WO2020064127A1 - Alliage à mémoire de forme, produit plat en acier préparé à partir de celui-ci doté de caractéristiques pseudoélastiques et procédé pour la préparation d'un tel produit plat en acier - Google Patents

Alliage à mémoire de forme, produit plat en acier préparé à partir de celui-ci doté de caractéristiques pseudoélastiques et procédé pour la préparation d'un tel produit plat en acier Download PDF

Info

Publication number
WO2020064127A1
WO2020064127A1 PCT/EP2018/076469 EP2018076469W WO2020064127A1 WO 2020064127 A1 WO2020064127 A1 WO 2020064127A1 EP 2018076469 W EP2018076469 W EP 2018076469W WO 2020064127 A1 WO2020064127 A1 WO 2020064127A1
Authority
WO
WIPO (PCT)
Prior art keywords
flat steel
steel product
hot
memory alloy
temperature
Prior art date
Application number
PCT/EP2018/076469
Other languages
German (de)
English (en)
Inventor
Jonas Karl Moritz SCHWABE
Cássia CASTRO MÜLLER
Sabine Will
Original Assignee
Thyssenkrupp Steel Europe Ag
Thyssenkrupp Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thyssenkrupp Steel Europe Ag, Thyssenkrupp Ag filed Critical Thyssenkrupp Steel Europe Ag
Priority to PCT/EP2018/076469 priority Critical patent/WO2020064127A1/fr
Publication of WO2020064127A1 publication Critical patent/WO2020064127A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/001Heat treatment of ferrous alloys containing Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/005Heat treatment of ferrous alloys containing Mn
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0273Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/52Ferrous alloys, e.g. steel alloys containing chromium with nickel with cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/60Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2201/00Treatment for obtaining particular effects
    • C21D2201/01Shape memory effect
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the invention relates to a shape memory alloy, one of them
  • Shape memory alloy manufactured flat steel product with pseudo-elastic properties and a method for producing such
  • Sheet metal product is meant by this is meant rolled products, such as steel strips or sheets, from which for the manufacture of, for example
  • Body components, blanks or blanks can be divided.
  • Sheet metal parts or “sheet metal parts” of the type according to the invention are produced from such flat steel or sheet metal products, the terms “sheet metal part” and “sheet metal part” being used synonymously here.
  • Salary range for which only an upper limit is specified can also include "0".
  • Shape memory alloys Steel alloys, from which flat steel products of the type in question are made, are also referred to as "shape memory alloys".
  • the flat steel products made from them are characterized by the fact that they can largely revert to their original state after being deformed.
  • a shape memory alloy is known from EP 2 489 753 A1, which contains 25-42 atomic% Mn, 12-18 atomic% Al and 5-12 atomic% Ni, and optionally contents of 0.1-5 atomic% each. on Si, Ti, V, Cr, Co, Cu, Mo, W and also optional contents of 0.001 - 1 atomic% B, C, rest Fe and unavoidable
  • This shape memory alloy is formed into wire, which is solution annealed at 1100 - 1300 ° C with a
  • This shape memory alloy consists of 25 - 42 atomic% Mn,
  • the total content of the optionally present alloy elements can be up to 15 atomic%.
  • the steel is cast at 1500 - 1600 ° C and then thermoformed at a temperature of about 1200 ° C, the rate of deformation being 87% or more.
  • the steel can then undergo cold forming, in which it is cold worked at a rate of at least 30%.
  • Typical products here are wire and thin foils, which can be obtained by cold working.
  • Other processing options are the production of components by sintering alloy powder produced from the known alloy or the
  • Evaporation processes are applied to a surface.
  • the steel undergoes a solution treatment, in which it is kept at 1100-1300 ° C, in particular 1200-1250 ° C, for a period of 1-60 minutes. Quenching is then carried out at at least 200 K / s, in particular 500 K / s or more. Then the steel becomes one
  • the task has been to specify a shape memory alloy which allows a flat steel product to be produced with less effort compared to the prior art, which has a high reshaping capacity and at the same time with less than the prior art Effort can be produced.
  • Shape memory alloy and has at least that in claim 6
  • the invention has achieved the above-mentioned object in that at least those specified in claim 9 are used in the manufacture of a flat steel product according to the invention
  • a shape memory alloy according to the invention thus consists of (in% by weight)
  • N ⁇ 0.1% Remainder iron and unavoidable impurities, with contents of Cr, Cu, Mo, Nb, Ti, V, Zn and Co being assigned to the impurities, with the proviso that the sum of the contents of the impurities is ⁇ 3%.
  • a flat steel product according to the invention with pseudoelastic properties is accordingly
  • 60% by area consists of ferrite and the remainder consists of other structural components, which include martensite or austenite and which can include precipitations,
  • a flat steel product according to the invention is thus produced and has a shape memory alloy composed according to the invention
  • pseudo-elastic properties which are characterized by a total reshaping capacity GR of at least 35%, in particular at least 45%.
  • the total resilience GR is calculated according to the formula
