation wave after hybridization (second oxidation wave O2 in the example shown in FIG. 1). Which can be approximately equal to ⁇ Q / C.
  • the potential difference ⁇ E can be an index for quantitatively analyzing the hybridization degree of the nucleic acid.
  • FIG. 2 is a diagram for explaining the device 10 according to the second embodiment.
  • the device 10 according to the second embodiment is the same as the device 10 according to the first embodiment, except for the following points.
  • the vertical axis represents the current (nA) of the voltammogram
  • the horizontal axis represents the potential (V) of the voltammogram.
  • the device 10 includes the determiner 110.
  • the determiner 110 is for determining the degree of nucleic acid hybridization based on the potential difference ⁇ E. From the above description of the reason why the potential difference ⁇ E occurs, it can be said that the hybridization degree of the nucleic acid is larger as the potential difference ⁇ E is larger and smaller as the potential difference ⁇ E is smaller. Accordingly, the determiner 110 may determine that the greater the potential difference ⁇ E, the greater the degree of hybridization of the nucleic acid, and the smaller the potential difference ⁇ E, the smaller the degree of hybridization of the nucleic acid.
  • the device 10 includes the storage device 120. As described later with reference to FIG. 3, the determiner 110 may compare the data indicating the potential difference ⁇ E with reference data stored in the storage 120 to determine the degree of hybridization of the nucleic acid.
  • FIG. 3 is a view for explaining an example of the reference data stored in the storage device 120 shown in FIG.
  • the reference data is the potential difference ( ⁇ E1, ⁇ E2, ⁇ E3,... In the left column of FIG. 3) associated with the nucleic acid hybridization degree ( ⁇ H1, ⁇ H2, ⁇ H3,... In the right column of FIG. 3). Is shown.
  • the reference data can be generated in advance by measurement using the measurement system 20 shown in FIG.
  • the determiner 110 illustrated in FIG. 2 may compare the potential difference ⁇ E acquired from the measurement system 20 with reference data illustrated in FIG.
  • the determiner 110 may determine the degree of hybridization of the nucleic acid based on the comparison.
  • FIG. 4 is a diagram showing a hardware configuration of the device 10.
  • the apparatus 10 includes a bus 11, a processor 12, a memory 13, a storage device 14, and a network interface 15.
  • the bus 11 is a data transmission path through which the processor 12, the memory 13, the storage device 14, and the network interface 15 mutually transmit and receive data.
  • the method of connecting the processor 12, the memory 13, the storage device 14, and the network interface 15 to each other is not limited to the bus connection.
  • the processor 12 is an arithmetic device such as a CPU (Central Processing Unit) or a GPU (Graphics Processing Unit).
  • the memory 13 is a main storage device including, for example, a RAM (Random Access Memory) or a ROM (Read Only Memory).
  • the storage device 14 is, for example, an auxiliary storage device including an HDD (Hard Disk Drive), an SSD (Solid State Drive), or a memory card.
  • the storage device 14 stores a program module that implements each function of the apparatus 10 (for example, the calculator 100, the determiner 110, or the storage 120).
  • the processor 12 realizes a function corresponding to each program module by reading each program module into the memory 13 and executing it.
  • the network interface 15 is an interface for connecting the device 10 to a communication network such as a LAN (Local Area Network) or a WAN (Wide Area Network).
  • the device 10 can communicate with the measurement system 20 by connecting to the communication network via the network interface 15.
  • the device 10 may be connected to the measurement system 20 via a wireless network, or may be connected to the measurement system 20 via a wired network.
  • the data acquired in the measurement system 20 (for example, the voltammogram C1 and the voltammogram C2 shown in FIG. 1) may be stored in a storage device (for example, a USB flash drive), and the apparatus 10 May be analyzed.
  • FIG. 5 is a diagram showing a first modification of FIG.
  • the vertical axis indicates the voltammogram current (nA)
  • the horizontal axis indicates the voltammogram potential (V).
  • the device 10 may include a measurement system 20.
  • the apparatus 10 can perform not only the analysis of the potential difference ⁇ E but also the measurement of the voltammogram C1 and the voltammogram C2.
  • FIG. 6 is a diagram showing a second modification of FIG.
  • the vertical axis represents the current (nA) of the voltammogram
  • the horizontal axis represents the potential (V) of the voltammogram.
  • the example shown in FIG. 6 differs from the example shown in FIG.
  • the current value I (second oxidation wave O2 peak current value I 0 and the second oxidation wave O2 of the first oxidation wave O1 is the potential at peak current value I 0 of the first oxidation wave O1 Ep
  • the calculator 100 can calculate the potential difference ⁇ E in the same manner as the method described with reference to FIG.
  • FIG. 7 is a diagram showing a third modification of FIG.
  • the vertical axis represents the current (nA) of the voltammogram
  • the horizontal axis represents the potential (V) of the voltammogram.
  • the device 10 can detect the degree of hybridization of nucleic acids using the first reduction wave R1 and the second reduction wave R2 instead of the first oxidation wave O1 and the second oxidation wave O2. .
  • the device 10 includes a calculator 100.
  • the calculator 100 is for calculating a potential difference ⁇ E between the first potential 'E1 of the first reduction wave R1 and the second potential' E2 of the second reduction wave R2.
  • the first reduction wave R1 the first potential 'E1 takes a first current value' I1 in a range exceeding the potential 'Ep 0 at the peak current value' I 0 of the first reduction wave R1.
  • the second potential 'E2 has a first current value' I1 within a range exceeding the potential 'Ep 0 ' at the peak current value 'I 0 ' of the second reduction wave R2.
  • the potential difference ⁇ E for the first reduction wave R1 and the second reduction wave R2 is the same as the potential difference ⁇ E for the first oxidation wave O1 and the second oxidation wave O2, and the reduction wave before hybridization (the example shown in FIG. 7). Then, the amount of shift from the first reduction wave R1) to the reduction wave after hybridization (in the example shown in FIG. 7, the second reduction wave R2) can be estimated. Therefore, the potential difference ' ⁇ E for the first reduction wave R1 and the second reduction wave R2 is quantitatively analyzed in the same manner as the potential difference ⁇ E for the first oxidation wave O1 and the second oxidation wave O2. Can be an indicator for
  • the second reduction wave R2 has a current value 'I at a potential' Ep 0 'at a peak current value' I 0 of the first reduction wave R1.
  • FIG. 8 is a diagram showing the correlation between the analysis of the hybridization of miRNA using the current value ratio I / I 0 and the analysis of the hybridization of miRNA using the potential difference ⁇ E.
  • the vertical axis represents the current value ratio I / I 0
  • the horizontal axis represents the potential difference ⁇ E.
  • First oxidation wave O1 Oxidation wave before miRNA hybridization (solution for measurement: 0.25 mM phosphate buffer + 0.5 mM NaClO 4 , marker: 1 mM [Fe (CN) 6 ] 4 ⁇ )
  • Second oxidation wave O2 oxidation wave after miRNA hybridization (measurement solution: 0.25 mM phosphate buffer + 0.5 mM NaClO 4 , marker: 1 mM [Fe (CN) 6 ] 4 ⁇ )
  • CV sweep speed 500 mV / sec
  • First current value I1 3 nA (about 20% of the peak current value I 0 of the first oxidation wave O1)
  • the median value of the current value ratio I / I 0 was 1.0205. That is, the current value I of the second oxidation wave O2 is was almost equal to the peak current value I 0 of the first oxidation wave O1. Therefore, it is analyzed in quantitative accuracy hybridization degree of nucleic acid by using the current value ratio I / I 0 can be difficult.
  • the median value of the potential difference ⁇ E was 35 mV. That is, it can be said that the potential difference ⁇ E clearly appears. Therefore, it can be said that the degree of hybridization of the nucleic acid can be quantitatively analyzed with high precision using the potential difference ⁇ E.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

