WO2020064210A1 - Système de piles à combustible et procédé pour faire fonctionner un système de piles à combustible - Google Patents

Système de piles à combustible et procédé pour faire fonctionner un système de piles à combustible Download PDF

Info

Publication number
WO2020064210A1
WO2020064210A1 PCT/EP2019/071773 EP2019071773W WO2020064210A1 WO 2020064210 A1 WO2020064210 A1 WO 2020064210A1 EP 2019071773 W EP2019071773 W EP 2019071773W WO 2020064210 A1 WO2020064210 A1 WO 2020064210A1
Authority
WO
WIPO (PCT)
Prior art keywords
coolant
cooler
fuel cell
coolant pump
bypass line
Prior art date
Application number
PCT/EP2019/071773
Other languages
German (de)
English (en)
Inventor
Markus Ruf
Hannah Staub
Original Assignee
Audi Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Audi Ag filed Critical Audi Ag
Publication of WO2020064210A1 publication Critical patent/WO2020064210A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04007Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids related to heat exchange
    • H01M8/04029Heat exchange using liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04313Processes for controlling fuel cells or fuel cell systems characterised by the detection or assessment of variables; characterised by the detection or assessment of failure or abnormal function
    • H01M8/0432Temperature; Ambient temperature
    • H01M8/04358Temperature; Ambient temperature of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04298Processes for controlling fuel cells or fuel cell systems
    • H01M8/04694Processes for controlling fuel cells or fuel cell systems characterised by variables to be controlled
    • H01M8/04746Pressure; Flow
    • H01M8/04768Pressure; Flow of the coolant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a method for operating a fuel cell system which has at least one fuel cell which is integrated into a coolant circuit comprising a cooler, in which there is a first coolant pump for circulating a coolant, and to which a bypass line is assigned, in which a second coolant pump connected in parallel to the first coolant pump is integrated.
  • the invention further relates to a fuel cell system.
  • Fuel cell systems are used to provide electrical energy in the context of an electrochemical reaction, with this electrochemical reaction generating heat in the fuel cell in addition to the generation of electrical energy and product water.
  • the fuel cell works most efficiently in a certain temperature interval, so that the heat generated is dissipated by the cooler through the cooler.
  • US 2017/0346109 A1 therefore proposes to connect two coolant pumps in the cooling circuit in series, which are smaller in size than the use of a single coolant pump.
  • US Pat. No. 7,368,196 B2 also describes a fuel cell system which has a heat store in order to to be able to quickly put the fuel cell or a plurality of fuel cells combined in a fuel cell stack into normal operation in frost start conditions.
  • the heat accumulator is integrated in a bypass line of the cooling circuit, to which a second coolant pump is assigned, so that the temperature interval required for efficient operation of the fuel cell can be reached quickly.
  • Operating states can occur in a fuel cell system, in which the result is a low coolant volume flow or a high heat input into the coolant. This does not result in optimal conditions for the fuel cells in the fuel cell stack or for the cooler, in particular the main water cooler, of a motor vehicle. Such operating states can occur, for example, after driving uphill, driving in extreme heat, driving under full load and in various dynamic operating cases.
  • the volume flow through the cooler can be increased without the operating conditions of the fuel cell or the fuel cell stack being changed. This contributes to improved cooling in the fuel cell system.
  • the cooler circuit can be implemented in particular in that the volume flow through the cooler is increased by a part of the coolant emerging downstream from the cooler being sucked into the bypass line by the second coolant pump and being fed back to the cooler past the fuel cell.
  • the coolant conducted through the bypass line and drawn in by the second coolant pump is not heated by waste heat from the fuel cell, so that when the cooler flows through again, it has to absorb a smaller amount of heat. Overall, a significantly lower temperature can be achieved for the coolant.
  • a control unit which regulates a speed of the first coolant pump and / or the speed of the second coolant pump as a function of a maximum cooling capacity that can be provided by the cooler and as a function of a cooling capacity currently required by the cooler .
  • an additional operation of the second coolant pump is determined depending on the currently possible cooling capacity (including increasing the volume flow) and the necessary cooling capacity.
  • the sensor data of the temperature sensor in particular the thermometer, can be used to determine when the cooler has to provide increased cooling capacity.
  • the increased cooling capacity of the cooler is preferably required when the coolant temperature measured by the temperature sensor reaches or exceeds a limit temperature.
  • the cooler can also provide sufficient cooling capacity, which is typically operated as a recuperator with outside air flowing past the coolant lines of the cooler, possibly with the aid of a fan. If the coolant temperature is too close to the outside temperature, efficient cooling is no longer possible and is no longer desirable if the outside temperature is very low. In this case it has proven to be advantageous if the one with the bypass line and the one in it second coolant pump realized cooler circuit is weakened or made inactive.
  • the required increased cooling capacity of the cooler is determined predictively and / or in relation to the power model, in particular on the basis of data from an operating history of the fuel cell system or in particular on the basis of forecast data. Visible temperatures or traffic conditions.
  • expected route data entered in a navigation system of the motor vehicle to infer an expected increased cooling capacity requirement, for example because a mountain journey or journeys under full loads are to be expected.
  • the fuel cell system which is particularly suitable for carrying out the method described above, has at least one fuel cell which is integrated in a coolant circuit comprising a cooler, in which there is a first coolant pump for circulating a coolant, and to which a bypass line is assigned is integrated into which a second coolant pump connected in parallel to the first coolant pump.
  • This fuel cell system is characterized in that the coolant circuit has a branch to the bypass line upstream of the fuel cell, upstream of the first coolant pump and upstream of the second coolant pump, and that there is an opening in the coolant circuit into the coolant circuit downstream of the fuel cell.
  • This fuel cell system shows the advantage of improved cooling, the integration of the second coolant pump in a bypass can cause a significant increase in the volume flow conducted through the cooler, which has the effect similar to an enlarged coolant reservoir.
  • a temperature sensor is provided upstream of the mouth for measuring the coolant temperature emerging from the fuel cell.
  • FIG. 1 is a highly schematic representation of a fuel cell system comprising a coolant circuit
  • FIG. 2 shows a time-dependent representation of the volume flow conveyed by the cooler (Q104, top) and a time-dependent representation of the speed of the coolant present in the cooler (V104, bottom), one at the entrance at approx. 497 seconds the coolant temperature required by the fuel cell is reduced.
  • FIG. 1 shows the part of a fuel cell system 100 that is required to explain the invention, the fuel cell system 100 comprising a coolant circuit 102, in which a cooler 104 is integrated and which has a first coolant pump 108 for circulating a coolant.
  • a fuel cell 106 in particular a plurality of fuel cells 106 combined to form a fuel cell stack, is also integrated in the coolant circuit 102.
  • Each of the fuel cells 106 comprises an anode, a cathode and a proton-conductive membrane that separates the anode from the cathode.
  • the membrane is formed from an ionomer, preferably a sulfonated tetrafluoroethylene polymer (PTFE) or a polymer of perfluorinated sulfonic acid (PFSA).
  • PTFE sulfonated tetrafluoroethylene polymer
  • PFSA perfluorinated sulfonic acid
  • the membrane can be formed as a sulfonated hydrocarbon membrane.
  • a catalyst can additionally be admixed to the anodes and / or the cathodes, the membrane preferably being on its first side and / or on its second side with a catalyst layer made of a noble metal or a mixture comprising noble metals such as platinum, palladium, ruthenium or the like are coated, which serve as reaction accelerators in the reaction of the respective fuel cell 106.
  • Fuel for example hydrogen
  • PEM fuel cell polymer electrolyte membrane fuel cell
  • fuel or fuel molecules are split into protons and electrons at the anode.
  • the PEM lets the protons through, but is impermeable to the electrons.
  • the reaction takes place at the anode: 2H2 -> 4H + + 4e _ (oxidation / electron donation).
  • the electrons are conducted to the cathode or to an energy store via an external circuit.
  • the cathode gas for example oxygen or oxygen-containing air
  • the cathode gas can be supplied to the cathode via a cathode chamber, so that the following reaction takes place on the cathode side: O2 + 4H + + 4e _ -> 2H2O (reduction / electron absorption).
  • the cathode gas in particular is humidified before it is fed to the fuel cell in order to bring about a moisture saturation of the PEM.
  • cathode gas Since a plurality of fuel cells 106 are combined in the fuel cell stack, a sufficiently large amount of cathode gas must be made available, so that a large cathode gas mass flow is provided by a compressor, the temperature of which greatly increases as a result of the compression of the cathode gas .
  • the conditioning of the cathode gas i.e. its setting with regard to the desired parameters, takes place in a charge air cooler and in a humidifier.
  • a single fuel cell 106 is shown in FIG. 1 purely by way of example, to which reactants are supplied so that the electrochemical reaction for generating electrical energy can take place in a controlled manner in the fuel cell 106.
  • a coolant circuit 102 with a cooler 104 is assigned to the fuel cell 106 to regulate the temperature of the fuel cell 106, and in particular to dissipate the heat generated during the electrochemical reaction, so that the cooler 104 can ensure that the coolant temperature at the inlet of the fuel cell 106 has the desired value.
  • the coolant is heated as it passes through the fuel cell 106 or the fuel cell stack, so that the temperature of the coolant increases.
  • the coolant circuit 102 is assigned a bypass line 110, in which a second coolant pump 112 connected in parallel with the first coolant pump 108 is integrated.
  • the coolant circuit 102 has a branch 118 to the bypass line 110 upstream of the fuel cell 106, upstream of the first coolant pump 108 and upstream of the second coolant pump 112, an opening 120 being provided in the coolant circuit 102, through which the bypass line 110 enters the coolant circuit 102 opens downstream of the fuel cell 106.
  • This configuration creates an additional cooler circuit 116 for the circulation of coolant, which can be controlled or actuated as required, which is formed from the bypass line 110 with the second coolant pump 112 integrated therein and the part of the coolant circuit 102 in which the cooler is located 104 is involved.
  • the part of the coolant conveyed by the cooler circuit 116 is guided past the fuel cell 106, so that this part of the coolant does not pass through the fuel cell 106 and therefore does not absorb any heat.
  • the volume flow through the cooler 104 can be increased without the operating conditions of the fuel cell 106 being significantly impaired or changed.
  • the volume flow of the coolant conveyed by the cooler 104 is increased by increasing the speed of the second coolant pump 112 integrated in the bypass line 110.
  • control unit that pumps a speed of the first coolant pump 108 and / or the speed of the second coolant pump 112 as a function of a maximum cooling capacity that can be provided by the cooler 104 and as a function of a cooling capacity that is currently required by the cooler 104 regulates.
  • the volume flow of the coolant conveyed by the cooler 104 is increased, the volume flow of the coolant conveyed by the fuel cell 106 is preferably essentially maintained in a state which existed at the time of determining the increased cooling capacity required by the cooler 104.
  • one or more actuators and / or valves can be integrated in the bypass line 110, so that the bypass line 110 can be decoupled from the coolant circuit 102 by a corresponding configuration of the actuators and / or valves, which is achieved by the dashed line is indicated.
  • a temperature sensor 114 in particular a thermometer is present.
  • FIG. 2 shows the volume flow Q104 conveyed by the cooler 104 and the speed of the coolant V104 flowing through the cooler 104, each in arbitrary units (au). Both the volume flow and the speed of the coolant increase significantly at about 497 seconds, since a lower temperature at the inlet of the fuel cell 106 is required here.
  • the speed of the second coolant pump 112 is increased in such a way that the subsequently increased coolant flow and the subsequently increased speed of the coolant result.
  • the second coolant pump 112 can initially be set from zero speed to an increased speed or from a predetermined speed to an even higher speed.
  • the fuel cell system 100 is characterized by improved cooling, the integration of the second coolant pump 112 in the bypass line 110 forming a smaller cooler circuit 116, which creates an additional setting option for reaching low temperatures with a low load on the fuel cell 106.
  • This system is therefore subject to increased dynamics and has an effect similar to that of an enlarged coolant store.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

L'invention concerne un procédé pour faire fonctionner un système de piles à combustible (100), lequel possède au moins une pile à combustible (106), qui est intégrée dans un circuit de fluide de refroidissement (102) comprenant un refroidisseur (104), dans lequel se trouve une première pompe à fluide de refroidissement (108) destinée à faire circuler un fluide de refroidissement et auquel est associée une conduite de dérivation (110) dans laquelle est intégrée une deuxième pompe à fluide de refroidissement (112) montée en parallèle avec la première pompe à fluide de refroidissement (108). Le procédé selon l'invention comprend les étapes suivantes : constatation que le refroidisseur (104) doit fournir une capacité de refroidissement accrue, qui est accrue par rapport à une capacité de refroidissement instantanée du refroidisseur (104), et ; augmentation d'un débit volumique du fluide de refroidissement transporté à travers le refroidisseur (104) en augmentant une vitesse de rotation de la deuxième pompe à fluide de refroidissement (112) intégrée dans la conduite de dérivation (110). L'invention concerne en outre un système de piles à combustible (100).
PCT/EP2019/071773 2018-09-25 2019-08-14 Système de piles à combustible et procédé pour faire fonctionner un système de piles à combustible WO2020064210A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102018216267.0 2018-09-25
DE102018216267.0A DE102018216267A1 (de) 2018-09-25 2018-09-25 Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems

Publications (1)

Publication Number Publication Date
WO2020064210A1 true WO2020064210A1 (fr) 2020-04-02

Family

ID=67734631

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2019/071773 WO2020064210A1 (fr) 2018-09-25 2019-08-14 Système de piles à combustible et procédé pour faire fonctionner un système de piles à combustible

Country Status (2)

Country Link
DE (1) DE102018216267A1 (fr)
WO (1) WO2020064210A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020133283A1 (de) 2020-12-14 2022-06-15 Audi Aktiengesellschaft Kühlsystem zum Kühlen einer steuerbaren Wärmequelle

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004016375A1 (de) * 2003-04-03 2004-10-28 General Motors Corp., Detroit Brennstoffzellensystem mit Kühlkanälen sowie Verfahren zum Betrieb eines Brennstoffzellensystems mit Kühlkanälen
DE102006022864A1 (de) * 2005-05-17 2006-12-07 GM Global Technology Operations, Inc., Detroit Steuerstrategie des Profils der relativen Feuchtigkeit für Stapelbetrieb mit hoher Stromdichte
DE102013202781A1 (de) * 2013-02-20 2014-08-21 Bayerische Motoren Werke Aktiengesellschaft Kühlmittelkreislauf eines Brennstoffzellensystems mit einem Tank zur Speicherung von tiefkaltem Brennstoff
DE102014224380A1 (de) * 2014-11-28 2016-06-02 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum prädiktiven Betrieb eines Kraftfahrzeuges mit einem Brennstoffzellensystem
US20170346109A1 (en) 2015-02-16 2017-11-30 Bayerische Motoren Werke Aktiengesellschaft Cooling System for at Least One Fuel Cell of a Fuel Cell System and Method for Cooling at Least One Fuel Cell

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6222160B2 (ja) * 2015-04-10 2017-11-01 トヨタ自動車株式会社 燃料電池システム及びその制御方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004016375A1 (de) * 2003-04-03 2004-10-28 General Motors Corp., Detroit Brennstoffzellensystem mit Kühlkanälen sowie Verfahren zum Betrieb eines Brennstoffzellensystems mit Kühlkanälen
US7368196B2 (en) 2003-04-03 2008-05-06 General Motors Corporation Cold start pre-heater for a fuel cell system
DE102006022864A1 (de) * 2005-05-17 2006-12-07 GM Global Technology Operations, Inc., Detroit Steuerstrategie des Profils der relativen Feuchtigkeit für Stapelbetrieb mit hoher Stromdichte
DE102013202781A1 (de) * 2013-02-20 2014-08-21 Bayerische Motoren Werke Aktiengesellschaft Kühlmittelkreislauf eines Brennstoffzellensystems mit einem Tank zur Speicherung von tiefkaltem Brennstoff
DE102014224380A1 (de) * 2014-11-28 2016-06-02 Bayerische Motoren Werke Aktiengesellschaft Verfahren zum prädiktiven Betrieb eines Kraftfahrzeuges mit einem Brennstoffzellensystem
US20170346109A1 (en) 2015-02-16 2017-11-30 Bayerische Motoren Werke Aktiengesellschaft Cooling System for at Least One Fuel Cell of a Fuel Cell System and Method for Cooling at Least One Fuel Cell