  • s max and e G are determined according to DIN EN ISO 6892-1: 2017 A224. This combination of properties is achieved in that the structure of the flat steel product according to the invention in the hot-rolled state, ie directly after hot rolling without further heat treatment, has a structure which consists of at least 60 area% of ferrite and the rest of others
  • Structural components exist, for which up to 15 area% martensite and / or up to 25 area% austenite and optionally formed by the respective alloy elements of the steel from which the steel flat product is made, precipitates, such as NiAl or selenide, and the production-related unavoidable other structural components.
  • the invention is based on the knowledge that the choice of suitably high Al contents and the targeted addition of Se as a precipitator can influence the structure of a flat steel product according to the invention in such a way that a high resilience, i.e. optimized pseudo-elastic properties can be achieved even at significantly reduced annealing temperatures compared to the prior art.
  • the components of the shape memory alloy, from which a flat steel product according to the invention consists, and their contents have been selected as follows:
  • Manganese (Mn) is in the shape memory alloy according to the invention in the shape memory alloy according to the invention in
  • Aluminum (AI) is present in the shape memory alloy according to the invention in contents of 10-14% in order to convert the phase from ferrite into the austenite and thus the expression of the desired pseudo-elasticity during the one that was passed to set this property
  • step i) of the method according to the invention To support heat treatment (step i) of the method according to the invention).
  • a high Al content leads to a reduction in the density and thus in the weight of the shape memory alloy according to the invention and a steel flat product according to the invention produced therefrom.
  • a high Al content according to the invention also contributes in particular to improving the corrosion resistance
  • Nickel (Ni) is present in the shape memory alloy according to the invention in contents of 7-10% by weight in order to reduce the pseudoelastic effect
  • NiAI precipitates To promote the stabilization of the face-centered cubic phase as well as the formation of NiAI precipitates. This effect occurs particularly reliably with Ni contents of at least 8% by weight. Levels above 10% by weight would impair the stability of the body-centered cubic phase and thus hinder the pseudo-elastic effect. This negative influence can be avoided particularly safely by limiting the Ni content to a maximum of 9% by weight.
  • Flat steel product comes from the annealing temperature at which it is kept during the final heat treatment (step i) of the method according to the invention).
  • the presence of Se thus makes a decisive contribution to the formation of a structure which forms the basis for an optimized pseudoelasticity of the flat steel product according to the invention.
  • Phosphorus (P), sulfur (S) and nitrogen (N) are undesirable
  • the P content of a flat steel product according to the invention is at most 0.1% by weight, in particular at most 0.006% by weight
  • the S content is at most 0.3% by weight, in particular at most 0.007% by weight
  • the N content is limited to at most 0.1% by weight, in particular at most 0.04% by weight.
  • the content of carbon (C) is in the invention.
  • Shape memory alloy limited to at most 1% by weight with low C contents preferred to avoid the formation of kappa carbides which would help increase the brittleness of the alloy. Therefore, C contents of at most 0.5% by weight, in particular at most 0.1% by weight, are particularly preferred, the negative influences of C being avoided particularly reliably at C contents of at most 0.05% by weight can.
  • the impurities can be related to the properties of a
  • the structure of the flat steel product according to the invention consists of at least 60 area% ferrite.
  • the proportion of ferrite in the structure of the steel flat product according to the invention can be increased to at least 80% by area.
  • a method according to the invention for producing a flat steel product according to the invention with pseudoelastic properties comprises at least the following steps:
  • Target temperature of at most 800 ° C; f) optionally coiling the hot-rolled flat steel product cooled to the target temperature; g) optional: annealing the hot-rolled flat steel product at a
  • cold rolled flat steel product i) heat-treating the hot or cold-rolled flat steel product at an annealing temperature of 700-1050 ° C over an annealing period of 5-240 min with subsequent cooling to room temperature.
  • the method according to the invention for producing a flat steel product with pseudoelastic properties is based on one of the above
  • Step b) is poured, the casting temperature being 1400-1500 ° C.
  • the slabs or thin slabs or blocks are then each heated through to a preheating temperature of 1200-1300 ° C in order to homogenize the slabs before hot rolling and to reduce the rolling resistance.
  • the pre-heated slabs or thin slabs or blocks are conventionally hot-rolled into a hot-rolled flat steel product, the hot-rolling end temperature being 850-1050 ° C. in order to minimize the rolling resistance.
  • Flat steel products are typically 2 - 5 mm.
  • the hot-rolled flat steel product is cooled with air or water at a cooling rate of no higher than 1000 ° C / s, with practical cooling speeds, which are achieved, for example, with water cooling, at up to 200 ° C / s, in particular up to 100 ° C / s or up to 50 ° C / s.
  • a cooling rate of no higher than 1000 ° C / s with practical cooling speeds, which are achieved, for example, with water cooling, at up to 200 ° C / s, in particular up to 100 ° C / s or up to 50 ° C / s.
  • the hot strip obtained can be wound into a coil after reaching the target temperature before it is sent for further processing.
  • the target temperature is preferably 400-800 ° C. If, on the other hand, no coiling is carried out, as is the case, for example, when the hot strip is processed as heavy plate, the target temperature of the cooling can also be the room temperature.
  • the hot-rolled flat steel product can also be optionally annealed after cooling at an annealing temperature of 700 - 1050 ° C. This serves to increase the ductility of the hot-rolled
  • Flat steel product is kept at the annealing temperature mentioned, is typically 50-130 min.
  • the hot-rolled flat steel product can be cold-rolled in a conventional manner to a cold-rolled flat steel product.
  • Typical thicknesses of the cold-rolled flat steel product obtained are 0.5-1.5 mm.
  • Crucial for the pseudoelastic properties of the flat steel product according to the invention is the heat treatment (work step i)), in which the hot or cold-rolled flat steel product in each case at an annealing temperature of 700-1050 ° C. over an annealing time of 5-240 min, in particular 10-60 min, is then annealed to room temperature.
  • the structure becomes more homogeneous and fine precipitates are created that support the pseudo-elastic effect, for example NiAI-B2 precipitates.
  • the annealing temperature is around can be at least 200 ° C lower than that in the prior art
  • selenium in a content of 0.001-0.1% by weight, in particular 0.001-0.01% by weight, is also important for the pseudo-elastic properties of the shape memory alloy according to the invention and of a flat steel product according to the invention produced therefrom.
  • Selenium forms precipitates with manganese (MnSe), which causes dislocations to develop in the structure of the invention
  • the effect of the heat treatment (step i)) can be increased in that the heat treatment of the hot or cold rolled
  • Flat steel product (work step i)) is repeated at least two, in particular at least five times.
  • the repetition enables a more homogeneous structure to be set. So it works reliably in
  • Heat treatment (work step i)) in air is cooled to room temperature and after the last repetition is accelerated with water, the structure becomes more homogeneous. Cooling down after the last repetition is faster so that no new phases are formed during the cooling down and the resulting NiAI precipitates are fine and round are excreted to achieve a high pseudo-elasticity. This results in optimal effects of the heat treatment if
  • Annealing temperatures of 750 - 950 ° C can be selected and the annealing time for heat treatment (work step i)) is 10 - 60 min.
  • the effect of the heat treatment (step i)) can also be increased in that the hot or cold-rolled flat steel product undergoes a tempering treatment after the heat treatment (step i)), in which it lasts for a duration of 30-720 min at a tempering temperature of 150 - 350 ° C is maintained, preferably 150 - 250 ° C over 60 - 180 min. This creates further fine NiAI precipitates that support the pseudo-elastic effect.
  • the annealing in work step i) and the annealing treatment optionally carried out finally can be carried out under an inert or protective gas atmosphere in order to avoid excessive scaling on the surfaces of the respective flat steel product.
  • an atmosphere serves to avoid unwanted aluminum oxides (AlOx), which would make the alloy brittle.
  • the melts A - C have been cast as blocks which have subsequently been heated to a preheating temperature VT over a preheating period Vt.
  • hot-rolled steel strip with a thickness DW has been hot-rolled, the hot-rolling having ended at a hot-rolling end temperature WET.
  • the hot-rolled steel strip emerging from the hot rolling mill has in each case been cooled to room temperature with a cooling medium AM.
  • the hot-rolled steel strips are subjected to an annealing for an annealing time Gt1 at an annealing temperature GT1 and then with a cooling medium AM1
  • Test pieces were cut off from the steel strips thus produced from steels A - C, which in 21 tests were subjected to a final heat treatment under different conditions.
  • the samples separated from the steel strips first went through an annealing process in which they were kept at an annealing temperature GT2 for an annealing period Gt2.
  • the annealing was carried out under an inert gas atmosphere consisting of argon.
  • the currently set
  • Annealing temperatures GT2 and annealing times Gt2 are also given in Table 2, as is the total recovery GR determined in each case.
  • experiment 5 on the other hand, the annealing was repeated four times and then annealed a fifth time, the respective sample steel flat product being exposed to air between the first and second, second and third, and third and fourth passes cooled, whereas after the fifth pass it was quenched in water.
  • Fig. 1 a shows the micrograph of the structure of experiment 1 after
  • Hot rolling obtained but not yet heat-treated hot strips obtained but not yet heat-treated hot strips.
  • Electron backscatter diffraction with a measuring field of 800 pm 2 and a step size of 0.9 pm of the sample obtained in experiment 5 after the thermal treatment. It can be seen that the structure consists of approximately 83% ferrite, approximately 8% austenite and approximately 9% martensite.
  • FIG. 3 shows a stress-strain diagram for the steel flat product sample obtained in test 5. The pseudo-elastic resilience can be clearly seen when the load is released.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