装置(10)は、算出器(100)を含んでいる。算出器(100)は、第1酸化波(O1)の第1ポテンシャル(E1)及び第2酸化波(O2)の第2ポテンシャル(E2)のポテンシャル差(ΔE)を算出するためのものである。第1酸化波(O1)において、第1ポテンシャル(E1)は、第1酸化波(O1)のピーク電流値(I)におけるポテンシャル(Ep)未満の範囲で第1電流値(I1)をとる。第2酸化波(O2)において、第2ポテンシャル(E2)は、第2酸化波(O2)のピーク電流値(I´)におけるポテンシャル(Ep´)未満の範囲で第1電流値(I1)をとる。

Description

核酸のハイブリダイゼーション度合を検出する方法、装置及びプログラム
 本発明は、核酸のハイブリダイゼーション度合を検出する方法、装置及びプログラムに関する。
 特定の配列を有する核酸(例えば、デオキシリボ核酸(DNA)又はリボ核酸(RNA))を検出するため、ハイブリダイゼーションが用いられることがある。核酸は、その核酸の配列と相補的な配列を有するプローブにハイブリダイズされる。核酸のハイブリダイゼーション度合は、電気化学的アプローチによって定量的に分析可能である。
 非特許文献1には、核酸のハイブリダイゼーション度合を電気化学的アプローチによって定量的に分析する方法の一例が記載されている。この例では、マイクロRNA(miRNA)を含む試料について、サイクリックボルタンメトリ(CV)によって、ハイブリダイゼーション前のボルタモグラム(酸化波及び還元波)及びハイブリダイゼーション後のボルタモグラム(酸化波及び還元波)を取得している。同一作用電極において、ハイブリダイゼーション前のボルタモグラムのピーク電流値I(ハイブリダイゼーション前の酸化波ボルタモグラムは、ポテンシャルEpにおいてピーク電流値Iをとる。)及びハイブリダイゼーション後の酸化波ボルタモグラムのポテンシャルEpにおける電流値Iを測定すると、電流値Iは、ピーク電流値Iよりも減少する。このため、ピーク電流値Iに対する電流値Iの比I/Iを、核酸のハイブリダイゼーション度合を定量的に分析するための指標として機能させることができる。
Gene sensors based on peptide nucleic acid (PNA) probes: Relationship between sensor sensitivity and probe/target duplex stability. Analyst, 2005, 130, 1478-82.
 本発明者は、非特許文献1に記載の指標(ピーク電流値I及び電流値Iの関係)とは異なる新規な指標を用いて、核酸のハイブリダイゼーション度合を定量的に分析することを検討した。例えば、ピーク電流値I及び電流値Iがほとんど等しい場合(例えば、各試料内の核酸の量が極めて少ない場合、又はハイブリダイゼーションがほとんど生じていない場合)、ピーク電流値I及び電流値Iの関係(例えば、比又は差)を正確に算出することが難しく、ピーク電流値I及び電流値Iの関係を用いて核酸のハイブリダイゼーション度合を定量的に高い精度で分析することは困難である。さらに、ピーク電流値Iを正確に測定することが難しい場合(例えば、ピーク電流値Iの近傍のボルタモグラムが急峻でないため、ピーク電流値I及びピーク電流値Iの近傍の電流値をとるポテンシャルの範囲が広く、ポテンシャルEpを一意に定めることが難しい場合)、ピーク電流値I及び電流値Iの関係(例えば、比又は差)を正確に算出することが難しく、ピーク電流値I及び電流値Iの関係を用いて核酸のハイブリダイゼーション度合を定量的に高い精度で分析することは困難である。
 本発明の目的の一例は、核酸のハイブリダイゼーション度合を定量的に分析するための新規な指標を得ることにある。本発明の他の目的は、本明細書の記載から明らかになるであろう。
 本発明の一態様は、
 第1酸化波及び第2酸化波を用いて核酸のハイブリダイゼーション度合を検出する方法であって、
 前記第1酸化波において、前記第1酸化波のピーク電流値におけるポテンシャル未満の範囲で第1電流値をとる第1ポテンシャルと、前記第2酸化波において、前記第2酸化波のピーク電流値におけるポテンシャル未満の範囲で前記第1電流値をとる第2ポテンシャルと、のポテンシャル差を算出することを含む、核酸のハイブリダイゼーション度合を検出する方法である。
 本発明の他の態様は、
 第1酸化波及び第2酸化波を用いて核酸のハイブリダイゼーション度合を検出する装置であって、
 前記第1酸化波において、前記第1酸化波のピーク電流値におけるポテンシャル未満の範囲で第1電流値をとる第1ポテンシャルと、前記第2酸化波において、前記第2酸化波のピーク電流値におけるポテンシャル未満の範囲で前記第1電流値をとる第2ポテンシャルと、のポテンシャル差を算出する算出器を備える、核酸のハイブリダイゼーション度合を検出する装置である。
 本発明のさらに他の態様は、
 コンピュータを、第1酸化波及び第2酸化波を用いて核酸のハイブリダイゼーション度合を検出する装置として機能させるためのプログラムであって、
 前記コンピュータに、
 前記第1酸化波において、前記第1酸化波のピーク電流値におけるポテンシャル未満の範囲で第1電流値をとる第1ポテンシャルと、前記第2酸化波において、前記第2酸化波のピーク電流値におけるポテンシャル未満の範囲で前記第1電流値をとる第2ポテンシャルと、のポテンシャル差を算出させる、プログラムである。
 本発明の上述の態様によれば、核酸のハイブリダイゼーション度合を定量的に分析するための新規な指標を得ることができる。
実施形態1に係る装置を説明するための図である。 実施形態2に係る装置を説明するための図である。 図2に示した記憶器に記憶された参照データの一例を説明するための図である。 装置のハードウエア構成を示す図である。 図1の第1の変形例を示す図である。 図1の第2の変形例を示す図である。 図1の第3の変形例を示す図である。 電流値比I/Iを用いてのmiRNAのハイブリダイゼーションの分析及びポテンシャル差ΔEを用いてのmiRNAのハイブリダイゼーションの分析の相関を示す図である。
 以下、本発明の実施の形態について、図面を用いて説明する。すべての図面において、同様な構成要素には同様の符号を付し、適宜説明を省略する。
 以下に示す説明において、算出器100、判定器110及び記憶器120は、ハードウエア単位の構成ではなく、機能単位のブロックを示している。算出器100、判定器110及び記憶器120は、任意のコンピュータのCPU、メモリ、メモリにロードされた本図の構成要素を実現するプログラム、そのプログラムを格納するハードディスクなどの記憶メディア、ネットワーク接続用インタフェースを中心にハードウエアとソフトウエアの任意の組合せによって実現される。そして、その実現方法、装置には様々な変形例がある。
(実施形態1)
 図1は、実施形態1に係る装置10を説明するための図である。図1の測定系20内のグラフにおいて、縦軸はボルタモグラムの電流(nA)を示しており、横軸はボルタモグラムのポテンシャル(V)を示している。
 図1を用いて、装置10の概要を説明する。装置10は、第1酸化波O1及び第2酸化波O2を用いて核酸のハイブリダイゼーション度合を検出するためのものである。装置10は、算出器100を含んでいる。算出器100は、第1酸化波O1の第1ポテンシャルE1及び第2酸化波O2の第2ポテンシャルE2のポテンシャル差ΔEを算出するためのものである。第1酸化波O1において、第1ポテンシャルE1は、第1酸化波O1のピーク電流値IにおけるポテンシャルEp未満の範囲で第1電流値I1をとる。第2酸化波O2において、第2ポテンシャルE2は、第2酸化波O2のピーク電流値I´におけるポテンシャルEp´未満の範囲で第1電流値I1をとる。
 上述した構成によれば、核酸のハイブリダイゼーション度合を定量的に分析するための新規な指標を得ることができる。具体的には、上述した構成によれば、ポテンシャル差ΔEを算出器100によって算出することができる。後述するように、ポテンシャル差ΔEは、核酸のハイブリダイゼーション度合を定量的に分析するための指標となり得る。
 さらに、上述した構成によれば、第1酸化波O1のピーク電流値I及び第2酸化波O2の電流値I(第2酸化波O2は、第1酸化波O1のピーク電流値IにおけるポテンシャルEpにおいて第2電流値(電流値I)をとる。)がほとんど等しい場合であっても、ピーク電流値I及び電流値Iの関係(例えば、比又は差)を算出する必要がない。したがって、第1酸化波O1のピーク電流値I及び第2酸化波O2の電流値Iがほとんど等しい場合であっても、核酸のハイブリダイゼーション度合を定量的に高い精度で分析することができる。
 一例において、ポテンシャル差ΔEは、第1酸化波O1のピーク電流値I及び第2酸化波O2の電流値Iがほとんど等しく、例えば、第2酸化波O2の電流値Iが第1酸化波O1のピーク電流値Iの90%以上110%以下であっても、算出可能である。
 さらに、上述した構成によれば、第1酸化波O1のピーク電流値Iを正確に測定することが難しい場合(例えば、ピーク電流値Iの近傍の第1酸化波O1が急峻でないため、ピーク電流値I及びピーク電流値Iの近傍の電流値をとるポテンシャルの範囲が広く、ポテンシャルEpを一意に定めることが難しい場合)であっても、ピーク電流値I及び電流値Iの関係(例えば、比又は差)を算出する必要がない。したがって、ピーク電流値Iを正確に測定することが難しい場合であっても、核酸のハイブリダイゼーション度合を定量的に高い精度で分析することができる。
 図1を用いて、装置10の詳細を説明する。
 図1に示す例において、測定系20は、サイクリックボルタンメトリ(CV)によって、ボルタモグラムC1及びボルタモグラムC2を測定している。ボルタモグラムC1は、第1酸化波O1及び第1還元波R1を含んでいる。ボルタモグラムC2は、第2酸化波O2及び第2還元波R2を含んでいる。
 他の例において、測定系20は、CV以外の方法、例えば、微分パルスボルタンメトリ(DPV)によって、各ボルタモグラムを測定してもよい。この例においても、各ボルタモグラムは、酸化波を含んでいる。したがって、図1を用いて説明する方法と同様の方法により、ポテンシャル差ΔEを算出することができる。
 測定系20は、ボルタモグラムC1及びボルタモグラムC2を測定するための電極(作用電極)を有している。測定系20は、複数の電極(複数の作用電極)を有していてもよい。この場合、算出器100は、複数の電極のそれぞれについて複数のポテンシャル差ΔEのそれぞれを算出することができる。算出器100は、複数のポテンシャル差ΔEを統計的に処理してもよく、例えば、複数のポテンシャル差ΔEの中央値又は平均値を算出してもよい。
 図1に示す例において、第1酸化波O1は、ハイブリダイゼーション前の一試料の測定の測定結果を示しており、第2酸化波O2は、ハイブリダイゼーション後の当該一試料の測定結果を示している。ハイブリダイゼーション前の一試料は、測定系の電極(作用電極)に固定されたプローブを含んでいてもよく(ハイブリダイゼーション前の一試料は、核酸を含んでいてもよいし、又は含んでいなくてもよい。)、ハイブリダイゼーション後の当該一試料は、プローブにハイブリダイズされた核酸を含んでいてもよい。
 図1に示す例において、第1酸化波O1及び第2酸化波O2は、マイクロRNA(miRNA)の測定結果を示している。このmiRNAは、血液から抽出されてもよい。一般に、血液から多量のmiRNAを含む試料を得ることは難しい。このため、miRNAのボルタモグラム(例えば、酸化波)のハイブリダイゼーションによる変化は極めて小さくなり得る。したがって、ピーク電流値I及び電流値Iの関係(例えば、比又は差)を用いて、miRNAのハイブリダイゼーション度合を定量的に分析することは困難になり得る。これに対して、図1に示す例によれば、miRNAのハイブリダイゼーションであっても、ポテンシャル差ΔEは明瞭に生じ得る。したがって、miRNAのハイブリダイゼーション度合を定量的に高い精度で分析することができる。
 他の例において、各酸化波は、miRNA以外の核酸の測定結果を示していてもよく、例えば、DNAの測定結果を示していてもよいし、又はmiRNA以外のRNAの測定結果を示していてもよい。
 装置10の使用者は、各種条件(例えば、第1酸化波O1及び第2酸化波O2の関係)に応じて、第1電流値I1を適当に決定することができる。
 一例において、第1電流値I1は、ポテンシャル差ΔEのばらつき(例えば、標準偏差)が一定範囲に収まる電流値範囲から選択されてもよく、例えば、第1酸化波O1のピーク電流値Iの10%以上90%以下にしてもよい(例えば、第1酸化波O1のピーク電流値Iの10%以上90%以下におけるポテンシャル差ΔEは、いずれの電流値においても、第1酸化波O1のピーク電流値Iの10%以上90%以下におけるポテンシャル差ΔEの平均値から一定の範囲内に収まっている。)。算出器100は、複数の電流値比I1/Iのそれぞれ(例えば、電流値比I1/Iにつき0.20、0.30及び0.40)についてポテンシャル差ΔEを算出してもよい。算出器100は、複数のポテンシャル差ΔEを統計的に処理してもよく、例えば、複数のポテンシャル差ΔEの中央値又は平均値を算出してもよい。
 図1において、ポテンシャル差ΔEが生じる理由を説明する。
 測定系20の電極(作用電極)のポテンシャルは、ハイブリダイズされたターゲット核酸によって生じる負の総電荷量ΔQによって低下し得る。酸化波の測定において、作用電極には、キャパシタンスCの電気二重層が形成され得る。作用電極のポテンシャルの低下は、ΔQ/Cと見積もることができる。したがって、ハイブリダイゼーション後の酸化波(図1に示す例では、第2酸化波O2)は、ハイブリダイゼーション前の酸化波(図1に示す例では、第1酸化波O1)からΔQ/Cだけ高ポテンシャルに向けてシフトし得る。ポテンシャル差ΔEは、ハイブリダイゼーション前の酸化波(図1に示す例では、第1酸化波O1)からハイブリダイゼーション後の酸化波(図1に示す例では、第2酸化波O2)へのシフト量と見積もることができ、ΔQ/Cとおおよそ等しくなり得る。このようにして、ポテンシャル差ΔEは、核酸のハイブリダイゼーション度合を定量的に分析するための指標となり得る。
(実施形態2)
 図2は、実施形態2に係る装置10を説明するための図である。実施形態2に係る装置10は、以下の点を除いて、実施形態1に係る装置10と同様である。図2の測定系20内のグラフにおいて、縦軸はボルタモグラムの電流(nA)を示しており、横軸はボルタモグラムのポテンシャル(V)を示している。
 装置10は、判定器110を含んでいる。判定器110は、ポテンシャル差ΔEに基づいて、核酸のハイブリダイゼーション度合を判定するためのものである。ポテンシャル差ΔEが生じる理由の上述した説明より、核酸のハイブリダイゼーション度合は、ポテンシャル差ΔEが大きいほど大きく、ポテンシャル差ΔEが小さいほど小さいといえる。したがって、判定器110は、ポテンシャル差ΔEが大きいほど核酸のハイブリダイゼーション度合が大きく、ポテンシャル差ΔEが小さいほど核酸のハイブリダイゼーション度合が小さいと判断してもよい。
 装置10は、記憶器120を含んでいる。図3を用いて後述するように、判定器110は、ポテンシャル差ΔEを示すデータを、記憶器120に記憶された参照データと比較して、核酸のハイブリダイゼーション度合を判定してもよい。
 図3は、図2に示した記憶器120に記憶された参照データの一例を説明するための図である。
 参照データは、核酸のハイブリダイゼーション度合(図3の右欄のΔH1、ΔH2、ΔH3、・・・)と対応付けられたポテンシャル差(図3の左欄のΔE1、ΔE2、ΔE3、・・・)を示す。参照データは、図2に示した測定系20を用いた測定によって予め生成させることができる。図2に示した判定器110は、測定系20から取得したポテンシャル差ΔEを、図3に示す参照データと比較してもよい。判定器110は、この比較に基づいて、核酸のハイブリダイゼーション度合を判定してもよい。
 図4は、装置10のハードウエア構成を示す図である。装置10は、バス11、プロセッサ12、メモリ13、ストレージデバイス14及びネットワークインタフェース15を含んでいる。
 バス11は、プロセッサ12、メモリ13、ストレージデバイス14及びネットワークインタフェース15が相互にデータを送受信するためのデータ伝送路である。ただし、プロセッサ12、メモリ13、ストレージデバイス14及びネットワークインタフェース15を互いに接続する方法は、バス接続に限定されない。
 プロセッサ12は、CPU(Central Processing Unit)又はGPU(Graphics Processing Unit)といった演算装置である。メモリ13は、例えばRAM(Random Access Memory)又はROM(Read Only Memory)を含む主記憶装置である。ストレージデバイス14は、例えば、HDD(Hard Disk Drive)、SSD(Solid State Drive)又はメモリカードを含む補助記憶装置である。
 ストレージデバイス14は、装置10の各機能(例えば、算出器100、判定器110又は記憶器120)を実現するプログラムモジュールを記憶している。プロセッサ12は、各プログラムモジュールをメモリ13に読み出して実行することで、各プログラムモジュールに対応する機能を実現する。
 ネットワークインタフェース15は、装置10をLAN(Local Area Network)又はWAN(Wide Area Network)といった通信網に接続するためのインタフェースである。装置10は、ネットワークインタフェース15を介して通信網に接続することで、測定系20と通信することができる。装置10は、無線ネットワークを介して測定系20に接続されてもよいし、又は有線ネットワークを介して測定系20に接続されてもよい。他の例において、測定系20において取得されたデータ(例えば、図1に示したボルタモグラムC1及びボルタモグラムC2)をストレージデバイス(例えば、USBフラッシュドライブ)に記憶させてもよく、装置10は、ストレージデバイスに記憶されたデータを分析してもよい。
 図5は、図1の第1の変形例を示す図である。図5の測定系20内のグラフにおいて、縦軸はボルタモグラムの電流(nA)を示しており、横軸はボルタモグラムのポテンシャル(V)を示している。
 図5に示すように、装置10は、測定系20を含んでいてもよい。図5に示す例において、装置10は、ポテンシャル差ΔEの分析だけでなく、ボルタモグラムC1及びボルタモグラムC2の測定も実施することができる。
 図6は、図1の第2の変形例を示す図である。図6の測定系20内のグラフにおいて、縦軸はボルタモグラムの電流(nA)を示しており、横軸はボルタモグラムのポテンシャル(V)を示している。
 図6に示す例は、測定系20内のグラフについて、図1に示す例と異なっている。図6に示すように、第1酸化波O1のピーク電流値I及び第2酸化波O2の電流値I(第2酸化波O2は、第1酸化波O1のピーク電流値IにおけるポテンシャルEpにおいて電流値Iをとる。)の差が大きい場合であっても、算出器100は、図1を用いて説明した方法と同様にして、ポテンシャル差ΔEを算出することができる。
 図7は、図1の第3の変形例を示す図である。図7の測定系20内のグラフにおいて、縦軸はボルタモグラムの電流(nA)を示しており、横軸はボルタモグラムのポテンシャル(V)を示している。
 図7に示すように、装置10は、第1酸化波O1及び第2酸化波O2に代えて第1還元波R1及び第2還元波R2を用いて核酸のハイブリダイゼーション度合を検出することもできる。装置10は、算出器100を含んでいる。算出器100は、第1還元波R1の第1ポテンシャル‘E1及び第2還元波R2の第2ポテンシャル‘E2のポテンシャル差‘ΔEを算出するためのものである。第1還元波R1において、第1ポテンシャル‘E1は、第1還元波R1のピーク電流値‘Iにおけるポテンシャル‘Ep超の範囲で第1電流値‘I1をとる。第2還元波R2において、第2ポテンシャル‘E2は、第2還元波R2のピーク電流値‘I´におけるポテンシャル‘Ep´超の範囲で第1電流値`I1をとる。
 第1還元波R1及び第2還元波R2に関するポテンシャル差‘ΔEは、第1酸化波O1及び第2酸化波O2に関するポテンシャル差ΔEと同様にして、ハイブリダイゼーション前の還元波(図7に示す例では、第1還元波R1)からハイブリダイゼーション後の還元波(図7に示す例では、第2還元波R2)へのシフト量と見積もることができる。したがって、第1還元波R1及び第2還元波R2に関するポテンシャル差‘ΔEは、第1酸化波O1及び第2酸化波O2に関するポテンシャル差ΔEと同様にして、核酸のハイブリダイゼーション度合を定量的に分析するための指標となり得る。
 図7に示すグラフにおいて、第2還元波R2は、第1還元波R1のピーク電流値‘Iにおけるポテンシャル‘Epにおいて電流値‘Iをとっている。
 図8は、電流値比I/Iを用いてのmiRNAのハイブリダイゼーションの分析及びポテンシャル差ΔEを用いてのmiRNAのハイブリダイゼーションの分析の相関を示す図である。図8のグラフにおいて、縦軸は、電流値比I/Iを示しており、横軸は、ポテンシャル差ΔEを示している。
 図8に示す例では、74個の測定系20(作用電極)のそれぞれにおいて、以下の条件で、ピーク電流比I/I及びポテンシャル差ΔEを算出した。
  第1酸化波O1:miRNAハイブリダイゼーション前の酸化波(測定用溶液:0.25mM リン酸バッファ+0.5mM NaClO、マーカ:1mM [Fe(CN)4-
  第2酸化波O2:miRNAハイブリダイゼーション後の酸化波(測定用溶液:0.25mM リン酸バッファ+0.5mM NaClO、マーカ:1mM [Fe(CN)4-
  CV掃引速度:500mV/sec
  第1電流値I1:3nA(各第1酸化波O1のピーク電流値Iの約20%)
 電流値比I/Iの中央値は、1.0205であった。つまり、第2酸化波O2の電流値Iは、第1酸化波O1のピーク電流値Iとほとんど等しかった。したがって、電流値比I/Iを用いて核酸のハイブリダイゼーション度合を定量的に高い精度で分析することは困難となり得る。
 ポテンシャル差ΔEの中央値は、35mVであった。つまり、ポテンシャル差ΔEは、明瞭に表れているといえる。したがって、ポテンシャル差ΔEを用いて核酸のハイブリダイゼーション度合を定量的に高い精度で分析することができるといえる。
 以上、図面を参照して本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 この出願は、2018年9月28日に出願された日本出願特願2018-183439号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10 装置
11 バス
12 プロセッサ
13 メモリ
14 ストレージデバイス
15 ネットワークインタフェース
20 測定系
100 算出器
110 判定器
120 記憶器

Claims (9)

  1.  第1酸化波及び第2酸化波を用いて核酸のハイブリダイゼーション度合を検出する方法であって、
     前記第1酸化波において、前記第1酸化波のピーク電流値におけるポテンシャル未満の範囲で第1電流値をとる第1ポテンシャルと、前記第2酸化波において、前記第2酸化波のピーク電流値におけるポテンシャル未満の範囲で前記第1電流値をとる第2ポテンシャルと、のポテンシャル差を算出することを含む、核酸のハイブリダイゼーション度合を検出する方法。
  2.  前記ポテンシャル差に基づいて、核酸のハイブリダイゼーション度合を判定することを含む、請求項1に記載の核酸のハイブリダイゼーション度合を検出する方法。
  3.  核酸のハイブリダイゼーション度合を判定することは、前記ポテンシャル差を示すデータと、核酸のハイブリダイゼーション度合と対応付けられたポテンシャル差を示す参照データと、を比較することを含む、請求項2に記載の核酸のハイブリダイゼーション度合を検出する方法。
  4.  前記第1酸化波は、ハイブリダイゼーション前の一試料の測定結果を示しており、
     前記第2酸化波は、ハイブリダイゼーション後の前記一試料の測定結果を示している、請求項1から3のいずれか一項に記載の核酸のハイブリダイゼーション度合を検出する方法。
  5.  前記第2酸化波は、前記第1酸化波の前記ピーク電流値における前記ポテンシャルにおいて第2電流値をとり、
     前記第2酸化波の前記第2電流値は、前記第1酸化波の前記ピーク電流値の90%以上110%以下である、請求項1から4のいずれか一項に記載の核酸のハイブリダイゼーション度合を検出する方法。
  6.  前記核酸は、RNA又はDNAである、請求項1から5のいずれか一項に記載の核酸のハイブリダイゼーション度合を検出する方法。
  7.  前記核酸は、miRNAである、請求項6に記載の核酸のハイブリダイゼーション度合を検出する方法。
  8.  第1酸化波及び第2酸化波を用いて核酸のハイブリダイゼーション度合を検出する装置であって、
     前記第1酸化波において、前記第1酸化波のピーク電流値におけるポテンシャル未満の範囲で第1電流値をとる第1ポテンシャルと、前記第2酸化波において、前記第2酸化波のピーク電流値におけるポテンシャル未満の範囲で前記第1電流値をとる第2ポテンシャルと、のポテンシャル差を算出する算出器を備える、核酸のハイブリダイゼーション度合を検出する装置。
  9.  コンピュータを、第1酸化波及び第2酸化波を用いて核酸のハイブリダイゼーション度合を検出する装置として機能させるためのプログラムであって、
     前記コンピュータに、
     前記第1酸化波において、前記第1酸化波のピーク電流値におけるポテンシャル未満の範囲で第1電流値をとる第1ポテンシャルと、前記第2酸化波において、前記第2酸化波のピーク電流値におけるポテンシャル未満の範囲で前記第1電流値をとる第2ポテンシャルと、のポテンシャル差を算出させる、プログラム。
PCT/JP2019/034380 2018-09-28 2019-09-02 核酸のハイブリダイゼーション度合を検出する方法、装置及びプログラム WO2020066474A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/267,746 US20210317512A1 (en) 2018-09-28 2019-09-02 Method, device, and program for detecting degree of hybridization of nucleic acid
JP2020548254A JP7460528B2 (ja) 2018-09-28 2019-09-02 核酸のハイブリダイゼーション度合を検出する方法、装置及びプログラム
CN201980051873.6A CN112567239A (zh) 2018-09-28 2019-09-02 检测核酸的杂交程度的方法、装置及程序
EP19867756.9A EP3859323A4 (en) 2018-09-28 2019-09-02 METHOD, DEVICE AND PROGRAM FOR DETECTING THE DEGREE OF HYBRIDIZATION OF NUCLEIC ACIDS

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-183439 2018-09-28
JP2018183439 2018-09-28

Publications (1)

Publication Number Publication Date
WO2020066474A1 true WO2020066474A1 (ja) 2020-04-02

Family

ID=69950514

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034380 WO2020066474A1 (ja) 2018-09-28 2019-09-02 核酸のハイブリダイゼーション度合を検出する方法、装置及びプログラム

Country Status (5)

Country Link
US (1) US20210317512A1 (ja)
EP (1) EP3859323A4 (ja)
JP (1) JP7460528B2 (ja)
CN (1) CN112567239A (ja)
WO (1) WO2020066474A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066479A1 (ja) * 2005-11-16 2007-06-14 Mitsubishi Gas Chemical Company, Inc. 二重鎖dna量の測定方法および測定用キット
US20100187133A1 (en) * 2009-01-29 2010-07-29 Rastislav Levicky Capacitive morpholino diagnostics for analysis of nucleic acids
JP2018183439A (ja) 2017-04-26 2018-11-22 株式会社三洋物産 遊技機

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3233851B2 (ja) * 1996-04-24 2001-12-04 繁織 竹中 遺伝子の電気化学的検出法およびその装置
EP1211507A3 (en) * 2000-09-29 2003-09-24 Kabushiki Kaisha Toshiba Nucleic acid detection sensor
CA2441180C (en) * 2001-03-13 2008-08-12 Japan Science And Technology Corporation Method for electrochemical detection of nucleobase pair complementarity
JP2003083968A (ja) * 2001-09-14 2003-03-19 Jsr Corp Dnaチップおよびアッセイ方法
US20040191801A1 (en) * 2003-03-25 2004-09-30 Heeger Alan J. Reagentless, reusable bioelectronic detectors and their use as authentication devices
JP4941994B2 (ja) * 2008-01-25 2012-05-30 独立行政法人産業技術総合研究所 遺伝子の検出方法
CN107988318B (zh) * 2017-11-24 2021-05-25 杭州电子科技大学 基于电化学电势预处理技术快速检测核酸的方法及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007066479A1 (ja) * 2005-11-16 2007-06-14 Mitsubishi Gas Chemical Company, Inc. 二重鎖dna量の測定方法および測定用キット
US20100187133A1 (en) * 2009-01-29 2010-07-29 Rastislav Levicky Capacitive morpholino diagnostics for analysis of nucleic acids
JP2018183439A (ja) 2017-04-26 2018-11-22 株式会社三洋物産 遊技機

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"Relationship between sensor sensitivity and probe/target duplex stability", ANALYST, vol. 130, 2005, pages 1478 - 82
See also references of EP3859323A4

Also Published As

Publication number Publication date
EP3859323A1 (en) 2021-08-04
CN112567239A (zh) 2021-03-26
JPWO2020066474A1 (ja) 2021-09-09
US20210317512A1 (en) 2021-10-14
EP3859323A4 (en) 2022-06-15
JP7460528B2 (ja) 2024-04-02

Similar Documents

Publication Publication Date Title
DK2823062T5 (en) SIZE-BASED ANALYSIS OF Fetal DNA FRACTION IN MOTHER PLASMA
CN104582568B (zh) 用于检测使用过且变干的传感器的系统和方法
US11549935B2 (en) Exporting measurements of nanopore arrays
CN107533030A (zh) 利用变化的电压刺激的基于纳米孔的测序
JP4907481B2 (ja) イオン選択性電極を用いて得られた誤測定結果を検出する方法
CN107526941B (zh) 拷贝数变异检测预处理装置、检测装置、判定装置和系统
Araya et al. Capillary electrophoresis for studying drug–DNA interactions
WO2020066474A1 (ja) 核酸のハイブリダイゼーション度合を検出する方法、装置及びプログラム
JP2015027302A5 (ja)
CN105637126A (zh) 使用电方法的分子分析物的数字分析
US20120010821A1 (en) Nucleic Acid Abundance Ratio Measurement Device, Method, and Program Storage Medium, Determination Method and Nucleic Acid Abundance Ratio Measurement Kit
JP2004527728A (ja) ベースコーリング装置及びプロトコル
Maier et al. An impedimetric sensor for real-time detection of antibiotic resistance genes employing rolling circle amplification
JP2008139138A (ja) 電気化学ノイズ測定方法
CN109192243B (zh) 染色体比例的修正方法、装置、介质
EP2354787B1 (en) Potentiometric titration method and potentiometric titration apparatus
RU2016102329A (ru) Ловушка ошибок заполнения для измерения аналита на основании заданного времени получения выборки из физической характеристики образца, содержащего аналит
CN117116347B (zh) 多序列保守区间的探测方法、简并引物的设计方法、相关装置和电子设备
Aldawiri et al. A Novel Approach for Mapping Ambiguous Sequences of Transcriptomes
US20100191479A1 (en) Potentiometric tirtation method and potentiometric titration apparatus
JP2010193832A (ja) 遺伝子解析方法および遺伝子解析システム
CN110736780A (zh) 一种生物试样分析系统
CN116978453A (zh) 判断融合基因真实性的方法和电子装置
US10964407B2 (en) Method for estimating the probe-target affinity of a DNA chip and method for manufacturing a DNA chip
Cedervall et al. X-ray-induced DNA double-strand breaks in mouse L1210 cells: A new computational method for analyzing neutral filter elution data

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19867756

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020548254

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019867756

Country of ref document: EP

Effective date: 20210428