WO2020065735A1 - 焼成炉 - Google Patents

焼成炉 Download PDF

Info

Publication number
WO2020065735A1
WO2020065735A1 PCT/JP2018/035504 JP2018035504W WO2020065735A1 WO 2020065735 A1 WO2020065735 A1 WO 2020065735A1 JP 2018035504 W JP2018035504 W JP 2018035504W WO 2020065735 A1 WO2020065735 A1 WO 2020065735A1
Authority
WO
WIPO (PCT)
Prior art keywords
introduction pipe
processing chamber
firing furnace
furnace according
ejection port
Prior art date
Application number
PCT/JP2018/035504
Other languages
English (en)
French (fr)
Inventor
藤田 哲生
杉本 宏
藤原 正樹
櫻井 猛久
哲憲 田中
立雪 程
幸伸 中田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to PCT/JP2018/035504 priority Critical patent/WO2020065735A1/ja
Publication of WO2020065735A1 publication Critical patent/WO2020065735A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D7/00Forming, maintaining, or circulating atmospheres in heating chambers
    • F27D7/02Supplying steam, vapour, gases, or liquids

Definitions

  • the present invention relates to a firing furnace.
  • a liquid resin material (polyimide precursor (polyamic acid) is used in order to form a flexible resin substrate (for example, polyimide film).
  • a step of baking the substrate coated with)) at a high temperature is included.
  • Patent Document 1 describes a method for manufacturing a liquid crystal display device, which includes a step of firing a resin applied on a substrate using a firing furnace.
  • JP-A-2003-107480 published date: April 9, 2003
  • one embodiment of the present invention has been made in view of the above problems, and provides a firing furnace that can prevent sublimates from adhering to the inside of an introduction pipe for introducing a cooling gas.
  • the purpose is to:
  • a firing furnace a processing chamber for firing a liquid resin material, A first introduction pipe for introducing an inert gas into the processing chamber, A second introduction pipe for introducing a cooling gas into the processing chamber, The first introduction pipe has a first ejection port for ejecting the inert gas, The second introduction pipe has a second ejection port for ejecting the cooling gas,
  • One of the first jet port and the second jet port is a firing furnace formed inside the other.
  • FIG. 3 is a view showing an outline of a firing furnace of Comparative Example 1.
  • FIG. 7 is a view showing a part of a firing furnace of Comparative Example 2. It is a figure which shows the principal part structure of the baking furnace of Embodiment 1 of this invention. It is a figure which shows the principal part structure of the baking furnace of Embodiment 2 of this invention.
  • (A) is a top view explaining the 1st jet and the 2nd jet in Embodiment 3 of the present invention
  • (B) is the 1st jet and the 2nd jet in Embodiment 1 or 2 of the present invention. It is a top view explaining a spout.
  • FIG. 1 is a diagram showing an outline of the firing furnace of the present invention.
  • the firing furnace 100 according to the present invention includes a processing chamber 6, a first introduction pipe 1, and a second introduction pipe 2.
  • a liquid resin material for example, polyamic acid
  • a baking process for forming a resin substrate used for a flexible OLED or the like is performed.
  • the baking process is performed before the step of forming a TFT layer included in, for example, an OLED (organic EL display device). The baking process is performed at a temperature equal to or higher than the maximum temperature in the TFT layer forming process.
  • the baking process in Patent Document 1 is performed at a maximum of 240 ° C.
  • the baking process of the present disclosure is performed at a much higher temperature of about 400 to 500 ° C.
  • the temperature in the processing chamber 6 is rapidly cooled to, for example, about 100 ° C. in order to take out the substrate after the firing process at an early stage.
  • first introduction pipe When firing the substrate 12 using the heater 11, an inert gas is introduced into the processing chamber 6 through the first introduction pipe 1.
  • the concentration of oxygen in the processing chamber 6 during the firing process is reduced by the inert gas.
  • nitrogen (N 2 ) may be employed as the inert gas.
  • argon (Ar) can be used as the inert gas, but nitrogen is preferable in terms of cost.
  • a cooling gas is introduced into the processing chamber 6 through the second introduction pipe 2.
  • the processing chamber 6 is cooled by the cooling gas so that the substrate 12 after the baking process is quickly taken out of the processing chamber 6.
  • the cooling gas air in a clean room in which the firing furnace 100 is placed is preferable because it can be easily and simply obtained. In this case, it is preferable to take in the air in the clean room via a filter (not shown).
  • the gas introduced from the first introduction pipe 1 or the second introduction pipe 2 can be discharged by opening the exhaust valve 13.
  • the first introduction pipe 1 has a first ejection port for ejecting an inert gas into the processing chamber 6.
  • the second introduction pipe has a second ejection port for ejecting the cooling gas into the processing chamber 6.
  • one of the first ejection port and the second ejection port is formed inside the other. That is, the first introduction pipe 1 and the second introduction pipe 2 form a double structure (details will be described later).
  • FIG. 2 is a diagram showing an outline of the firing furnace of Comparative Example 1.
  • a first introduction pipe 301 and a second introduction pipe 302 are independently installed.
  • the substrate 312 is baked by the heater 311, since a cooling gas is not introduced from the second introduction pipe 302, for example, sublimates generated by the calcination processing may adhere to the inside of the second introduction pipe 302.
  • the first introduction pipe 1 and the second introduction pipe 2 form a double structure, so that both the first introduction pipe 1 and the second introduction pipe 1 A corresponding gas flows into the processing chamber 6 from at least one of the two introduction pipes 2.
  • the sublimate can be prevented from adhering to the inside of the second introduction pipe 2, so that the adhering sublimate is peeled off by the cooling gas and the inside of the processing chamber is removed. There is no risk of being scattered.
  • the cross-sectional area of the second introduction pipe 2 is equal to the first introduction pipe. Preferably, it is larger than the cross-sectional area of the pipe 1.
  • the cross-sectional area indicates (average cross-sectional area per pipe) ⁇ (number of installed pipes).
  • the cross-sectional area of the first introduction pipe 1 is the area of a hatched area
  • the cross-sectional area of the second introduction pipe 2 is the area of a dotted area.
  • the ratio of the sectional area of the second introduction pipe 2 to the sectional area of the first introduction pipe 1 is preferably 3 to 6 times, and more preferably 4 to 5 times.
  • the number of the second introduction pipes 2 is set as follows. It is preferable that the number is larger than the number of the first introduction pipes 1 installed.