L'invention concerne un alliage à mémoire de forme qui permet, par rapport à l'état de la technique, de produire un produit plat en acier avec moins d'efforts, qui possède un pouvoir de restauration de forme élevé. Un alliage à mémoire de forme selon l'invention est à cet effet constitué de (en % en poids) C : ≤ 1 %, Mn : 30 à 40 %, Al : 10 à 14 %, Ni : 7 à 10 %, Se : ≤ 0,1 %, P : ≤ 0,1 %, S : ≤ 0,3 %, N : ≤ 0,1 %, le reste étant du fer et des impuretés inévitables, les teneurs en Cr, Cu, Mo, Nb, Ti, V, Zn, Co étant à calculer avec les impuretés, étant entendu que la somme des teneurs en impuretés est ≤ 3 %. Un produit plat en acier produit à partir d'un tel alliage possède des caractéristiques pseudoélastiques, possède une texture, qui est constituée déjà immédiatement après le laminage à chaud (en % en surface) de 60 % en surface de ferrite, et présente en l'occurrence un pouvoir de restauration de forme totale (GR) d'au moins 35 %. L'invention fournit également un procédé pour la préparation d'un tel produit plat en acier.
PCT/EP2018/076469 2018-09-28 2018-09-28 Alliage à mémoire de forme, produit plat en acier préparé à partir de celui-ci doté de caractéristiques pseudoélastiques et procédé pour la préparation d'un tel produit plat en acier WO2020064127A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/EP2018/076469 WO2020064127A1 (fr) 2018-09-28 2018-09-28 Alliage à mémoire de forme, produit plat en acier préparé à partir de celui-ci doté de caractéristiques pseudoélastiques et procédé pour la préparation d'un tel produit plat en acier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/EP2018/076469 WO2020064127A1 (fr) 2018-09-28 2018-09-28 Alliage à mémoire de forme, produit plat en acier préparé à partir de celui-ci doté de caractéristiques pseudoélastiques et procédé pour la préparation d'un tel produit plat en acier

Publications (1)

Publication Number Publication Date
WO2020064127A1 true WO2020064127A1 (fr) 2020-04-02

Family

ID=63713892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/076469 WO2020064127A1 (fr) 2018-09-28 2018-09-28 Alliage à mémoire de forme, produit plat en acier préparé à partir de celui-ci doté de caractéristiques pseudoélastiques et procédé pour la préparation d'un tel produit plat en acier

Country Status (1)

Country Link
WO (1) WO2020064127A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113481443A (zh) * 2021-06-18 2021-10-08 武汉大学 一种制备变形量可调控的金属材料的方法及校核装置
DE102020115941A1 (de) 2020-06-17 2021-12-23 Universität Kassel Verfahren zur Nutzung von Auslagerungseffekten mit dem Ziel der Erhöhung der Spannung und/oder der Begrenzung des Spannungsverlustes von Vorspannelementen aus einer Formgedächtnislegierung
CN115948686A (zh) * 2022-12-31 2023-04-11 无锡日月合金材料有限公司 一种高锰高温真空合金的制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2489753A1 (fr) 2002-12-05 2012-08-22 JFE Steel Corporation Feuille d'acier magnétique non orientée et son procédé de production
EP2489752A1 (fr) * 2009-10-14 2012-08-22 Japan Science And Technology Agency Alliage ferreux à mémoire de forme et son procédé de fabrication
JP2015163725A (ja) * 2014-02-28 2015-09-10 株式会社日本製鋼所 Fe基制振合金およびその製造方法ならびにFe基制振合金材
CN105154751A (zh) * 2015-07-20 2015-12-16 四川大学 一种具有逆向形状记忆效应的铁锰铝基合金
WO2018047787A1 (fr) 2016-09-06 2018-03-15 国立大学法人東北大学 MATÉRIAU D'ALLIAGE À MÉMOIRE DE FORME À BASE DE Fe ET SON PROCÉDÉ DE PRODUCTION

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2489753A1 (fr) 2002-12-05 2012-08-22 JFE Steel Corporation Feuille d'acier magnétique non orientée et son procédé de production
EP2489752A1 (fr) * 2009-10-14 2012-08-22 Japan Science And Technology Agency Alliage ferreux à mémoire de forme et son procédé de fabrication
JP2015163725A (ja) * 2014-02-28 2015-09-10 株式会社日本製鋼所 Fe基制振合金およびその製造方法ならびにFe基制振合金材
CN105154751A (zh) * 2015-07-20 2015-12-16 四川大学 一种具有逆向形状记忆效应的铁锰铝基合金
WO2018047787A1 (fr) 2016-09-06 2018-03-15 国立大学法人東北大学 MATÉRIAU D'ALLIAGE À MÉMOIRE DE FORME À BASE DE Fe ET SON PROCÉDÉ DE PRODUCTION

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020115941A1 (de) 2020-06-17 2021-12-23 Universität Kassel Verfahren zur Nutzung von Auslagerungseffekten mit dem Ziel der Erhöhung der Spannung und/oder der Begrenzung des Spannungsverlustes von Vorspannelementen aus einer Formgedächtnislegierung
CN113481443A (zh) * 2021-06-18 2021-10-08 武汉大学 一种制备变形量可调控的金属材料的方法及校核装置
CN115948686A (zh) * 2022-12-31 2023-04-11 无锡日月合金材料有限公司 一种高锰高温真空合金的制备方法
CN115948686B (zh) * 2022-12-31 2024-03-12 无锡日月合金材料有限公司 一种高锰高温真空合金的制备方法

Similar Documents

Publication Publication Date Title
EP2446064B1 (fr) Procédé de fabrication d'une pièce trempée à chaud sous presse et utilisation d'un produit en acier pour la fabrication d'une pièce trempée à chaud sous presse
EP1918403B1 (fr) Procédé de fabrication de produits plats en acier à partir d'un acier formant une structure marténsitique
EP2855717A1 (fr) Acier, produit en acier plat et procédé de fabrication d'un produit en acier plat
EP3655560A1 (fr) Produit plat en acier possédant une bonne résistance au vieillissement et son procédé de fabrication
WO2019121879A1 (fr) Procédé de fabrication additive d'un objet à partir d'une poudre d'acier maraging
EP2840159B1 (fr) Procédé destiné à la fabrication d'un composant en acier
EP3504349A1 (fr) Procédé de fabrication d'une bande d'acier à résistance très élevée présentant des propriétés améliorées lors du traitement ultérieur et une telle bande d'acier
WO2020064127A1 (fr) Alliage à mémoire de forme, produit plat en acier préparé à partir de celui-ci doté de caractéristiques pseudoélastiques et procédé pour la préparation d'un tel produit plat en acier
DE2714712A1 (de) Nickellegierung und verfahren zu ihrer herstellung
EP1918405B1 (fr) Procédé pour la fabrication de produits plats à partir d'un acier à plusieurs phases allié en silice
EP3847284B1 (fr) Produit plat laminé à chaud en acier et procédé de fabrication
EP1255873B9 (fr) Acier a ressorts de type acier vieilli thermiquement
WO2001000895A1 (fr) Alliage fer-cobalt a faibles intensites de champ coercitifs et procede de realisation de demi-produits a partir d'un alliage fer-cobalt
WO2020038883A1 (fr) Produit plat en acier laminé à chaud n'ayant pas subi un traitement par trempe et revenu, laminé à chaud ayant subi un traitement par trempe et revenu, ainsi que procédé de production associé
EP1352982A2 (fr) Acier inoxydable, procédé de fabrication de pièces sans fissuration de tension et pièce obtenue
EP3872206B1 (fr) Procédé de fabrication d'un produit plan en acier laminé à froid, traité ultérieurement et produit plan en acier laminé à froid, traité ultérieurement
WO2020108754A1 (fr) Produit plat constitué d'un matériau à mémoire de forme à base de fer
EP3292223B1 (fr) Procédé de production de tôles minces en acier crmnni inoxydable austénitique
EP3405593B1 (fr) Plat produit en acier et méthode de fabrication
WO2020064126A1 (fr) Alliage à mémoire de forme, produit plat en acier préparé à partir de celui-ci doté de caractéristiques pseudoélastiques et procédé pour la préparation d'un tel produit plat en acier
WO2020030358A1 (fr) Pré-étirage en ligne d'alliages à mémoire de forme, en particulier d'acier plat
WO2020127558A1 (fr) Procédé pour la fabrication de produits de type feuillard à chaud laminés à chaud de manière classique
EP3781717B1 (fr) Tõle en acier laminé à froid et son utilisation, et méthode de production d'un tel produit en acier plat
DE4423462C2 (de) Wärmebehandlungsverfahren zur Verbesserung der Duktilität des überwiegend ferritischen Gefügeanteils von Stählen
WO2016174020A1 (fr) Procédé de fabrication d'une bande à chaud ou à froid à partir d'un acier à teneur en cuivre élevée

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18779665

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18779665

Country of ref document: EP

Kind code of ref document: A1