Also Published As

Publication number Publication date
DE102018216267A1 (de) 2020-03-26

Similar Documents

Publication Publication Date Title
DE112007001734B4 (de) Brennstoffzellensystem
DE112007002347B4 (de) Klimatisierungssteuerungssystem
DE112008003004B4 (de) Brennstoffzellensystem und Verfahren zur Verringerung des Stroms derselben
DE102009023882B4 (de) Brennstoffzellensystem und Verfahren zum zuverlässigen Starten desselben
DE102009050938B4 (de) Verfahren zum Steuern einer Luftströmung zu einem Brennstoffzellenstapel
DE102013221413A1 (de) Pulsieren einer kühlmittelströmung in einem brennstoffzellensystem
DE102009004856A1 (de) Selbstabstimmende Thermosteuerung eines Kraftfahrzeugbrennstoffzellen-Antriebssystems
DE102016111219B4 (de) Brennstoffzellensystem
DE102008052461B4 (de) Verfahren zur Verbesserung der Zuverlässigkeit eines Brennstoffzellenstapels nach einem Ausfall der Schaltung eines Endzellenheizers
DE102015117333A1 (de) Brennstoffzellensystem
WO2021073881A1 (fr) Procédé de mise en service d'un empilement de cellules élémentaires
DE102022200374A1 (de) Brennstoffzellensystem und Verfahren zum Betreiben eines Brennstoffzellensystems
DE102018214378A1 (de) Verfahren zum Betreiben einer Brennstoffzellenvorrichtung, Brennstoffzellenvorrichtung sowie Kraftfahrzeug mit einer Brennstoffzellenvorrichtung
DE102019116105A1 (de) Brennstoffzellensystem
DE102018214377A1 (de) Verfahren zum Betreiben einer Brennstoffzelle, Brennstoffzellenvorrichtung sowie Kraftfahrzeug mit einer Brennstoffzellenvorrichtung
WO2020064210A1 (fr) Système de piles à combustible et procédé pour faire fonctionner un système de piles à combustible
DE102020115663A1 (de) Brennstoffzellensystem mit einem zentralen Luftvorhalte-, Regulierungs- und Zufuhrsystem sowie Kraftfahrzeug mit einem solchen Brennstoffzellensystem
DE102018218088A1 (de) Verfahren zum Betreiben eines Brennstoffzellensystems und Brennstoffzellensystem zur Durchführung des Verfahrens
DE102019200452A1 (de) Verfahren zum Betreiben eines Brennstoffzellensystems und Brennstoffzellensystem
DE102020106088A1 (de) Brennstoffzellensystem, Kraftfahrzeug und Verfahren zum Betreiben eines Brennstoffzellensystems
DE102020103071A1 (de) Brennstoffzellenvorrichtung mit zwei Befeuchtern sowie Verfahren zum Betreiben und Kraftfahrzeug mit einer solchen
DE102021117218B3 (de) Brennstoffzellensystem, Kraftfahrzeug und Verfahren zum Betreiben eines Brennstoffzellensystems
DE102009023880A1 (de) Modifizierte Inbetriebnahmestrategie zur Verbesserung der Inbetriebnahmezuverlässigkeit nach längerer Abschaltzeit
DE102018209428A1 (de) Verfahren zum Abstellen eines Brennstoffzellensystems, Brennstoffzellensystem und Brennstoffzellenfahrzeug
DE102014213867A1 (de) Vorrichtung und Verfahren zum Steuern eines Wasserstoffspülens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19758356

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 19758356

Country of ref document: EP

Kind code of ref document: A1