  • the pressure at which the inert gas is introduced into the processing chamber 6 is preferably 100,000 to 1,000,000 Pa, and 25,000 to 900, Pa in terms of the firing efficiency of the substrate 12 and the mass productivity of the substrate 12.
  • 000 Pa is more preferable, and 500,000 to 800,000 Pa is further preferable.
  • the pressure at which the cooling gas is introduced into the processing chamber is preferably 50,000 to 150,000 Pa, more preferably 70,000 to 135,000 Pa, and more preferably 90,000 to 135,000 Pa in terms of cooling efficiency after baking the substrate 12. 2,000 to 120,000 Pa is more preferable.
  • FIG. 4 is a diagram illustrating a main configuration of the firing furnace according to the first embodiment.
  • the first introduction pipe 1 and the second introduction pipe 2 are connected to the processing chamber 6 via the outer wall 5 of the processing chamber 6.
  • an inert gas is introduced from the first introduction part 7. Then, an inert gas is introduced into the processing chamber 6 through the first ejection section 9 including the first ejection port 9a. That is, in the first introduction pipe 1, an inert gas supply source (not shown) such as a gas cylinder is connected to the first introduction section 7. Further, in the first introduction pipe 1, an end portion is configured as a first ejection portion 9 on the processing chamber 6 side, and a first ejection port 9a is formed at a tip of the end portion. Then, in the first introduction pipe 1, an inert gas from an inert gas supply source flows into the processing chamber 6.
  • a cooling gas is introduced from the second introduction part 8. Then, the cooling gas is introduced into the processing chamber 6 through the second ejection part 10 including the second ejection port 10a. That is, in the second introduction pipe 2, for example, a cooling valve (not shown) for introducing the air in the clean room is connected to the second introduction section 8. Further, in the second introduction pipe 2, an end portion is configured as a second ejection portion 10 on the processing chamber 6 side, and a second ejection port 10a is formed at a tip of the end portion. Then, in the second introduction pipe 2, the cooling gas from the cooling valve flows into the processing chamber 6.
  • the first introduction pipe 1 is provided outside the second introduction pipe 2 so as to surround the second introduction pipe 2. That is, the first introduction pipe 1 and the second introduction pipe 2 form a double structure part, and the outer pipe in the double structure part is the first introduction pipe 1 and the inner pipe is the second introduction pipe 2.
  • first introduction pipe 1 and the second introduction pipe 2 form a double structure part, the first introduction part forming the double structure part during the baking process of the substrate 12 and the cooling process of the substrate 12.
  • an inert gas is constantly flowing out of the first introduction pipe 1, and since the inside of the processing chamber 6 is in a high temperature state, it is difficult for the sublimate to adhere to the inside of the first introduction pipe 1. Absent.
  • first introduction pipe 1 and the second introduction pipe 2 form a double structure, a pipe diameter suitable for each pipe can be adopted.
  • the flow rate of the inert gas can be set to a desired flow rate, and adhesion of sublimates to the inside of the second introduction pipe 2 can be more easily prevented.
  • FIG. 3 is a view showing a part of the firing furnace of Comparative Example 2. Since the first introduction pipe 301 and the second introduction pipe 302 have different gas flow rates, appropriate pipe diameters of the respective pipes are different. However, if it is attempted to form a collective pipe portion as in Comparative Example 2 in FIG. 3, it is necessary to adopt the pipe diameter of the second introduction pipe 302, which is a large pipe diameter. Then, when the inert gas flows into the processing chamber 306 during the baking process, a sufficient flow rate cannot be obtained, and the sublimate may flow into the piping.
  • the pipe diameters of the first inlet pipe 1 and the second inlet pipe may be the same or different throughout the entire pipe.
  • the first ejection port 9a and the second ejection port 10a are parallel to and the same as the outer wall 5 of the processing chamber 6. It is installed to be flat.
  • first introduction pipe 1 and the second introduction pipe 2 of the firing furnace shown in FIG. 7 to 9 show modified examples of the first introduction pipe 1 and the second introduction pipe 2 of the firing furnace shown in FIG.
  • a first ejection section 9 including a first ejection port 9 a is provided at a distal end on the processing chamber 6 side, and the first ejection section 9 is close to the second introduction pipe 2.
  • the baking furnace shown in FIG. 4 is different from the baking furnace shown in FIG. That is, the first ejection portion 9 has a tapered shape that tapers from the inert gas introduction side toward the front end on the processing chamber 6 side.
  • the baking furnace shown in FIG. 8 differs from the baking furnace shown in FIG. 4 in that the first introduction pipe 1 and the second introduction pipe 2 protrude inside the processing chamber 6. As shown in FIG. 8, the first introduction pipe 1 and the second introduction pipe 2 may be made to protrude into the processing chamber 6, or one of the first introduction pipe 1 and the second introduction pipe 2 may be connected to the processing chamber 6. You may make it protrude inward.
  • the first ejection port 9a protrudes more inside the processing chamber 6 than the second ejection port 10a, the first introduction pipe 1 and the second introduction pipe 2 in the processing chamber 6 are heated by the heat of the processing chamber 6. warm. Furthermore, the flow of the inert gas makes it difficult for the sublimate to penetrate to the second ejection port 10a, thereby making it more difficult for the sublimate to adhere.
  • the baking furnace shown in FIG. 9 differs from the baking furnace shown in FIG. 4 in that the outer pipe of the double structure portion is the second introduction pipe 2 and the inner pipe is the first introduction pipe 1. That is, the second introduction pipe 2 is provided outside the first introduction pipe 1 so as to surround the first introduction pipe 1.
  • the outer pipe of the double structure portion is the second introduction pipe 2
  • the inner pipe is the first introduction pipe 1
  • the second ejection section 10 including the second ejection port 10 a is a processing chamber.
  • the second furnace 10 is different from the baking furnace shown in FIG. 4 in that the second ejection part 10 has an inclined shape 10 b that is inclined so as to be close to the first introduction pipe 1.
  • FIG. 5 is a diagram showing a configuration of a main part of the firing furnace according to the second embodiment of the present invention.
  • the point that the first ejection port 9a of the first introduction pipe 1 is located on the inner side of the processing chamber 6 with respect to the second ejection port 10a of the second introduction pipe 2 is different from that of FIG. Is different from the firing furnace shown in FIG. That is, the first introduction pipe 1 as an outer pipe is connected to the processing chamber 6 through the outer wall 5 of the processing chamber 6. With this configuration, it is possible to further suppress the sublimate generated by the firing treatment from adhering to the pipe.
  • the first ejection port 9a and the second ejection port 10a are parallel to and flush with the outer wall 5 of the processing chamber 6. It may be installed as follows.
  • the baking furnace shown in FIG. 10 differs from the baking furnace shown in FIG. 4 in that the outer pipe of the double structure portion is the second introduction pipe 2 and the inner pipe is the first introduction pipe 1. That is, the second introduction pipe 2 is provided outside the first introduction pipe 1 so as to surround the first introduction pipe 1.
  • FIG. 6A is a plan view for explaining a first jet port and a second jet port in the firing furnace according to Embodiment 3 of the present invention, and is a double view of a first inlet pipe 1 and a second inlet pipe 2. It is a top view in a structure part.
  • FIG. 6B is a plan view illustrating a first jet port and a second jet port in the firing furnace according to the first or second embodiment of the present invention. It is a top view in a double structure part.
  • the sectional shapes of the first introduction pipe 1 and the second introduction pipe 2 in the baking furnace of Embodiment 3 are the first ejection port corresponding to the front end on the processing chamber 6 side and the first ejection port.
  • the baking furnace according to the third embodiment makes it easy to pour an inert gas into the center of the second introduction pipe 2. Thereby, the adhesion of the sublimate generated by the baking treatment to the second introduction pipe 2 can be suppressed.
  • the first ejection port of the first introduction pipe may be provided inside the processing chamber with respect to the second ejection port of the second introduction pipe. Further, a first ejection section including a first ejection port is provided at a front end portion on the processing chamber side, and the first ejection section has an inclined shape that is inclined so as to approach the second introduction pipe. Is also good. Further, the first introduction pipe and the second introduction pipe may protrude inside the processing chamber.
  • a firing furnace includes a processing chamber for firing a liquid resin material, A first introduction pipe for introducing an inert gas into the processing chamber, A second introduction pipe for introducing a cooling gas into the processing chamber, The first introduction pipe has a first ejection port for ejecting the inert gas, The second introduction pipe has a second ejection port for ejecting the cooling gas, One of the first ejection port and the second ejection port is formed inside the other.
  • the first introduction pipe is provided outside the second introduction pipe so as to surround the second introduction pipe.
  • the firing furnace according to aspect 3 of the present invention is provided such that the first ejection port and the second ejection port are parallel to and flush with the outer wall of the processing chamber.
  • the first ejection port is provided on the inner side of the processing chamber with respect to the second ejection port.
  • the firing furnace according to aspect 5 of the present invention is provided such that the first ejection port is parallel to and flush with the outer wall of the processing chamber.
  • a first ejection section including the first ejection port is provided at a tip end on the processing chamber side, and the first ejection section includes the first ejection section, It has an inclined shape that is inclined so as to approach the second introduction pipe.
  • the first introduction pipe protrudes inside the processing chamber.
  • the second introduction pipe protrudes inside the processing chamber.
  • the first ejection port protrudes more toward the inside of the processing chamber than the second ejection port.
  • the second introduction pipe is provided outside the first introduction pipe so as to surround the first introduction pipe.
  • a firing furnace is provided such that the first ejection port and the second ejection port are parallel to and flush with the outer wall of the processing chamber.
  • the second ejection port is provided on the inner side of the processing chamber with respect to the first ejection port.
  • a second ejection unit including the second ejection port is provided at a tip end on the processing chamber side, and the second ejection unit includes the second ejection port. It has an inclined shape that is inclined so as to approach the first introduction pipe.
  • the second introduction pipe protrudes inside the processing chamber.
  • the first introduction pipe projects into the processing chamber.
  • the cross-sectional area of the second introduction pipe is larger than the cross-sectional area of the first introduction pipe.
  • the number of the second introduction pipes is greater than the number of the first introduction pipes.
  • the firing furnace according to aspect 18 of the present invention is characterized in that, in the first introduction pipe and the second introduction pipe, a cross-sectional shape of a front end of the processing chamber side is directed toward the corresponding first ejection port and the second ejection port. It is a substantially trumpet shape that spreads out.
  • the inert gas is nitrogen (N 2 ).
  • the cooling gas is air in a clean room.
  • the display device may include a display panel having a flexible and bendable display element, and a flexible display panel is preferable.
  • the display element includes a display element whose luminance and transmittance are controlled by a current, and a display element whose luminance and transmittance is controlled by a voltage.
  • the display device according to the present invention may include an OLED (Organic Light Emitting Diode) as a current control display element.
  • the display device according to the present embodiment may be an organic EL (Electro Luminescence) display.
  • the display device according to the present invention may include an inorganic light emitting diode as a current control display element.
  • the display device according to the present embodiment may be a QLED display including an EL display QLED (Quantum dot Light Emitting Diode: quantum dot light emitting diode) such as an inorganic EL display.
  • QLED Quantum dot Light Emitting Diode: quantum dot light emitting diode
  • a display element for voltage control there is a liquid crystal display element or the like.
  • Second introduction section 9 First ejection section 9a First ejection port 9b, 10b Inclined shape 10 Second ejection section 10a Second ejection port 11, 311 Heater 12, 312 Substrate 13, 313 Exhaust valve 100, 300 Firing furnace

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Furnace Details (AREA)

Abstract

焼成炉は、処理チャンバー(6)と、第1導入配管(1)と、第2導入配管(2)と、を備え、第1導入配管(1)は不活性ガスを噴出する第1噴出口(9a)を有し、第2導入配管(2)は冷却用ガスを噴出する第2噴出口(10a)を有し、第1噴出口(9a)及び前記第2噴出口(10a)の一方が、他方の内部に形成されている。

Description

焼成炉
 本発明は、焼成炉に関する。
 有機発光ダイオード(OLED:Organic Light Emitting Diode)を備える表示装置の製造工程において、フレキシブルな樹脂基板(例えば、ポリイミド膜)を形成するために、例えば、液状の樹脂材料(ポリイミドの前駆体(ポリアミック酸))を塗布した基板を高温で焼成処理する工程が含まれる場合がある。例えば、特許文献1には、焼成炉を用いて、基板上に塗布した樹脂を焼成する工程を含む、液晶表示装置の製造方法が記載されている。
日本国公開特許公報「特開2003-107480号公報」(公開日:2003年4月9日)
 上記のような液状に樹脂材料を高温で焼成処理すると、昇華物が発生する。該昇華物は、比較的温度が低い箇所、例えば、焼成炉を冷却するための冷却用ガスを導入する導入配管(第2導入配管)の内部に付着することがあった。
 そこで、本発明の一態様は、上記の問題点に鑑みてなされたものであり、冷却用ガスを導入する導入配管の内部に昇華物が付着するのを防止することができる焼成炉を提供することを目的とする。
 本発明の一態様に係る焼成炉は、液状の樹脂材料を焼成処理する処理チャンバーと、
 前記処理チャンバー内に不活性ガスを導入する第1導入配管と、
 前記処理チャンバー内に冷却用ガスを導入する第2導入配管と、を備える焼成炉であって、
 前記第1導入配管は、前記不活性ガスを噴出する第1噴出口を有し、
 前記第2導入配管は、前記冷却用ガスを噴出する第2噴出口を有し、
 前記第1噴出口及び前記第2噴出口の一方が、他方の内部に形成されている、焼成炉である。
 本発明の一態様によれば、冷却用ガスを導入する導入配管の内部に昇華物が付着するのを防止することができる。
本発明の焼成炉の概要を示す図である。 比較例1の焼成炉の概要を示す図である。 比較例2の焼成炉の一部を示す図である。 本発明の実施形態1の焼成炉の要部構成を示す図である。 本発明の実施形態2の焼成炉の要部構成を示す図である。 (A)は本発明の実施形態3での第1噴出口及び第2噴出口を説明する平面図であり、(B)は本発明の実施形態1又は2での第1噴出口及び第2噴出口を説明する平面図である。 本発明の実施形態1の変形例の焼成炉の要部構成を示す図である。 本発明の実施形態1の変形例の焼成炉の要部構成を示す図である。 本発明の実施形態1の変形例の焼成炉の要部構成を示す図である。 本発明の実施形態2の変形例の焼成炉の要部構成を示す図である。 本発明の実施形態1の変形例の焼成炉の要部構成を示す図である。 本発明の実施形態1の変形例の焼成炉の要部構成を示す図である。
 図1は、本発明の焼成炉の概要を示す図である。図1に示すように、本発明に係る焼成炉100は、処理チャンバー6と、第1導入配管1と、第2導入配管2と、を備える。
 (処理チャンバー)
 処理チャンバー6において、例えば、ポリイミド樹脂からなるフレキシブルな樹脂基板を形成するために、液状の樹脂材料(例えば、ポリアミック酸)を焼成処理する。なお、本開示の処理チャンバー6では、フレキシブルOLED等に用いられる樹脂基板を形成するための焼成処理が行われる。つまり、上記特許文献1での焼成処理と異なり、本開示の処理チャンバー6では、例えばOLED(有機EL表示装置)に含まれたTFT層の形成工程の前において、焼成処理が実行されるため、TFT層の形成工程での最高温度以上の温度で焼成処理が行われる。具体的には、上記特許部文献1での焼成処理は、最高240℃であるのに対して、本開示の焼成処理では、400~500℃位の遥かに高温で実行される。また、後述の冷却処理では、焼成処理後の基板を早期に取り出すために、処理チャンバー6内の温度を、例えば100℃程度に急冷するように行われる。
 (第1導入配管)
 ヒーター11を使用して基板12を焼成するとき、第1導入配管1を通じて、処理チャンバー6内に不活性ガスが導入される。不活性ガスにより、焼成処理時の処理チャンバー6内の酸素濃度を下げる。本実施形態においては、不活性ガスとして、窒素(N)を採用してもよい。なお、不活性ガスとして、例えば、アルゴン(Ar)を使用することも可能であるが、コスト安価な点で窒素が好ましい。
 (第2導入配管)
 第2導入配管2を通じて、処理チャンバー6内に冷却用ガスが導入される。冷却用ガスにより、焼成処理後の基板12を処理チャンバー6内から早急に取り出すために、当該処理チャンバー6を冷却する。冷却用ガスとして、簡単かつ簡便に入手することができる等で、焼成炉100が載置されたクリーンルーム内の空気が好ましい。尚、この場合、図略のフィルターを介してクリーンルーム内の空気を取り込むことが好ましい。
 処理チャンバー6に液状の樹脂材料を塗布した基板12を配置し、基板12をヒーター11により焼成処理するときは、第1バルブ3を開放し、第2バルブ4を閉じる。基板12を焼成後、冷却するときは第1バルブ3を閉じ、第2バルブ4を開放する。なお、この説明以外に、冷却するときには、第1バルブ3及び第2バルブ4を開放したり、冷却が開始されてしばらくしてから第1バルブ3を閉じ、かつ第2バルブ4を開放したりしてもよい。
 第1導入配管1又は第2導入配管2から導入されたガスは、排気バルブ13を開放することにより、排出することができる。
 (第1噴出口と第2噴出口)
 第1導入配管1は、処理チャンバー6内に不活性ガスを噴出する第1噴出口を有する。第2導入配管は、処理チャンバー6内に冷却用ガスを噴出する第2噴出口を有する。そして、焼成炉100は、第1噴出口及び前記第2噴出口の一方が、他方の内部に形成されている。すなわち、第1導入配管1と第2導入配管2とが二重構造部を形成している(詳細は後述)。
 (比較例1の焼成炉との比較)
 図2は、比較例1の焼成炉の概要を示す図である。図2に示すように、比較例1の焼成炉300は、第1導入配管301と第2導入配管302とがそれぞれ独立に設置されている。基板312をヒーター311により焼成処理するとき、第2導入配管302から冷却用ガスが導入されないので、例えば、第2導入配管302の内部に、焼成処理により発生する昇華物が付着することがある。
 一方、本開示の焼成炉は、第1導入配管1と第2導入配管2とが二重構造部を形成することにより、焼成処理時及び冷却処理時の双方において、第1導入配管1及び第2導入配管2の少なくとも一方から対応するガスを処理チャンバー6内に流入する。これにより、本実施形態では、冷却処理時に使用される第2導入配管2の内部に昇華物が付着するのを防止することができる。また、このように、本開示の焼成炉では、第2導入配管2の内部に昇華物が付着することを防止することができるので、付着した昇華物が冷却用ガスによって剥離されて処理チャンバー内に飛散されるおそれがない。さらに、剥離した昇華物による処理チャンバー内の汚染や樹脂基板での欠陥の発生を防ぐことができ、ひいては樹脂基板の歩留り低下を防止することができる。
 (第1導入配管と第2導入配管の断面積比)
 基板12の焼成後の冷却効率や焼成後の基板12を処理チャンバー6からの取り出しに要する時間短縮、ひいては基板12の量産性等の観点で、第2導入配管2の断面積は、第1導入配管1の断面積よりも大きいことが好ましい。本明細書において、断面積とは、(配管1本当たりの平均断面積)×(設置本数)を示す。例えば、図6(A)において、第1導入配管1の断面積は斜線を付した領域の面積であり、第2導入配管2の断面積は点線を付した領域の面積である。そして、本開示では、第1導入配管1の断面積に対する、第2導入配管2の断面積の割合は、3~6倍が好ましく、4~5倍がより好ましい。
 (第1導入配管と第2導入配管の設置数)
 同様に、基板12の焼成後の冷却効率や焼成後の基板12を処理チャンバー6からの取り出しに要する時間短縮、ひいては基板12の量産性等の観点で、第2導入配管2の設置数は、第1導入配管1の設置数よりも多いことが好ましい。
 (ガス導入圧力)
 不活性ガスを処理チャンバー6内に導入するときの圧力は、基板12の焼成効率及び基板12の量産性等の点で、100,000~1,000,000Paが好ましく、25,000~900,000Paがより好ましく、500,000~800,000Paがさらに好ましい。
 冷却用ガスを処理チャンバー内に導入するときの圧力は、基板12の焼成後の冷却効率等の点で、50,000~150,000Paが好ましく、70,000~135,000Paがより好ましく、90,000~120,000Paがさらに好ましい。
 〔実施形態1〕
 図4に基づいて、実施形態1の焼成炉について説明する。図4は、実施形態1の焼成炉の要部構成を示す図である。処理チャンバー6に、第1導入配管1及び第2導入配管2が処理チャンバー6の外壁5を介して接続している。
 第1導入配管1において、第1導入部7から不活性ガスを導入する。そして、第1噴出口9aを含む第1噴出部9を通じて、不活性ガスが処理チャンバー6内に導入される。すなわち、第1導入配管1では、第1導入部7にガスボンベ等の不活性ガス供給源(図示せず)が接続されている。また、第1導入配管1では、処理チャンバー6側に端部が第1噴出部9として構成されており、当該端部の先端に第1噴出口9aが形成されている。そして、第1導入配管1では、不活性ガス供給源からの不活性ガスを処理チャンバー6内に流し込む。
 第2導入配管2において、第2導入部8から冷却用ガスを導入する。そして、第2噴出口10aを含む第2噴出部10を通じて、冷却用ガスが処理チャンバー6内に導入される。すなわち、第2導入配管2では、第2導入部8に、例えば上記クリーンルーム内の空気を導入するための冷却用バルブ(図示せず)が接続されている。また、第2導入配管2では、処理チャンバー6側に端部が第2噴出部10として構成されており、当該端部の先端に第2噴出口10aが形成されている。そして、第2導入配管2では、冷却用バルブからの冷却用ガスを処理チャンバー6内に流し込む。
 第1導入配管1は、第2導入配管2を囲むように、第2導入配管2の外側に設けられている。すなわち、第1導入配管1と第2導入配管2とが二重構造部を形成し、二重構造部における外管が第1導入配管1、内管が第2導入配管2である。
 また、第1導入配管1と第2導入配管2とが二重構造部を形成することにより、基板12の焼成処理及び基板12の冷却処理のときに、二重構造部を形成する第1導入配管1又は第2導入配管2からガスが処理チャンバー6内に流入する。それにより、焼成処理により発生する昇華物の第2導入配管2内への流入を防ぐことができる。なお、焼成処理中は、第1導入配管1から不活性ガスが常に流出されており、また処理チャンバー6内が高温状態であることから第1導入配管1の内部に昇華物が付着することはない。
 また、第1導入配管1と第2導入配管2とが二重構造部を形成することにより、各配管に適した配管径を採用することができる。それにより、不活性ガスの流速を所望の流速に設定することができ、第2導入配管2の内部への昇華物の付着をより容易に防止することができる。
 図3は、比較例2の焼成炉の一部を示す図である。第1導入配管301と第2導入配管302は、ガス流量が異なるため、配管それぞれの適する配管径が異なる。しかしながら、図3の比較例2のように、集合配管部を形成させようとすると、集合配管部の配管径は太い配管径である、第2導入配管302の配管径を採用する必要がある。そうすると、焼成処理時に不活性ガスを処理チャンバー306内に流入させるときに、十分な流速が得られず、昇華物が配管内に流入する可能性がある。
 第1導入配管1及び第2導入配管の配管径はそれぞれ、配管全体を通じて同一であってもよく、異なっていてもよい。
 また、本実施形態では、図4に示すように、第1導入配管1及び第2導入配管2において、第1噴出口9a及び第2噴出口10aは、処理チャンバー6の外壁5と平行かつ同一平面になるように設置されている。
 図4に示す焼成炉の第1導入配管1及び第2導入配管2は、種々の変更が可能である。図7~9は、図1に示す焼成炉の第1導入配管1及び第2導入配管2の変形例である。
 (変形例1)
 図7に示す焼成炉では、第1噴出口9aを含む第1噴出部9が、処理チャンバー6側の先端部に設けられ、第1噴出部9が、第2導入配管2に対して近接するように傾斜する傾斜形状9bを有する点が、図4に示す焼成炉と相違する。すなわち、第1噴出部9は、不活性ガス導入側から処理チャンバー6側の先端部に向かって先細りになっているテーパー形状を有する。
 (変形例2)
 図8に示す焼成炉では、第1導入配管1及び第2導入配管2が、処理チャンバー6の内部側に突出している点が、図4に示す焼成炉と相違する。図8のように、第1導入配管1及び第2導入配管2を処理チャンバー6の内部側に突出させてもよいし、第1導入配管1又は第2導入配管2の一方を処理チャンバー6の内部側に突出させてもよい。
 第1噴出口9aが第2噴出口10aよりも処理チャンバー6の内部側に突出していることにより、処理チャンバー6の熱により、処理チャンバー6内の第1導入配管1および第2導入配管2を温める。さらに、不活性ガスの流れにより、第2噴出口10aまで昇華物が侵入しにくく、より、昇華物を付着させにくくすることができる。
 (変形例3)
 図9に示す焼成炉では、二重構造部の外管が第2導入配管2、内管が第1導入配管1である点が、図4に示す焼成炉と相違する。すなわち、第2導入配管2は、第1導入配管1を囲むように、第1導入配管1の外側に設けられている。
 (変形例4)
 図11に示す焼成炉では、二重構造部の外管が第2導入配管2、内管が第1導入配管1である点、第2噴出口10aを含む第2噴出部10が、処理チャンバー6側の先端部に設けられ、第2噴出部10が、第1導入配管1に対して近接するように傾斜する傾斜形状10bを有する点が、図4に示す焼成炉と相違する。
 (変形例5)
 図12に示す焼成炉では、二重構造部の外管が第2導入配管2、内管が第1導入配管1である点、第1導入配管1及び第2導入配管2が、処理チャンバー6の内部側に突出している点が、図4に示す焼成炉と相違する。
 〔実施形態2〕
 次に、図5に基づいて、本発明の実施形態2の焼成炉について説明する。なお、以下の各実施形態についての説明では、既に説明した内容は説明せず、相違点を中心に説明する。
 図5は、本発明の実施形態2の焼成炉の要部構成を示す図である。
 実施形態2の焼成炉において、第1導入配管1の第1噴出口9aが、第2導入配管2の第2噴出口10aよりも処理チャンバー6の内部側に設置されている点が、図4に示す焼成炉と相違する。つまり、外管である第1導入配管1が、処理チャンバー6の外壁5を通じて、処理チャンバー6に接続している。この構成により、焼成処理により発生する昇華物の配管への付着をさらに抑制することができる。
 また、本実施形態2の焼成炉に関し、第1導入配管1及び第2導入配管2において、第1噴出口9a及び第2噴出口10aは、処理チャンバー6の外壁5と平行かつ同一平面になるように設置されていてもよい。
 (変形例)
 図10に示す焼成炉では、二重構造部の外管が第2導入配管2、内管が第1導入配管1である点が、図4に示す焼成炉と相違する。すなわち、第2導入配管2は、第1導入配管1を囲むように、第1導入配管1の外側に設けられている。
 〔実施形態3〕
 次に、図6に基づいて、本発明の実施形態3について説明する。
 図6の(A)は本発明の実施形態3の焼成炉における、第1噴出口及び第2噴出口を説明する平面図であり、第1導入配管1と第2導入配管2との二重構造部における平面図である。図6の(B)は本発明の実施形態1又は2の焼成炉での第1噴出口及び第2噴出口を説明する平面図であり、第1導入配管1と第2導入配管2との二重構造部における平面図である。図6の(A)に示すように、実施形態3の焼成炉における第1導入配管1及び第2導入配管2の断面形状は、処理チャンバー6側の先端部が対応する第1噴出口及び前記第2噴出口に向かって断面形状が広がる略ラッパ形状である。図6の(B)に示すように、実施形態1又は2の焼成炉における第1導入配管1及び第2導入配管2の断面形状は、円形である。実施形態3の焼成炉によって、第2導入配管2の中心に不活性ガスを流し込みやすい。それによって、焼成処理により発生する昇華物の第2導入配管2への付着を抑制することができる。
 実施形態3の焼成炉において、第1導入配管の第1噴出口が、第2導入配管の第2噴出口よりも処理チャンバーの内部側に設置されていてもよい。また、第1噴出口を含む第1噴出部が、処理チャンバー側の先端部に設けられ、第1噴出部が、第2導入配管に対して近接するように傾斜する傾斜形状を有していてもよい。また、第1導入配管及び第2導入配管が、処理チャンバーの内部側に突出していてもよい。
 (まとめ)
 本発明の態様1に係る焼成炉は、液状の樹脂材料を焼成処理する処理チャンバーと、
 前記処理チャンバー内に不活性ガスを導入する第1導入配管と、
 前記処理チャンバー内に冷却用ガスを導入する第2導入配管と、を備える焼成炉であって、
 前記第1導入配管は、前記不活性ガスを噴出する第1噴出口を有し、
 前記第2導入配管は、前記冷却用ガスを噴出する第2噴出口を有し、
 前記第1噴出口及び前記第2噴出口の一方が、他方の内部に形成されている。
 本発明の態様2に係る焼成炉は、前記第1導入配管が、前記第2導入配管を囲むように、前記第2導入配管の外側に設けられている。
 本発明の態様3に係る焼成炉は、前記第1噴出口及び前記第2噴出口が、前記処理チャンバーの外壁と平行かつ同一平面になるように設けられている。
 本発明の態様4に係る焼成炉は、前記第1噴出口が、前記第2噴出口よりも前記処理チャンバーの内部側に設けられている。
 本発明の態様5に係る焼成炉は、前記第1噴出口が前記処理チャンバーの外壁と平行かつ同一平面になるように設けられている。
 本発明の態様6に係る焼成炉は、前記第1導入配管では、前記第1噴出口を含む第1噴出部が、前記処理チャンバー側の先端部に設けられ、前記第1噴出部が、前記第2導入配管に対して近接するように傾斜する傾斜形状を有する。
 本発明の態様7に係る焼成炉は、前記第1導入配管が、前記処理チャンバーの内部側に突出している。
 本発明の態様8に係る焼成炉は、前記第2導入配管が、前記処理チャンバーの内部側に突出している。
 本発明の態様9に係る焼成炉は、前記第1噴出口は、前記第2噴出口よりも前記処理チャンバーの内部側に突出している。
 本発明の態様10に係る焼成炉は、前記第2導入配管が、前記第1導入配管を囲むように、前記第1導入配管の外側に設けられている。
 本発明の態様11に係る焼成炉は、前記第1噴出口及び第2噴出口が、前記処理チャンバーの外壁と平行かつ同一平面になるように設けられている。
 本発明の態様12に係る焼成炉は、前記第2噴出口が、前記第1噴出口よりも前記処理チャンバーの内部側に設けられている。
 本発明の態様13に係る焼成炉は、前記第2導入配管では、前記第2噴出口を含む第2噴出部が、前記処理チャンバー側の先端部に設けられ、前記第2噴出部が、前記第1導入配管に対して近接するように傾斜する傾斜形状を有する。
 本発明の態様14に係る焼成炉は、前記第2導入配管が、前記処理チャンバーの内部側に突出している。
 本発明の態様15に係る焼成炉は、前記第1導入配管が、前記処理チャンバーの内部側に突出している。
 本発明の態様16に係る焼成炉は、前記第2導入配管の断面積が、前記第1導入配管の断面積よりも大きい。
 本発明の態様17に係る焼成炉は、前記第2導入配管の設置数が、前記第1導入配管の設置数よりも多い。
 本発明の態様18に係る焼成炉は、前記第1導入配管及び前記第2導入配管において、前記処理チャンバー側の先端部が対応する前記第1噴出口及び前記第2噴出口に向かって断面形状が広がる略ラッパ形状である。
 本発明の態様19に係る焼成炉は、前記不活性ガスが、窒素(N)である。
 本発明の態様20に係る焼成炉は、前記冷却用ガスが、クリーンルーム内の空気である。
 なお、本発明に関係する表示装置は、柔軟性を有し、屈曲可能な表示素子を備えた表示パネルを備えていてもよく、可撓性表示パネルが好適である。前記表示素子は、電流によって輝度や透過率が制御される表示素子と、電圧によって輝度や透過率が制御される表示素子とがある。
 例えば、本発明に係る表示装置は、電流制御の表示素子として、OLED(Organic Light Emitting Diode:有機発光ダイオード)を備えていてもよい。この場合、本実施形態に係る表示デバイスは、有機EL(Electro Luminescence:エレクトロルミネッセンス)ディスプレイであってもよい。
 または、本発明に係る表示装置は、電流制御の表示素子として、無機発光ダイオードを備えていてもよい。この場合、本実施形態に係る表示デバイスは、無機ELディスプレイ等のELディスプレイQLED(Quantum dot Light Emitting Diode:量子ドット発光ダイオード)を備えた、QLEDディスプレイであってもよい。
 また、電圧制御の表示素子としては、液晶表示素子等がある。
 (付記事項)
 本発明は上述した各実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。さらに、各実施形態にそれぞれ開示された技術的手段を組み合わせることにより、新しい技術的特徴を形成することができる。
 1、301   第1導入配管
 2、302   第2導入配管
 3、303   第1バルブ
 4、304   第2バルブ
 5   (処理チャンバーの)外壁(壁面)
 6、306   処理チャンバー
 7   第1導入部
 8   第2導入部
 9   第1噴出部
 9a  第1噴出口
 9b、10b   傾斜形状
 10  第2噴出部
 10a   第2噴出口
 11、311   ヒーター
 12、312   基板
 13、313   排気バルブ
 100、300  焼成炉

Claims (20)

  1.  液状の樹脂材料を焼成処理する処理チャンバーと、
     前記処理チャンバー内に不活性ガスを導入する第1導入配管と、
     前記処理チャンバー内に冷却用ガスを導入する第2導入配管と、を備える焼成炉であって、
     前記第1導入配管は、前記不活性ガスを噴出する第1噴出口を有し、
     前記第2導入配管は、前記冷却用ガスを噴出する第2噴出口を有し、
     前記第1噴出口及び前記第2噴出口の一方が、他方の内部に形成されている、焼成炉。
  2.  前記第1導入配管が、前記第2導入配管を囲むように、前記第2導入配管の外側に設けられている、請求項1に記載の焼成炉。
  3.  前記第1噴出口及び前記第2噴出口が、前記処理チャンバーの外壁と平行かつ同一平面になるように設けられている、請求項2に記載の焼成炉。
  4.  前記第1噴出口が、前記第2噴出口よりも前記処理チャンバーの内部側に設けられている、請求項2に記載の焼成炉。
  5.  前記第1噴出口が前記処理チャンバーの外壁と平行かつ同一平面になるように設けられている、請求項4に記載の焼成炉。
  6.  前記第1導入配管では、前記第1噴出口を含む第1噴出部が、前記処理チャンバー側の先端部に設けられ、
     前記第1噴出部が、前記第2導入配管に対して近接するように傾斜する傾斜形状を有する、請求項2~5のいずれか1項に記載の焼成炉。
  7.  前記第1導入配管が、前記処理チャンバーの内部側に突出している、請求項2~6のいずれか1項に記載の焼成炉。
  8.  前記第2導入配管が、前記処理チャンバーの内部側に突出している、請求項7に記載の焼成炉。
  9.  前記第1噴出口は、前記第2噴出口よりも前記処理チャンバーの内部側に突出している、請求項8に記載の焼成炉。
  10.  前記第2導入配管が、前記第1導入配管を囲むように、前記第1導入配管の外側に設けられている、請求項1に記載の焼成炉。
  11.  前記第1噴出口及び第2噴出口が、前記処理チャンバーの外壁と平行かつ同一平面になるように設けられている、請求項10に記載の焼成炉。
  12.  前記第2噴出口が、前記第1噴出口よりも前記処理チャンバーの内部側に設けられている、請求項10に記載の焼成炉。
  13.  前記第2導入配管では、前記第2噴出口を含む第2噴出部が、前記処理チャンバー側の先端部に設けられ、
     前記第2噴出部が、前記第1導入配管に対して近接するように傾斜する傾斜形状を有する、請求項10~12のいずれか1項に記載の焼成炉。
  14.  前記第2導入配管が、前記処理チャンバーの内部側に突出している、請求項10~13のいずれか1項に記載の焼成炉。
  15.  前記第1導入配管が、前記処理チャンバーの内部側に突出している、請求項14に記載の焼成炉。
  16.  前記第2導入配管の断面積が、前記第1導入配管の断面積よりも大きい、請求項1~15のいずれか1項に記載の焼成炉。
  17.  前記第2導入配管の設置数が、前記第1導入配管の設置数よりも多い、請求項1~16のいずれか1項に記載の焼成炉。
  18.  前記第1導入配管及び前記第2導入配管において、前記処理チャンバー側の先端部が対応する前記第1噴出口及び前記第2噴出口に向かって断面形状が広がる略ラッパ形状である、請求項1~15のいずれか1項に記載の焼成炉。
  19.  前記不活性ガスが、窒素(N)である、請求項1~18のいずれか1項に記載の焼成炉。
  20.  前記冷却用ガスが、クリーンルーム内の空気である、請求項1~19のいずれか1項に記載の焼成炉。
     
     
     
     
     
PCT/JP2018/035504 2018-09-25 2018-09-25 焼成炉 WO2020065735A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035504 WO2020065735A1 (ja) 2018-09-25 2018-09-25 焼成炉

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/035504 WO2020065735A1 (ja) 2018-09-25 2018-09-25 焼成炉

Publications (1)

Publication Number Publication Date
WO2020065735A1 true WO2020065735A1 (ja) 2020-04-02

Family

ID=69950399

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035504 WO2020065735A1 (ja) 2018-09-25 2018-09-25 焼成炉

Country Status (1)

Country Link
WO (1) WO2020065735A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140465A (ja) * 1993-11-15 1995-06-02 Sharp Corp 樹脂膜の焼成方法および焼成装置
JP2000047232A (ja) * 1998-07-31 2000-02-18 Hitachi Ltd 液晶表示装置の製造方法
JP2011145058A (ja) * 2010-01-14 2011-07-28 Samsung Electro-Mechanics Co Ltd セラミック製品用焼成炉及びこれを利用した焼成方法
JP2013171757A (ja) * 2012-02-22 2013-09-02 Ngk Insulators Ltd 不活性ガスパージ方法
JP2016055541A (ja) * 2014-09-10 2016-04-21 東京応化工業株式会社 焼成装置、焼成方法、製造システム、及び製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07140465A (ja) * 1993-11-15 1995-06-02 Sharp Corp 樹脂膜の焼成方法および焼成装置
JP2000047232A (ja) * 1998-07-31 2000-02-18 Hitachi Ltd 液晶表示装置の製造方法
JP2011145058A (ja) * 2010-01-14 2011-07-28 Samsung Electro-Mechanics Co Ltd セラミック製品用焼成炉及びこれを利用した焼成方法
JP2013171757A (ja) * 2012-02-22 2013-09-02 Ngk Insulators Ltd 不活性ガスパージ方法
JP2016055541A (ja) * 2014-09-10 2016-04-21 東京応化工業株式会社 焼成装置、焼成方法、製造システム、及び製造方法

Similar Documents

Publication Publication Date Title
JP4513329B2 (ja) 処理装置
TWI662993B (zh) 噴頭組件及處理腔室
US8915775B2 (en) Exhaust system
TW201109464A (en) Vapor-phase growth apparatus and vapor-phase growth method
TWI684205B (zh) 原子層成長裝置
TW200827477A (en) Reaction chamber, and apparatus and system of collecting carbon nano tube having the same
TW201446330A (zh) 處理腔室中之清洗及電漿抑制方法及設備
TWI628135B (zh) 薄膜剝離設備
JP2009224775A (ja) ガス供給装置、成膜装置及び成膜方法
JP2005129712A (ja) シャワーヘッド構造及びこれを用いた成膜装置
JP2007024378A (ja) 熱処理装置
WO2020065735A1 (ja) 焼成炉
TWI834901B (zh) 用於在基板上形成薄膜的蒸發器腔室
JP2001140054A (ja) 真空成膜装置のクリーニング方法及び真空成膜装置
TWI312812B (ja)
US7081276B2 (en) Method for thermally spraying a film on an inner face of a bore with a spiraling vapor current
TWI447249B (zh) 混合氣體供給系統、濺鍍裝置及濺鍍方法
WO2014054511A1 (ja) 基板焼成装置
TWI311590B (ja)
JP6620234B2 (ja) 基板を保持するためのキャリア、処理システムでのキャリアの使用、キャリアを用いる処理システム、及び基板の温度を制御するための方法
JP4844206B2 (ja) Cvd装置
JP2004207225A (ja) プラズマディスプレイパネルの焼成炉及びプラズマディスプレイパネルの製造方法
KR20050017991A (ko) 엘씨디 글라스 오븐 쳄버의 유해 증기 제거 방법 및 장치
JP4133178B2 (ja) プラズマディスプレイパネルの連続焼成炉及びプラズマディスプレイパネルの製造方法
JPS62207738A (ja) ガラス繊維製造用ブツシング

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP