WO2020066020A1 - 表示装置およびその製造方法 - Google Patents

表示装置およびその製造方法 Download PDF

Info

Publication number
WO2020066020A1
WO2020066020A1 PCT/JP2018/036587 JP2018036587W WO2020066020A1 WO 2020066020 A1 WO2020066020 A1 WO 2020066020A1 JP 2018036587 W JP2018036587 W JP 2018036587W WO 2020066020 A1 WO2020066020 A1 WO 2020066020A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
layer
display device
electrode
tft
Prior art date
Application number
PCT/JP2018/036587
Other languages
English (en)
French (fr)
Inventor
遼佑 郡司
達 岡部
信介 齋田
博己 谷山
市川 伸治
彬 井上
芳浩 仲田
浩治 神村
康治 谷村
義博 小原
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2018/036587 priority Critical patent/WO2020066020A1/ja
Priority to US17/279,528 priority patent/US20220115475A1/en
Publication of WO2020066020A1 publication Critical patent/WO2020066020A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/124Insulating layers formed between TFT elements and OLED elements
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/02Details
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B33/00Electroluminescent light sources
    • H05B33/12Light sources with substantially two-dimensional radiating surfaces
    • H05B33/22Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of auxiliary dielectric or reflective layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/311Flexible OLED
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates

Definitions

  • the present disclosure relates to a display device and a method for manufacturing the same.
  • the organic EL element layer includes a plurality of organic EL elements. Each organic EL element has a first electrode provided on the flattening film, an organic EL layer provided on the first electrode, and a second electrode provided so as to overlap the first electrode via the organic EL layer. Electrodes.
  • an organic EL display device is provided with a display area for displaying an image and a frame area located around the display area, and there is a demand for reducing the frame area. Therefore, in a flexible organic EL display device, it is known that a frame region is reduced by bending a frame region to arrange a terminal portion provided at an end thereof on the back side of the device.
  • an inorganic insulating film such as a gate insulating film or an interlayer insulating film forming a TFT layer
  • a crack due to bending is likely to occur in the inorganic insulating film, and the crack occurs. Since there is a concern that moisture may enter the display area starting from the location, the inorganic insulating film such as the gate insulating film and the interlayer insulating film forming the TFT layer must be removed in order to prevent such cracks from occurring. There is.
  • a frame flattening film made of an organic material is provided in the slit from which the inorganic insulating film has been removed, and a section of the TFT layer such as the inorganic insulating film exposed in the slit is sealed with the frame flattening film (for example, see Patent Document 1).
  • a conductive portion such as a source wiring or a power supply wiring is inevitably formed thicker as the line becomes thinner. Cannot be filled, and unevenness is generated on the surface of the flattening film, and unevenness reflecting the unevenness of each conductive portion is likely to remain on the surface of the TFT layer. Irregularities formed on the surface of the TFT layer destabilize the surface properties of the first electrode of the organic EL element formed on the TFT layer, which causes a reduction in light extraction efficiency of the organic EL element.
  • the first electrode is formed of a metal material having high light reflection efficiency such as a silver alloy, while the second electrode is formed of indium tin oxide.
  • the first electrode is formed of a conductive material having a high light transmittance such as an object, the unevenness on the surface of the TFT layer is reflected on the first electrode, and the light reflected on the first electrode is scattered. The light extraction efficiency of the device decreases.
  • the technology of the present disclosure has been made in view of such a point, and an object thereof is to provide a display device in which a light-emitting element layer such as an organic EL element layer is provided on a TFT layer. It is to improve the flattening accuracy.
  • the display device includes a flexible resin substrate, a TFT layer provided on the substrate, and a light emitting element layer provided on the TFT layer.
  • a terminal portion is provided at an end of the frame region, and the display region and the terminal portion are provided.
  • a bent portion is provided in the frame region between A display device in which a slit is formed in an edge film and a frame flattening film is provided so as to fill the slit, wherein the conductive portions are adjacent to each other at a position overlapping with the first electrode with an interval therebetween.
  • a plurality of flattening auxiliary films are provided between the adjacent conductive portions, and are formed of the same material in the same layer as the frame flattening film and are covered with the conductive portions by the flattening film. It is characterized by having.
  • the planarization auxiliary film is provided between the adjacent conductive portions in the TFT layer at a position overlapping with the first electrode of the light emitting element layer, and the flattening auxiliary film is also provided with the conductive portion.
  • the flattening film is provided so as to cover the gap, so that the gap between the adjacent conductive portions is interpolated by the flattening auxiliary film, and the surface of the TFT layer is flattened by the flattening film in a state where the gap is narrowed or eliminated.
  • the step due to the conductive portion is reliably filled with the flattening film, and the occurrence of unevenness on the surface of the flattening film can be suppressed, and the flattening accuracy of the TFT layer surface can be improved.
  • a reduction in light extraction efficiency in the light-emitting element layer can be prevented.
  • FIG. 1 is a plan view illustrating a schematic configuration of the organic EL display device according to the first embodiment.
  • FIG. 2 is a plan view showing pixels in a display area surrounded by II in FIG.
  • FIG. 3 is a plan view showing a schematic configuration of one sub-pixel surrounded by III in FIG.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of a part of the sub-pixel taken along line IV-IV in FIG.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of a part of the sub-pixel along the line VV in FIG.
  • FIG. 6 is an equivalent circuit diagram of one sub-pixel shown in FIG. FIG.
  • FIG. 7 is a cross-sectional view illustrating a stacked structure of the organic EL layers included in the organic EL display device according to the first embodiment.
  • FIG. 8 is a cross-sectional view showing a schematic configuration of a bent portion of the organic EL display device along the line VIII-VIII in FIG.
  • FIG. 9 is a schematic flowchart of the method for manufacturing the organic EL display device according to the first embodiment.
  • FIG. 10 is a diagram corresponding to FIG. 5 of an organic EL display device according to a modification of the first embodiment.
  • FIG. 11 is a diagram corresponding to FIG. 4 of the organic EL display device according to the second embodiment.
  • FIG. 12 is a diagram corresponding to FIG. 8 of the organic EL display device according to the second embodiment.
  • a component such as another film, a layer, or an element is provided or formed on a component such as a certain film or a layer, This does not only mean the case where other components are present immediately above the components, but also includes the case where other components such as films, layers, and elements are interposed between the two components. .
  • a description that a component such as a certain film, layer, or element is connected to a component such as another film, layer, or element is electrically connected unless otherwise specified.
  • FIG. 1 is a plan view showing a schematic configuration of the organic EL display device 1 according to the first embodiment.
  • FIG. 2 is a plan view showing the pixels 5 in the display area D surrounded by II in FIG.
  • FIG. 3 is a plan view showing a schematic configuration of one sub-pixel 6 surrounded by III in FIG.
  • FIG. 4 is a cross-sectional view showing a schematic configuration of a part of the sub-pixel 6 along the line IV-IV in FIG.
  • FIG. 5 is a cross-sectional view showing a schematic configuration of a part of the sub-pixel 6 along the line VV in FIG.
  • FIG. 6 is an equivalent circuit diagram of one sub-pixel 6 shown in FIG. FIG.
  • FIG. 7 is a cross-sectional view illustrating a stacked structure of the organic EL layer 42 included in the organic EL display device 1.
  • FIG. 8 is a cross-sectional view showing a schematic configuration of a bent portion B of the organic EL display device 1 along line VIII-VIII in FIG.
  • the organic EL display device 1 has a rectangular display area D for displaying an image, and a rectangular frame area F located around the display area D.
  • a terminal portion T for connecting to an external circuit is provided in a portion constituting one side of the frame region F.
  • a wiring board such as an FPC (Flexible Printed Circuit) provided with a display control circuit is connected to the terminal portion T.
  • a bent portion B that is bent so as to arrange the terminal portion T on the back side of the device is provided.
  • a portion constituting a side (each side on the left and right in FIG. 1) adjacent to the side on which the terminal portion T is provided is not shown, but a monolithic control circuit such as a gate driver or an emission driver, an organic EL A conductive portion and a wiring for establishing conduction with the element 40 (the second electrode 43) are provided.
  • a plurality of routing wirings 16f are provided between the display area D and the terminal portion T in the frame area F. These multiple wirings 16f include a low-level power supply wiring 16lp.
  • wiring terminals 16t for establishing conduction with the leading wiring 16f are arranged in a predetermined pattern.
  • the display area D includes a plurality of pixels 5 as shown in FIG. These pixels 5 are arranged in a matrix.
  • Each pixel 5 includes, for example, a three-color sub-pixel 6 including a sub-pixel 6r for displaying a red gradation, a sub-pixel 6g for displaying a green gradation, and a sub-pixel 6b for displaying a blue gradation. It is configured.
  • These three color sub-pixels 6r, 6g, 6b are arranged, for example, in a juxtaposed manner and are adjacent in a stripe shape.
  • the organic EL display device 1 employs an active matrix driving method in which a gray scale display in each sub-pixel 6 is controlled by an active element.
  • the organic EL display device 1 includes a resin substrate layer 7, a TFT layer 8 provided on the resin substrate layer 7, and an organic EL element layer 9 provided on the TFT layer 8. And a sealing film 10 provided to cover the organic EL element layer 9, a surface protection film (not shown) provided on the surface of the organic EL element layer 9, and provided on the back surface of the resin substrate layer 7. And a back surface protection film (not shown).
  • the resin substrate layer 7 is made of, for example, an organic material such as a polyimide resin, a polyamide resin, an epoxy resin, an acrylic resin, or a polysiloxane resin, or silicon oxide (SiOx), silicon nitride (SiNx), or silicon oxynitride (SiOxNy; x>).
  • y silicon nitride oxide (SiNxOy; x> y) (x and y are positive numbers, the same applies hereinafter), and a laminated film of an inorganic insulating film made of an inorganic material and a resin film made of the organic material. It has flexibility.
  • the resin substrate layer 7 is an example of a resin substrate.
  • the TFT layer 8 includes a base coat film 13 provided on the resin substrate layer 7, a plurality of first TFTs 14a, a plurality of second TFTs 14b, a plurality of third TFTs 14c, a plurality of fourth TFTs 14d, and a plurality of fourth TFTs 14a provided on the base coat film 13.
  • TFTs 14e a plurality of sixth TFTs 14f, a plurality of seventh TFTs 14g, a plurality of capacitors 15, and various display wirings 16, and the first TFT 14a, the second TFT 14b, the third TFT 14c, the fourth TFT 14d, the fifth TFT 14e, the sixth TFT 14f, the seventh TFT 14g, the capacitor 15, A planarizing film 17 provided so as to cover the display wiring 16.
  • the base coat film 13 is a single layer film or a laminated layer of an inorganic insulating layer made of silicon oxide (SiOx), silicon nitride (SiNx), silicon oxynitride (SiOxNy; x> y), silicon nitride oxide (SiNxOy; x> y), or the like. Each is constituted by a film.
  • the first TFT 14a, the second TFT 14b, the third TFT 14c, the fourth TFT 14d, the fifth TFT 14e, the sixth TFT 14f, the seventh TFT 14g, and the capacitor 15 are provided for each sub-pixel 6.
  • the display wiring 16 includes a plurality of gate wirings 16g transmitting a gate signal, an emission wiring 16e transmitting a light emission control signal, and an initialization voltage wiring supplying an initialization voltage. 16v, a plurality of source wirings 16s for transmitting a source signal, and a plurality of high-level power supply wirings 16hp for supplying a current to the organic EL element 40 are provided.
  • the display wires 16 of the same type, that is, the gate wires 16g, the emission wires 16e, the source wires 16s, and the high-level power supply wires 16hp extend in the display region D in parallel with each other.
  • the gate wirings 16g extend parallel to each other in the direction along the side where the terminal portion T is provided.
  • Each emission wiring 16e and each initialization voltage wiring 16v extend in a direction parallel to each other along the gate wiring 16g.
  • Each source line 16s extends in parallel with each other in a direction crossing the gate line 16g and the emission line 16e.
  • Each high-level power supply wiring 16hp extends parallel to each other along the source wiring 16s.
  • the gate wiring 16g and the emission wiring 16e are formed of the same material in the same layer.
  • the source wiring 16s and the high-level power supply wiring 16hp are formed of the same material in the same layer. Only the initialization voltage wiring 16v is formed in a layer separate from the other display wirings 16g, 16e, 16s, and 16hp.
  • the gate wiring 16g, the emission wiring 16e, the initialization voltage wiring 16v, the source wiring 16s, and the high-level power supply wiring 16hp are insulated from each other and are formed in a lattice shape as a whole to partition each sub-pixel 6.
  • Each gate wiring 16g is connected to a gate driver in the frame area F.
  • the gate driver sequentially switches gate signals (high level or low level) applied to the plurality of gate lines 16g, and scans and selects the gate lines 16g in a predetermined order.
  • Each emission wiring 16e is connected to an emission driver in the frame area F.
  • the emission driver sequentially switches the light emission control signals (high level or low level) applied to the plurality of emission lines 16e, and scans and selects the emission lines 16e in a predetermined order.
  • Each source wiring 16s and high-level power supply wiring 16hp are connected to the routing wiring 16f, and are drawn from the display area D to the terminal part T via the bent part B.
  • Each source wiring 16s is connected to a source driver included in a display control circuit on the wiring board via a wiring 16f and a wiring terminal 15t.
  • the source driver sequentially adjusts the source signals applied to the plurality of source lines 16s according to the display image, and scans and selects the source lines 16s in a predetermined order.
  • Each high-level power supply wiring 16hp is electrically connected to a high-level voltage power supply (ELVDD) via a wiring terminal 16t.
  • EUVDD high-level voltage power supply
  • the first TFT 14a, the second TFT 14b, the third TFT 14c, the fourth TFT 14d, the fifth TFT 14e, the sixth TFT 14f, and the seventh TFT 14g are each an example of an active element, and are, for example, P-channel thin film transistors employing a top gate structure. More specifically, the first to seventh TFTs 14a, 14b, 14c, 14d, 14e, 14f, and 14g are made of an island-shaped semiconductor layer 18 provided on the base coat film 13 as shown in FIGS. A gate insulating film 19 provided to cover the semiconductor layer 18, a gate electrode 20 overlapping a part (channel region) of the semiconductor layer 18 via the gate insulating film 19, and a gate insulating film 19 provided to cover the gate electrode 20. And a source electrode 22 and a drain electrode 23 provided on the interlayer insulating film 21.
  • the semiconductor layer 18 is formed of, for example, low-temperature polysilicon (LTPS: Low Temperature Polycrystalline ⁇ ⁇ Silicon) or an oxide semiconductor.
  • the gate insulating film 19 is a single layer of an inorganic insulating layer made of, for example, silicon oxide (SiOx), silicon nitride (SiNx), silicon oxynitride (SiOxNy; x> y), silicon nitride oxide (SiNxOy; x> y), or the like. It is constituted by a film or a laminated film, respectively.
  • the gate electrode 20 is a single-layer film of a metal layer made of, for example, aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), copper (Cu), or the like. Alternatively, it is formed by a laminated film.
  • the gate wiring 16g and the emission wiring 16e are formed in the same layer and the same material as the gate electrode 20.
  • the interlayer insulating film 21 is formed of a laminated film of a first interlayer insulating film 24 and a second interlayer insulating film 25.
  • the first interlayer insulating film 24 and the second interlayer insulating film 25 are made of, for example, silicon oxide (SiOx), silicon nitride (SiNx), silicon oxynitride (SiOxNy; x> y), silicon nitride oxide (SiNxOy; x> y). ), Etc., each of which is constituted by a single layer film or a laminated film of an inorganic insulating layer.
  • the source electrode 22 and the drain electrode 23 are separated from each other, and a region (channel region) overlapping with the gate electrode 20 in the semiconductor layer 18 via the contact hole 26 formed in the gate insulating film 19 and the interlayer insulating film 21 is formed. It is connected to different portions (source region, drain region) at the sandwiched position.
  • the source electrode 22 and the drain electrode 23 are made of, for example, a metal layer made of aluminum (Al), tungsten (W), molybdenum (Mo), tantalum (Ta), chromium (Cr), titanium (Ti), copper (Cu), or the like. Is formed by a single-layer film or a laminated film.
  • the source wiring 16s and the high-level power supply wiring 16hp are formed of the same material on the same layer as the source electrode 22 and the drain electrode 23, respectively.
  • the capacitor 14 overlaps with the lower electrode 27 provided on the gate insulating film 19, the first interlayer insulating film 24 provided so as to cover the lower electrode 27, and the first interlayer insulating film 24. And an upper electrode 28.
  • the lower electrode 27 is formed of the same material in the same layer as the gate wiring 16g and the gate electrode 20.
  • the upper electrode 28 is formed in the same layer and the same material as the initialization voltage wiring 16v.
  • the pixel circuit 30 is provided for each sub-pixel 6.
  • the gate wiring 16g corresponding to the focused pixel circuit 30 is referred to as a "corresponding gate wiring”, and the reference numeral is appended with “16g (n)", and the scanning order of the gate wiring 16g is changed.
  • the gate wiring 16g immediately before the corresponding gate wiring 16g is referred to as “preceding gate wiring”, and the reference numeral is given as "16g (n-1)”.
  • the emission wiring 16e corresponding to the pixel circuit 30 of interest is referred to as “corresponding emission wiring”
  • the initialization voltage wiring 16v corresponding to the pixel circuit 30 of interest is referred to as “corresponding initialization voltage wiring”.
  • the corresponding source line 16s is referred to as “corresponding source line”
  • the high-level power supply line 16hp corresponding to the pixel circuit 30 of interest is referred to as “corresponding high-level power supply line”.
  • the first TFT 14a is an initialization transistor provided between the preceding gate line 16g (n-1), the corresponding initialization voltage line 16v, and the capacitor 14. Thus, it functions as a switching element.
  • the gate electrode 20 is provided integrally with and connected to the preceding gate wiring 16g (n-1), and the source electrode 22 is initialized via the contact hole 31 formed in the second interlayer insulating film 25.
  • the drain electrode 23 is connected to the voltage wiring 16v, and is connected to the lower electrode 27 of the capacitor 14 and the gate electrode 20 of the fourth TFT 14d through a contact hole 33 formed integrally with the connection wiring 32 and formed in the interlayer insulating film 21. It is connected.
  • the first TFT 14a initializes the voltage applied to the gate electrode 20 of the fourth TFT 14d by applying the voltage of the initialization voltage wiring 16v to the capacitor 14 in accordance with the selection of the preceding gate wiring 16g (n-1).
  • the second TFT 14b is a compensation transistor provided between the corresponding gate line 16g (n) and the fourth TFT 14d, and functions as a switching element.
  • the gate electrode 20 is provided integrally and connected to the corresponding gate wiring 16g (n)
  • the source electrode 22 is connected to the drain electrode 23 of the fourth TFT 14d and the source electrode 22 of the sixth TFT 14f via a connection wiring 34.
  • the drain electrode 23 is connected to the gate electrode 20 of the fourth TFT 14 d and the lower electrode 27 of the capacitor 15 via a contact hole 33 formed in the interlayer insulating film 21 and is connected to the drain electrode 23 of the first TFT 14 a. 32.
  • the second TFT 14b makes the fourth TFT 14d a diode-connected state according to the selection of the corresponding gate line 16g (n), and compensates for the threshold voltage of the fourth TFT 14d.
  • the third TFT 14c is a writing transistor provided between the corresponding gate wiring 16g (n), the corresponding source wiring 16s, and the fourth TFT 14d, and functions as a switching element.
  • the gate electrode 20 is provided integrally and connected to the corresponding gate wiring 16g (n)
  • the source electrode 22 is provided integrally and connected to the corresponding source wiring 16s
  • the drain electrode 23 is connected to the fourth TFT 14d.
  • the third TFT 14c applies the voltage of the corresponding source line 16s to the source electrode 22 of the fourth TFT 14d according to the selection of the corresponding gate line 16g (n).
  • the fourth TFT 14d is a driving transistor provided between the first TFT 14a, the second TFT 14b, and the capacitor 15, the third TFT 14c, the fifth TFT 14e, and the sixth TFT 14f, and functions as a switching element.
  • the gate electrode 20 is connected to the drain electrode 23 of the first TFT 14a and the drain electrode 23 of the second TFT 14b via a contact hole 33 formed in the interlayer insulating film 21 and is provided integrally with the capacitor 15.
  • the source electrode 22 is integrally provided with and connected to the drain electrode 22 of the third TFT 14c, and is connected to the drain electrode 23 of the fifth TFT 14e via a connection wiring 35.
  • the drain electrode 23 is connected to the sixth TFT 14f. And is connected to the source electrode 22 of the second TFT 14b via a connection wiring 34.
  • the fourth TFT 14d applies a drive current corresponding to a voltage applied between the gate electrode 20 and the source electrode 22 to the source electrode 22 of the sixth TFT 14f.
  • the fifth TFT 14e is a power supply transistor provided between the corresponding emission wiring 16e, the corresponding high-level power supply wiring 16hp, and the third TFT 14c and the fourth TFT 14d, and functions as a switching element.
  • the gate electrode 20 is provided integrally and connected to the corresponding emission wiring 16e
  • the source electrode 22 is provided integrally and connected to the corresponding high-level power supply wiring 16hp
  • the drain electrode 23 is connected to the drain of the third TFT 14c.
  • the electrode 23 and the source electrode 22 of the fourth TFT 14d are connected via a connection wiring 35.
  • the fifth TFT 14e applies the voltage of the corresponding high-level power supply wiring 16hp to the source electrode 22 of the fourth TFT 14d according to the selection of the corresponding emission wiring 16e.
  • the sixth TFT 14f is a light emission control transistor provided between the corresponding emission wiring 16e and the second TFT 14b and between the fourth TFT 14d and the organic EL element 40, and functions as a switching element.
  • the gate electrode 20 is integrally provided and connected to the corresponding emission wiring 16e
  • the source electrode 22 is integrally provided and connected to the drain electrode 23 of the fourth TFT 14d
  • the drain electrode 23 is 17 is connected to the first electrode 41 of the organic EL element 40 via a contact hole 36 formed in the element 17.
  • the sixth TFT 14f applies the drive current to the organic EL element 40 according to the selection of the corresponding emission wiring 16e.
  • the seventh TFT 14g is an anode discharge transistor provided between the corresponding gate line 16g (n), the corresponding initialization voltage line 16v, and the organic EL element 40, and functions as a switching element.
  • the gate electrode 20 is provided integrally with and connected to the preceding gate wiring 16g (n-1), and the source electrode 22 is connected via a contact hole 37 formed in the second interlayer insulating film 25.
  • the drain electrode 23 is connected to the organic EL element 40 with the drain electrode 23 of the sixth TFT 14f provided integrally therewith.
  • the seventh TFT 14g resets the charge stored in the anode (first electrode 41) of the organic EL element 40 in accordance with the selection of the preceding gate wiring 16g (n-1).
  • the capacitor 15 is a data holding element provided between the corresponding high-level power supply wiring 16hp and the first TFT 14a, the second TFT 14b, and the fourth TFT 14d.
  • the lower electrode 27 is provided integrally with and connected to the gate electrode 20 of the fourth TFT 14d, and is formed in the interlayer insulating film 21 on the drain electrode 23 of the first TFT 14a and the drain electrode 23 of the second TFT 14b.
  • the upper electrode 28 is connected to the corresponding high-level power supply wiring 16hp via a contact hole 38 formed in the second interlayer insulating film 25.
  • the capacitor 15 is charged with the voltage of the corresponding source line 16s when the corresponding gate line 16g (n) is in a selected state, and retains the voltage written by this storage, whereby the corresponding gate line 16g (n) becomes The voltage applied to the gate electrode 20 of the fourth TFT 14d is kept in the non-selected state.
  • each of the connection wirings 32, 34, and 35 for connecting the associated TFTs is connected to the source wiring 16s and the high wiring. It is formed of the same material in the same layer as the level power supply wiring 16hp and the source electrode 22.
  • These connection wirings 32, 34, and 35, the source electrode 22 and the drain electrode 23 of the first to seventh TFTs, the source wiring 16s, and the high-level power supply wiring 16hp are each provided with a conductive portion 39 provided on the interlayer insulating film 21. It is.
  • the plurality of conductive portions 39 provided on the interlayer insulating film 21 include the connection wirings 32, 34, 35 and the source electrodes of the first to seventh TFTs 14a, 14b, 14c, 14d, 14e, 14f, 14g. 22, a drain electrode 23, a source wiring 16s, and a high-level power supply wiring 16hp are included.
  • the plurality of conductive portions 39 are formed thicker than the gate wiring 16g, the emission wiring 16e, the initialization voltage wiring 16v, and the gate electrode 20.
  • the thickness of the conductive portion 39 is, for example, about 0.5 ⁇ m to 1.5 ⁇ m.
  • the surface properties of the first electrode 41 constituting the organic EL element 40 change depending on the leveling accuracy of the flattening film 17 on the surface of the TFT layer 8.
  • steps formed by the conductive portions cannot be filled, and irregularities are generated on the surface of the flattening film 17. Irregularities reflecting steps due to the individual conductive portions 39 are likely to remain.
  • the flattening accuracy of the surface of the TFT layer 8 affects the surface properties of the first electrode 41 constituting the organic EL element 40 and relates to the quality of light extraction efficiency of the organic EL element 40. Therefore, in the organic EL display device 1 according to the first embodiment, in order to improve the flattening accuracy of the surface of the TFT layer 8, a flattening auxiliary film 50 is provided between the adjacent conductive portions 39 in the display region D. I have.
  • the planarization auxiliary film 50 is formed in an island shape so as to overlap with a portion of the first electrode 41 exposed from the opening 52 of the edge cover 44, and a plurality of planarization auxiliary films 50 are provided inside the opening 52 of the edge cover 44 in plan view. (The shaded region in FIG. 3 is the region where the planarization auxiliary film 50 is formed).
  • the thickness of the flattening auxiliary film 50 is equal to or greater than the thickness of the conductive portion 39, and preferably approximately equal to the thickness of the conductive portion 39 (in the illustrated example, approximately equal to the thickness of the conductive portion 39). A slight gap s is provided between the planarization auxiliary film 50 and the conductive portion 39.
  • the flattening auxiliary film 50 is formed of an organic material such as a photosensitive polyimide resin, and is covered with the conductive portion 39 by the flattening film 17.
  • the planarizing film 17 covers the display region D except for a part of the drain electrode 23 of the sixth TFT 14f, so that the surface of the TFT layer 8 is made uneven by the plurality of conductive portions 39 and the first TFT 14a, the second TFT 14b, The surface is flattened so that the surface shapes of the third TFT 14c, the fourth TFT 14d, the fifth TFT 14e, the sixth TFT 14f, and the seventh TFT 14g are not reflected.
  • the planarization film 17 is provided so as to fill the gap s between the planarization auxiliary film 50 and the conductive portion 39 and cover the planarization auxiliary film 50 and the conductive portion 39.
  • the surface of the TFT layer 8 is made flat by reducing or eliminating unevenness due to the auxiliary film 50 and the conductive portion 39.
  • the flattening film 17 is formed of an organic material such as a photosensitive polyimide resin.
  • the organic EL element layer 9 is provided on the flattening film 17 and forms a display region D.
  • the organic EL element layer 9 is an example of a light emitting element layer, and includes a plurality of organic EL elements 40 provided for each sub-pixel 6.
  • the organic EL element 32 employs a top emission type structure. Specifically, the organic EL element 32 includes a plurality of first electrodes 41 provided on the surface of the flattening film 17, an organic EL layer 42 as a functional layer provided on each first electrode 33, A second electrode 43 overlapping the first electrode 41 via the EL layer 42.
  • the first electrode 41 is provided in each sub-pixel 6 and is arranged in a matrix.
  • the first electrode 41 is connected to the drain electrode 22 of the sixth TFT 14 f in the corresponding sub-pixel 6 via the contact hole 36 formed in the planarization film 17.
  • the first electrodes 41 have a function of injecting holes (holes) into the organic EL layer 42 and have light reflectivity, and have a work function of improving the hole injection efficiency into the organic EL layer 42. It is preferable to be formed of a large material.
  • Examples of the material of the first electrode 41 include silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), gold (Au), and calcium (Cu). , Titanium (Ti), yttrium (Y), sodium (Na), ruthenium (Ru), manganese (Mn), indium (In), magnesium (Mg), lithium (Li), ytterbium (Yb) and the like. No.
  • the material of the first electrode 41 is, for example, an alloy of magnesium (Mg) and copper (Cu), an alloy of magnesium (Mg) and silver (Ag), or an alloy of sodium (Na) and potassium (K). Alloys of astatine (At) and astatine oxide (AtO 2 ), alloys of lithium (Li) and aluminum (Al), alloys of lithium (Li), calcium (Ca), and aluminum (Al). Is also good.
  • the material of the first electrode 41 is, for example, a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), and indium zinc oxide (IZO). Is also good. Further, the first electrode 41 may be formed by laminating a plurality of layers made of the above-described materials. Note that examples of the material having a large work function include indium tin oxide (ITO) and indium zinc oxide (IZO).
  • the first electrodes 41 of the adjacent sub-pixels 6 are separated by an edge cover 44 provided on the flattening film 17.
  • the edge cover 44 is formed in a lattice shape and covers the outer peripheral end of each first electrode 41.
  • Examples of the material of the edge cover 44 include inorganic compounds such as silicon oxide, silicon nitride, and silicon oxynitride, and organic materials such as polyimide resin, acrylic resin, polysiloxane resin, and novolak resin.
  • the organic EL layer 42 is an example of a light-emitting function layer, and is provided for each sub-pixel 6. As shown in FIG. 7, the organic EL layer 42 has a hole injection layer 45, a hole transport layer 46, a light emitting layer 47, an electron transport layer 48, and an electron injection layer 49 laminated on the first electrode 4 in this order. It has the structure which was done.
  • the hole injecting layer 45, the hole transporting layer 46, the light emitting layer 47, the electron transporting layer 48, and the electron injecting layer 49 are thin film patterns formed using a film forming mask, and are formed by, for example, a vacuum evaporation method. It is a deposited film to be formed.
  • the hole injection layer 45 is also referred to as an anode buffer layer, and makes the energy levels of the first electrode 41 and the organic EL layer 42 closer to each other to improve the efficiency with which holes are injected from the first electrode 41 to the organic EL layer 42. It has the function to do.
  • Examples of the material of the hole injection layer 45 include a triazole derivative, an oxadiazole derivative, an imidazole derivative, a polyarylalkane derivative, a pyrazoline derivative, a phenylenediamine derivative, an oxazole derivative, a styrylanthracene derivative, a fluorenone derivative, a hydrazone derivative, and a stilbene derivative. And the like.
  • the hole transport layer 46 has a function of efficiently moving holes to the light emitting layer 47.
  • the material of the hole transport layer 46 include polyferrin derivatives, aromatic tertiary amine compounds, styrylamine derivatives, polyvinylcarbazole, poly-p-phenylenevinylene, polysilane, triazole derivatives, oxadiazole derivatives, imidazole derivatives, Polyarylalkane derivatives, pyrazoline derivatives, pyrazolone derivatives, phenylenediamine derivatives, arylamine derivatives, amine-substituted alcon derivatives, oxazole derivatives, styrylanthracene derivatives, fluorenone derivatives, hydrazone derivatives, stilbene derivatives, hydroxylated amorphous silicon, hydroxylated amorphous silicon carbide , Zinc sulfide, zinc selenide and the like.
  • the light emitting layer 47 emits light by recombining holes injected from the first electrode 41 and electrons injected from the second electrode 43 when a voltage is applied by the first electrode 41 and the second electrode 43. It has the function to do.
  • the light emitting layer 47 is formed of a different material in each of the sub-pixels 6 according to the light emission color (for example, red, green or blue) of the organic EL element 40.
  • Examples of the material of the light emitting layer 47 include a metal oxinoid compound [8-hydroxyquinoline metal complex], a naphthalene derivative, an anthracene derivative, a diphenylethylene derivative, a vinylacetone derivative, a triphenylamine derivative, a butadiene derivative, a coumarin derivative, and a benzoxazole derivative.
  • Oxadiazole derivative benzothiazole derivative, styryl derivative, styrylamine derivative, bisstyrylbenzene derivative, tristyrylbenzene derivative, perylene derivative, perinone derivative, aminopyrene derivative, pyridine derivative, rhodamine derivative, aquidin derivative, phenoxazone, quinacridone derivative, Rubrene, poly-p-phenylenevinylene, polysilane and the like.
  • the electron transport layer 48 has a function of efficiently moving electrons to the light emitting layer 47.
  • Examples of the material of the electron transport layer 48 include, as organic compounds, oxadiazole derivatives, triazole derivatives, benzoquinone derivatives, naphthoquinone derivatives, anthraquinone derivatives, tetracyanoanthraquinodimethane derivatives, diphenoquinone derivatives, fluorenone derivatives, silole derivatives, and metals. Oxinoid compounds and the like.
  • the electron injection layer 49 is also called a cathode buffer layer, and has a function of making the energy levels of the second electrode 43 and the organic EL layer 42 closer to each other and improving the efficiency of electron injection from the second electrode 43 to the organic EL layer 42. doing.
  • Examples of the material of the electron injection layer 49 include lithium fluoride (LiF), magnesium fluoride (MgF 2 ), calcium fluoride (CaF 2 ), strontium fluoride (SrF 2 ), and barium fluoride (BaF 2 ).
  • Such inorganic alkali compounds, aluminum oxide (Al 2 O 3 ), strontium oxide (SrO) and the like can be mentioned.
  • the second electrode 43 is provided in common to the plurality of first electrodes 41 (that is, common to the plurality of sub-pixels 6), and covers the organic EL layer 42, as shown in FIG.
  • the second electrode 43 is electrically connected to the low-level power supply wiring 16lp, and conduction with the low-level voltage power supply (ELVSS) is established at the wiring terminal 16t provided in the terminal unit T through the low-level power supply wiring 16lp.
  • EVSS low-level voltage power supply
  • the second electrode 43 has a function of injecting electrons into the organic EL layer 42 and has optical transparency, and is formed of a material having a small work function in order to improve the efficiency of injecting electrons into the organic EL layer 42. Is preferred.
  • Examples of the material of the second electrode 43 include silver (Ag), aluminum (Al), vanadium (V), cobalt (Co), nickel (Ni), tungsten (W), gold (Au), and calcium (Ca). , Titanium (Ti), yttrium (Y), sodium (Na), ruthenium (Ru), manganese (Mn), indium (In), magnesium (Mg), lithium (Li), ytterbium (Yb), and the like.
  • the material of the second electrode 43 is, for example, an alloy of magnesium (Mg) and copper (Cu), an alloy of magnesium (Mg) and silver (Ag), or an alloy of sodium (Na) and potassium (K). Alloys of astatine (At) and astatine oxide (AtO 2 ), alloys of lithium (Li) and aluminum (Al), alloys of lithium (Li), calcium (Ca), and aluminum (Al). Is also good.
  • the material of the second electrode 43 may be, for example, a conductive oxide such as tin oxide (SnO), zinc oxide (ZnO), indium tin oxide (ITO), and indium zinc oxide (IZO). .
  • the second electrode 43 may be formed by laminating a plurality of layers made of the above-described materials.
  • the material having a small work function include magnesium (Mg), lithium (Li), lithium fluoride (LiF), an alloy of magnesium (Mg) and copper (Cu), and magnesium (Mg) and silver (Ag).
  • An alloy of sodium (Na) and potassium (K) an alloy of lithium (Li), calcium (Ca), and aluminum (Al), lithium fluoride (LiF), calcium (Ca), and aluminum ( Al) and the like.
  • the sealing film 10 has a function of protecting the organic EL element 32 from moisture, oxygen, and the like. As shown in FIG. 4, the sealing film 10 includes a first inorganic sealing film 53 provided so as to cover the second electrode 43 and an organic sealing film provided on the first inorganic sealing film 53. And a second inorganic sealing film 55 provided so as to cover the organic sealing film 54.
  • the first inorganic sealing film 53 and the second inorganic sealing film 55 are, for example, silicon nitride such as silicon oxide (SiO 2 ), aluminum oxide (Al 2 O 3 ), and trisilicon tetranitride (Si 3 N 4 ). (SiNx) and an inorganic material such as silicon carbonitride (SiCN).
  • the organic sealing film 54 is formed of, for example, an organic material such as an acrylic resin, an epoxy resin, a polyurea resin, a parylene resin, a polyimide resin, and a polyamide resin.
  • the first inorganic sealing film 53, the organic sealing film 54, and the second inorganic sealing film 55 are provided in the entire display region D and also in the frame region F.
  • the peripheral ends of the first inorganic sealing film 53 and the second inorganic sealing film 55 are positioned outside the frame region F with respect to the peripheral end of the organic sealing film 54 and are joined to each other.
  • the organic sealing film 54 is surrounded by the first inorganic sealing film 53 and the second inorganic sealing film 55, and is sealed between the inorganic sealing films 53 and 55.
  • Such a sealing film 10 is not provided up to the bent portion B and the terminal portion T.
  • the display region D and the terminal portion T are formed on the inorganic insulating film provided on the resin substrate layer 7, that is, the base coat film 13, the gate insulating film 19 and the interlayer insulating film 21.
  • a linear slit 60 is provided so as to separate them.
  • the slit 60 is orthogonal to the bending direction of the bent portion B and extends along the terminal portion T between the display region D and the terminal portion T.
  • the slit 60 is formed by the base coat film 13, the gate insulating film 19, and the interlayer insulating film 21. It is formed so as to penetrate and expose the surface of the resin substrate layer 7 from these inorganic insulating films 13, 19, 21.
  • the portion of the frame region F where the slit 60 is formed is easier to bend than the other portions. Make up.
  • a frame flattening film 61 is provided in the bent portion B so as to fill the slit 60.
  • the cross section of the TFT layer 8 exposed in the slit 60 is sealed by the frame flattening film 61.
  • the frame flattening film 61 is formed in the same layer and the same material as the flattening auxiliary film 50, and is provided with a thickness so as to cover the periphery of the opening of the slit 60 and to swell over the interlayer insulating film 21. .
  • the thickness of the frame flattening film 61 on the interlayer insulating film 21 is smaller than the thickness of the flattening auxiliary film 50.
  • the leading wiring 16f drawn to the terminal portion T via the bent portion B includes a lower wiring 16fa extending between the gate insulating film 19 and the interlayer insulating film 21, and an upper wiring 16fb extending over the frame flattening film 61. And is constituted by.
  • the lower layer wiring 16fa is divided into a display area D side and a terminal part T side at a position where the slit 60 is provided.
  • the lower wiring 16fa is formed of the same material in the same layer as the gate wiring 16g and the emission wiring 16e.
  • the upper layer wiring 16fb extends across the slit 60 from the display area D side of the frame flattening film 61 to the terminal portion T side, and extends through the contact hole 62 formed in the interlayer insulating film 21 to form a lower layer of the display area D side.
  • the wiring 16fa is connected to the lower wiring 16fa on the terminal portion T side.
  • the upper wiring 16fb is covered with a flattening film 17 provided in the frame region F.
  • the wiring terminal 16t is also connected to the lower wiring 16fa via a contact hole 63 formed in the interlayer insulating film 21, similarly to the upper wiring 16fb.
  • the upper layer wiring 16fb and the wiring terminal 16t are formed in the same layer and the same material as the first electrode 41, respectively.
  • the organic EL element 40 enters a non-light emitting state.
  • an initialization signal is applied to the corresponding initialization voltage wiring 16v
  • the preceding gate wiring 16g (n-1) is selected
  • the gate signal is transmitted to the first TFT 14a via the preceding gate wiring 16g (n-1).
  • the first TFT 14 a is turned on, and the voltage of the corresponding initialization voltage wiring 16 v is applied to the capacitor 15.
  • the charge of the capacitor 15 is discharged, and the voltage applied to the gate electrode 20 of the fourth TFT 14d is initialized.
  • the corresponding gate line 16g (n) is selected, and a gate signal is input to the second TFT 14b, the third TFT 14c, and the fourth TFT 14d, so that the second TFT and the third TFT are turned on, and the corresponding source line 16s is turned on.
  • a predetermined voltage corresponding to the transmitted source signal is written to the capacitor 15 via the diode-connected fourth TFT 14d, the seventh TFT 14g is turned on, and the initialization signal is supplied to the organic EL via the corresponding initialization voltage wiring 16v.
  • the electric charge applied to the first electrode 41 of the element 40 and accumulated in the first electrode 41 is reset.
  • the corresponding emission wiring 16e is selected, and a light emission control signal is input to the fifth TFT 14e and the sixth TFT 14f via the corresponding emission wiring 16e, whereby the fifth TFT 14e and the sixth TFT 14f are turned on, and the gate of the fourth TFT 14d is turned on.
  • a drive current corresponding to the voltage applied to the electrode 20 is supplied to the organic EL element 40 from the corresponding high-level power supply wiring 16hp.
  • the organic EL layer 42 emits light at a luminance corresponding to the drive current, and an image is displayed.
  • FIG. 9 is a flowchart schematically showing a method for manufacturing the organic EL display device 1.
  • the manufacturing method of the organic EL display device 1 includes a TFT layer forming step S01, an organic EL element layer forming step S02, a sealing film forming step S03, a flexible step S04, and a mounting step S05.
  • the manufacturing method of the organic EL display device 1 includes a TFT layer forming step S01, an organic EL element layer forming step S02, a sealing film forming step S03, a flexible step S04, and a mounting step S05.
  • the TFT layer forming step S01 includes a base coat film forming step S11, a semiconductor layer forming step S12, a gate insulating film forming step S13, a gate electrode forming step S14, an interlayer insulating film forming step S15, and a planarization auxiliary film forming step.
  • the base coat film forming step S11, the gate insulating film forming step S13, and the interlayer insulating film forming step S15 are each an example of the inorganic insulating film forming step.
  • the source / drain electrode forming step S16 is an example of a conductive part forming step.
  • silicon oxide (SiOx), silicon nitride (SiNx), and silicon oxynitride (SiOxNy) are formed on the surface of the resin substrate layer 7 formed on the glass substrate by, for example, a plasma CVD (Chemical Vapor Deposition) method.
  • a plasma CVD Chemical Vapor Deposition
  • X> y an inorganic insulating film such as silicon nitride oxide (SiNxOy; x> y) is formed, and the base coat film 13 is formed.
  • a semiconductor film is formed on the resin substrate layer 7 on which the base coat film 13 is formed, for example, by a CVD method, and the semiconductor film is subjected to a crystallization process or a low After the resistance treatment, the semiconductor film is patterned by photolithography (resist coating, pre-baking, exposure, development, post-baking, etching, and resist stripping) to form a semiconductor layer 18.
  • photolithography resist coating, pre-baking, exposure, development, post-baking, etching, and resist stripping
  • a gate insulating film 19 is formed by forming an inorganic insulating film such as silicon (SiNxOy; x> y) in a single layer or a stacked layer.
  • a titanium film, an aluminum film, and a titanium film were sequentially formed on the resin substrate layer 7 on which the gate insulating film 19 was formed, for example, by a sputtering method to form a laminated conductive film. Thereafter, the laminated conductive film is patterned by photolithography to form the gate electrode 20. At this time, from the laminated conductive film forming the gate electrode 20, the gate wiring 16g, the emission wiring 16e, the lower layer electrode 27 of the capacitor 15, the various wirings 16f, and the like are also formed.
  • next interlayer insulating film forming step S15 silicon oxide (SiOx), silicon nitride (SiNx), silicon oxynitride (SiOxNy; x>) are formed on the resin substrate layer 7 on which the gate electrode 20 is formed, for example, by a CVD method.
  • an inorganic insulating film such as silicon nitride oxide (SiNxOy; x> y) is formed to form a first interlayer insulating film 24.
  • a titanium film, an aluminum film, and a titanium film are sequentially formed on the first interlayer insulating film 24 by, for example, a sputtering method to form a laminated conductive film, and the laminated conductive film is patterned by photolithography. , The initializing voltage wiring 16v and the upper electrode 28 of the capacitor are formed.
  • silicon oxide (SiOx), silicon nitride (SiNx), silicon oxynitride (SiOxNy; x) are formed on the first interlayer insulating film 24 on which the initialization voltage wiring 16v and the upper electrode 28 of the capacitor are formed by, for example, the CVD method. > Y), an inorganic insulating film such as silicon nitride oxide (SiNxOy; x> y) is formed, and the second interlayer insulating film 25 is formed.
  • an interlayer insulating film 21 formed by laminating the first interlayer insulating film 24 and the second interlayer insulating film 25 is formed. Then, the interlayer insulating film 21 is patterned by photolithography to form the contact holes 26, 31, 33, 37, 38 and the slit 60. At this time, the contact holes 26 are also formed in the gate insulating film 19, and the slits 60 are also formed in the gate insulating film 19 and the base coat film 13.
  • a photosensitive resin material such as a photosensitive epoxy resin is coated on the resin substrate layer 7 on which the interlayer insulating film 21 is formed by a known coating method such as a spin coating method. Apply. Then, a pre-baking process, an exposure process, a developing process, and a post-baking process are performed on the coating film of the photosensitive resin material, and the coating film is patterned. The formation auxiliary film 50 is formed. At this time, a frame flattening film 61 is also formed from the coating film for forming the flattening auxiliary film 50 so as to fill the slit 60.
  • an exposure process is performed using a gray-tone mask so that the exposure amount is different between the formation region of the planarization auxiliary film 50 and the formation region of the frame flattening film 61 in the coating film.
  • the flattening auxiliary film 50 is formed thicker than the frame flattening film 61.
  • a halftone mask may be used instead of the graytone mask.
  • a titanium film, an aluminum film, and a titanium film are sequentially formed on the resin substrate layer 7 on which the planarization auxiliary film 50 is formed, for example, by a sputtering method.
  • the stacked conductive film is patterned by photolithography to form a source electrode 22 and a drain electrode 23.
  • the source wiring 16s, the high-level power supply wiring 16hp, and the connection wirings 32, 34, 35 are formed together from the laminated electric film forming the source electrode 22 and the drain electrode 23.
  • the plurality of conductive portions 39 are formed so as to be adjacent to each other at a position overlapping with the first electrode 41 with an interval therebetween.
  • a photosensitive resin such as a photosensitive epoxy resin is formed on the resin substrate layer 7 on which the source electrode 22 and the drain electrode 23 are formed by a known coating method such as a spin coating method. Apply material. Then, a pre-bake process, an exposure process, a development process, and a post-bake process are performed on the coating film of the photosensitive resin material to pattern the coating film, thereby forming the plurality of conductive portions 39 and the planarization auxiliary film 50. A flattening film 17 is formed to cover.
  • the TFT layer 8 is formed on the resin substrate layer 7.
  • the organic EL element layer forming step S02 includes a first electrode forming step S21, an edge cover forming step S22, an organic EL layer forming step S23, and a second electrode forming step S24.
  • the organic EL layer forming step S23 is an example of a light emitting functional layer forming step.
  • an indium tin oxide (ITO) film, a silver alloy film, and an indium tin oxide (ITO) film are formed on the resin substrate layer 7 on which the TFT layer 8 is formed, for example, by a sputtering method. Films are sequentially formed to form a laminated conductive film. Then, the stacked conductive film is patterned by photolithography to form the first electrode 41.
  • a photosensitive resin material such as a photosensitive epoxy resin is applied on the resin substrate layer 7 on which the first electrodes 41 are formed, by a known coating method such as a spin coating method. .
  • the edge cover 44 is formed by performing a pre-bake process, an exposure process, a development process, and a post-bake process on the coating film of the photosensitive resin material and patterning the coating film.
  • a vacuum is formed on the resin substrate layer 7 on which the edge cover 44 is formed by using a film forming mask called FMM (Fine Metal Mask) that can be patterned in sub-pixel units.
  • FMM Film Metal Mask
  • a hole injection layer 45, a hole transport layer 46, a light emitting layer 47, an electron transport layer 48, and an electron injection layer 49 are sequentially formed by a vapor deposition method, and an organic EL layer 42 is formed on each first electrode 41. I do.
  • Some of the above layers may be formed using a film forming mask called a CMM (Common Metal Mask) that can be patterned on a display panel basis.
  • CMM Common Metal Mask
  • a silver alloy film is formed on the resin substrate layer 7 on which the organic EL layer 42 is formed, for example, by a vacuum evaporation method using a CMM (Common Metal Metal Mask) film forming mask.
  • CMM Common Metal Metal Mask
  • the organic EL element layer 9 including the plurality of organic EL elements 40 is formed on the TFT layer 8.
  • silicon oxide (SiOx), silicon nitride (SiNx), acid, and the like are formed on the resin substrate layer 7 on which the organic EL element layer 9 is formed, using a film formation mask, for example, by a CVD method.
  • a first inorganic sealing film 43 is formed by forming an inorganic insulating film such as silicon nitride (SiOxNy; x> y) or silicon nitride oxide (SiNxOy; x> y) in a single layer or a stacked layer.
  • an organic material such as an acrylic resin is applied on the resin substrate layer 7 on which the first inorganic sealing film 53 is formed, for example, by an ink-jet method to form an organic sealing film 54.
  • silicon oxide (SiOx), silicon nitride (SiNx), and silicon oxynitride (SiOxNy; x) are formed on the resin substrate layer 7 on which the organic sealing film 54 is formed, using a film formation mask, for example, by a CVD method. > Y) and a single layer or a stacked layer of an inorganic insulating film such as silicon nitride oxide (SiNxOy; x> y) to form a second inorganic sealing film 55.
  • the sealing film 10 in which the first inorganic sealing film 43, the organic sealing film 54, and the second inorganic sealing film 55 are stacked is formed.
  • a surface protection film is attached to the surface of the resin substrate layer 7 on which the sealing film 10 is formed, and then the lower surface of the resin substrate layer 7 is irradiated with laser light from the glass substrate side.
  • the glass substrate is peeled off from the lower surface of the resin substrate layer 7, and further, a back surface protective film is attached to the lower surface of the resin substrate layer 7 from which the glass substrate has been peeled off.
  • the wiring substrate is connected to the terminal portion T of the substrate obtained by peeling the glass substrate from the resin substrate layer 7 using a conductive material such as ACF (Anisotropic Conductive Film) or ACP (Anisotropic Conductive Paste).
  • ACF Adisotropic Conductive Film
  • ACP Anisotropic Conductive Paste
  • the organic EL display device 1 can be manufactured.
  • the TFT layer 8 is flat between the adjacent conductive portions 39 on the interlayer insulating film 21 at a position overlapping with the first electrode 41 of the organic EL element 40. Since the planarization auxiliary film 50 is provided and the planarization film 17 is provided so as to cover the conductive portion 39 together with the planarization auxiliary film 50, the gap between the adjacent conductive portions 39 is interpolated by the planarization auxiliary film 50. The surface of the TFT layer 8 is flattened by the flattening film 17 in a state where the gap is narrowed.
  • the level difference caused by the conductive portion 39 is reliably filled with the flattening film 17, and it is possible to suppress the occurrence of unevenness on the surface of the flattening film 17, thereby improving the flattening accuracy of the surface of the TFT layer 8. Can be.
  • the organic EL display device 1 that performs high-definition image display, it is possible to prevent a decrease in light extraction efficiency in the organic EL element layer 9.
  • FIG. 10 is a diagram corresponding to FIG. 5 of the organic EL display device 1 according to this modification.
  • the gap s is provided between the planarization auxiliary film 50 and the conductive portion 39.
  • the end of the planarization assisting film 50 and the end of the conductive portion 39 are overlapped so that their side surfaces are in close contact with each other.
  • the planarization auxiliary film 50 is formed so as to widen toward the interlayer insulating film 21 side, and has an inclined side surface 51 inclined with respect to the thickness direction of the planarization auxiliary film 50.
  • the conductive portion 39 is formed so as to ride on the inclined end surface 51 of the planarization auxiliary film 50.
  • the planarization auxiliary film 50 overlaps the end of the conductive portion 39 on the inclined side surface 51. In this way, the planarization assisting film 50 and the conductive portion 39 are provided without any gap between each other, and the gap between the adjacent conductive portions 39 at the position overlapping the first electrode 41 is reduced. It is completely buried and lost by the film 50.
  • the planarization auxiliary film 50 and the conductive portion 39 are provided so as to eliminate the gap between the planarization auxiliary film 50 and the conductive portion 39. As a result, it is possible to prevent the occurrence of irregularities on the surface of the flattening film 17, and it is possible to further improve the flattening accuracy of the surface of the TFT layer 8.
  • FIG. 11 is a diagram corresponding to FIG. 4 of the organic EL display device 1 according to the second embodiment.
  • FIG. 12 is a diagram corresponding to FIG. 8 of the organic EL display device 1 according to the second embodiment.
  • the organic EL display device 1 according to the second embodiment is different from the first embodiment in the configuration of the TFT layer 8.
  • the configuration of the organic EL display device 1 is the same as that of the first embodiment except that the configuration of the TFT layer 8 is different from that of the first embodiment. Only the TFT layer 8 will be described, and the same components will be omitted from the description of the first embodiment based on FIGS. 1 to 9 and detailed description thereof will be omitted.
  • the TFT layer 8 of the organic EL display device 1 has a protective film 70 provided so as to cover the flattening auxiliary film 50 at least in the display region D.
  • the protective film 70 is located on the interlayer insulating film 21 and includes, for example, silicon oxide (SiOx), silicon nitride (SiNx), silicon oxynitride (SiOxNy; x> y), and silicon nitride oxide (SiNxOy; x> y). ) And the like, or a single-layer film or a laminated film of an inorganic insulating layer.
  • the source line 16s, the high-level power supply line 16hp, the source electrode 22 and the drain electrode 23 of the first to seventh TFTs 14a, 14b, 14c, 14d, 14e, 14f, 14g, and the conductive portions 39 such as the connection lines 32, 34, 35 are provided on the protective film 70.
  • the procedure of forming the conductive portion 39 after forming the planarization auxiliary film 50 on the interlayer insulating film 21 is adopted, There is a possibility that dust may be generated from the planarization assisting film 50 by dry etching when patterning the pattern.
  • the protective film 70 has a role of protecting the planarization auxiliary film 50 from the dry etching when the conductive portion 39 is formed, and preventing dust from being generated from the planarization auxiliary film 50 by the dry etching when the conductive portion 39 is formed.
  • such a protective film 70 is also provided in the frame region F, and is formed so as to cover the outer peripheral end of the frame flattening film 61 at the bent portion B.
  • An opening 71 that exposes the frame flattening film 61 at the bent portion B is formed in the protective film 70.
  • the opening 71 is formed in a region corresponding to the slit 60, that is, a portion corresponding to a portion of the TFT layer 8 from which the inorganic insulating films 13, 19, and 21 have been removed.
  • the protection film 70 for protecting the planarization auxiliary film 50 is provided below the conductive portion 39, dry etching is performed in forming the conductive portion 39. Is performed, the planarization auxiliary film 50 is protected by the protective film 70, so that it is possible to prevent dust from being generated from the planarization auxiliary film 50 by dry etching. Accordingly, it is possible to suppress the generation of foreign matter in the display region D, and it is possible to increase the manufacturing efficiency and reliability of the organic EL display device 1.
  • the thickness of the planarization auxiliary film 50 is set to be equal to or larger than the thickness of the conductive portion 39, but the application range of the technology of the present disclosure is not limited thereto.
  • the thickness of the planarization assisting film 50 may be smaller than the thickness of the conductive portion 39.
  • the organic EL layer 42 is provided individually for each sub-pixel 6, but the scope of the technology of the present disclosure is not limited to this.
  • the organic EL layer 42 may be provided in common for the plurality of sub-pixels 6.
  • the organic EL display device 1 may express a color tone of each sub-pixel 6 by providing a color filter or the like.
  • the stripe arrangement in which the sub-pixels 6r, 6g, and 6b of the three colors constituting each pixel 5 are adjacent to each other in a stripe shape is illustrated, but the application range of the technology of the present disclosure is as follows. Not limited to The number of sub-pixels 6 constituting each pixel 5 is not limited to three, but may be four or more. The arrangement of the plurality of sub-pixels 6 constituting each pixel 5 may be another arrangement such as a pen tile arrangement.
  • the organic EL display device 1 using the resin substrate layer 7 as the substrate has been described as an example, but the application range of the technology of the present disclosure is not limited to this.
  • a substrate made of an inorganic material such as glass or quartz, a plastic such as polyethylene terephthalate, or a ceramic such as alumina may be used.
  • the substrate may be a metal substrate such as aluminum or iron, one surface of which is coated with silica gel or an organic insulating material, or a substrate obtained by subjecting the surface of a metal substrate to insulation treatment by a method such as anodic oxidation. No problem.
  • the first to seventh TFTs 14a, 14b, 14c, 14d, 14e, 14f, and 14g adopt the top gate structure.
  • the application range of the technology of the present disclosure is as follows. Not limited to The first to seventh TFTs 14a, 14b, 14c, 14d, 14e, 14f, 14g may employ a bottom gate structure.
  • the organic EL display device 1 in which the first electrode 41 is used as an anode and the second electrode 43 is used as a cathode is illustrated, but the application range of the technology of the present disclosure is not limited to this.
  • the technology of the present disclosure can be applied to, for example, the organic EL display device 1 in which the first electrode 41 is used as a cathode and the second electrode 43 is used as an anode by inverting the stacked structure of the organic EL layer 42. .
  • the organic EL layer 42 having a five-layer structure of the hole injection layer 45, the hole transport layer 46, the light emitting layer 47, the electron transport layer 48, and the electron injection layer 49 is exemplified.
  • the application range of the technology of the present disclosure is not limited to this.
  • the organic EL layer 42 may have, for example, a three-layer structure of a hole injection layer and a hole transport layer, a light emitting layer, and an electron transport layer and an electron injection layer, and may have any structure. It is.
  • the organic EL display device 1 is illustrated as the display device, but the application range of the technology of the present disclosure is not limited thereto.
  • the technology of the present disclosure is applied to a display device including a plurality of light emitting elements driven by electric current, for example, a display device including a QLED (Quantum-dot Light Emitting Diode) that is a light emitting element using a quantum dot-containing layer. It is possible to
  • the technology of the present disclosure is useful for a display device in which a light-emitting element layer such as an organic EL element layer is provided on a TFT layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

樹脂基板層(7)上にTFT層(8)と有機EL素子層(9)とがこの順に設けられ、TFT層が、層間絶縁膜(21)上に設けられたソース配線(16s)、ハイレベル電源配線(16hp)およびTFT間の接続配線(32,34,35)などの導電部(39)と、これら各導電部を覆う平坦化膜(17)とを有し、額縁領域(F)に、層間絶縁膜などの無機絶縁膜にスリット(60)が形成された部分からなる折曲げ部(B)が設けられ、隣り合う導電部(39)の間には、折曲げ部(B)のスリット(60)を埋める額縁平坦化膜(61)と同一層に同一材料によって形成され、平坦化膜(17)によって導電部(39)と共に覆われる平坦化補助膜(50)が設けられている。

Description

表示装置およびその製造方法
 本開示は、表示装置およびその製造方法に関する。
 近年、液晶表示装置に代わる表示装置として、有機EL(Electro Luminescence)素子を用いた自発光型の有機EL表示装置が注目されている。この有機EL表示装置としては、可撓性を有する樹脂製の基板上にTFT(Thin Film Transistor)層および有機EL素子層が設けられたフレキシブルな有機EL表示装置が提案されている。
 有機EL表示装置のTFT層の表面側には、例えばソース配線や電源配線などの複数の導電部と、それら複数の導電部による段差を埋めて平坦化するための平坦化膜とが設けられている。有機EL素子層には、複数の有機EL素子が含まれている。各有機EL素子は、平坦化膜上に設けられた第1電極と、第1電極上に設けられた有機EL層と、有機EL層を介して第1電極に重なるように設けられた第2電極とを備えている。
 一般に、有機EL表示装置では、画像表示を行う表示領域と、その表示領域の周囲に位置する額縁領域とが設けられ、額縁領域を縮小させることが要望されている。そこで、フレキシブルな有機EL表示装置においては、額縁領域を折り曲げることによりその端部に設けられた端子部を装置裏側に配置させて、額縁領域を縮小することが知られている。
 このような有機EL表示装置では、TFT層を形成するゲート絶縁膜や層間絶縁膜などの無機絶縁膜が折曲げ部にあると、当該無機絶縁膜に屈曲によるクラックが生じやすく、クラックが生じた箇所を起点として水分が表示領域に浸入することが懸念されることから、そうしたクラックの発生を防止すべく、TFT層を形成するゲート絶縁膜や層間絶縁膜などの無機絶縁膜が除去されることがある。この場合、無機絶縁膜を除去したスリット内には有機材料からなる額縁平坦化膜が設けられ、当該スリット内に露出した無機絶縁膜などのTFT層断面は額縁平坦化膜により封止される(例えば、特許文献1参照)。
特開2018-113104号公報
 高精細な画像表示を行う有機EL表示装置においては、ソース配線や電源配線などの導電部を細線化に伴って厚く形成せざるを得ないため、平坦化膜を形成していても当該導電部による段差を埋めきれず、平坦化膜の表面に凹凸が生じて、TFT層の表面に個々の導電部による段差を反映した凹凸が残りやすい。TFT層の表面に形成された凹凸は、TFT層上に形成される有機EL素子の第1電極の表面性状を不安定にするため、有機EL素子の光取出し効率を低下させる要因となる。
 例えば、有機EL表示装置にトップエミッション型の有機EL素子を採用した場合には、第1電極が銀合金などの光反射効率の良い金属材料によって形成される一方で、第2電極がインジウムスズ酸化物などの光透過性の高い導電材料によって形成されるところ、第1電極にもTFT層表面の凹凸が反映されるため、第1電極での反射光が散乱されてしまい、その結果、有機EL素子の光取出し効率が低下する。
 本開示の技術は、斯かる点に鑑みてなされたものであり、その目的とするところは、有機EL素子層などの発光素子層がTFT層上に設けられた表示装置において、TFT層表面の平坦化精度を向上させることにある。
 本開示の技術に係る表示装置は、可撓性を有する樹脂製の基板と、前記基板上に設けられたTFT層と、前記TFT層上に設けられた発光素子層とを備え、前記発光素子層での発光によって画像表示を行う表示領域と、該表示領域の周囲に位置する額縁領域とが設けられ、前記TFT層は、無機絶縁膜と、該無機絶縁膜上に設けられた導電部と、該導電部を覆うように設けられた平坦化膜とを有し、前記発光素子層は、前記平坦化膜上に設けられた第1電極と、該第1電極上に設けられた発光機能層と、該発光機能層を介して前記第1電極に重なるように設けられた第2電極とを有し、前記額縁領域の端部には端子部が設けられ、前記表示領域と前記端子部との間の前記額縁領域には折曲げ部が設けられ、前記折曲げ部において、前記無機絶縁膜にスリットが形成され、且つ該スリットを埋めるように額縁平坦化膜が設けられている表示装置であって、前記導電部は、前記第1電極と重なる位置において、互いに間隔をあけて隣り合うように複数設けられ、前記隣り合う導電部の間には、前記額縁平坦化膜と同一層に同一材料によって形成され、前記平坦化膜によって前記導電部と共に覆われる平坦化補助膜が設けられていることを特徴とする。
 本開示の技術に係る表示装置によれば、TFT層において発光素子層の第1電極と重なる位置にて隣り合う導電部の間に平坦化補助膜を設けると共に、この平坦化補助膜ともども導電部を覆うように平坦化膜を設けるようにしたから、隣り合う導電部間の隙間が平坦化補助膜によって補間され、当該隙間が狭められるか無くなった状態でTFT層の表面が平坦化膜によって平坦化される。これにより、当該導電部による段差を平坦化膜で確実に埋めて、平坦化膜の表面に凹凸が生じるのを抑制することができ、TFT層表面の平坦化精度を向上させることができる。その結果、高精細な画像表示を行う表示装置において、発光素子層での光取り出し効率の低下を防止することができる。
図1は、第1の実施形態に係る有機EL表示装置の概略構成を示す平面図である。 図2は、図1のIIで囲んだ表示領域の画素を示す平面図である。 図3は、図2のIIIで囲んだ1つのサブ画素の概略構成を示す平面図である。 図4は、図3のIV-IV線におけるサブ画素の一部の概略構成を示す断面図である。 図5は、図3のV-V線におけるサブ画素の一部の概略構成を示す断面図である。 図6は、図3に示す1つのサブ画素の等価回路図である。 図7は、第1の実施形態に係る有機EL表示装置を構成する有機EL層の積層構造を示す断面図である。 図8は、図1のVIII-VIII線における有機EL表示装置の折曲げ部の概略構成を示す断面図である。 図9は、第1の実施形態に係る有機EL表示装置の製造方法の概略フロー図である。 図10は、第1の実施形態の変形例に係る有機EL表示装置の図5相当図である。 図11は、第2の実施形態に係る有機EL表示装置の図4相当図である。 図12は、第2の実施形態に係る有機EL表示装置の図8相当図である。
 以下、例示的な実施形態を図面に基づいて詳細に説明する。
 なお、以下の実施形態では、或る膜や層、素子などの構成要素の上にその他の膜や層、素子などの構成要素が設けられているまたは形成されているとする記載は、或る構成要素の直上にその他の構成要素が在る場合のみを意味するのではなく、それら両構成要素の間に、それら以外の膜や層、素子などの構成要素が介在されている場合をも含む。
 また、以下の実施形態では、或る膜や層、素子などの構成要素が他の膜や層、素子などの構成要素に接続されているとする記載は、特に断らない限り電気的に接続されていることを意味し、本開示の技術の趣旨を逸脱しない範囲において、直接的な接続を意味する場合のみならず、それら以外の膜や層、素子などの構成要素を介した間接的な接続を意味する場合をも含み、或る構成要素に他の構成要素が一体化されている、つまり或る構成要素の一部が他の構成要素を構成している場合も含み得る。
 《第1の実施形態》
  <有機EL表示装置の構成>
 図1は、この第1の実施形態に係る有機EL表示装置1の概略構成を示す平面図である。図2は、図1のIIで囲んだ表示領域Dの画素5を示す平面図である。図3は、図2のIIIで囲んだ1つのサブ画素6の概略構成を示す平面図である。図4は、図3のIV-IV線におけるサブ画素6の一部の概略構成を示す断面図である。図5は、図3のV-V線におけるサブ画素6の一部の概略構成を示す断面図である。図6は、図3に示す1つのサブ画素6の等価回路図である。図7は、有機EL表示装置1を構成する有機EL層42の積層構造を示す断面図である。図8は、図1のVIII-VIII線における有機EL表示装置1の折曲げ部Bの概略構成を示す断面図である。
  - 有機EL表示装置の概略構成 -
 有機EL表示装置1は、図1に示すように、画像表示を行う矩形状の表示領域Dと、表示領域Dの周囲に位置する矩形枠状の額縁領域Fとを有している。そして、額縁領域Fの1辺を構成する部分には、外部回路と接続するための端子部Tが設けられている。端子部Tには、図示しないが、表示制御回路が設けられたFPC(Flexible Printed Circuit)などの配線基板が接続される。また、表示領域Dと端子部Tとの間の額縁領域Fには、端子部Tを装置裏側に配置させるよう折り曲げられる折曲げ部Bが設けられている。
 額縁領域Fにおいて、端子部Tが設けられた辺と隣り合う辺(図1で左右の各辺)を構成する部分には、図示しないが、ゲートドライバやエミッションドライバなどのモノリシック制御回路、有機EL素子40(第2電極43)との導通をとるための導電部や配線が設けられている。また、額縁領域Fにおける表示領域Dと端子部Tとの間には、複数の引き回し配線16fが設けられている。これら複数の引き回し配線16fには、ローレベル電源配線16lpが含まれている。端子部Tには、それら引き回し配線16fとの導通をとるための配線端子16tが所定のパターンで配列されている。
 表示領域Dは、図2に示すように、複数の画素5によって構成されている。これら複数の画素5は、マトリクス状に配置されている。各画素5は、例えば、赤色の階調表示を行うサブ画素6r、緑色の階調表示を行うサブ画素6gおよび青色の階調表示を行うサブ画素6bからなる3色のサブ画素6を含んで構成されている。これら3色のサブ画素6r,6g,6bは、例えば、並置方式で配列されてストライプ状に隣り合っている。有機EL表示装置1は、個々のサブ画素6での階調表示をアクティブ素子により制御するアクティブマトリクス駆動方式を採用している。
 有機EL表示装置1は、図4および図5に示すように、樹脂基板層7と、樹脂基板層7上に設けられたTFT層8と、TFT層8上に設けられた有機EL素子層9と、有機EL素子層9を覆うように設けられた封止膜10と、有機EL素子層9の表面に設けられた表面保護フィルム(不図示)と、樹脂基板層7の裏面に設けられた裏面保護フィルム(不図示)とを備えている。
  - 樹脂基板層の構成 -
 樹脂基板層7は、例えば、ポリイミド樹脂、ポリアミド樹脂、エポキシ樹脂、アクリル樹脂、ポリシロキサン樹脂などの有機材料、または、酸化シリコン(SiOx)、窒化シリコン(SiNx)、酸窒化シリコン(SiOxNy;x>y)、窒化酸化シリコン(SiNxOy;x>y)(x,yは正数、以下同じ)などの無機材料からなる無機絶縁膜と上記有機材料からなる樹脂膜との積層膜によって形成されており、可撓性を有している。この樹脂基板層7は、樹脂製の基板の一例である。
  - TFT層の構成 -
 TFT層8は、樹脂基板層7上に設けられたベースコート膜13と、ベースコート膜13上に設けられた複数の第1TFT14a、複数の第2TFT14b、複数の第3TFT14c、複数の第4TFT14d、複数の第5TFT14e、複数の第6TFT14f、複数の第7TFT14gおよび複数のキャパシタ15ならびに各種の表示用配線16と、これら第1TFT14a、第2TFT14b、第3TFT14c、第4TFT14d、第5TFT14e、第6TFT14f,第7TFT14g、キャパシタ15および表示用配線16を覆うように設けられた平坦化膜17とを備えている。
 ベースコート膜13は、酸化シリコン(SiOx)、窒化シリコン(SiNx)、酸窒化シリコン(SiOxNy;x>y)、窒化酸化シリコン(SiNxOy;x>y)などからなる無機絶縁層の単層膜または積層膜によってそれぞれ構成されている。第1TFT14a、第2TFT14b、第3TFT14c、第4TFT14d、第5TFT14e、第6TFT14f、第7TFT14gおよびキャパシタ15は、サブ画素6毎に設けられている。
 表示用配線16としては、図2および図3に示すように、ゲート信号を伝達する複数のゲート配線16gと、発光制御信号を伝達するエミッション配線16eと、初期化電圧を供給する初期化電圧配線16vと、ソース信号を伝達する複数のソース配線16sと、有機EL素子40に電流を供給するための複数のハイレベル電源配線16hpとが設けられている。同種の表示用配線16同士、つまりゲート配線16g同士、エミッション配線16e同士、ソース配線16s同士、ハイレベル電源配線16hp同士は、表示領域Dにおいて互いに平行に延びている。
 各ゲート配線16gは、端子部Tが設けられた辺に沿う方向に互いに平行に延びている。各エミッション配線16eおよび各初期化電圧配線16vは、ゲート配線16gに沿って互いに平行に方向に延びている。各ソース配線16sは、ゲート配線16gおよびエミッション配線16eと交差する方向に互いに平行に延びている。各ハイレベル電源配線16hpは、ソース配線16sに沿って互いに平行に延びている。
 ゲート配線16gとエミッション配線16eとは、同一層に同一材料によって形成されている。ソース配線16sとハイレベル電源配線16hpとは、同一層に同一材料によって形成されている。初期化電圧配線16vのみがその他の表示用配線16g,16e,16s,16hpとは別個の層に形成されている。これらゲート配線16g、エミッション配線16e、初期化電圧配線16v、ソース配線16sおよびハイレベル電源配線16hpは、互いに絶縁されており、全体として格子状に形成されて各サブ画素6を区画している。
 各ゲート配線16gは、額縁領域Fにあるゲートドライバに接続されている。ゲートドライバは、複数のゲート配線16gに印加するゲート信号(ハイレベルまたはローレベル)を順次切り替え、ゲート配線16gを所定の順序で辿るように走査して選択する。各エミッション配線16eは、額縁領域Fにあるエミッションドライバに接続されている。エミッションドライバは、複数のエミッション配線16eに印加する発光制御信号(ハイレベルまたはローレベル)を順次切り替え、エミッション配線16eを所定の順序で辿るように走査して選択する。
 各ソース配線16sおよびハイレベル電源配線16hpは、引き回し配線16fに接続されて、表示領域Dから折曲げ部Bを経て端子部Tにまで引き出されている。各ソース配線16sは、引き回し配線16fおよび配線端子15tを介して配線基板上の表示制御回路に含まれるソースドライバに接続されている。ソースドライバは、複数のソース配線16sに印加するソース信号を表示画像に応じて順次調整し、ソース配線16sを所定の順序で辿るように走査して選択する。各ハイレベル電源配線16hpは、配線端子16tを介してハイレベル電圧電源(ELVDD)と電気的に接続される。
 第1TFT14a、第2TFT14b、第3TFT14c、第4TFT14d、第5TFT14e、第6TFT14fおよび第7TFT14gはそれぞれ、アクティブ素子の一例であり、例えばトップゲート構造を採用したPチャネル型の薄膜トランジスタである。具体的には、これら第1~第7TFT14a,14b,14c,14d,14e,14f,14gは、図3および図4に示すように、ベースコート膜13上に設けられた島状の半導体層18と、半導体層18を覆うように設けられたゲート絶縁膜19と、ゲート絶縁膜19を介して半導体層18の一部(チャネル領域)と重なるゲート電極20と、ゲート電極20を覆うように設けられた層間絶縁膜21と、層間絶縁膜21上に設けられたソース電極22およびドレイン電極23とを備えている。
 半導体層18は、例えば、低温ポリシリコン(LTPS:Low Temperature Polycrystalline Silicon)や酸化物半導体などによって形成されている。ゲート絶縁膜19は、例えば、酸化シリコン(SiOx)、窒化シリコン(SiNx)、酸窒化シリコン(SiOxNy;x>y)、窒化酸化シリコン(SiNxOy;x>y)などからなる無機絶縁層の単層膜または積層膜によってそれぞれ構成されている。
 ゲート電極20は、例えば、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)などからなる金属層の単層膜または積層膜によって形成されている。ゲート配線16gおよびエミッション配線16eは、このゲート電極20と同一層に同一材料によってそれぞれ形成されている。
 層間絶縁膜21は、第1層間絶縁膜24と第2層間絶縁膜25との積層膜によって構成されている。これら第1層間絶縁膜24および第2層間絶縁膜25は、例えば、酸化シリコン(SiOx)、窒化シリコン(SiNx)、酸窒化シリコン(SiOxNy;x>y)、窒化酸化シリコン(SiNxOy;x>y)などからなる無機絶縁層の単層膜または積層膜によってそれぞれ構成されている。
 ソース電極22とドレイン電極23とは、互いに離間しており、ゲート絶縁膜19および層間絶縁膜21に形成されたコンタクトホール26を介して半導体層18におけるゲート電極20と重なる領域(チャネル領域)を挟んだ位置で異なる部分(ソース領域、ドレイン領域)にそれぞれ接続されている。ソース電極22およびドレイン電極23は、例えば、アルミニウム(Al)、タングステン(W)、モリブデン(Mo)、タンタル(Ta)、クロム(Cr)、チタン(Ti)、銅(Cu)などからなる金属層の単層膜または積層膜によって形成されている。ソース配線16sおよびハイレベル電源配線16hpは、これらソース電極22およびドレイン電極23と同一層に同一材料によってそれぞれ形成されている。
 キャパシタ14は、ゲート絶縁膜19上に設けられた下層電極27と、下層電極27を覆うように設けられた第1層間絶縁膜24と、第1層間絶縁膜24を介して下層電極27と重なる上層電極28とを備えている。下層電極27は、ゲート配線16gおよびゲート電極20と同一層に同一材料によって形成されている。上層電極28は、初期化電圧配線16vと同一層に同一材料によって形成されている。
 上述したTFT層8に含まれる第1TFT14a、第2TFT14b、第3TFT14c、第4TFT14d、第5TFT14e、第6TFT14fおよび第7TFT14gと、キャパシタ15と、各種表示用配線16(ゲート配線16g、エミッション配線16e、初期化電圧配線16v、ソース配線16s、ハイレベル電源配線16hp)と、有機EL素子層9に含まれる有機EL素子40は、図6に示す画素回路30を構成している。画素回路30は、個々のサブ画素6毎に設けられている。
 以下、1つの画素回路30に着目して当該画素回路30の構成について説明する。なお、画素回路30に着目した説明において、着目した画素回路30に対応するゲート配線16gを「対応ゲート配線」と称して参照符号に「16g(n)」を付し、ゲート配線16gの走査順において対応ゲート配線16gの直前のゲート配線16gを「先行ゲート配線」と称して参照符号に「16g(n-1)」と付す。また、着目した画素回路30に対応するエミッション配線16eを「対応エミッション配線」、着目した画素回路30に対応する初期化電圧配線16vを「対応初期化電圧配線」と称し、着目した画素回路30に対応するソース配線16sを「対応ソース配線」、着目した画素回路30に対応するハイレベル電源配線16hpを「対応ハイレベル電源配線」と称する。
 図3および図6に示すように、画素回路30では、第1TFT14aは、先行ゲート配線16g(n-1)と対応初期化電圧配線16vとキャパシタ14との間に設けられた初期化用トランジスタであって、スイッチング素子として機能する。第1TFT14aにおいて、ゲート電極20は、先行ゲート配線16g(n-1)に一体に設けられて接続され、ソース電極22は、第2層間絶縁膜25に形成されたコンタクトホール31を介して初期化電圧配線16vに接続され、ドレイン電極23は、接続配線32と一体に形成されて層間絶縁膜21に形成されたコンタクトホール33を介してキャパシタ14の下層電極27と第4TFT14dのゲート電極20とに接続されている。この第1TFT14aは、先行ゲート配線16g(n-1)の選択に応じて、初期化電圧配線16vの電圧をキャパシタ14に印加することにより、第4TFT14dのゲート電極20にかかる電圧を初期化する。
 第2TFT14bは、対応ゲート配線16g(n)と第4TFT14dとの間に設けられた補償用トランジスタであって、スイッチング素子として機能する。第2TFT14bにおいて、ゲート電極20は、対応ゲート配線16g(n)に一体に設けられて接続され、ソース電極22は、第4TFT14dのドレイン電極23と第6TFT14fのソース電極22に接続配線34を介して接続され、ドレイン電極23は、第4TFT14dのゲート電極20およびキャパシタ15の下層電極27に層間絶縁膜21に形成されたコンタクトホール33を介して接続されると共に、第1TFT14aのドレイン電極23に接続配線32を介して接続されている。この第2TFT14bは、対応ゲート配線16g(n)の選択に応じて第4TFT14dをダイオード接続状態にして、第4TFT14dの閾値電圧を補償する。
 第3TFT14cは、対応ゲート配線16g(n)と対応ソース配線16sと第4TFT14dとの間に設けられた書込み用トランジスタであって、スイッチング素子として機能する。第3TFT14cにおいて、ゲート電極20は、対応ゲート配線16g(n)に一体に設けられて接続され、ソース電極22は、対応ソース配線16sに一体に設けられて接続され、ドレイン電極23は、第4TFT14dのソース電極22に一体に設けられて接続されると共に、第5TFT14eのドレイン電極23に接続配線35を介して接続されている。この第3TFT14cは、対応ゲート配線16g(n)の選択に応じて対応ソース配線16sの電圧を第4TFT14dのソース電極22に印加する。
 第4TFT14dは、第1TFT14a、第2TFT14bおよびキャパシタ15と、第3TFT14cおよび第5TFT14eと、第6TFT14fとの間に設けられた駆動用トランジスタであって、スイッチング素子として機能する。第4TFT14dにおいて、ゲート電極20は、第1TFT14aのドレイン電極23、第2TFT14bのドレイン電極23に層間絶縁膜21に形成されたコンタクトホール33を介して接続されていると共に、キャパシタ15に一体に設けられて接続され、ソース電極22は、第3TFT14cのドレイン電極22に一体に設けられて接続されていると共に、第5TFT14eのドレイン電極23に接続配線35を介して接続され、ドレイン電極23は、第6TFT14fのソース電極22に一体に設けられて接続されていると共に、第2TFT14bのソース電極22に接続配線34を介して接続されている。この第4TFT14dは、ゲート電極20とソース電極22との間にかかる電圧に応じた駆動電流を第6TFT14fのソース電極22に印加する。
 第5TFT14eは、対応エミッション配線16eと対応ハイレベル電源配線16hpと第3TFT14cおよび第4TFT14dとの間に設けられた電源供給用トランジスタであって、スイッチング素子として機能する。第5TFT14eにおいて、ゲート電極20は、対応エミッション配線16eに一体に設けられて接続され、ソース電極22は対応ハイレベル電源配線16hpに一体に設けられて接続され、ドレイン電極23は、第3TFT14cのドレイン電極23と第4TFT14dのソース電極22とに接続配線35を介して接続されている。この第5TFT14eは、対応エミッション配線16eの選択に応じて対応ハイレベル電源配線16hpの電圧を第4TFT14dのソース電極22に印加する。
 第6TFT14fは、対応エミッション配線16eと第2TFT14bおよび第4TFT14dと有機EL素子40との間に設けられた発光制御用トランジスタであって、スイッチング素子として機能する。第6TFT14fにおいて、ゲート電極20は、対応エミッション配線16eに一体に設けられて接続され、ソース電極22は、第4TFT14dのドレイン電極23に一体に設けられて接続され、ドレイン電極23は、平坦化膜17に形成されたコンタクトホール36を介して有機EL素子40の第1電極41に接続されている。この第6TFT14fは、対応エミッション配線16eの選択に応じて前記駆動電流を有機EL素子40に印加する。
 第7TFT14gは、対応ゲート配線16g(n)と対応初期化電圧配線16vと有機EL素子40との間に設けられた陽極ディスチャージ用トランジスタであって、スイッチング素子として機能する。第7TFT14gにおいて、ゲート電極20は、先行ゲート配線16g(n-1)に一体に設けられて接続され、ソース電極22は、第2層間絶縁膜25に形成されたコンタクトホール37を介して対応初期化電圧配線16vに接続され、ドレイン電極23は、第6TFT14fのドレイン電極23を一体に設けられて有機EL素子40に接続されている。この第7TFT14gは、先行ゲート配線16g(n-1)の選択に応じて有機EL素子40の陽極(第1電極41)に蓄積した電荷をリセットする。
 キャパシタ15は、対応ハイレベル電源配線16hpと第1TFT14a、第2TFT14bおよび第4TFT14dとの間に設けられたデータ保持用素子である。キャパシタ15において、下層電極27は、第4TFT14dのゲート電極20に一体に設けられて接続されていると共に、第1TFT14aのドレイン電極23と第2TFT14bのドレイン電極23とに層間絶縁膜21に形成されたコンタクトホール33を介して接続され、上層電極28は、第2層間絶縁膜25に形成されたコンタクトホール38を介して対応ハイレベル電源配線16hpに接続されている。このキャパシタ15は、対応ゲート配線16g(n)が選択状態にあるときに対応ソース配線16sの電圧で蓄電され、この蓄電によって書き込まれた電圧を保持することを以て、対応ゲート配線16g(n)が非選択状態にあるときに第4TFT14dのゲート電極20にかかる電圧を維持する。
 このような画素回路30において、第1~第7TFT14a,14b,14c,14d,14e,14f,14gのうち関連し合うTFT同士を接続する各接続配線32,34,35は、ソース配線16s、ハイレベル電源配線16hpおよびソース電極22と同一層に同一材料によって形成されている。これら各接続配線32,34,35と、第1~第7TFTのソース電極22およびドレイン電極23、ならびにソース配線16s、ハイレベル電源配線16hpは、それぞれ層間絶縁膜21上に設けられた導電部39である。換言すると、層間絶縁膜21上に設けられた複数の導電部39には、各接続配線32,34,35と、第1~第7TFT14a,14b,14c,14d,14e,14f,14gのソース電極22およびドレイン電極23、ならびにソース配線16s、ハイレベル電源配線16hpが含まれている。複数の導電部39は、ゲート配線16g、エミッション配線16e、初期化電圧配線16vおよびゲート電極20よりも厚く形成されている。当該導電部39の厚さは、例えば0.5μm~1.5μm程度である。
 有機EL素子40を構成する第1電極41の凹凸具合などの表面性状は、上記平坦化膜17によるTFT層8表面の平坦化精度によって変化する。上記のような比較的厚い複数の導電部39のみを平坦化膜17により覆うと、当該導電部による段差を埋めきれず、平坦化膜17の表面に凹凸が生じて、TFT層8の表面に個々の導電部39による段差を反映した凹凸が残りやすい。TFT層8表面の平坦化精度は、有機EL素子40を構成する第1電極41の表面性状に影響を及ぼし、有機EL素子40の光取り出し効率の良し悪しに関わる。そこで、この第1の実施形態に係る有機EL表示装置1では、TFT層8表面の平坦化精度を高めるべく、表示領域Dにおいて隣り合う導電部39の間に平坦化補助膜50が設けられている。
 平坦化補助膜50は、第1電極41のうちエッジカバー44の開口52から露出した部分と重なるように島状に形成されており、平面視でエッジカバー44の開口52の内側に複数設けられている(図3で斜線を付した領域が平坦化補助膜50の形成領域)。この平坦化補助膜50の厚さは、導電部39の厚さ以上とされ、好ましくは導電部39の厚さと同程度とされる(図示する例では導電部39の厚さと同程度)。平坦化補助膜50と導電部39との間には、僅かな隙間sが設けられている。当該平坦化補助膜50は、感光性ポリイミド樹脂などの有機材料によって形成され、導電部39と共に平坦化膜17によって覆われている。
 平坦化膜17は、表示領域Dにおいて、第6TFT14fのドレイン電極23の一部以外を覆うことにより、TFT層8の表面を、上記複数の導電部39による凹凸形状および第1TFT14a、第2TFT14b、第3TFT14c、第4TFT14d、第5TFT14e、第6TFT14fおよび第7TFT14gの表面形状が反映されないように平坦化している。要部について述べると、平坦化膜17は、平坦化補助膜50と導電部39との間の隙間sを埋めて、これら平坦化補助膜50と導電部39を覆うように設けられ、平坦化補助膜50と導電部39による凹凸を緩和するか無くして、TFT層8の表面を平坦に構成している。当該平坦化膜17は、感光性ポリイミド樹脂などの有機材料によって形成されている。
  - 有機EL素子層の構成 -
 有機EL素子層9は、平坦化膜17上に設けられており、表示領域Dを構成している。この有機EL素子層9は、発光素子層の一例であって、サブ画素6毎に設けられた有機EL素子40を複数備えている。有機EL素子32は、トップエミッション型の構造を採用している。具体的には、有機EL素子32は、平坦化膜17の表面に設けられた複数の第1電極41と、各第1電極33上に設けられた機能層としての有機EL層42と、有機EL層42を介して第1電極41に重なる第2電極43とを備えている。
 第1電極41は、各サブ画素6に設けられてマトリクス状に配置されており、対応するサブ画素6における第6TFT14fのドレイン電極22に対し、平坦化膜17に形成されたコンタクトホール36を介して接続されている。これら第1電極41は、有機EL層42に正孔(ホール)を注入する機能と光反射性とを有しており、有機EL層42への正孔注入効率を向上させるために仕事関数の大きな材料で形成されていることが好ましい。
 第1電極41の材料としては、例えば、銀(Ag)、アルミニウム(Al)、バナジウム(V)、コバルト(Co)、ニッケル(Ni)、タングステン(W)、金(Au)、カルシウム(Cu)、チタン(Ti)、イットリウム(Y)、ナトリウム(Na)、ルテニウム(Ru)、マンガン(Mn)、インジウム(In)、マグネシウム(Mg)、リチウム(Li)、イッテルビウム(Yb)などの金属材料が挙げられる。
 また、第1電極41の材料は、例えば、マグネシウム(Mg)と銅(Cu)との合金、マグネシウム(Mg)と銀(Ag)との合金、ナトリウム(Na)とカリウム(K)との合金、アスタチン(At)と酸化アスタチン(AtO)との合金、リチウム(Li)とアルミニウム(Al)との合金、リチウム(Li)とカルシウム(Ca)とアルミニウム(Al)との合金などであってもよい。
 また、第1電極41の材料は、例えば、酸化スズ(SnO)、酸化亜鉛(ZnO)、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)のような導電性酸化物などであってもよい。また、第1電極41は、上述した材料からなる層を複数積層して形成されていても構わない。なお、仕事関数の大きな材料としては、例えば、インジウムスズ酸化物(ITO)やインジウム亜鉛酸化物(IZO)が挙げられる。
 隣り合うサブ画素6の第1電極41同士は、平坦化膜17上に設けられたエッジカバー44によって区画されている。エッジカバー44は、格子状に形成されており、各第1電極41の外周端部を覆っている。エッジカバー44の材料としては、例えば、酸化シリコンや窒化シリコン、シリコンオキシナイトライドなどの無機化合物、およびポリイミド樹脂やアクリル樹脂、ポリシロキサン樹脂、ノボラック樹脂などの有機材料が挙げられる。
 有機EL層42は、発光機能層の一例であって、サブ画素6毎に設けられている。この有機EL層42は、図7に示すように、正孔注入層45、正孔輸送層46、発光層47、電子輸送層48および電子注入層49が第1電極4上にこの順で積層された構造を有している。これら正孔注入層45、正孔輸送層46、発光層47、電子輸送層48および電子注入層49は、成膜用マスクを用いて形成される薄膜パターンであって、例えば真空蒸着法により形成される蒸着膜である。
 正孔注入層45は、陽極バッファ層とも呼ばれ、第1電極41と有機EL層42とのエネルギーレベルを近づけて、第1電極41から有機EL層42へ正孔が注入される効率を改善する機能を有している。正孔注入層45の材料としては、例えば、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、フェニレンジアミン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体などが挙げられる。
 正孔輸送層46は、正孔を発光層47まで効率よく移動させる機能を有している。正孔輸送層46の材料としては、例えば、ポリフェリン誘導体、芳香族第三級アミン化合物、スチリルアミン誘導体、ポリビニルカルバゾール、ポリ-p-フェニレンビニレン、ポリシラン、トリアゾール誘導体、オキサジアゾール誘導体、イミダゾール誘導体、ポリアリールアルカン誘導体、ピラゾリン誘導体、ピラゾロン誘導体、フェニレンジアミン誘導体、アリールアミン誘導体、アミン置換アルコン誘導体、オキサゾール誘導体、スチリルアントラセン誘導体、フルオレノン誘導体、ヒドラゾン誘導体、スチルベン誘導体、水酸化アモルファスシリコン、水酸化アモルファス炭化シリコン、硫化亜鉛、セレン化亜鉛などが挙げられる。
 発光層47は、第1電極41および第2電極43によって電圧が印加された際に、第1電極41から注入された正孔と第2電極43から注入された電子とを再結合させて発光する機能を有している。発光層47は、個々のサブ画素6において、有機EL素子40の発光色(例えば、赤色、緑色または青色)に合わせて異なる材料により形成されている。
 発光層47の材料としては、例えば、金属オキシノイド化合物[8-ヒドロキシキノリン金属錯体]、ナフタレン誘導体、アントラセン誘導体、ジフェニルエチレン誘導体、ビニルアセトン誘導体、トリフェニルアミン誘導体、ブタジエン誘導体、クマリン誘導体、ベンズオキサゾール誘導体、オキサジアゾール誘導体、ベンズチアゾール誘導体、スチリル誘導体、スチリルアミン誘導体、ビススチリルベンゼン誘導体、トリススチリルベンゼン誘導体、ペリレン誘導体、ペリノン誘導体、アミノピレン誘導体、ピリジン誘導体、ローダミン誘導体、アクイジン誘導体、フェノキサゾン、キナクリドン誘導体、ルブレン、ポリ-p-フェニレンビニレン、ポリシランなどが挙げられる。
 電子輸送層48は、電子を発光層47まで効率よく移動させる機能を有している。電子輸送層48の材料としては、例えば、有機化合物として、オキサジアゾール誘導体、トリアゾール誘導体、ベンゾキノン誘導体、ナフトキノン誘導体、アントラキノン誘導体、テトラシアノアントラキノジメタン誘導体、ジフェノキノン誘導体、フルオレノン誘導体、シロール誘導体、金属オキシノイド化合物などが挙げられる。
 電子注入層49は、陰極バッファ層とも呼ばれ、第2電極43と有機EL層42とのエネルギーレベルを近づけて、第2電極43から有機EL層42への電子注入効率を向上させる機能を有している。電子注入層49の材料としては、例えば、フッ化リチウム(LiF)、フッ化マグネシウム(MgF)、フッ化カルシウム(CaF)、フッ化ストロンチウム(SrF)、フッ化バリウム(BaF)のような無機アルカリ化合物、酸化アルミニウム(Al)、酸化ストロンチウム(SrO)などが挙げられる。
 第2電極43は、図4に示すように、複数の第1電極41に対して共通(つまり複数のサブ画素6に共通)に設けられており、有機EL層42を覆っている。この第2電極43は、ローレベル電源配線16lpと電気的に接続され、そのローレベル電源配線16lpを通じて端子部Tに設けられた配線端子16tにてローレベル電圧電源(ELVSS)との導通がとられる。第2電極43は、有機EL層42に電子を注入する機能と光透過性とを有しており、有機EL層42への電子の注入効率を向上させるために仕事関数の小さな材料で形成されていることが好ましい。
 第2電極43の材料としては、例えば、銀(Ag)、アルミニウム(Al)、バナジウム(V)、コバルト(Co)、ニッケル(Ni)、タングステン(W)、金(Au)、カルシウム(Ca)、チタン(Ti)、イットリウム(Y)、ナトリウム(Na)、ルテニウム(Ru)、マンガン(Mn)、インジウム(In)、マグネシウム(Mg)、リチウム(Li)、イッテルビウム(Yb)などが挙げられる。
 また、第2電極43の材料は、例えば、マグネシウム(Mg)と銅(Cu)との合金、マグネシウム(Mg)と銀(Ag)との合金、ナトリウム(Na)とカリウム(K)との合金、アスタチン(At)と酸化アスタチン(AtO)との合金、リチウム(Li)とアルミニウム(Al)との合金、リチウム(Li)とカルシウム(Ca)とアルミニウム(Al)との合金などであってもよい。
 また、第2電極43の材料は、例えば、酸化スズ(SnO)、酸化亜鉛(ZnO)、インジウムスズ酸化物(ITO)、インジウム亜鉛酸化物(IZO)などの導電性酸化物であってもよい。また、第2電極43は、上述した材料からなる層を複数積層して形成されていても構わない。なお、仕事関数の小さな材料としては、例えば、マグネシウム(Mg)、リチウム(Li)、フッ化リチウム(LiF)、マグネシウム(Mg)と銅(Cu)との合金、マグネシウム(Mg)と銀(Ag)との合金、ナトリウム(Na)とカリウム(K)との合金、リチウム(Li)とカルシウム(Ca)とアルミニウム(Al)との合金、フッ化リチウム(LiF)とカルシウム(Ca)とアルミニウム(Al)との合金などが挙げられる。
 封止膜10は、有機EL素子32を水分や酸素などから保護する機能を有している。この封止膜10は、図4に示すように、第2電極43を覆うように設けられた第1無機封止膜53と、第1無機封止膜53上に設けられた有機封止膜54と、有機封止膜54を覆うように設けられた第2無機封止膜55とを備えている。
 第1無機封止膜53および第2無機封止膜55は、例えば、酸化シリコン(SiO)や酸化アルミニウム(Al)、四窒化三ケイ素(Si)のような窒化シリコン(SiNx)、炭窒化ケイ素(SiCN)などの無機材料によって形成されている。有機封止膜54は、例えば、アクリル樹脂、エポキシ樹脂、ポリ尿素樹脂、パリレン樹脂、ポリイミド樹脂、ポリアミド樹脂などの有機材料によって形成されている。
 第1無機封止膜53、有機封止膜54および第2無機封止膜55は、表示領域Dの全体に設けられていると共に、額縁領域Fにも設けられている。第1無機封止膜53および第2無機封止膜55の各周端部は、有機封止膜54の周端部よりも額縁領域Fの外側部分に位置付けられて、互いに接合されている。有機封止膜54は、第1無機封止膜53および第2無機封止膜55によって包み込まれており、それら両無機封止膜53,55の間に封入されている。このような封止膜10は、折曲げ部Bおよび端子部Tにまでは設けられていない。
 折曲げ部Bにおいては、図8に示すように、樹脂基板層7上に設けられた無機絶縁膜、つまりベースコート膜13、ゲート絶縁膜19および層間絶縁膜21に、表示領域Dと端子部Tとを区切るように直線状のスリット60が設けられている。スリット60は、折曲げ部Bの折り曲げ方向と直交し且つ表示領域Dと端子部Tとの間を端子部Tに沿って延びており、ベースコート膜13、ゲート絶縁膜19および層間絶縁膜21を貫通して、これら無機絶縁膜13,19,21から樹脂基板層7の表面を露出させるように形成されている。
 このように額縁領域Fにおけるスリット60が形成された部分、つまりTFT層8の無機絶縁膜13,19,21が除去された部分は、他部よりも曲げやすくなっており、折曲げ部Bを構成している。そして、折曲げ部Bには、スリット60を埋めるように額縁平坦化膜61が設けられている。スリット60内に露出したTFT層8断面は、この額縁平坦化膜61によって封止されている。額縁平坦化膜61は、平坦化補助膜50と同一層に同一材料によって形成されており、スリット60の開口周縁部を覆って層間絶縁膜21上にも盛り上がるような厚さで設けられている。この額縁平坦化膜61における層間絶縁膜21上の厚さは、平坦化補助膜50の厚さよりも薄い。
 このような折曲げ部Bを経て端子部Tに引き出される引き回し配線16fは、ゲート絶縁膜19と層間絶縁膜21との間を延びる下層配線16faと、額縁平坦化膜61上を延びる上層配線16fbとによって構成されている。下層配線16faは、スリット60が設けられている箇所を境として表示領域D側と端子部T側とに分断されている。この下層配線16faは、ゲート配線16gおよびエミッション配線16eと同一層に同一材料によって形成されている。
 上層配線16fbは、額縁平坦化膜61の表示領域D側から端子部T側にかけてスリット60を横切るように延びて、層間絶縁膜21に形成されたコンタクトホール62を介して表示領域D側の下層配線16faと端子部T側の下層配線16faとにそれぞれ接続されている。この上層配線16fbは、額縁領域Fに設けられた平坦化膜17によって覆われている。配線端子16tも、上層配線16fbと同様に層間絶縁膜21に形成されたコンタクトホール63を介して下層配線16faに接続されている。上層配線16fbおよび配線端子16tは、第1電極41と同一層に同一材料によってそれぞれ形成されている。
 上記構成の有機EL表示装置1では、各サブ画素6において、対応エミッション配線16eが選択されてオフ状態とされると、有機EL素子40は非発光状態となる。その状態で、対応初期化電圧配線16vに初期化信号が印加されると共に先行ゲート配線16g(n-1)が選択され、先行ゲート配線16g(n-1)を介してゲート信号が第1TFT14aに入力されることにより、第1TFT14aがオン状態となり、対応初期化電圧配線16vの電圧がキャパシタ15に印加される。それによって、キャパシタ15の電荷が放電されて、第4TFT14dのゲート電極20にかかる電圧が初期化される。次に、対応ゲート配線16g(n)が選択されて、第2TFT14b、第3TFT14cおよび第4TFT14dにゲート信号が入力されることにより、第2TFTおよび第3TFTがオン状態となり、対応ソース配線16sを介して伝達されるソース信号に対応する所定の電圧がダイオード接続状態の第4TFT14dを介してキャパシタ15に書き込まれると共に、第7TFT14gがオン状態となり、対応初期化電圧配線16vを介して初期化信号が有機EL素子40の第1電極41に印加されて第1電極41に蓄積した電荷がリセットされる。その後、対応エミッション配線16eが選択されて、対応エミッション配線16eを介して発光制御信号が第5TFT14eおよび第6TFT14fに入力されることにより、これらが第5TFT14eおよび第6TFT14fがオン状態となり、第4TFT14dのゲート電極20にかかる電圧に応じた駆動電流が対応ハイレベル電源配線16hpから有機EL素子40に供給される。それにより、有機EL層42が駆動電流に応じた輝度で発光して画像表示が行われる。
 〈有機EL表示装置の製造方法〉
 図9は、有機EL表示装置1の製造方法を概略的に示すフロー図である。有機EL表示装置1の製造方法は、図9に示すように、TFT層形成工程S01と、有機EL素子層形成工程S02と、封止膜形成工程S03と、フレキシブル化工程S04と、実装工程S05とを含む。
  - TFT層形成工程 -
 TFT層形成工程S01は、ベースコート膜形成工程S11と、半導体層形成工程S12と、ゲート絶縁膜形成工程S13と、ゲート電極形成工程S14と、層間絶縁膜形成工程S15と、平坦化補助膜形成工程S16と、ソースドレイン電極形成工程S17と、平坦化膜形成工程S18とを含む。ここで、ベースコート膜形成工程S11、ゲート絶縁膜形成工程S13および層間絶縁膜形成工程S15は、それぞれ無機絶縁膜形成工程の一例である。また、ソースドレイン電極形成工程S16は、導電部形成工程の一例である。
 ベースコート膜形成工程S01では、ガラス基板上に形成した樹脂基板層7の表面に、例えば、プラズマCVD(Chemical vapor Deposition)法により、酸化シリコン(SiOx)、窒化シリコン(SiNx)、酸窒化シリコン(SiOxNy;x>y)、窒化酸化シリコン(SiNxOy;x>y)などの無機絶縁膜を成膜して、ベースコート膜13を形成する。
 次に行う半導体層形成工程S12では、ベースコート膜13が形成された樹脂基板層7上に、例えばCVD法により半導体膜を成膜し、その半導体膜に対し、必要に応じて結晶化処理や低抵抗化処理を施した後に、当該半導体膜をフォトリソグラフィ(レジスト塗布、プリベーク処理、露光処理、現像処理、ポストベーク処理、エッチング処理およびレジスト剥離処理)によりパターニングして、半導体層18を形成する。
 次に行うゲート絶縁膜形成工程S13では、半導体層18が形成された樹脂基板層7上に、酸化シリコン(SiOx)、窒化シリコン(SiNx)、酸窒化シリコン(SiOxNy;x>y)、窒化酸化シリコン(SiNxOy;x>y)などの無機絶縁膜を単層でまたは積層するように成膜して、ゲート絶縁膜19を形成する。
 次に行うゲート電極形成工程S14では、ゲート絶縁膜19が形成された樹脂基板層7上に、例えばスパッタリング法により、チタン膜、アルミニウム膜およびチタン膜を順に成膜して積層導電膜を形成した後に、その積層導電膜をフォトリソグラフィによりパターニングして、ゲート電極20を形成する。このとき、ゲート電極20を形成する積層導電膜からは、ゲート配線16g、エミッション配線16e、キャパシタ15の下層電極27および各種の引き回し配線16fなども併せて形成する。
 次に行う層間絶縁膜形成工程S15では、ゲート電極20が形成された樹脂基板層7上に、例えばCVD法により、酸化シリコン(SiOx)、窒化シリコン(SiNx)、酸窒化シリコン(SiOxNy;x>y)、窒化酸化シリコン(SiNxOy;x>y)などの無機絶縁膜を成膜して、第1層間絶縁膜24を形成する。
 続いて、第1層間絶縁膜24上に、例えばスパッタリング法により、チタン膜、アルミニウム膜およびチタン膜を順に成膜して積層導電膜を形成した後に、その積層導電膜をフォトリソグラフィによりパターニングして、初期化電圧配線16vおよびキャパシタの上層電極28を形成する。
 そして、初期化電圧配線16vおよびキャパシタの上層電極28が形成された第1層間絶縁膜24上に、例えばCVD法により、酸化シリコン(SiOx)、窒化シリコン(SiNx)、酸窒化シリコン(SiOxNy;x>y)、窒化酸化シリコン(SiNxOy;x>y)などの無機絶縁膜を成膜して、第2層間絶縁膜25を形成する。
 このようにして、第1層間絶縁膜24および第2層間絶縁膜25が積層されてなる層間絶縁膜21が形成される。そして、この層間絶縁膜21をフォトリソグラフィによりパターニングして、コンタクトホール26,31,33,37,38およびスリット60を形成する。このとき、コンタクトホール26はゲート絶縁膜19にも形成し、スリット60はゲート絶縁膜19およびベースコート膜13にも形成する。
 次に行う平坦化補助膜形成工程S16では、層間絶縁膜21が形成された樹脂基板層7上に、例えばスピンコート法などの公知の塗布法により、感光性エポキシ樹脂などの感光性樹脂材料を塗布する。そして、この感光性樹脂材料の塗布膜に対し、プリベーク処理、露光処理、現像処理およびポストベーク処理を行って、当該塗布膜をパターニングすることにより、隣り合う導電部39の隙間となる位置に平坦化補助膜50を形成する。このとき、平坦化補助膜50を形成する塗布膜からは、額縁平坦化膜61をスリット60を埋めるように併せて形成する。その際の塗布膜のパターニングでは、露光処理でグレートーンマスクを用いて当該塗布膜における平坦化補助膜50の形成領域と額縁平坦化膜61の形成領域とで露光量を異ならせるように調整することで、平坦化補助膜50を額縁平坦化膜61よりも厚く形成する。なお、ここでは、グレートーンマスクに代えてハーフトーンマスクを用いてもよい。
 次に行うソースドレイン電極形成工程S17では、平坦化補助膜50が形成された樹脂基板層7上に、例えばスパッタリング法により、チタン膜、アルミニウム膜およびチタン膜を順に成膜して、積層導電膜を形成する。そして、この積層導電膜をフォトリソグラフィによりパターニングして、ソース電極22およびドレイン電極23を形成する。このとき、ソース電極22およびドレイン電極23を形成する積層電電膜からは、ソース配線16s、ハイレベル電源配線16hpおよび接続配線32,34,35を併せて形成する。このようにして、ソースドレイン電極形成工程S16では、第1電極41と重なる位置において互いに間隔をあけて隣り合うように複数の導電部39を形成する。
 次に行う平坦化膜形成工程S18では、ソース電極22およびドレイン電極23が形成された樹脂基板層7上に、例えばスピンコート法などの公知の塗布法により、感光性エポキシ樹脂などの感光性樹脂材料を塗布する。そして、この感光性樹脂材料の塗布膜に対し、プリベーク処理、露光処理、現像処理およびポストベーク処理を行って、当該塗布膜をパターニングすることにより、複数の導電部39および平坦化補助膜50を覆うように平坦化膜17を形成する。
 このようにして、TFT層形成工程S01では、樹脂基板層7上にTFT層8を形成する。
 -有機EL素子層形成工程 -
 有機EL素子層形成工程S02は、第1電極形成工程S21と、エッジカバー形成工程S22と、有機EL層形成工程S23と、第2電極形成工程S24とを含む。ここで、有機EL層形成工程S23は、発光機能層形成工程の一例である。
 第1電極形成工程S21では、TFT層8が形成された樹脂基板層7上に、例えば、スパッタリング法により、インジウムスズ酸化物(ITO)膜、銀合金膜およびインジウムスズ酸化物(ITO)膜を順に成膜して積層導電膜を形成する。そして、この積層導電膜をフォトリソグラフィによりパターニングして、第1電極41を形成する。
 次に行うエッジカバー形成工程S22では、第1電極41が形成された樹脂基板層7上に、例えばスピンコート法などの公知の塗布法により、感光性エポキシ樹脂などの感光性樹脂材料を塗布する。そして、この感光性樹脂材料の塗布膜に対し、プリベーク処理、露光処理、現像処理およびポストベーク処理を行って、当該塗布膜をパターニングすることにより、エッジカバー44を形成する。
 次に行う有機EL層形成工程S23では、エッジカバー44が形成された樹脂基板層7上に、サブ画素単位でパターニング可能なFMM(Fine Metal Mask)と呼ばれる成膜用マスクを用いて、例えば真空蒸着法により、正孔注入層45、正孔輸送層46、発光層47、電子輸送層48および電子注入層49を順に成膜して、個々の第1電極41上に有機EL層42を形成する。上記の層のいくつかは、表示パネル単位でパターニング可能なCMM(Common Metal Mask)と呼ばれる成膜用マスクを用いて成膜してもよい。
 次に行う第2電極形成工程S24では、有機EL層42が形成された樹脂基板層7上に、CMM(Common Metal Mask)の成膜用マスクを用いて、例えば真空蒸着法により銀合金膜を成膜することにより、第2電極43を形成する。
 このようにして、有機EL素子層形成工程S02では、TFT層8上に複数の有機EL素子40を含む有機EL素子層9を形成する。
 -封止膜形成工程 -
 封止膜形成工程S03では、有機EL素子層9が形成された樹脂基板層7上に、成膜用マスクを用いて、例えばCVD法により、酸化シリコン(SiOx)、窒化シリコン(SiNx)、酸窒化シリコン(SiOxNy;x>y)、窒化酸化シリコン(SiNxOy;x>y)などの無機絶縁膜を単層でまたは積層するように成膜して、第1無機封止膜43を形成する。
 続いて、第1無機封止膜53が形成された樹脂基板層7上に、例えばインクジェット法によりアクリル樹脂などの有機材料を塗布して、有機封止膜54を形成する。
 そして、有機封止膜54が形成された樹脂基板層7上に、成膜用マスクを用いて、例えばCVD法により、酸化シリコン(SiOx)、窒化シリコン(SiNx)、酸窒化シリコン(SiOxNy;x>y)、窒化酸化シリコン(SiNxOy;x>y)などの無機絶縁膜を単層でまたは積層するように成膜して、第2無機封止膜55を形成する。
 このようにして、封止膜形成工程S03では、第1無機封止膜43、有機封止膜54および第2無機封止膜55が積層されてなる封止膜10を形成する。
 - フレキシブル化工程 -
 フレキシブル化工程S03では、封止膜10が形成された樹脂基板層7の表面に表面保護フィルムを貼り付けた後に、その樹脂基板層7の下面にガラス基板側からレーザー光を照射することにより、樹脂基板層7の下面からガラス基板を剥離し、さらに、ガラス基板を剥離した樹脂基板層7の下面に裏面保護フィルムを貼り付ける。
 - 実装工程 -
 実装工程S05では、ガラス基板を樹脂基板層7から剥離した基板の端子部Tに、ACF(Anisotropic Conductive Film)やACP(Anisotropic Conductive Paste)などの導電材を用いて配線基板を接続することにより、配線基板と配線端子16tとの導通をとって当該配線基板と共に表示制御回路を実装する。
 以上のようにして、有機EL表示装置1を製造することができる。
 この第1の実施形態に係る有機EL表示装置1によれば、TFT層8において有機EL素子40の第1電極41と重なる位置にて層間絶縁膜21上で隣り合う導電部39の間に平坦化補助膜50を設けると共に、この平坦化補助膜50ともども導電部39を覆うように平坦化膜17を設けるようにしたから、隣り合う導電部39間の隙間が平坦化補助膜50によって補間され、当該隙間が狭められた状態でTFT層8の表面が平坦化膜17により平坦化される。これにより、当該導電部39による段差を平坦化膜17で確実に埋めて、平坦化膜17の表面に凹凸が生じるのを抑制することができ、TFT層8表面の平坦化精度を向上させることができる。その結果、高精細な画像表示を行う有機EL表示装置1において、有機EL素子層9での光取り出し効率の低下を防止することができる。
 《第1の実施形態の変形例》
 図10は、この変形例に係る有機EL表示装置1の図5相当図である。前記第1の実施形態に係る有機EL表示装置1では、平坦化補助膜50と導電部39との間に隙間sが設けられているとしたが、この変形例に係る有機EL表示装置1では、図10に示すように、平坦化補助膜50の端部と導電部39の端部とが側面同士を密着させるように重なり合っている。
 具体的には、平坦化補助膜50は、層間絶縁膜21側に向かって末広がりになるように形成され、当該平坦化補助膜50の厚さ方向に対して傾斜した傾斜側面51を有する。導電部39は、その平坦化補助膜50の傾斜端面51に乗り上げるように形成されている。平坦化補助膜50は、傾斜側面51で導電部39の端部と重なっている。このようにして、平坦化補助膜50と導電部39とは互いの間に隙間を生じることなく設けられており、第1電極41と重なる位置において隣り合う導電部39間の隙間は平坦化補助膜50により完全に埋められて無くなっている。
 この変形例に係る有機EL表示装置1によれば、平坦化補助膜50と導電部39との間の隙間をなくすように平坦化補助膜50および導電部39を設けるようにしたので、当該隙間に起因して平坦化膜17の表面に凹凸が生じることを防止することができ、TFT層8表面の平坦化精度をよりいっそう向上させることができる。
 《第2の実施形態》
 図11は、この第2の実施形態に係る有機EL表示装置1の図4相当図である。図12は、この第2の実施形態に係る有機EL表示装置1の図8相当図である。この実施形態2に係る有機EL表示装置1は、TFT層8の構成が前記第1の実施形態と異なる。なお、この第2の実施形態では、TFT層8の構成が前記第1の実施形態と異なる他は有機EL表示装置1について前記第1の実施形態と同様に構成されているので、構成の異なるTFT層8についてのみ説明し、同一の構成箇所は図1~図9に基づく前記第1の実施形態の説明に譲ることにして、その詳細な説明を省略する。
 第2の実施形態に係る有機EL表示装置1のTFT層8は、図11に示すように、少なくとも表示領域Dにおいて平坦化補助膜50を覆うように設けられた保護膜70を有している。保護膜70は、層間絶縁膜21上に位置しており、例えば、酸化シリコン(SiOx)、窒化シリコン(SiNx)、酸窒化シリコン(SiOxNy;x>y)、窒化酸化シリコン(SiNxOy;x>y)などからなる無機絶縁層の単層膜または積層膜によって構成されている。
 ソース配線16s、ハイレベル電源配線16hp、第1~第7TFT14a,14b,14c,14d,14e、14f,14gのソース電極22およびドレイン電極23、ならびに接続配線32,34,35などの導電部39は、この保護膜70上に設けられている。前記第1の実施形態において説明したように、有機EL表示装置1の製造において、層間絶縁膜21上に平坦化補助膜50を形成した後に導電部39を形成する手順を採ると、導電部39をパターニングする際のドライエッチングにより平坦化補助膜50からダストが発生する可能性がある。保護膜70は、そうした導電部39形成時のドライエッチングから平坦化補助膜50を保護し、導電部39形成時のドライエッチングによる平坦化補助膜50からのダスト発生を防ぐ役割を担う。
 このような保護膜70は、図12に示すように、額縁領域Fにも設けられており、折曲げ部Bにおいて、額縁平坦化膜61の外周端部を覆うように形成されている。保護膜70には、折曲げ部Bで額縁平坦化膜61を露出させる開口71が形成されている。この開口71は、スリット60に対応する領域、つまりTFT層8の無機絶縁膜13,19,21が除去された部分に対応する箇所に形成されている。これにより、平坦化補助膜50を保護してダストの発生を防止する保護膜70を形成しながらも折曲げ部Bでの柔軟性を損なわないようにしている。
 この第2の実施形態に係る有機EL表示装置1によれば、平坦化補助膜50を保護する保護膜70を導電部39よりも下層に設けるようにしたので、導電部39の形成に当たってドライエッチングを行う際には平坦化補助膜50が保護膜70によって保護されており、ドライエッチングにより平坦化補助膜50からダストが発生するのを防止することができる。これにより、表示領域Dに異物が発生するのを抑制でき、有機EL表示装置1の製造効率および信頼性を高めることができる。
 以上のように、本開示の技術の例示として、好ましい実施形態およびその変形例について説明した。しかし、本開示の技術は、これに限定されず、適宜、変更、置き換え、付加、省略などを行った実施の形態にも適用可能である。また、前記実施形態および変形例で説明した各構成要素を組み合わせて新たな実施の形態とすることも可能である。また、添付図面および詳細な説明に記載された構成要素の中には、課題解決のためには必須でない構成要素も含まれ得る。そのため、それらの必須でない構成要素が添付図面や詳細な説明に記載されていることを以て、直ちにそれらの必須でない構成要素が必須であるとの認定をするべきではない。
 例えば、前記第1の実施形態では、平坦化補助膜50の厚さが導電部39の厚さ以上とされるとしたが、本開示の技術の適用範囲はこれに限らない。平坦化補助膜50の厚さは、導電部39の厚さよりも薄くてもよい。要は、隣り合う導電部39の間に平坦化補助膜50を設けることにより、平坦化補助膜50を設けない場合と比べて、平坦化膜17表面の凹凸が低減され、TFT層8表面の平坦化精度を向上させることができればよい。
 また、前記第1の実施形態では、有機EL層42が各サブ画素6に個別に設けられているとしたが、本開示の技術の適用範囲はこれに限らない。有機EL層42は、複数のサブ画素6に共通して設けられていてもよい。この場合、有機EL表示装置1は、カラーフィルタを備えるなどして、各サブ画素6の色調表現を行っていてもよい。
 また、前記第1の実施形態では、各画素5を構成する3色のサブ画素6r,6g,6bがストライプ状に隣り合っているストライプ配列を例示したが、本開示の技術の適用範囲はこれに限らない。各画素5を構成するサブ画素6は、3色に限らず、4色以上であってもよい。また、各画素5を構成する複数のサブ画素6の配列は、ペンタイル配列など、他の配列であっても構わない。
 また、前記第1の実施形態では、基板として樹脂基板層7を用いる有機EL表示装置1を例示したが、本開示の技術の適用範囲はこれに限らない。基板としては、ガラスや石英などの無機材料、ポリエチレンテレフタレートなどのプラスチック、アルミナなどのセラミックからなる基板が用いられていてもよい。また、基板は、アルミニウムや鉄などの金属基板の一方面をシリカゲルや有機絶縁材料などでコーティングした基板、または金属基板の表面に陽極酸化などの方法により絶縁化処理を施した基板などであっても構わない。
 また、前記第1の実施形態では、第1~第7TFT14a,14b,14c,14d,14e、14f,14gについて、トップゲート構造を採用しているとしたが、本開示の技術の適用範囲はこれに限らない。第1~第7TFT14a,14b,14c,14d,14e、14f,14gは、ボトムゲート構造を採用していてもよい。
 また、前記第1の実施形態では、第1電極41を陽極とし、第2電極43を陰極とした有機EL表示装置1を例示したが、本開示の技術の適用範囲はこれに限らない。本開示の技術は、例えば、有機EL層42の積層構造を反転させて、第1電極41を陰極とし、第2電極43を陽極とした有機EL表示装置1にも適用することが可能である。
 また、前記第1の実施形態では、正孔注入層45、正孔輸送層46、発光層47、電子輸送層48、電子注入層49の5層積層構造の有機EL層42を例示したが、本開示の技術の適用範囲はこれに限らない。有機EL層42には、例えば、正孔注入層兼正孔輸送層、発光層および電子輸送層兼電子注入層の3層積層構造を採用していてもよく、任意の構造を採用することが可能である。
 また、前記第1の実施形態および前記第2の実施形態では、表示装置として有機EL表示装置1を例示したが、本開示の技術の適用範囲はこれに限らない。本開示の技術は、電流によって駆動される複数の発光素子を備えた表示装置、例えば、量子ドット含有層を用いた発光素子であるQLED(Quantum-dot Light Emitting Diode)を備えた表示装置に適用することが可能である。
 以上説明したように、本開示の技術は、有機EL素子層などの発光素子層がTFT層上に設けられた表示装置について有用である。
 B…折曲げ部
 D…表示領域
 F…額縁領域
 T…端子部
 s…隙間
 1…有機EL表示装置
 5…画素
 6,6r,6g,6b…サブ画素
 7…樹脂基板層(基板)
 8…TFT層
 9…有機EL素子層
 10…封止膜
 13…ベースコート膜(無機絶縁膜)
 14a…第1TFT
 14b…第2TFT
 14c…第3TFT
 14d…第4TFT
 14e…第5TFT
 14f…第6TFT
 14g…第7TFT
 15…キャパシタ
 16…表示用配線
 16e…エミッション配線
 16f…引き回し配線
 16fa…下層配線
 16fb…上層配線
 16g…ゲート配線
 16hp…ハイレベル電源配線(導電部)
 16lp…ローレベル電源配線
 16s…ソース配線(導電部)
 16v…初期化電圧配線
 17…平坦化膜
 18…半導体層
 19…ゲート絶縁膜(無機絶縁膜)
 20…ゲート電極
 21…層間絶縁膜(無機絶縁膜)
 22…ソース電極(導電部)
 23…ドレイン電極(導電部)
 24…第1層間絶縁膜(無機絶縁膜)
 25…第2層間絶縁膜(無機絶縁膜)
 26…コンタクトホール
 27…下層電極
 28…上層電極
 30…画素回路
 31…コンタクトホール
 32…接続配線(導電部)
 33…コンタクトホール
 34…接続配線(導電部)
 35…接続配線(導電部)
 36…コンタクトホール
 37…コンタクトホール
 38…コンタクトホール
 39…導電部
 40…有機EL素子(発光素子)
 41…第1電極
 42…有機EL層
 43…第2電極
 44…エッジカバー
 45…正孔注入層
 46…正孔輸送層
 47…発光層
 48…電子輸送層
 49…電子注入層
 50…平坦化補助膜
 51…傾斜側面
 52…開口
 53…第1無機封止膜
 54…有機封止膜
 55…第2無機封止膜
 60…スリット
 61…額縁平坦化膜
 62…コンタクトホール
 63…コンタクトホール
 70…保護膜
 71…開口

Claims (15)

  1.  可撓性を有する樹脂製の基板と、
     前記基板上に設けられたTFT層と、
     前記TFT層上に設けられた発光素子層とを備え、
     前記発光素子層での発光によって画像表示を行う表示領域と、該表示領域の周囲に位置する額縁領域とが設けられ、
     前記TFT層は、無機絶縁膜と、該無機絶縁膜上に設けられた導電部と、該導電部を覆うように設けられた平坦化膜とを有し、
     前記発光素子層は、前記平坦化膜上に設けられた第1電極と、該第1電極上に設けられた発光機能層と、該発光機能層を介して前記第1電極に重なるように設けられた第2電極とを有し、
     前記額縁領域の端部には端子部が設けられ、
     前記表示領域と前記端子部との間の前記額縁領域には折曲げ部が設けられ、
     前記折曲げ部において、前記無機絶縁膜にスリットが形成され、且つ該スリットを埋めるように額縁平坦化膜が設けられている表示装置であって、
     前記導電部は、前記第1電極と重なる位置において、互いに間隔をあけて隣り合うように複数設けられ、
     前記隣り合う導電部の間には、前記額縁平坦化膜と同一層に同一材料によって形成され、前記平坦化膜によって前記導電部と共に覆われる平坦化補助膜が設けられている
    ことを特徴とする表示装置。
  2.  請求項1に記載された表示装置において、
     前記複数の導電部には、前記表示領域にソース信号を伝達するソース配線が含まれている
    ことを特徴とする表示装置。
  3.  請求項1又は2に記載された表示装置おいて、
     前記複数の導電部には、前記発光素子層に電流を流すための電源配線が含まれている
    ことを特徴とする表示装置。
  4.  請求項1~3のいずれか1項に記載された表示装置において、
     前記複数の導電部には、前記TFT層を構成する素子同士を電気的に接続する接続配線が含まれている
    ことを特徴とする表示装置。
  5.  請求項1~4のいずれか1項に記載された表示装置において、
     前記額縁領域には、前記表示領域内の配線に電気的に接続された引き回し配線が前記額縁平坦化膜上にて前記スリットを横切るように設けられており、
     前記引き回し配線は、前記平坦化膜によって覆われている
    ことを特徴とする表示装置。
  6.  請求項1~5のいずれか1項に記載された表示装置において、
     前記TFT層は、前記導電部よりも下層に設けられたゲート配線を有し、
     前記導電部は、前記ゲート配線よりも厚く形成されている
    ことを特徴とする表示装置。
  7.  請求項1~6のいずれか1項に記載された表示装置において、
     前記平坦化補助膜は、当該平坦化補助膜の厚さ方向に対して傾斜した傾斜側面を有し、該傾斜側面で前記導電部の端部と重なっている
    ことを特徴とする表示装置。
  8.  請求項1~7のいずれか1項に記載された表示装置において、
     前記第1電極は、前記表示領域に複数設けられており、
     前記発光素子層は、前記第1電極の外周端部を覆うように設けられたエッジカバーを有し、
     前記平坦化補助膜は、前記第1電極のうち前記エッジカバーの開口から露出した部分と重なるように島状に形成されている
    ことを特徴とする表示装置。
  9.  請求項8に記載された表示装置において、
     前記平坦化補助膜は、平面視で前記エッジカバーの開口の内側に複数設けられている
    ことを特徴とする表示装置。
  10.  請求項1~9のいずれか1項に記載された表示装置において、
     前記TFT層は、少なくとも前記表示領域において前記平坦化補助膜を覆うように設けられた、無機材料からなる保護膜を有している
    ことを特徴とする表示装置。
  11.  請求項10に記載された表示装置において、
     前記保護膜は、前記折曲げ部において、前記額縁平坦化膜の外周端部を覆うように形成されている
    ことを特徴とする表示装置。
  12.  請求項10または11に記載された表示装置において、
     前記保護膜には、前記折曲げ部で前記額縁平坦化膜を露出させる開口が形成されている
    ことを特徴とする表示装置。
  13.  請求項1~12のいずれか1項に記載された表示装置において、
     前記平坦化補助膜の厚さは、前記導電部の厚さ以上である
    ことを特徴とする表示装置。
  14.  可撓性を有する樹脂製の基板上にTFT層を形成するTFT層形成工程と、
     前記TFT層上に発光素子層を形成する発光素子層形成工程とを含み、
     前記TFT層形成工程は、
      無機絶縁膜を形成する無機絶縁膜形成工程と、
      前記無機絶縁膜上に導電部を形成する導電部形成工程と、
      前記導電部を覆うように平坦化膜を形成する平坦化膜形成工程とを含み、
     当該TFT層形成工程では、前記無機絶縁膜に対し、前記発光素子層の発光によって画像表示を行う表示領域と、該表示領域の周囲に位置する額縁領域の端部に設けられた端子部との間を該端子部に沿って延びるスリットを形成し、
     前記発光素子層形成工程は、
      前記平坦化膜上に第1電極を形成する第1電極形成工程と、
      前記第1電極上に発光機能層を形成する発光機能層形成工程と、
      前記発光機能層を介して前記第1電極に重なるように第2電極を形成する第2電極形成工程とを含み、
     前記導電部形成工程では、前記導電部を、前記第1電極と重なる位置において互いに間隔をあけて隣り合うように複数形成する表示装置の製造方法であって
     前記TFT層形成工程は、前記隣り合う導電部の隙間となる位置に前記平坦化膜によって前記導電部と共に覆われる平坦化補助膜を形成する平坦化補助膜形成工程をさらに含み、
     前記平坦化補助膜形成工程では、感光性樹脂材料を塗布し、その塗布膜に露光および現像処理を施すことにより、前記スリットを埋めるように額縁平坦化膜を形成すると共に、前記平坦化補助膜を形成する
    ことを特徴とする表示装置の製造方法。
  15.  請求項14に記載された表示装置の製造方法において、
     前記平坦化補助膜形成工程では、前記平坦化補助膜を、グレートーンマスクを用いて前記額縁平坦化膜よりも厚く形成する
    ことを特徴とする表示装置の製造方法。
     
PCT/JP2018/036587 2018-09-28 2018-09-28 表示装置およびその製造方法 WO2020066020A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2018/036587 WO2020066020A1 (ja) 2018-09-28 2018-09-28 表示装置およびその製造方法
US17/279,528 US20220115475A1 (en) 2018-09-28 2018-09-28 Display device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/036587 WO2020066020A1 (ja) 2018-09-28 2018-09-28 表示装置およびその製造方法

Publications (1)

Publication Number Publication Date
WO2020066020A1 true WO2020066020A1 (ja) 2020-04-02

Family

ID=69951283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036587 WO2020066020A1 (ja) 2018-09-28 2018-09-28 表示装置およびその製造方法

Country Status (2)

Country Link
US (1) US20220115475A1 (ja)
WO (1) WO2020066020A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215349A1 (ja) * 2020-04-22 2021-10-28 東洋紡株式会社 ポリエステルフィルムとその用途
WO2022230060A1 (ja) * 2021-04-27 2022-11-03 シャープディスプレイテクノロジー株式会社 表示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11997889B2 (en) * 2018-03-30 2024-05-28 Sharp Kabushiki Kaisha Display device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032379A (ja) * 2012-08-02 2014-02-20 Samsung Display Co Ltd 有機発光表示装置
US20180090518A1 (en) * 2016-09-28 2018-03-29 Samsung Display Co., Ltd. Display device
US20180108724A1 (en) * 2016-10-17 2018-04-19 Samsung Display Co., Ltd. Organic light emitting diode display device and method for manufacturing the same
US20180145125A1 (en) * 2016-11-18 2018-05-24 Samsung Display Co., Ltd. Display device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102318953B1 (ko) * 2017-05-08 2021-10-29 엘지디스플레이 주식회사 표시 장치
KR102465376B1 (ko) * 2017-06-16 2022-11-10 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법
CN108417604B (zh) * 2018-02-27 2020-08-04 上海天马微电子有限公司 显示面板和显示装置
WO2020044439A1 (ja) * 2018-08-28 2020-03-05 シャープ株式会社 表示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014032379A (ja) * 2012-08-02 2014-02-20 Samsung Display Co Ltd 有機発光表示装置
US20180090518A1 (en) * 2016-09-28 2018-03-29 Samsung Display Co., Ltd. Display device
US20180108724A1 (en) * 2016-10-17 2018-04-19 Samsung Display Co., Ltd. Organic light emitting diode display device and method for manufacturing the same
US20180145125A1 (en) * 2016-11-18 2018-05-24 Samsung Display Co., Ltd. Display device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021215349A1 (ja) * 2020-04-22 2021-10-28 東洋紡株式会社 ポリエステルフィルムとその用途
JPWO2021215349A1 (ja) * 2020-04-22 2021-10-28
JP7447994B2 (ja) 2020-04-22 2024-03-12 東洋紡株式会社 ポリエステルフィルムとその用途
WO2022230060A1 (ja) * 2021-04-27 2022-11-03 シャープディスプレイテクノロジー株式会社 表示装置

Also Published As

Publication number Publication date
US20220115475A1 (en) 2022-04-14

Similar Documents

Publication Publication Date Title
US10446613B2 (en) Method of manufacturing an organic light emitting diode display having an auxiliary member in contact with an upper surface of an auxiliary electrode
US11552151B2 (en) Display device and method for manufacturing display device
US11864436B2 (en) Display device with frame corner and barrier wall
US9548341B2 (en) Organic light emitting diode display
WO2019186979A1 (ja) 表示装置
US20210351263A1 (en) Display device
US9911802B2 (en) Display device and method for manufacturing the same
WO2020066020A1 (ja) 表示装置およびその製造方法
US11380872B2 (en) Display device and method for manufacturing display device
CN113615319B (zh) 显示装置及其制造方法
WO2020202539A1 (ja) 表示装置およびその製造方法
WO2019186835A1 (ja) 表示装置
CN115210794B (zh) 显示装置及其制造方法
WO2019186823A1 (ja) 表示装置
WO2020174605A1 (ja) 表示装置及びその製造方法
WO2020194706A1 (ja) 表示装置
WO2020017007A1 (ja) 表示装置およびその製造方法
WO2021210067A1 (ja) 表示装置およびその製造方法
KR102532970B1 (ko) 표시장치 및 그 제조방법
WO2023218637A1 (ja) 表示装置
US20230112543A1 (en) Display device and production method therefor
WO2020179026A1 (ja) 表示装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935246

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP