WO2020066122A1 - リアクトル - Google Patents
リアクトル Download PDFInfo
- Publication number
- WO2020066122A1 WO2020066122A1 PCT/JP2019/020235 JP2019020235W WO2020066122A1 WO 2020066122 A1 WO2020066122 A1 WO 2020066122A1 JP 2019020235 W JP2019020235 W JP 2019020235W WO 2020066122 A1 WO2020066122 A1 WO 2020066122A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- inner case
- case
- refrigerant
- opening surface
- outer case
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/08—Cooling; Ventilating
- H01F27/10—Liquid cooling
- H01F27/16—Water cooling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/02—Casings
- H01F27/025—Constructional details relating to cooling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/02—Casings
- H01F27/022—Encapsulation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/08—Cooling; Ventilating
- H01F27/10—Liquid cooling
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/08—Cooling; Ventilating
- H01F27/22—Cooling by heat conduction through solid or powdered fillings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/245—Magnetic cores made from sheets, e.g. grain-oriented
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/24—Magnetic cores
- H01F27/255—Magnetic cores made from particles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F27/00—Details of transformers or inductances, in general
- H01F27/28—Coils; Windings; Conductive connections
- H01F27/29—Terminals; Tapping arrangements for signal inductances
- H01F27/292—Surface mounted devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F37/00—Fixed inductances not covered by group H01F17/00
Definitions
- the present invention relates to a reactor used for a power conversion device and the like, particularly to a reactor having a cooling mechanism.
- a reactor including a coil and a core is used as one of the components constituting a power conversion device such as an inverter.
- a power conversion device such as an inverter.
- a certain reactor must be cooled efficiently.
- the reactor is a component that generates a large amount of heat, and it is necessary to take measures to reduce heat damage to other components due to heat generation of the reactor.
- a cooler composed of a plate-like heat sink is provided along the side surface of a coil wound around a core, and a potting material is injected so as to fill a gap between the cooler and the coil.
- the reactor of the configuration is described. A part of the coil is embedded in the potting material, and a lead wire of the coil is drawn through the potting material.
- the cooler is provided with a radiation fin on the outer surface, and is cooled by outside air.
- a coil is housed in a case, a magnetic powder mixed resin is filled inside and outside (between the coil and the case) of the coil to form a core, and a cooling pipe is passed through the core.
- a provided water-cooled reactor is disclosed.
- the cooling pipe is made of aluminum and is embedded in a core made of a resin mixed with magnetic powder.
- Patent Literature 1 the effect of suppressing the heat transmitted through the terminal to other components connected to the terminal of the reactor by cooling the lead wire of the coil serving as the terminal of the reactor via the potting material is described. Although obtained, it is not possible to reduce the heat transmitted from the coil or core via air or by radiation to other components not connected to the terminals of the reactor. In particular, since the coil and the core are exposed except for the surface in contact with the cooler, heat transmitted to other components cannot be cut off.
- Patent Literature 2 the metal cooling pipe is disposed inside the case, but the position of the cooling pipe is restricted in order to secure the insulation distance between the coil and the cooling pipe and satisfy the reactor performance. Therefore, it is difficult to reduce the size of the case including the cooling pipe. In addition, heat cannot be sufficiently recovered from a portion distant from the cooling pipe, and cooling cannot be performed as a whole. For this reason, there is a concern that heat will be transmitted from a relatively hot site to other components.
- the reactor according to one embodiment of the present invention includes: A box-shaped inner case with one side forming an opening, An outer case surrounding the outside of the surface other than the opening surface of the inner case, forming a gap serving as a refrigerant flow passage between the inner case and a refrigerant inlet and a refrigerant outlet, A coil disposed in the inner case through the opening surface and having terminals at both ends located in the opening surface; A core made of a magnetic powder mixed resin filled in the inner case so that the coil is buried leaving the terminal, It is provided with.
- the refrigerant flowing from the refrigerant inlet flows through the refrigerant flow path surrounding all surfaces except the opening surface where the terminal is located.
- the periphery of the coil and the core is surrounded by the coolant flow path, and the coil and the core are effectively cooled.
- the core made of the resin mixed with magnetic powder is in close contact with the inner wall surface of the inner case, and the heat is reliably transmitted to the refrigerant via the inner case, effective heat recovery is performed.
- the surface temperature outside the outer case is substantially insulated from the coil by the coolant channel, it is suppressed to be low on any surface except the opening surface where the terminal is located. Therefore, thermal influence on other components arranged adjacently is reduced.
- a box-shaped inner case with one side forming an opening An outer case surrounding the outside of the surface other than the opening surface of the inner case, forming a gap serving as a refrigerant flow passage between the inner case and a refrigerant inlet and a refrigerant outlet,
- a reactor assembly including a coil and a core disposed in the inner case through the opening surface and having terminals at both ends located in the opening surface;
- a liquid refrigerant such as cooling water containing water as a main component or a cooling oil having insulating properties (for example, mineral oil) can be used, and a gaseous refrigerant or a gas-liquid mixed type refrigerant can be used. It may be.
- the inner case and the outer case each have a rectangular parallelepiped box shape
- the outer case has an opening surface on one side corresponding to the opening surface of the inner case, and the inner case can be assembled into the outer case through the opening surface of the outer case,
- the refrigerant inlet is provided at one longitudinal end of the outer case, and the refrigerant outlet is provided at the other end.
- the refrigerant flows along the longitudinal directions of the inner case and the outer case having a rectangular parallelepiped shape, and heat exchange is efficiently performed. Then, of the six rectangular parallelepiped surfaces, five surfaces except for the opening surface where the terminal is located are surrounded by the coolant flow path.
- the reactor of the present invention further includes a frame-shaped cover attached to a side surface serving as the opening surface of the outer case, and covering a space between the opening surface of the outer case and the inner case.
- a frame-shaped cover attached to a side surface serving as the opening surface of the outer case, and covering a space between the opening surface of the outer case and the inner case.
- a cooling fin may be provided on at least a part of the outer surface of the inner case that is in contact with the coolant flow path. These cooling fins increase the heat exchange area.
- the inner case is filled with insulating oil as a refrigerant without using a potting material.
- the reactor is An inner case having a box shape with one side surface forming an opening surface, and having a communication port through which the insulating oil is filled and filled with insulating oil serving as a refrigerant, An outer case surrounding the outside of the surface other than the opening surface of the inner case, forming a gap serving as a refrigerant flow passage between the inner case and a refrigerant inlet and a refrigerant outlet, A reactor assembly including a coil and a core disposed in the inner case through the opening surface and having terminals located on the opening surface; A lid member that covers the opening surface in a state where the terminals are led out, It is provided with.
- the inner case is filled with insulating oil through the communication port, and the insulating oil insulates the reactor assembly and simultaneously transmits heat from the reactor assembly to the inner case. . Then, the inner case and thus the reactor assembly are cooled by the insulating oil flowing in the refrigerant flow path between the inner case and the outer case.
- the refrigerant flow path and the inside of the inner case need only communicate with each other through a communication port so that the inside of the inner case is filled with insulating oil, and the insulating oil does not necessarily flow positively in the inner case. do not have to.
- the reactor according to the present invention all surfaces other than the opening surface where the terminals of the inner case accommodating the coil and the core are located are surrounded by the coolant channel, and the coil and the core are effectively cooled.
- the inner case is filled with the magnetic powder mixed resin, the potting material, or the insulating oil serving as the core, and is in close contact with the inner wall surface of the inner case, heat is reliably recovered by the refrigerant. Further, since the surface temperature of the outer case is also reduced, the thermal influence on other components is reduced.
- FIG. 2 is a perspective view showing a first embodiment of the reactor.
- FIG. 2 is a plan view of the reactor according to the first embodiment.
- FIG. 2 is a front view of the reactor according to the first embodiment.
- FIG. 4 is a sectional view taken along the line AA in FIG. 3.
- FIG. 2 is an exploded perspective view showing an outer case and an inner case in an exploded manner.
- Process explanatory drawing which shows the manufacturing process of the reactor of 1st Example. It is explanatory drawing which shows the flow of cooling water
- FIG. (A) is an explanatory view corresponding to a top view
- FIG. (B) is an explanatory view corresponding to a front view, respectively.
- FIG. 6 is a perspective view showing a second embodiment of the reactor.
- FIG. 1st Example It is explanatory drawing which shows the flow of cooling water
- FIG. (A) is an explanatory view corresponding to a top view
- FIG. (B) is an explanatory view corresponding to
- FIG. 5 is a plan view of a reactor according to a second embodiment.
- FIG. 11 is a sectional view taken along the line BB of FIG. 10.
- FIG. 2 is an exploded perspective view showing an outer case and an inner case in an exploded manner. Process explanatory drawing which shows the manufacturing process of the reactor of 2nd Example.
- FIG. 13 is a perspective view of a modification in which another electronic component is attached to the outer surface of the outer case.
- FIG. 13 is a perspective view showing a reactor according to a fourth embodiment.
- FIG. 13 is an exploded perspective view of a reactor according to a fourth embodiment.
- FIG. 1 is a perspective view showing a first embodiment of a reactor 1 used as a component of an inverter in an electric vehicle or a hybrid vehicle, for example.
- FIG. 2 is a plan view of the reactor 1 of the first embodiment
- FIG. 3 is a front view
- FIG. 4 is a sectional view taken along line AA in FIG.
- the reactor 1 has a rectangular parallelepiped outer case 2, as shown in FIG. 4, a rectangular parallelepiped inner case 3 housed in the outer case 2, and a coil disposed in the inner case 3. 4 and a core 5 housed in the inner case 3 together with the coil 4.
- FIG. 5 is an exploded perspective view showing the outer case 2 and the inner case 3 in an exploded manner.
- the ambient temperature in the engine room where the reactor 1 is arranged is relatively high (in one example, 100 ° or more). Therefore, forced cooling using a refrigerant is necessary.
- cooling water containing water as a main component is used as the refrigerant.
- the outer case 2 is formed of a metal, preferably a metal having excellent heat conductivity, and is integrally formed by, for example, cutting of an aluminum alloy base material or aluminum die casting.
- the outer case 2 has a box shape in which one side surface among six surfaces constituting a rectangular parallelepiped is open. That is, the outer case 2 has a pair of end walls 11 forming end surfaces at both ends in the longitudinal direction, a pair of side walls 12 forming side surfaces having a relatively wide width (W1), and a relatively narrow width ( One bottom wall 13 constituting a side surface having W2) and an opening surface 14 corresponding to a relatively narrow side surface (W2) facing the bottom wall 13 are provided.
- the opening 6 is further provided with a cover 6 having a rectangular frame shape.
- a refrigerant pipe connector 15 is connected to the center of the pair of end walls 11, one being a refrigerant inlet and the other being a refrigerant outlet. These refrigerant pipe connectors 15 have a circular tubular shape extending along the longitudinal direction of the outer case 2 and are connected to a cooling water circulation system including a pump (not shown).
- the inner case 3 is made of a metal, preferably a metal having excellent heat conductivity, like the outer case 2, and is formed integrally by, for example, cutting of an aluminum alloy base material or aluminum die casting.
- the inner case 3 has a rectangular parallelepiped shape substantially similar to the outer case 2 and smaller than the outer case 2, and is formed in a box shape in which one of six sides forming a rectangular parallelepiped like the outer case 2 has an open side. ing. That is, as shown in the exploded perspective view of FIG. 5, the inner case 3 has a pair of end walls 21 forming end faces at both ends in the longitudinal direction, and a pair of side walls having a relatively wide width (W3).
- W3 relatively wide width
- a bottom wall 23 forming a side surface having a relatively narrow width (W4), and an opening surface 24 corresponding to a relatively narrow width (W4) side surface facing the bottom wall 23.
- W4 relatively narrow width
- W4 relatively narrow width
- a large number of cooling fins 25 linearly extending along the longitudinal direction of the inner case 3 are formed on the surfaces of the pair of side walls 22 and the bottom wall 23.
- a large number of cooling fins 25 are formed at equal pitches on the entire surface of the side wall 22 and the bottom wall 23.
- the opening surface 24 of the inner case 3 is a surface corresponding to the opening surface 14 of the outer case 2. That is, when the outer case 2 and the inner case 3 are combined, the opening surface 24 of the inner case 3 is located in the opening surface 14 of the outer case 2.
- a gap that serves as a coolant channel 27 is formed between the inner case 3 and the outer case 2.
- the outer case 2 surrounds the outside of the five surfaces other than the opening surface 24 of the inner case 3, and the respective surfaces constitute the refrigerant flow paths 27. As shown in FIG.
- the fins 25 of the inner case 3 protrude so as to approach the inner wall surface of the outer case 2, but the tip of the cooling fin 25 is not in contact with the inner wall surface of the outer case 2, and the cooling water is cooled. A slight gap remains so that it can flow across the fins 25.
- the frame-shaped cover 6 is provided across the opening edge of the outer case 2 and the opening edge of the inner case 3, and closes the opening surface of the refrigerant flow path 27 formed therebetween.
- the cover 6 is made of a metal plate of the same material as the outer case 2 and the inner case 3, the outer peripheral edge is welded (or brazed) to the opening edge of the outer case 2, and the inner peripheral edge is It is welded (or brazed) to the opening edge of the inner case 3.
- the inner case 3 and the outer case 2 are firmly integrated at the same time as the coolant passage 27 is sealed.
- the cover 6 may be fixed to the outer case 2 and the inner case 3 with screws or the like, and each joint surface may be sealed with a sealing material such as a liquid gasket.
- a portion corresponding to the cover 6 may be formed integrally with the inner case 3 and welded (or brazed) or screwed to the opening edge of the outer case 2.
- the coil 4 housed in the inner case 3 is formed by winding the element wire in a flat and substantially rectangular shape corresponding to the rectangular parallelepiped shape of the inner case 3 as shown in FIG.
- a wire having a rectangular cross section having a relatively large cross-sectional area (a so-called rectangular wire) is used, and the wires are spirally wound without overlapping in the radial direction.
- Both ends of the element wire are drawn out as terminals 4a and 4b, respectively.
- These two terminals 4a, 4b are located apart from each other at both ends in the longitudinal direction of the coil 4 which is formed into a slender shape as a whole, and extend in parallel with each other.
- the coil 4 is wound so that the center axis (magnetic center axis) of the coil 4 is orthogonal to the wider side surface (side wall 22) of the inner case 3.
- the coil 4 is arranged in the inner case 3 with the pair of terminals 4 a and 4 b protruding from the opening surface 24.
- the inner case 3 is filled with a magnetic powder mixed resin so that the coil 4 is buried except for the terminals 4a and 4b, and a core 5 is formed of the magnetic powder mixed resin.
- the magnetic powder mixed resin for example, a resin obtained by mixing a magnetic powder such as iron or ferrite with a thermosetting resin such as an epoxy resin or a phenol resin, which has a proper fluidity when not cured, is used.
- a thermosetting resin such as an epoxy resin or a phenol resin, which has a proper fluidity when not cured
- the resin is cured by heating in a heating furnace or the like, and the core 5 is formed.
- a magnetic powder may be mixed with a thermoplastic resin and injected into the inner case 3 in a state of being heated and melted.
- the inner case 3 may be filled with magnetic powder whose surface is previously coated with a resin serving as a binder, and then pressurized and heated to form the core 5. Good.
- the order of the two steps of assembling the cases 2 and 3 and filling and forming the core 5 is arbitrary. That is, after assembling the outer case 2 and the inner case 3, the coil 4 may be arranged in the inner case 3 and filled with the magnetic powder mixed resin, or the coil 4 may be arranged in the inner case 3.
- the inner case 3 and the outer case 2 may be assembled after the filling of the magnetic powder mixed resin by the above.
- the coil 4 is inserted after the outer case 2 and the inner case 3 are integrated. And the formation of the core 5 is performed.
- FIG. 6 shows an example of a manufacturing process of the reactor 1.
- the coil 4 is inserted into the inner case 3 as shown in step (a). Be placed.
- the core case 5 is formed by injecting or filling the magnetic powder mixed resin into the inner case 3.
- FIG. 7 is an explanatory diagram showing the flow of the cooling water inside the reactor 1 by arrows, and as shown in the drawing, the cooling water flowing from the refrigerant inlet is formed by the end wall 11 of the outer case 2 and the end of the inner case 3.
- the refrigerant flow path 27 between the outer case 2 and the side wall 12 the refrigerant flow path 27 between the bottom wall 13 and the inner case 3 and the side wall 22 and the bottom wall 23 is radially expanded. , 3 along the longitudinal direction.
- the refrigerant flows out to the refrigerant outlet via the refrigerant flow path 27 between the end wall 11 of the other outer case 2 and the end wall 21 of the inner case 3. That is, the cooling water flows along five surfaces except for the opening surfaces 14 and 24 where the terminals 4a and 4b are located, and effectively cools the coil 4 and the core 5 surrounded by these five surfaces.
- the core 5 made of the magnetic powder mixed resin is in close contact with the inner wall surface of the inner case 3 and heat is reliably transmitted to the cooling water via the inner case 3, effective heat recovery is performed.
- the inner case 3 includes the cooling fins 25, the heat exchange area between the inner case 3 and the cooling water is increased, and the heat transfer from the inner case 3 to the cooling water is improved.
- the outer surface temperature of the outer case 2 is substantially insulated from the inner case 3 by the coolant channel 27, the temperature of the outer case 2 becomes lower on any surface except the opening surface 14, and is therefore arranged adjacently. Thermal effects on other components.
- the area without the refrigerant flow path 27 is minimized. Is limited. That is, conversely, the area covered by the coolant flow path 27 is maximized, and the coil 4 and the core 5 are effectively cooled, and heat radiation to the outside is reduced.
- the coil 4 is a heating element, and the surrounding atmosphere is also high in temperature.
- the cooling water flows over a wide area, the coil 4 and the outer case 2 are relatively hardly separated from each other. It can be maintained at a low temperature.
- the cooling fins 25 are provided on a total of three surfaces of the side wall 22 and the bottom wall 23 which are the outer surfaces of the inner case 3, but the cooling fins 25 may be provided on one or two surfaces. Alternatively, the cooling fin 25 may not be provided to balance pressure loss and flow rate, reduce processing cost, and the like.
- the refrigerant pipe connectors 15 serving as a refrigerant inlet and a refrigerant outlet are respectively attached to the center of the end wall 11 of the outer case 2, but the end wall 11 of the outer case 2 and the end of the inner case 3 are provided. It is only necessary that the refrigerant inlet and the refrigerant outlet communicate with the refrigerant flow path 27 (that is, the refrigerant flow paths 27 at both ends in the longitudinal direction) formed between the refrigerant flow path and the other wall, and other configurations are also possible.
- the refrigerant pipe connector 15 extending parallel to the surface of the end wall 11 is provided at the end of the side wall 12 or the bottom wall 13 of the outer case 2 (specifically, More specifically, it may be configured to be connected to a region outside the outer surfaces of the terminals 4a and 4b in the longitudinal direction of the outer case 2).
- FIGS. 8 is a perspective view of the reactor 1 of the second embodiment
- FIG. 9 is a plan view of the reactor 1 of the second embodiment
- FIG. 10 is a front view
- FIG. 11 is a cross-sectional view taken along line BB of FIG. ,.
- the reactor 1 has an outer case 2 having a rectangular parallelepiped shape, an inner case 3 also having a rectangular parallelepiped shape accommodated in the outer case 2, and an opening edge of the outer case 2. And a cover 6 having a rectangular frame shape provided over the opening edge of the inner case 3.
- FIG. 12 is an exploded perspective view of the outer case 2, the inner case 3, and the cover 6. The configurations of the outer case 2, the inner case 3, and the cover 6 are basically the same as those of the first embodiment.
- FIG. 13 is a process explanatory view showing an example of the manufacturing process of the reactor 1 of the second embodiment.
- the coil 4 is not particularly different from that of the first embodiment described above, and a so-called rectangular wire is spirally wound along a flat and substantially rectangular shape without overlapping in the radial direction. It has a shape.
- the core 5A around which the coil 4 is wound may be, for example, a general laminated steel sheet, or a so-called dust core formed into a predetermined shape using magnetic powder coated with a binder resin. Good.
- the shape of the core 5A is not particularly limited, for example, the core 5A is formed so as to have a flat rectangular outer shape corresponding to the flat coil 4 described above.
- the core 5A fills the inner peripheral side of the coil 4 and is formed so as to surround the outer periphery of the long side portion of the flat coil 4.
- Both ends of the wire of the coil 4 are drawn out as terminals 4a and 4b, respectively, as in the first embodiment described above. These two terminals 4a, 4b are located apart from each other at both ends in the longitudinal direction of the coil 4 which is formed into a slender shape as a whole, and extend in parallel with each other. The terminals 4a and 4b are located at positions where they do not interfere with the core 5A.
- the reactor assembly 31 including the coil 4 and the core 5A has a size capable of passing through the opening surface 24 of the inner case 3, and as shown in step (a) of FIG.
- the pair of terminals 4 a and 4 b are inserted into the inner case 3, and are arranged in the inner case 3 in a posture protruding from the opening surface 24.
- the inner case 3 is filled with a potting material 32 having thermal conductivity and insulation so that the reactor assembly 31 is buried except for the terminals 4a and 4b.
- the potting material 32 for example, an epoxy potting material generally commercially available as a potting material for a circuit board can be used.
- the potting material 32 forms a liquid having an appropriate fluidity before being cured, and is cured by heating in a heating furnace or the like after filling.
- a two-component mixture type using a mixture of a main agent and a curing agent may be used.
- the order of the two steps of assembling the cases 2 and 3 and filling the potting material 32 is arbitrary. That is, after assembling the outer case 2 and the inner case 3, the reactor assembly 31 may be arranged in the inner case 3 and the potting material 32 may be filled (see FIG. 13). After the reactor assembly 31 is disposed and the potting material 32 is filled, the inner case 3 and the outer case 2 may be assembled. In the case of the embodiment in which the outer case 2 and the inner case 3 are integrated through welding or brazing of the cover 6, after the outer case 2 and the inner case 3 are integrated, the reactor assembly 31 Insertion and filling of the potting material 32 are performed.
- one of the refrigerant pipe connectors 15 of the outer case 2 is used as a refrigerant inlet and the other is used as a refrigerant outlet, and cooling water is forced to flow by a pump (not shown).
- the flow of the cooling water inside the reactor 1 is as described with reference to FIG.
- the cooling water flowing from the refrigerant inlet radially expands in the refrigerant flow path 27 between the end wall 11 of the outer case 2 and the end wall 21 of the inner case 3, and further, the side wall 12 and the bottom wall 13 of the outer case 2.
- the refrigerant flows along the longitudinal direction of the cases 2 and 3 through the coolant passage 27 between the inner case 3 and the side wall 22 and the bottom wall 23 of the inner case 3.
- the refrigerant flows out to the refrigerant outlet via the refrigerant flow path 27 between the end wall 11 of the other outer case 2 and the end wall 21 of the inner case 3. That is, the cooling water flows along five surfaces except for the opening surfaces 14, 24 where the terminals 4a, 4b are located, and effectively cools the reactor assembly 31 surrounded by these five surfaces.
- the potting material 32 is in close contact with the inner wall surface of the inner case 3, and the heat is reliably transmitted to the cooling water through the inner case 3, so that effective heat recovery is achieved. Is made.
- the inner case 3 includes the cooling fins 25, the heat exchange area between the inner case 3 and the cooling water is increased, and the heat transfer from the inner case 3 to the cooling water is improved.
- the outer surface temperature of the outer case 2 is substantially insulated from the inner case 3 by the coolant channel 27, the temperature of the outer case 2 becomes lower on any surface except the opening surface 14, and is therefore arranged adjacently. Thermal effects on other components.
- the area without the refrigerant flow path 27 is minimized. Becomes That is, conversely, the area covered by the coolant flow path 27 is maximized, and the coil 4 and the core 5A are effectively cooled, and heat radiation to the outside is reduced.
- the coil 4 is a heating element, and the surrounding atmosphere is also high in temperature.
- the cooling water flows over a wide area, the coil 4 and the outer case 2 are relatively hardly separated from each other. It can be maintained at a low temperature.
- the surface of the inner case 3 on which the cooling fins 25 are formed and the configuration of the refrigerant pipe connector 15 can be changed in various ways, as in the first embodiment described above.
- FIG. 14 shows a modified example of the reactor 1 of the first embodiment or the second embodiment.
- another relatively small electronic component 41 that is preferably cooled is attached to the outer surface of the outer case 2.
- the electronic component 41 may be a heat-generating component such as a resistor, or a suitable electronic component that does not generate large heat itself but has relatively low heat resistance and needs to be cooled to an ambient temperature. Is also good.
- the electronic component 41 is attached to the side wall 12 where the inner coolant passage 27 has the largest area.
- the electronic component 41 is arranged on the side closer to the coolant inlet where the cooling water temperature is relatively low in the longitudinal direction of the outer case 2.
- the outer case 2 is formed from a metal such as an aluminum alloy having excellent thermal conductivity, heat can be transferred between the cooling water and the electronic component 41 via the outer case 2.
- the outer electronic component 41 is cooled together with the internal coil 4 and the like by the flow of the cooling water.
- the cooling water temperature is lower than the ambient temperature, so that the cooling water can effectively cool the electronic component 41.
- FIG. 14 one electronic component 41 is illustrated, but a plurality of electronic components 41 can be attached to the outer case 2 as necessary.
- the outer case 2 When the outer case 2 is used as a kind of cooling plate as shown in FIG. 14, it is preferable to form the outer case 2 from a material having excellent thermal conductivity. Is not necessarily a member having excellent thermal conductivity. Therefore, in both the first embodiment and the second embodiment, it is possible to form the outer case 2 from, for example, a hard synthetic resin.
- the basic structure of the reactor 1 of the third embodiment is the same as that of the reactor 1 of the first embodiment or the second embodiment described above.
- a cooling oil having an insulating property that is, an insulating oil is used.
- insulating oil containing mineral oil as a main component is used, and forcibly flows through a refrigerant flow path 27 between the outer case 2 and the inner case 3 by an oil pump.
- the oil 4 is superior in heat conductivity to water as compared with the case where the refrigerant mainly containing water is used.
- the cooling effect on the reactor assembly 31 of the second embodiment increases. Further, when the outer case 2 and the inner case 3 are made of metal, corrosion of the contact surface with the refrigerant is less likely to occur.
- the inside of the inner case 3 is filled with insulating oil serving as a refrigerant, instead of the potting material 32 in the above-described second embodiment. That is, similarly to the above-described second embodiment, the reactor 1 includes the outer case 2 having a rectangular parallelepiped shape, the inner case 3 having the same rectangular parallelepiped shape housed in the outer case 2, and the inner case 3. And a reactor assembly 31 arranged. Further, instead of the frame-shaped cover 6 described above, a first cover member 50 and a second cover member 51 each having a rectangular plate shape are provided.
- the outer case 2 is formed of a metal, preferably a metal having excellent heat conductivity, and is integrally formed by, for example, cutting of an aluminum alloy base material or aluminum die casting.
- the outer case 2 has a box shape in which one side surface among six surfaces constituting a rectangular parallelepiped is open. That is, the outer case 2 includes a pair of end walls 11 forming end surfaces at both ends in the longitudinal direction, a pair of side walls 12 forming a side surface having a relatively wide width, and a side surface having a relatively narrow width.
- One bottom wall 13 is provided, and an opening surface 14 corresponding to a relatively narrow side surface facing the bottom wall 13 is provided.
- the first lid member 50 is attached to the opening surface 14.
- a refrigerant pipe connector 15 is connected to the center of the pair of end walls 11, one being a refrigerant inlet and the other being a refrigerant outlet.
- These refrigerant pipe connectors 15 have a circular tubular shape extending along the longitudinal direction of the outer case 2 and are connected to an insulating oil circulation system including an oil pump (not shown).
- the inner case 3 is made of a metal, preferably a metal having excellent heat conductivity, like the outer case 2, and is formed integrally by, for example, cutting of an aluminum alloy base material or aluminum die casting.
- the inner case 3 has a rectangular parallelepiped shape substantially similar to the outer case 2 and smaller than the outer case 2, and is formed in a box shape in which one of six sides forming a rectangular parallelepiped like the outer case 2 has an open side. ing. That is, the inner case 3 includes a pair of end walls 21 forming end surfaces at both ends in the longitudinal direction, a pair of side walls 22 forming a side surface having a relatively wide width, and a side surface having a relatively narrow width.
- One bottom wall 23 is provided, and an opening surface 24 corresponding to a relatively narrow side surface facing the bottom wall 23 is provided.
- the cooling fins 25 as in the first embodiment described above are not provided, but the cooling fins 25 are formed on the surfaces of the pair of side walls 22 and the bottom wall 23 as in the first embodiment. Is also good.
- a communication port 52 through which insulating oil can flow is formed in each of the pair of end walls 21.
- the communication port 52 is, for example, a circular hole, and is formed at a position substantially at the center of the end wall 21.
- the opening surface 24 of the inner case 3 is a surface corresponding to the opening surface 14 of the outer case 2. That is, when the outer case 2 and the inner case 3 are combined, the opening surface 24 of the inner case 3 is located in the opening surface 14 of the outer case 2.
- a gap that serves as a coolant channel 27 is formed between the inner case 3 and the outer case 2.
- the outer case 2 surrounds the outside of the five surfaces other than the opening surface 24 of the inner case 3, and the respective surfaces constitute the refrigerant flow paths 27.
- a second lid member 51 is attached to the opening surface 24 of the inner case 3.
- the first lid member 50 and the second lid member 51 are overlapped so that the first lid member 50 is on the outside, and the second lid member 51 is joined to the opening edge of the inner case 3 (for example, by welding or brazing). ) To cover the opening surface 24 of the inner case 3, and the first lid member 50 is joined (for example, welded or brazed) to the opening edge of the outer case 2 to form the opening surface 14 of the outer case 2, that is, the coolant passage 27. Covers the top opening.
- the first lid member 50 and the second lid member 51 are made of a metal plate of the same material as the outer case 2 and the inner case 3, and are formed by welding or brazing. Attached to the opening edge.
- the first lid member 50 and the second lid member 51 are provided with a pair of terminal openings 53 for leading out the terminals 4a and 4b of the coil 4, respectively.
- the pair of terminal openings 53 are each formed in a rectangular shape, for example.
- the reactor assembly 31 housed in the inner case 3 includes the coil 4 and the core 5A as in the above-described second embodiment.
- the coil 4 has a shape in which a so-called rectangular wire is spirally wound along a flat and substantially rectangular shape without overlapping in the radial direction
- the core 5A is made of, for example, a general laminated steel sheet. It consists of a dust core formed by molding magnetic powder into a predetermined shape.
- terminals 4a and 4b Both ends of the element wire of the coil 4 are drawn out as terminals 4a and 4b, respectively.
- the arrangement of the terminals 4a and 4b is slightly different from that of the second embodiment, and the terminals 4a and 4b are arranged side by side at the center in the longitudinal direction of the coil 4 which is formed in an elongated shape as a whole.
- seal caps 54 that fit into the terminal openings 53 of the first lid member 50 and the second lid member 51 are provided at the bases of the terminals 4a and 4b, respectively.
- the seal cap 54 is formed of rubber or synthetic resin material having appropriate elasticity, and includes a prism portion 54 a that can be pressed into the terminal opening 53 and a flange portion 54 b that presses against the inner surface of the lid member 51. ing.
- the seal cap 54 may be molded with the terminals 4a and 4b inserted, or may be inserted and attached after molding. When the seal cap 54 is tightly attached to the terminal openings 53 of the first and second lid members 50 and 51, the terminals 4 a and 4 b drawn out through the first and second lid members 50 and 51 and The space between the first and second lid members 50 and 51 is sealed.
- one of the refrigerant pipe connectors 15 of the outer case 2 is used as a refrigerant inlet and the other is used as a refrigerant outlet, so that an insulating oil as a refrigerant is forcibly driven by a pump (not shown). Through.
- This insulating oil flows through the coolant channel 27 and cools the inner case 3 in the same manner as the flow of the first embodiment shown in FIG.
- the insulating oil flows into the inside of the inner case 3 through the pair of communication ports 52, and is filled in the inner space of the inner case 3 containing the reactor assembly 31.
- the insulating oil Since the insulating oil has the insulating property and the thermal conductivity similarly to the potting material 32 of the second embodiment described above, the insulating oil transfers the heat of the reactor assembly 31 to the inner case 3 while insulating the reactor assembly 31. Thereby, reactor assembly 31 is effectively cooled.
- the above-described functions and effects described in the first embodiment and the like are similarly obtained.
- the insulating oil that has flowed into the inner case 3 does not stay and deteriorate because the inside of the inner case 3 and the refrigerant flow path 27 communicate with each other through the communication port 52.
- the insulating oil filling the inside of the inner case 3 is basically a substitute for the potting material 32 of the second embodiment, and does not need to flow at a sufficient flow rate unlike the insulating oil flowing in the refrigerant flow path 27. .
- the fourth embodiment has an advantage that the step of filling the potting material 32 in the second embodiment described above is not required.
- the two lid members 50 and 51 are stacked, but the opening surface 24 of the inner case 3 and the refrigerant flow path 27 on the outer peripheral side thereof are formed by one plate-like lid member. It may be configured to cover both upper end openings.
- a lid member having substantially the same shape as the first lid member 50
- the inner case 3 is assembled into the outer case 2
- the opening edge of the outer case 2 and the lid member are welded (or brazed) to cover the inner case 3 and the coolant channel 27, and at the same time, cover the inner case 3.
- the outer case 2 can be integrated.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
- Transformer Cooling (AREA)
Abstract
箱状をなす外側ケース(2)の中に箱状をなす内側ケース(3)が収容されており、両者間の隙間によって、開口面(24)以外の5面に冷媒流路(27)が形成されている。外側ケース(2)の開口縁と内側ケース(3)の開口縁との間は、枠状のカバー(6)によって覆われている。コイル(4)が内側ケース(3)の中に配置された上で、端子(4a,4b)を残してコイル(4)が埋まるように、磁性粉末混合樹脂が充填される。この磁性粉末混合樹脂によって、コア(5)が構成される。冷媒配管コネクタ(15)の一方を冷媒入口、他方を冷媒出口として、外側ケース(2)の長手方向に沿って冷却水が通流する。
Description
この発明は、電力変換装置などに用いられるリアクトル、特に冷却機構を備えたリアクトルに関する。
例えばインバータ等の電力変換装置を構成する部品の一つとして、コイルおよびコアを含むリアクトルが用いられる。電力変換装置を小型化するためには、当該電力変換装置を構成する部品を小型化する必要があるが、電力変換装置を構成する代表部品であるリアクトルの小型化のためには、発熱部品であるリアクトルを効率よく冷却しなければならない。リアクトルは発熱量が大きい部品であり、リアクトルが発熱することによる他部品への熱害を減らすように考慮する必要がある。
特許文献1には、コアに巻回されたコイルの側面に沿って板状のヒートシンクからなる冷却器を配設し、この冷却器とコイルとの間の隙間を埋めるようにポッティング材を注入した構成のリアクトルが記載されている。コイルの一部がポッティング材の中に埋まっており、コイルの引出線がポッティング材を通して引き出されている。冷却器は、外側面に放熱フィンを備えており、外気によって冷却作用を受ける。
特許文献2には、ケースの中にコイルを収容し、このコイルの内側および外側(コイルとケースとの間)に磁性粉末混合樹脂を充填してコアを形成するとともに、このコアを通して冷却管を設けた水冷式のリアクトルが開示されている。冷却管は、アルミニウムからなり、磁性粉末混合樹脂からなるコアの中に埋設されている。
特許文献1の構成では、リアクトルの端子となるコイルの引出線をポッティング材を介して冷却することで、リアクトルの端子に接続された他部品へ端子を介して伝達される熱を抑制する作用は得られるものの、リアクトルの端子に接続されていない他の部品へコイルやコアから空気を介してあるいは放射により伝わる熱を低減することはできない。特に、コイルやコアは冷却器と接する面以外は露出しているので、他部品へ伝わる熱を遮断することができない。
特許文献2の構成では、金属製の冷却管がケースの中を通して配置されているが、コイルと冷却管との間の絶縁距離の確保やリアクトル性能を満たす上で冷却管の位置が制約されるため、冷却管を含めたケースの小型化が困難である。また、冷却管から離れた部位の熱の回収は十分に行えず、全体的に冷却することができない。そのため、相対的に高温となっている部位から他部品へ熱が伝わる懸念がある。
この発明の一つの態様のリアクトルは、
一つの側面が開口面をなす箱状の内側ケースと、
上記内側ケースの上記開口面以外の面の外側を囲み、該内側ケースとの間に冷媒流路となる隙間を構成するとともに、冷媒入口と冷媒出口とを備えた外側ケースと、
上記開口面を通して上記内側ケースの中に配置され、両端の端子が上記開口面に位置するコイルと、
上記コイルが上記端子を残して埋まるように上記内側ケースの中に充填された磁性粉末混合樹脂からなるコアと、
を備えて構成されている。
一つの側面が開口面をなす箱状の内側ケースと、
上記内側ケースの上記開口面以外の面の外側を囲み、該内側ケースとの間に冷媒流路となる隙間を構成するとともに、冷媒入口と冷媒出口とを備えた外側ケースと、
上記開口面を通して上記内側ケースの中に配置され、両端の端子が上記開口面に位置するコイルと、
上記コイルが上記端子を残して埋まるように上記内側ケースの中に充填された磁性粉末混合樹脂からなるコアと、
を備えて構成されている。
このような構成では、冷媒入口から流入した冷媒は、端子が位置する開口面を除いた全ての面を囲む冷媒流路を通して流れる。これにより、コイルならびにコアの周囲が冷媒流路で囲まれた形となり、コイルならびにコアが効果的に冷却される。特に、磁性粉末混合樹脂からなるコアが内側ケースの内壁面に密着しており、該内側ケースを介して冷媒に確実に熱が伝達されるので、効果的な熱の回収がなされる。また、外側ケースの外側の表面温度は、冷媒流路によって実質的にコイルから断熱されることから、端子が位置する開口面を除くいずれの面においても低く抑制される。そのため、隣接して配置される他の部品への熱的影響が少なくなる。
また他の一つの態様では、
一つの側面が開口面をなす箱状の内側ケースと、
上記内側ケースの上記開口面以外の面の外側を囲み、該内側ケースとの間に冷媒流路となる隙間を構成するとともに、冷媒入口と冷媒出口とを備えた外側ケースと、
上記開口面を通して上記内側ケースの中に配置され、両端の端子が上記開口面に位置するコイルおよびコアを含むリアクトルアッセンブリと、
上記リアクトルアッセンブリが上記端子を残して埋まるように上記内側ケースの中に充填された熱伝導性ポッティング材と、
を備えてリアクトルが構成されている。
一つの側面が開口面をなす箱状の内側ケースと、
上記内側ケースの上記開口面以外の面の外側を囲み、該内側ケースとの間に冷媒流路となる隙間を構成するとともに、冷媒入口と冷媒出口とを備えた外側ケースと、
上記開口面を通して上記内側ケースの中に配置され、両端の端子が上記開口面に位置するコイルおよびコアを含むリアクトルアッセンブリと、
上記リアクトルアッセンブリが上記端子を残して埋まるように上記内側ケースの中に充填された熱伝導性ポッティング材と、
を備えてリアクトルが構成されている。
このような構成においても、同様に、端子が位置する開口面を除いた全ての面を冷媒流路が囲っており、冷媒入口から冷媒出口へと冷媒流路を通して冷媒が流れることにより、周囲が冷媒流路で囲まれた形となるリアクトルアッセンブリが効果的に冷却される。コイルおよびコアを含むリアクトルアッセンブリが熱伝導性ポッティング材の中に埋まっており、この熱伝導性ポッティング材は内側ケースの内壁面に密着する。従って、内側ケースを介して冷媒に確実に熱が伝達されるので、効果的な熱の回収がなされる。また、外側ケースの外側の表面温度は、冷媒流路によって実質的にコイルから断熱されることから、端子が位置する開口面を除くいずれの面においても低く抑制される。そのため、隣接して配置される他の部品への熱的影響が少なくなる。
冷媒としては、例えば、水を主たる成分とする冷却水や、絶縁性を有する冷却油(例えば鉱油)などの液相冷媒を用いることができるが、ガス状の冷媒や気液混合型の冷媒などであってもよい。
好ましい一つの実施例では、
上記内側ケースおよび上記外側ケースは、それぞれ直方体形状の箱状をなし、
上記外側ケースは、上記内側ケースの上記開口面に対応した一つの側面が開口面をなすとともに、この外側ケースの上記開口面を通して上記内側ケースが上記外側ケースの中に組付可能であり、
上記外側ケースの長手方向の一端部に上記冷媒入口が、他端部に上記冷媒出口が、それぞれ設けられている。
上記内側ケースおよび上記外側ケースは、それぞれ直方体形状の箱状をなし、
上記外側ケースは、上記内側ケースの上記開口面に対応した一つの側面が開口面をなすとともに、この外側ケースの上記開口面を通して上記内側ケースが上記外側ケースの中に組付可能であり、
上記外側ケースの長手方向の一端部に上記冷媒入口が、他端部に上記冷媒出口が、それぞれ設けられている。
従って、冷媒は直方体形状をなす内側ケースおよび外側ケースの長手方向に沿って流れ、効率よく熱交換がなされる。そして、直方体形状の6つの面の中で端子が位置する開口面を除く5つの面が冷媒流路で囲まれた形となる。
一つの態様では、この発明のリアクトルは、上記外側ケースの上記開口面となる側面に取り付けられて、当該外側ケースの上記開口面と上記内側ケースとの間を覆う枠状のカバーをさらに備えている。外側ケースの開口面は内側ケースを内部に組付可能なように内側ケースよりも大きなものとなるが、外側ケースと内側ケースとの間を枠状のカバーが覆っており、このカバーによって冷媒流路が密閉された形となる。
上記冷媒流路に接する上記内側ケースの外側面の少なくとも一部に、冷却フィンが設けられていてもよい。この冷却フィンによって熱交換面積が拡大する。
さらに本発明の一つの態様では、ポッティング材を用いずに、内側ケースの中に冷媒となる絶縁油が充填される。
すなわち、リアクトルは、
一つの側面が開口面をなす箱状をなし、冷媒となる絶縁油が充填されるとともに該絶縁油が通流可能な連通口を有する内側ケースと、
上記内側ケースの上記開口面以外の面の外側を囲み、該内側ケースとの間に冷媒流路となる隙間を構成するとともに、冷媒入口と冷媒出口とを備えた外側ケースと、
上記開口面を通して上記内側ケースの中に配置され、端子が上記開口面に位置するコイルおよびコアを含むリアクトルアッセンブリと、
上記端子が導出された状態で上記開口面を覆う蓋部材と、
を備えて構成されている。
一つの側面が開口面をなす箱状をなし、冷媒となる絶縁油が充填されるとともに該絶縁油が通流可能な連通口を有する内側ケースと、
上記内側ケースの上記開口面以外の面の外側を囲み、該内側ケースとの間に冷媒流路となる隙間を構成するとともに、冷媒入口と冷媒出口とを備えた外側ケースと、
上記開口面を通して上記内側ケースの中に配置され、端子が上記開口面に位置するコイルおよびコアを含むリアクトルアッセンブリと、
上記端子が導出された状態で上記開口面を覆う蓋部材と、
を備えて構成されている。
この構成では、連通口を介して内側ケースの中に絶縁油が充填された状態となり、この絶縁油によって、リアクトルアッセンブリが絶縁されると同時に、リアクトルアッセンブリから内側ケースへの熱の伝達がなされる。そして、内側ケースと外側ケースとの間の冷媒流路を流れる絶縁油によって、内側ケースひいてはリアクトルアッセンブリが冷却される。なお、この冷媒流路と内側ケース内部とは、内側ケース内部が絶縁油で満たされるように連通口を介して互いに連通していればよく、内側ケースの中で必ずしも絶縁油が積極的に流動する必要はない。
この発明に係るリアクトルによれば、コイルおよびコアを収容した内側ケースの端子が位置する開口面以外の全ての面が冷媒流路によって囲まれており、コイルおよびコアが効果的に冷却される。特に、コアとなる磁性粉末混合樹脂やポッティング材あるいは絶縁油が内側ケースの中に充填されており、内側ケースの内壁面に密着しているので、冷媒に確実に熱が回収される。また外側ケースの表面温度も低くなることから、他の部品への熱的影響が少なくなる。
以下、この発明に係るリアクトル1の一実施例を図面に基づいて詳細に説明する。
図1は、例えば電気自動車やハイブリッド型自動車におけるインバータの構成部品として用いられるリアクトル1の第1実施例を示す斜視図である。図2は第1実施例のリアクトル1の平面図、図3は正面図、図4は図3のA-A線に沿った断面図、である。このリアクトル1は、直方体形状をなす外側ケース2と、図4に示すように、外側ケース2の中に収容された同じく直方体形状をなす内側ケース3と、内側ケース3の中に配置されたコイル4と、このコイル4とともに内側ケース3の中に収容されたコア5と、を備えている。図5は、外側ケース2と内側ケース3とを分解して示した分解斜視図である。このように車両に搭載されるリアクトル1にあっては、コイル4が発熱することに加えて、リアクトル1が配置されるエンジンルーム内等の雰囲気温度が比較的に高温(一例では100°以上)となり得ることから、冷媒を用いた強制的な冷却が必要である。第1実施例では、冷媒として、例えば、水を主たる成分とする冷却水が用いられる。
外側ケース2は、金属好ましくは熱伝導に優れた金属から形成されており、例えば、アルミニウム合金母材の切削加工あるいはアルミニウムダイキャストによって一体に形成されている。外側ケース2は、直方体を構成する6面の中の一つの側面が開口した箱状をなす。すなわち、外側ケース2は、長手方向の両端の端面を構成する一対の端部壁11と、相対的に広い幅(W1)を有する側面を構成する一対の側壁12と、相対的に狭い幅(W2)を有する側面を構成する一つの底壁13と、この底壁13に対向する相対的に狭い幅(W2)の側面に相当する開口面14と、を備えている。上記開口面14には、さらに、矩形の枠状をなすカバー6が取り付けられている。
一対の端部壁11の中心部には、一方が冷媒入口となり他方が冷媒出口となる冷媒配管コネクタ15がそれぞれ接続されている。これらの冷媒配管コネクタ15は、外側ケース2の長手方向に沿って延びた円管状をなしており、図示せぬポンプを含む冷却水循環系に接続されている。
内側ケース3は、外側ケース2と同様に金属好ましくは熱伝導に優れた金属から形成されており、例えば、アルミニウム合金母材の切削加工あるいはアルミニウムダイキャストによって一体に形成されている。内側ケース3は、外側ケース2とほぼ相似形でかつ外側ケース2よりも小さな直方体形状をなし、外側ケース2と同じく直方体を構成する6面の中の一つの側面が開口した箱状に形成されている。すなわち、内側ケース3は、図5の分解斜視図に示すように、長手方向の両端の端面を構成する一対の端部壁21と、相対的に広い幅(W3)を有する側面を構成する一対の側壁22と、相対的に狭い幅(W4)を有する側面を構成する一つの底壁23と、この底壁23に対向する相対的に狭い幅(W4)の側面に相当する開口面24と、を備えている。一対の側壁22および底壁23の表面には、内側ケース3の長手方向に沿って直線状に延びた冷却フィン25が多数形成されている。例えば、側壁22および底壁23の全面に、等ピッチで多数の冷却フィン25が並んで形成されている。
内側ケース3の開口面24は、外側ケース2の開口面14に対応した面にある。つまり、外側ケース2と内側ケース3とが組み合わされた状態では、外側ケース2の開口面14の中に内側ケース3の開口面24が位置する。そして、この開口面14,24を除く5面においては、内側ケース3と外側ケース2との間に、冷媒流路27となる隙間が構成されている。換言すれば、外側ケース2が内側ケース3の開口面24以外の5面の外側を囲っており、それぞれの面に冷媒流路27を構成している。図4に示すように、内側ケース3のフィン25は外側ケース2の内壁面に近付くように突出しているが、冷却フィン25先端は外側ケース2の内壁面に接しておらず、冷却水が冷却フィン25を横切って流れ得るように僅かな隙間が残存している。
枠状のカバー6は、外側ケース2の開口縁と内側ケース3の開口縁とに跨って設けられており、両者間に形成された冷媒流路27の開口面を閉塞している。例えば、一つの例では、カバー6は、外側ケース2および内側ケース3と同様の材質の金属板からなり、外周縁が外側ケース2の開口縁に溶接(あるいはロー付け)され、かつ内周縁が内側ケース3の開口縁に溶接(あるいはロー付け)されている。これにより、冷媒流路27が密閉されていると同時に、内側ケース3と外側ケース2とが堅固に一体化されている。あるいは、カバー6を外側ケース2ならびに内側ケース3に対してネジ等で固定し、各々の接合面を、例えば、液体ガスケット等のシール材でもってシールするようにしてもよい。あるいはカバー6に相当する部分を内側ケース3と一体に形成し、外側ケース2の開口縁に溶接(あるいはロー付け)もしくはネジ止めするようにしてもよい。
内側ケース3内に収容されるコイル4は、図6に示すように、内側ケース3の直方体形状に対応して偏平な略長方形に沿った形に素線を巻回したものである。例えば、素線として比較的断面積の大きな長方形断面のもの(いわゆる平角状の素線)を用い、この素線を径方向に重ねることなく螺旋状に巻いた構成となっている。そして、素線の両端がそれぞれ端子4a,4bとして引き出されている。これら2つの端子4a,4bは、全体として細長い形に構成されたコイル4の長手方向両端部に互いに離れて位置しており、かつ互いに平行に延びている。なお、このコイル4は、当該コイル4の中心軸線(磁気的な中心軸線)が内側ケース3の幅の広い方の側面(側壁22)と直交するような形で巻回されている。
上記コイル4は、一対の端子4a,4bが開口面24から突出した姿勢でもって内側ケース3の中に配置されている。そして、内側ケース3の中には、上記コイル4が端子4a,4bを残して埋まるように磁性粉末混合樹脂が充填されており、この磁性粉末混合樹脂によってコア5が形成されている。
磁性粉末混合樹脂としては、例えば、未硬化時に適宜な流動性を有する液状をなすエポキシ樹脂やフェノール樹脂等の熱硬化性樹脂に、鉄、フェライト、等の磁性粉末を混合したものが用いられる。この場合には、コイル4を配置した内側ケース3の中に液状をなす磁性粉末混合樹脂を注入ないし充填した後に、加熱炉等で加熱することにより硬化し、コア5が形成される。あるいは熱可塑性樹脂に磁性粉末を混合し、加熱溶融した状態で内側ケース3の中に射出するようにしてもよい。あるいは、いわゆる圧粉コアの形成と同様に、予めバインダとなる樹脂で表面をコーティングしてなる磁性粉末を内側ケース3内に充填し、加圧かつ加熱してコア5を形成するようにしてもよい。
なお、ケース2,3の組立とコア5の充填・形成の2つの工程の順序は任意である。つまり、外側ケース2と内側ケース3とを組み立てた後に内側ケース3の中にコイル4を配置するとともに磁性粉末混合樹脂の充填を行ってもよく、あるいは、内側ケース3内にコイル4を配置して磁性粉末混合樹脂の充填を行った後に、この内側ケース3と外側ケース2とを組み立てるようにしてもよい。外側ケース2と内側ケース3とをカバー6の溶接ないしロー付けを介して一体化するようにした実施例の場合には、外側ケース2と内側ケース3とを一体化した後に、コイル4の挿入およびコア5の形成が行われる。
図6は、リアクトル1の製造工程の一例を示しており、外側ケース2と内側ケース3とを一体化した上で、工程(a)に示すように内側ケース3の中にコイル4が挿入・配置される。その後、工程(b)に示すように、内側ケース3の中に磁性粉末混合樹脂を注入ないし充填して、コア5が形成される。
上記のように構成されたリアクトル1にあっては、外側ケース2の冷媒配管コネクタ15の一方を冷媒入口とし他方を冷媒出口として図外のポンプにより冷却水が強制的に通流する。図7は、リアクトル1内部の冷却水の流れを矢印で示した説明図であり、図示するように、冷媒入口から流入した冷却水は外側ケース2の端部壁11と内側ケース3の端部壁21との間の冷媒流路27において放射状に拡がり、さらに、外側ケース2の側壁12ならびに底壁13と内側ケース3の側壁22ならびに底壁23との間の冷媒流路27をこれらケース2,3の長手方向に沿って流れる。そして、他方の外側ケース2の端部壁11と内側ケース3の端部壁21との間の冷媒流路27を介して冷媒出口へと流れ出る。つまり、冷却水は、端子4a,4bが位置する開口面14,24を除いた5面に沿って流れ、これら5面に囲まれたコイル4ならびにコア5を効果的に冷却する。特に、磁性粉末混合樹脂からなるコア5が内側ケース3の内壁面に密着しており、該内側ケース3を介して冷却水に確実に熱が伝達されるので、効果的な熱の回収がなされる。内側ケース3が冷却フィン25を備えることで内側ケース3と冷却水との間の熱交換面積が大きくなり、内側ケース3から冷却水への熱伝達が向上する。また、外側ケース2の外側の表面温度は、冷媒流路27によって内側ケース3から実質的に断熱されることから、開口面14を除くいずれの面においても低くなり、従って、隣接して配置される他の部品への熱的影響が少なくなる。
ここで、上記実施例では、直方体の長手方向に沿った4つの側面の中で相対的に幅の狭い側面が開口面14,24となっているため、冷媒流路27を具備しない面積が最小限となる。つまり、逆に冷媒流路27で覆われる面積が最大限に大きくなっており、コイル4ならびにコア5が効果的に冷却されるとともに外部への放熱が少なくなる。前述したように、車両用のリアクトル1にあってはコイル4が発熱体であると同時に周囲雰囲気も高温となるが、広い面積に冷却水が流れることで、コイル4ならびに外側ケース2を比較的低い温度に維持することができる。
なお、図示例では内側ケース3の外側面である側壁22および底壁23の計3面に冷却フィン25が設けられているが、1面もしくは2面に冷却フィン25を設けるようにしてもよく、あるいは、圧力損失と流量とのバランスや加工コスト低減等のために冷却フィン25を具備しない構成であってもよい。
また、図示例では外側ケース2の端部壁11の中央部に冷媒入口および冷媒出口となる冷媒配管コネクタ15がそれぞれ取り付けられているが、外側ケース2の端部壁11と内側ケース3の端部壁21との間に形成される冷媒流路27(つまり長手方向の両端部の冷媒流路27)に冷媒入口および冷媒出口が連通していればよく、他の構成も可能である。例えば、冷媒配管コネクタ15と他の部品との干渉を回避するために、端部壁11の面と平行に延びた冷媒配管コネクタ15が外側ケース2の側壁12ないし底壁13の端部(具体的には端子4a,4bの外側面よりも外側ケース2の長手方向で外側となる領域)に接続された構成であってもよい。
次に、リアクトル1の第2実施例を、図8~図13に基づいて説明する。なお、第1実施例のものと基本的に同様の箇所には同一符号を付し、重複する説明は省略する。図8は、第2実施例のリアクトル1の斜視図、図9は第2実施例のリアクトル1の平面図、図10は正面図、図11は図10のB-B線に沿った断面図、である。
このリアクトル1は、第1実施例のリアクトル1と同様に、直方体形状をなす外側ケース2と、外側ケース2の中に収容された同じく直方体形状をなす内側ケース3と、外側ケース2の開口縁と内側ケース3の開口縁とに跨って設けられた矩形の枠状をなすカバー6と、を備えている。図12は、これらの外側ケース2と内側ケース3とカバー6との分解斜視図を示している。これらの外側ケース2、内側ケース3、カバー6の構成は、第1実施例のものと基本的に変わりがない。
この第2実施例では、上記内側ケース3の中に、コイル4ならびにコア5Aを含むリアクトルアッセンブリ31が収容されている。図13は、第2実施例のリアクトル1の製造工程の一例を示した工程説明図である。図13に示すように、コイル4は前述した第1実施例のものと特に変わりはなく、いわゆる平角状の素線を径方向に重ねることなく偏平な略長方形に沿った螺旋状に巻回した形となっている。このコイル4が巻き付けられるコア5Aは、例えば一般的な積層鋼板製のものであってもよく、あるいは、バインダ樹脂でコーティングした磁性粉末を用いて所定形状に成形したいわゆる圧粉コアであってもよい。コア5Aの形状は特に限定されるものではないが、例えば、前述した偏平なコイル4の形状に対応して偏平な矩形の外形状を有するようにコア5Aが形成されている。このコア5Aは、コイル4の内周側を埋めているほか、偏平なコイル4の長辺側部分の外周を囲むように形成されている。
コイル4の素線の両端は、前述した第1実施例と同様に、それぞれ端子4a,4bとして引き出されている。これら2つの端子4a,4bは、全体として細長い形に構成されたコイル4の長手方向両端部に互いに離れて位置しており、かつ互いに平行に延びている。なお、端子4a,4bは、コア5Aと干渉しない位置にある。
このようにコイル4ならびにコア5Aを含むリアクトルアッセンブリ31は、内側ケース3の開口面24を通過し得る大きさを有しており、図13の工程(a)に示すように、開口面24を通して内側ケース3の中に挿入され、かつ一対の端子4a,4bが開口面24から突出した姿勢でもって内側ケース3の中に配置される。そして、工程(b)に示すように、内側ケース3の中には、上記リアクトルアッセンブリ31が端子4a,4bを残して埋まるように熱伝導性ならびに絶縁性を有するポッティング材32が充填されている。ポッティング材32としては、例えば回路基板用ポッティング材として一般に市販されているエポキシ系ポッティング材等を用いることができる。このポッティング材32は、未硬化時に適宜な流動性を有する液状をなし、充填後に加熱炉等で加熱することにより硬化する。ポッティング材32として、主剤と硬化剤とを混合して用いる二液混合型のものであってもよい。
なお、ケース2,3の組立とポッティング材32の充填の2つの工程の順序は任意である。つまり、外側ケース2と内側ケース3とを組み立てた後に内側ケース3の中にリアクトルアッセンブリ31を配置するとともにポッティング材32の充填を行ってもよく(図13参照)、あるいは、内側ケース3内にリアクトルアッセンブリ31を配置してポッティング材32の充填を行った後に、この内側ケース3と外側ケース2とを組み立てるようにしてもよい。外側ケース2と内側ケース3とをカバー6の溶接ないしロー付けを介して一体化するようにした実施例の場合には、外側ケース2と内側ケース3とを一体化した後に、リアクトルアッセンブリ31の挿入およびポッティング材32の充填が行われる。
上記のように構成されたリアクトル1にあっては、外側ケース2の冷媒配管コネクタ15の一方を冷媒入口とし他方を冷媒出口として図外のポンプにより冷却水が強制的に通流する。リアクトル1内部の冷却水の流れは、前述した図7に基づいて説明した通りである。冷媒入口から流入した冷却水は外側ケース2の端部壁11と内側ケース3の端部壁21との間の冷媒流路27において放射状に拡がり、さらに、外側ケース2の側壁12ならびに底壁13と内側ケース3の側壁22ならびに底壁23との間の冷媒流路27をこれらケース2,3の長手方向に沿って流れる。そして、他方の外側ケース2の端部壁11と内側ケース3の端部壁21との間の冷媒流路27を介して冷媒出口へと流れ出る。つまり、冷却水は、端子4a,4bが位置する開口面14,24を除いた5面に沿って流れ、これら5面に囲まれたリアクトルアッセンブリ31を効果的に冷却する。特に、この第2実施例では、ポッティング材32が内側ケース3の内壁面に密着しており、該内側ケース3を介して冷却水に確実に熱が伝達されるので、効果的な熱の回収がなされる。しかも内側ケース3が冷却フィン25を備えることで内側ケース3と冷却水との間の熱交換面積が大きくなり、内側ケース3から冷却水への熱伝達が向上する。また、外側ケース2の外側の表面温度は、冷媒流路27によって内側ケース3から実質的に断熱されることから、開口面14を除くいずれの面においても低くなり、従って、隣接して配置される他の部品への熱的影響が少なくなる。
第2実施例においても、直方体の長手方向に沿った4つの側面の中で相対的に幅の狭い側面が開口面14,24となっているため、冷媒流路27を具備しない面積が最小限となる。つまり、逆に冷媒流路27で覆われる面積が最大限に大きくなっており、コイル4ならびにコア5Aが効果的に冷却されるとともに外部への放熱が少なくなる。前述したように、車両用のリアクトル1にあってはコイル4が発熱体であると同時に周囲雰囲気も高温となるが、広い面積に冷却水が流れることで、コイル4ならびに外側ケース2を比較的低い温度に維持することができる。
なお、内側ケース3の冷却フィン25を形成する面や冷媒配管コネクタ15の構成等を種々変更できることは、前述した第1実施例と同様である。
次に図14は、第1実施例ないし第2実施例のリアクトル1の変形例を示している。この例では、外側ケース2の外側面に、冷却することが好ましい相対的に小型の他の電子部品41が取り付けられている。電子部品41としては、抵抗等の発熱部品であってもよく、あるいは、それ自身は大きな発熱はしないものの比較的に耐熱性が低く雰囲気温度に対して冷却が必要な適当な電子部品であってもよい。図示例では、内側の冷媒流路27が最も広い面積を有することとなる側壁12に電子部品41が取り付けられている。特に、外側ケース2の長手方向の中で、冷却水温度が相対的に低い冷媒入口に近い側に電子部品41が配置されている。
前述したように、外側ケース2は、熱伝導性に優れたアルミニウム合金等の金属から形成されているため、この外側ケース2を介して冷却水と電子部品41との間で熱の授受が可能であり、冷却水の通流によって内部のコイル4等とともに外側の電子部品41が冷却される。特に、周囲の雰囲気温度が例えば100℃にも達するような使用環境下では、冷却水温度の方が雰囲気温度よりも低くなるので、冷却水によって電子部品41の効果的な冷却が図れる。図14では、1個の電子部品41を図示しているが、必要に応じて複数個の電子部品41を外側ケース2に取り付けることも可能である。
なお、図14のように外側ケース2を一種の冷却プレートとして利用する場合には外側ケース2を熱伝導性に優れた材料から形成することが好ましいが、それ以外の場合には、外側ケース2は必ずしも熱伝導性に優れた部材でなくてもよい。従って、第1実施例および第2実施例のいずれにおいても、例えば硬質合成樹脂等から外側ケース2を形成することも可能である。
次に、リアクトル1の第3実施例を説明する。第3実施例のリアクトル1の基本的な構造は、前述した第1実施例もしくは第2実施例のリアクトル1と同様であるので、図示は省略するが、第3実施例においては、冷媒流路27を流れる冷媒として、絶縁性を有する冷却油つまり絶縁油が用いられる。例えば、鉱油を主たる成分とする絶縁油が用いられ、オイルポンプによって外側ケース2と内側ケース3との間の冷媒流路27を通して強制的に流れる。
このような絶縁油を冷媒として用いる構成によれば、水を主成分とする冷媒を用いる場合に比較して、油の方が水よりも熱伝導性に優れることから第1実施例のコイル4や第2実施例のリアクトルアッセンブリ31に対する冷却効果が高くなる。また外側ケース2や内側ケース3が金属製である場合に、冷媒との接触面の腐食が生じにくくなる。
次に、図15および図16に基づいて、リアクトル1の第4実施例を説明する。この第4実施例は、前述した第2実施例におけるポッティング材32に代えて、冷媒となる絶縁油でもって内側ケース3の内部を満たすようにしたものである。すなわち、前述した第2実施例と同様に、リアクトル1は、直方体形状をなす外側ケース2と、外側ケース2の中に収容された同じく直方体形状をなす内側ケース3と、内側ケース3の中に配置されたリアクトルアッセンブリ31と、を備えている。また、前述した枠状のカバー6に代えて、長方形の板状をなす第1蓋部材50および第2蓋部材51を備えている。
外側ケース2は、金属好ましくは熱伝導に優れた金属から形成されており、例えば、アルミニウム合金母材の切削加工あるいはアルミニウムダイキャストによって一体に形成されている。外側ケース2は、直方体を構成する6面の中の一つの側面が開口した箱状をなす。すなわち、外側ケース2は、長手方向の両端の端面を構成する一対の端部壁11と、相対的に広い幅を有する側面を構成する一対の側壁12と、相対的に狭い幅を有する側面を構成する一つの底壁13と、この底壁13に対向する相対的に狭い幅の側面に相当する開口面14と、を備えている。上記開口面14には、上記第1蓋部材50が取り付けられている。
一対の端部壁11の中心部には、一方が冷媒入口となり他方が冷媒出口となる冷媒配管コネクタ15がそれぞれ接続されている。これらの冷媒配管コネクタ15は、外側ケース2の長手方向に沿って延びた円管状をなしており、図示せぬオイルポンプを含む絶縁油循環系に接続されている。
内側ケース3は、外側ケース2と同様に金属好ましくは熱伝導に優れた金属から形成されており、例えば、アルミニウム合金母材の切削加工あるいはアルミニウムダイキャストによって一体に形成されている。内側ケース3は、外側ケース2とほぼ相似形でかつ外側ケース2よりも小さな直方体形状をなし、外側ケース2と同じく直方体を構成する6面の中の一つの側面が開口した箱状に形成されている。すなわち、内側ケース3は、長手方向の両端の端面を構成する一対の端部壁21と、相対的に広い幅を有する側面を構成する一対の側壁22と、相対的に狭い幅を有する側面を構成する一つの底壁23と、この底壁23に対向する相対的に狭い幅の側面に相当する開口面24と、を備えている。なお、図示例では、前述した第1実施例のような冷却フィン25は具備していないが、第1実施例と同様に一対の側壁22および底壁23の表面に冷却フィン25を形成してもよい。
一対の端部壁21には、絶縁油の通流が可能な連通口52がそれぞれ開口形成されている。連通口52は、例えば円形の孔であり、端部壁21のほぼ中心となる位置にそれぞれ形成されている。
内側ケース3の開口面24は、外側ケース2の開口面14に対応した面にある。つまり、外側ケース2と内側ケース3とが組み合わされた状態では、外側ケース2の開口面14の中に内側ケース3の開口面24が位置する。そして、この開口面14,24を除く5面においては、内側ケース3と外側ケース2との間に、冷媒流路27となる隙間が構成されている。換言すれば、外側ケース2が内側ケース3の開口面24以外の5面の外側を囲っており、それぞれの面に冷媒流路27を構成している。内側ケース3の開口面24には、第2蓋部材51が取り付けられている。
第1蓋部材50と第2蓋部材51は、第1蓋部材50が外側となるようにして重ねられており、第2蓋部材51が内側ケース3の開口縁に接合(例えば溶接ないしロー付け)されて内側ケース3の開口面24を覆うとともに、第1蓋部材50が外側ケース2の開口縁に接合(例えば溶接ないしロー付け)されて外側ケース2の開口面14つまり冷媒流路27の上端の開口部を覆っている。例えば、一つの例では、第1蓋部材50および第2蓋部材51は、外側ケース2および内側ケース3と同様の材質の金属板からなり、溶接あるいはロー付けによって外側ケース2および内側ケース3の開口縁に取り付けられる。
第1蓋部材50および第2蓋部材51は、コイル4の端子4a,4bを導出するための一対の端子用開口部53をそれぞれ備えている。この一対の端子用開口部53は、例えば矩形状にそれぞれ開口形成されている。
内側ケース3内に収容されるリアクトルアッセンブリ31は、上述した第2実施例のものと同様に、コイル4およびコア5Aを含んでいる。コイル4は、いわゆる平角状の素線を径方向に重ねることなく偏平な略長方形に沿った螺旋状に巻回した形となっており、コア5Aは、例えば一般的な積層鋼板製のものや磁性粉末を所定形状に成形した圧粉コアからなる。
コイル4の素線の両端は、それぞれ端子4a,4bとして引き出されている。図示例では、第2実施例とは端子4a,4bの配置が僅かに異なっており、全体として細長い形に構成されたコイル4の長手方向中央部に並んで配置されている。
ここで、各々の端子4a,4bの基部には、第1蓋部材50および第2蓋部材51の端子用開口部53に嵌合するシールキャップ54がそれぞれ設けられている。シールキャップ54は、適宜な弾性を有するゴムもしくは合成樹脂材料から成形されており、端子用開口部53に圧入可能な角柱部54aと蓋部材51の内側面に圧接するフランジ部54bと、を備えている。なお、シールキャップ54は、端子4a,4bをインサートした状態で成形してもよく、成形後に端子4a,4bを挿入して取り付けてもよい。シールキャップ54が第1,第2蓋部材50,51の端子用開口部53に密に取り付けられることで、第1,第2蓋部材50,51を貫通して導出される端子4a,4bと第1,第2蓋部材50,51との間がシールされる。
上記のように構成された第4実施例のリアクトル1にあっては、外側ケース2の冷媒配管コネクタ15の一方を冷媒入口とし他方を冷媒出口として図外のポンプにより冷媒となる絶縁油が強制的に通流する。この絶縁油は、図7に示した第1実施例の流れと同様に、冷媒流路27を流れ、内側ケース3を冷却する。また同時に、絶縁油は、一対の連通口52を介して内側ケース3の内部に流れ込み、リアクトルアッセンブリ31を収容した内側ケース3の内部空間に充填される。絶縁油は、前述した第2実施例のポッティング材32と同様に、絶縁性ならびに熱伝導性を有するので、リアクトルアッセンブリ31を絶縁しつつリアクトルアッセンブリ31の熱を内側ケース3へ伝達する。これにより、リアクトルアッセンブリ31が効果的に冷却される。そのほか、第1実施例等で述べた前述の作用効果が同様に得られる。内側ケース3の内部に流入した絶縁油は、該内側ケース3の内部と冷媒流路27とが連通口52を介して連通しているため、滞留して劣化してしまうようなことはない。但し、内側ケース3の内部を満たす絶縁油は、基本的には第2実施例のポッティング材32の代替物であり、冷媒流路27を流れる絶縁油のように十分な流速で流れる必要はない。
この第4実施例では、前述した第2実施例におけるポッティング材32の充填工程が不要となる利点がある。
なお、上記第4実施例では、積層された2つの蓋部材50,51を備えているが、1つの板状の蓋部材によって内側ケース3の開口面24とその外周側における冷媒流路27の上端開口の双方を覆うように構成することもできる。例えば、外側ケース2および内側ケース3と同様の材質の金属板からなる蓋部材(第1蓋部材50と概ね同様の形状となる)を内側ケース3の開口縁に溶接(あるいはロー付け)した後に、内側ケース3を外側ケース2内に組み込み、最後に外側ケース2の開口縁と蓋部材を溶接(あるいはロー付け)することで、内側ケース3および冷媒流路27を覆うと同時に、内側ケース3と外側ケース2とを一体化することができる。
Claims (7)
- 一つの側面が開口面をなす箱状の内側ケースと、
上記内側ケースの上記開口面以外の面の外側を囲み、該内側ケースとの間に冷媒流路となる隙間を構成するとともに、冷媒入口と冷媒出口とを備えた外側ケースと、
上記開口面を通して上記内側ケースの中に配置され、両端の端子が上記開口面に位置するコイルと、
上記コイルが上記端子を残して埋まるように上記内側ケースの中に充填された磁性粉末混合樹脂からなるコアと、
を備えてなるリアクトル。 - 一つの側面が開口面をなす箱状の内側ケースと、
上記内側ケースの上記開口面以外の面の外側を囲み、該内側ケースとの間に冷媒流路となる隙間を構成するとともに、冷媒入口と冷媒出口とを備えた外側ケースと、
上記開口面を通して上記内側ケースの中に配置され、両端の端子が上記開口面に位置するコイルおよびコアを含むリアクトルアッセンブリと、
上記リアクトルアッセンブリが上記端子を残して埋まるように上記内側ケースの中に充填された熱伝導性ポッティング材と、
を備えてなるリアクトル。 - 上記内側ケースおよび上記外側ケースは、それぞれ直方体形状の箱状をなし、
上記外側ケースは、上記内側ケースの上記開口面に対応した一つの側面が開口面をなすとともに、この外側ケースの上記開口面を通して上記内側ケースが上記外側ケースの中に組付可能であり、
上記外側ケースの長手方向の一端部に上記冷媒入口が、他端部に上記冷媒出口が、それぞれ設けられている、請求項1または2に記載のリアクトル。 - 上記外側ケースの上記開口面となる側面に取り付けられて、当該外側ケースの上記開口面と上記内側ケースとの間を覆う枠状のカバーをさらに備えてなる、請求項3に記載のリアクトル。
- 上記冷媒流路に接する上記内側ケースの外側面の少なくとも一部に、冷却フィンが設けられている、請求項1~4のいずれかに記載のリアクトル。
- 上記冷媒が冷却水もしくは絶縁油である、請求項1~5のいずれかに記載のリアクトル。
- 一つの側面が開口面をなす箱状をなし、冷媒となる絶縁油が充填されるとともに該絶縁油が通流可能な連通口を有する内側ケースと、
上記内側ケースの上記開口面以外の面の外側を囲み、該内側ケースとの間に冷媒流路となる隙間を構成するとともに、冷媒入口と冷媒出口とを備えた外側ケースと、
上記開口面を通して上記内側ケースの中に配置され、端子が上記開口面に位置するコイルおよびコアを含むリアクトルアッセンブリと、
上記端子が導出された状態で上記開口面を覆う蓋部材と、
を備えてなるリアクトル。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/274,523 US11195650B2 (en) | 2018-09-28 | 2019-05-22 | Reactor |
CN201980060148.5A CN112689880A (zh) | 2018-09-28 | 2019-05-22 | 电抗器 |
EP19865846.0A EP3836174B1 (en) | 2018-09-28 | 2019-05-22 | Reactor |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018183871 | 2018-09-28 | ||
JP2018-183871 | 2018-09-28 | ||
JP2019084897A JP6573045B1 (ja) | 2018-09-28 | 2019-04-26 | リアクトル |
JP2019-084897 | 2019-04-26 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020066122A1 true WO2020066122A1 (ja) | 2020-04-02 |
Family
ID=67909607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/020235 WO2020066122A1 (ja) | 2018-09-28 | 2019-05-22 | リアクトル |
Country Status (5)
Country | Link |
---|---|
US (1) | US11195650B2 (ja) |
EP (1) | EP3836174B1 (ja) |
JP (1) | JP6573045B1 (ja) |
CN (1) | CN112689880A (ja) |
WO (1) | WO2020066122A1 (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102022201485A1 (de) | 2022-02-14 | 2023-08-17 | Zf Friedrichshafen Ag | Speicherdrossel mit optimierter Kühlung, Gleichspannungswandler und Fahrzeug |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007335833A (ja) | 2006-05-16 | 2007-12-27 | Denso Corp | リアクトル及びこれを内蔵した電力変換装置 |
JP2009049082A (ja) * | 2007-08-15 | 2009-03-05 | Toyota Motor Corp | リアクトル冷却システム |
JP2009218417A (ja) * | 2008-03-11 | 2009-09-24 | Toyota Motor Corp | リアクトル冷却装置 |
JP2010003838A (ja) * | 2008-06-19 | 2010-01-07 | Denso Corp | リアクトル装置 |
JP2016219563A (ja) * | 2015-05-19 | 2016-12-22 | トヨタ自動車株式会社 | リアクトル |
JP2017092169A (ja) | 2015-11-06 | 2017-05-25 | トヨタ自動車株式会社 | リアクトル |
JP2019036609A (ja) * | 2017-08-10 | 2019-03-07 | 株式会社デンソー | リアクトル冷却構造 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8563154B2 (en) * | 2009-05-06 | 2013-10-22 | GM Global Technology Operations LLC | Battery assembly with immersed cell temperature regulating |
JP4737477B1 (ja) * | 2010-02-25 | 2011-08-03 | 住友電気工業株式会社 | リアクトルの製造方法 |
JP5605550B2 (ja) * | 2010-06-16 | 2014-10-15 | 住友電気工業株式会社 | リアクトル及びその製造方法 |
JP5914290B2 (ja) | 2012-10-15 | 2016-05-11 | 日立オートモティブシステムズ株式会社 | 電力変換装置 |
JP5807646B2 (ja) * | 2013-01-15 | 2015-11-10 | トヨタ自動車株式会社 | 冷却器付きリアクトル |
JP6469146B2 (ja) * | 2017-02-16 | 2019-02-13 | ファナック株式会社 | リアクトル、モータ駆動装置、パワーコンディショナおよび機械 |
-
2019
- 2019-04-26 JP JP2019084897A patent/JP6573045B1/ja active Active
- 2019-05-22 WO PCT/JP2019/020235 patent/WO2020066122A1/ja unknown
- 2019-05-22 CN CN201980060148.5A patent/CN112689880A/zh active Pending
- 2019-05-22 EP EP19865846.0A patent/EP3836174B1/en active Active
- 2019-05-22 US US17/274,523 patent/US11195650B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007335833A (ja) | 2006-05-16 | 2007-12-27 | Denso Corp | リアクトル及びこれを内蔵した電力変換装置 |
JP2009049082A (ja) * | 2007-08-15 | 2009-03-05 | Toyota Motor Corp | リアクトル冷却システム |
JP2009218417A (ja) * | 2008-03-11 | 2009-09-24 | Toyota Motor Corp | リアクトル冷却装置 |
JP2010003838A (ja) * | 2008-06-19 | 2010-01-07 | Denso Corp | リアクトル装置 |
JP2016219563A (ja) * | 2015-05-19 | 2016-12-22 | トヨタ自動車株式会社 | リアクトル |
JP2017092169A (ja) | 2015-11-06 | 2017-05-25 | トヨタ自動車株式会社 | リアクトル |
JP2019036609A (ja) * | 2017-08-10 | 2019-03-07 | 株式会社デンソー | リアクトル冷却構造 |
Also Published As
Publication number | Publication date |
---|---|
CN112689880A (zh) | 2021-04-20 |
US11195650B2 (en) | 2021-12-07 |
EP3836174B1 (en) | 2023-09-13 |
EP3836174A4 (en) | 2022-01-26 |
JP6573045B1 (ja) | 2019-09-11 |
JP2020057766A (ja) | 2020-04-09 |
US20210249173A1 (en) | 2021-08-12 |
EP3836174A1 (en) | 2021-06-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6642753B1 (ja) | コンデンサ | |
JP4411543B2 (ja) | 磁気部品 | |
JP5018909B2 (ja) | 半導体装置 | |
KR20050036905A (ko) | 구동 장치 | |
CN104813576A (zh) | 逆变器装置 | |
CN111354543A (zh) | 磁性组件及电源模块 | |
JP6758264B2 (ja) | リアクトル冷却構造 | |
US20210243923A1 (en) | Power module assembly | |
JPWO2018055668A1 (ja) | 電力変換装置 | |
JP2010087002A (ja) | 発熱部品冷却構造 | |
JP2012110207A (ja) | 電力変換装置 | |
US20220256730A1 (en) | Power supply device with a heat generating component | |
WO2020066122A1 (ja) | リアクトル | |
JP2012016095A (ja) | 電力変換装置 | |
JP5267238B2 (ja) | 半導体装置及び半導体装置の製造方法 | |
JP5392196B2 (ja) | 半導体装置 | |
CN115051531A (zh) | 功率转换装置及其制造方法 | |
JP5488645B2 (ja) | 半導体装置およびその製造方法 | |
US20060219286A1 (en) | Thermoelectric transducer and manufacturing method for the same | |
JP7124929B1 (ja) | インバータ装置 | |
JP2011228430A (ja) | 半導体モジュール冷却装置 | |
US20230361001A1 (en) | Power Semiconductor Device | |
JP6398907B2 (ja) | リアクトル | |
CN117198701A (zh) | 一种结构紧凑且散热性好的电感 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19865846 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019865846 Country of ref document: EP Effective date: 20210309 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |