EP3504349A1 - Procédé de fabrication d'une bande d'acier à résistance très élevée présentant des propriétés améliorées lors du traitement ultérieur et une telle bande d'acier - Google Patents

Procédé de fabrication d'une bande d'acier à résistance très élevée présentant des propriétés améliorées lors du traitement ultérieur et une telle bande d'acier

Info

Publication number
EP3504349A1
EP3504349A1 EP17757729.3A EP17757729A EP3504349A1 EP 3504349 A1 EP3504349 A1 EP 3504349A1 EP 17757729 A EP17757729 A EP 17757729A EP 3504349 A1 EP3504349 A1 EP 3504349A1
Authority
EP
European Patent Office
Prior art keywords
strip
steel strip
rolling
steel
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP17757729.3A
Other languages
German (de)
English (en)
Other versions
EP3504349B1 (fr
Inventor
Peter PALZER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Salzgitter Flachstahl GmbH
Original Assignee
Salzgitter Flachstahl GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102016115618.3A external-priority patent/DE102016115618A1/de
Application filed by Salzgitter Flachstahl GmbH filed Critical Salzgitter Flachstahl GmbH
Publication of EP3504349A1 publication Critical patent/EP3504349A1/fr
Application granted granted Critical
Publication of EP3504349B1 publication Critical patent/EP3504349B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C1/00Refining of pig-iron; Cast iron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium

Definitions

  • the invention relates to a method for producing a high-strength steel strip with improved properties during further processing and to a corresponding steel strip.
  • the invention relates to the production of a steel strip from a manganese-containing TRANS (TRANSFORMED INDUCED PLASTICITY) and / or TWIP (TWinning Induced Plasticity) steel with excellent cold and warm forging, increased resistance to hydrogen-induced delayed fracture, to hydrogen embrittlement (US Pat. hydrogen embrittlement) as well as liquid metal embrittlement during welding.
  • European Patent Application EP 2 383 353 A2 discloses a manganese-containing steel, a flat steel product of this steel and a method for producing this flat steel product.
  • the steel has a tensile strength of 900 to 1500 MPa and an elongation at break A80 of at least 4%. The highest described elongation at break A80 is 8%.
  • the steel consists of the elements (contents in percent by weight and based on the molten steel): C: up to 0.5; Mn: 4 to 12.0; Si: up to 1, 0; AI: up to 3.0; Cr: 0.1 to 4.0; Cu: up to 4.0; Ni: up to 2.0; N: up to 0.05; P: up to 0.05; S: up to 0.01; as well as residual iron and unavoidable impurities.
  • one or more elements from the group "V, Nb, Ti" are provided, the sum of the contents of these elements being at most equal to 0.5, for a Mn content of 5 and an Al content of 2 the sum is included 7.
  • the structure of this flat steel product consists of 30 to 100% martensite, tempered martensite or bainite, balance austenite, which is said to be more cost effective to produce than steel
  • a method for producing a steel flat product from the above-described high-strength manganese-containing steel comprising the following steps: - melting the above-described molten steel, - producing a starting product for subsequent hot rolling, by the molten steel to a strand, of the at least one slab or thin slab as the starting material for the Hot rolling is divided, or cast into a cast strip, which is fed as a starting product to the hot rolling, - heat treating the
  • Starting product to bring the starting material to a hot rolling starting temperature of 1 150 to 1000 ° C, - hot rolling of the starting product to a
  • Hot strip of not more than 2,5 mm thick finishing hot rolling at a hot rolling end temperature of 1050 to 800 ° C, - coiling the hot strip into a coil at a coiler temperature of ⁇ 700 ° C.
  • the hot strip can be annealed at 250 to 950 ° C, then cold rolled and annealed again at 450 to 950 ° C. Also, following the cold or
  • Corrosion protection coating or an organic coating provided.
  • TRIP steel Can convert martensite (TRIP effect).
  • the manganese content of the steel strip is 1.00 to 2.25 weight percent.
  • the steel strip is coated and dressed in a molten bath. Because of its high work hardening, the TRIP steel achieves high levels of uniform elongation and tensile strength.
  • TRIP steels u. a. in structural, chassis and crash-relevant components of vehicles, as sheet metal blanks, as well as welded blanks.
  • European patent EP 1 067 203 B1 discloses a method for producing a steel strip.
  • the thin strip is hot rolled to a degree of reduction of between 10% and 60%, acid pickled, cold rolled to a degree of reduction of between 10% and 90% and recrystallized for 1 to 2 minutes at 800 to 850 ° C.
  • Japanese Patent JP 3 317 303 B2 discloses a high-strength steel strip which has the following composition in percent by weight: C: 0.05-0.3; Si: ⁇ 0.2; Mn: 0.5-4.0: P: ⁇ 0.1; S: ⁇ 0.1; Ni: 0 - 5.0; Al: 0.1-2.0 and N ⁇ 0.01.
  • C 0.05-0.3
  • Si ⁇ 0.2
  • Mn 0.5-4.0
  • P ⁇ 0.1
  • S ⁇ 0.1
  • Ni 0 - 5.0
  • Al 0.1-2.0 and N ⁇ 0.01.
  • Si + Al 0.5; Mn + 1/3 Ni> 1, 0.
  • a melt of the above-described steel is melted. By warm forging is a
  • Test block produced with a thickness of 25 mm. This is then heated to 1250 ° C in an electric oven for one hour. Subsequently, hot rolling is carried out at 930-1,150 ° C to obtain a steel strip thickness of 5 mm. For a coiler simulation, the steel strip is immediately cooled to 500 ° C and annealed in an electric oven at this temperature for one hour.
  • the present invention based on the object to provide a method for producing a high-strength steel strip of a manganese-containing TRIP and / or TWIP steel with strengths between 1 100 and 2200 MPa, which is inexpensive and wherein the steel strip improved
  • This object is achieved by a method for producing a flat steel product, in particular using the aforementioned steel, having the features of claim 1 and by a very high strength steel strip having the features of
  • According to the invention provides a method for producing a high-strength
  • Steel strip comprising the steps of: melting a steel melt containing (in% by weight): C: 0.1 to ⁇ 0.3; Mn: 4 to ⁇ 8; AI:> 1 to 2.9; P: ⁇ 0.05; S: ⁇ 0.05; N: ⁇ 0.02; Remainder of iron, including unavoidable steel-supporting elements, with optional addition of one or more of the following elements (in
  • Weight%) Si: 0.05 to 0.7; Cr: 0.1 to 3; Mo: 0.01 to 0.9; Ti: 0.005 to 0.3; B: 0.0005 to 0.01 over the process route blast furnace steel mill or the
  • Electric arc furnace process each with optional vacuum treatment of the melt; - Pouring the molten steel to a Vorband by means of a close to the final dimension horizontal or vertical Bandg intelligentvons or casting the molten steel to a slab or thin slab by means of a horizontal or vertical slab or thin slab casting process, heating to a rolling temperature of 1050 to 1250 ° C or inline rolling from the casting heat, hot rolling the sliver or slab or slab into a hot strip having a thickness of 12 to 0.8 mm, with a rolling end temperature of 1050 to 800 ° C, - coiling of the hot strip at a temperature of more than 200 to 800 ° C, - pickling of the hot strip, - annealing of the hot strip in a continuous or discontinuous annealing at a Glow time from 1 min to 48 h and
  • Hydrogen embrittlement and liquid metal embrittlement which additionally has a TRIP and / or TWIP effect under mechanical stress.
  • Typical thickness ranges for pre-strip are 1 mm to 35 mm and for slabs and thin slabs 35 mm to 450 mm.
  • the slab or thin slab is hot rolled to a hot strip having a thickness of 12 mm to 0.8 mm, or the final near cast cast slab is hot rolled to a hot strip with a thickness of 8 mm to 0.8 mm.
  • Cold strip according to the invention has a thickness of at most 3 mm, preferably 0.1 to 1, 4 mm.
  • Hot rolling thus already takes place inline during the two-roll casting process, so that separate heating and hot rolling can optionally be dispensed with.
  • the cold rolling of the hot strip can at room temperature or advantageous at elevated temperature before the first rolling pass in one or more rolling passes take place.
  • Cold rolling at elevated temperature is advantageous to reduce rolling forces and promote the formation of twinned twins (TWIP effect).
  • Advantageous temperatures of the rolling stock before the first pass are 60 to 450 ° C.
  • the steel strip to restore sufficient forming properties is advantageous in a continuous annealing, in particular continuous annealing, advantageously at a glow time of 1 to 15 minutes and temperatures of 720 ° C to 840 ° C for annealing.
  • the steel strip is advantageously cooled to a temperature of 250 ° C to room temperature and then, if necessary, to adjust the required mechanical properties in the course of a
  • the aging treatment can advantageously be carried out in a continuous annealing plant.
  • the steel strip can be dressed after cold rolling, thereby adjusting the surface texture needed for the end use.
  • the casting can be done for example by means of the Pretex® method.
  • the steel strip thus produced receives instead of or after the electrolytic galvanizing or hot-dip galvanizing another coating on an organic or inorganic basis.
  • coatings may be, for example, organic coatings, plastic coatings or paints or otherwise
  • inorganic coatings such as iron oxide layers.
  • the steel strip produced according to the invention can be used both as a sheet metal, sheet metal section or plate or further processed to form a longitudinally welded or spiral seam welded tube.
  • the steel sheet or steel strip is particularly advantageous for further processing to a component by cold or warm forging, for example in the automotive industry, in infrastructure and mechanical engineering.
  • the steel strip with improved properties during further processing has a TRIP / TWIP effect, with a structure (in volume%) of 10 to 80% austenite, 10 to 90% martensite, remainder ferrite and bainite with a share of less than 20%.
  • at least 20% of the martensite is present as tempered martensite and optionally a proportion of> 10% of the austenite in the form of annealing or deformation twins.
  • the steel strip has a particularly fine grain with a mean grain size of the phase constituents:
  • Martensite, ferrite, bainite less than 650 nm.
  • the austenite Due to the final annealing of the cold strip produced at room temperature or at elevated temperatures, the austenite is in a metastable state and optionally with twins, whereby it partially converts to martensite under mechanical force (eg, forming) by TRIP effect.
  • the austenite part of the steel according to the invention can partially or completely convert into martensite when mechanical stresses are applied (TRIP effect).
  • the alloy according to the invention has corresponding mechanical properties
  • TWIP effect Stress also a twinning in plastic deformation on (TWIP effect). Because of the strong induced by the TRIP and / or TWIP effect
  • Hardening the steel achieved high levels of elongation at break, in particular to uniform elongation, and tensile strength.
  • Annealing can be done advantageously by means of a continuous annealing, which is much more economical compared to a Haubenglühung.
  • a steel strip produced by the process according to the invention advantageously has a yield strength Rp0.2 of 300 to 1550 MPa, a tensile strength Rm of 1100 to 2200 MPa and an elongation at break A80 of more than 4 to 41%, with high strengths tending to be associated with lower elongations at break and vice versa: Rm of more than 1 100 to 1200 MPa: Rm x A80> 25000 to 45000 MPa% Rm from over 1200 to 1400 MPa: Rm x A80> 20000 up to 42000 MPa% Rm over 1400 to 1800 MPa: Rm x A80> 10000 up to 40000 MPa% Rm over 1800 MPa: Rm x A80> 7200 up to 20000 MPa% For the elongation at break tests, a specimen A80 was used according to DIN 50 125.
  • the elongation and toughness properties are advantageously improved by the onset of TRIP and / or TWIP effect of the alloy according to the invention.
  • the steel strip produced according to the invention offers a good combination of
  • this manganese-containing manganese steel of the present invention (medium manganese steel) based on the alloying elements C, Mn, Al is very high
  • the manganese steel according to the invention is also distinguished by an increased resistance to delayed fracture and to hydrogen embrittlement and liquid metal embrittlement during welding.
  • the use of the term "bis" in the definitions of the content ranges, such as 0.01 to 1 wt .-% means that the benchmarks - in the example 0.01 and 1 - are included.
  • Alloying elements are usually added to the steel in order to specifically influence certain properties.
  • An alloying element in different steels can influence different properties. The effect and interaction generally depends strongly on the amount, the presence of other alloying elements and the dissolution state in the material.
  • Carbon C needed to form carbides, stabilizes austenite and increases strength. Higher contents of C deteriorate the welding properties and lead to the deterioration of the elongation and toughness properties, therefore, a maximum content of less than 0.3 wt% is determined. In order to achieve sufficient strength of the material, a minimum addition of 0.1 wt .-% is required.
  • Manganese Mn Stabilizes austenite, increases strength and toughness, and allows for strain-induced martensite and / or twin formation in the alloy of the present invention. Contents less than 4% by weight are insufficient to stabilize the austenite and thus worsen the elongation properties, while at contents of 8% by weight and more, the austenite is excessively stabilized and thereby the strength properties, in particular the 0.2% proof stress, be reduced. For manganese manganese according to the invention with medium
  • Aluminum Al In manganese content, a range of 4 to ⁇ 8% by weight is preferred.
  • Aluminum Al An Al content of more than 1 wt% improves strength and elongation properties, lowers specific gravity, and affects
  • Transformation behavior of the alloy according to the invention Al contents of more than 2.9% by weight deteriorate the elongation properties. Also, higher Al contents significantly worsen the casting behavior in continuous casting. This results in a higher cost when casting. Al contents of more than 1% by weight delay the precipitation of carbides in the alloy according to the invention. Therefore, a maximum content of 2.9 wt .-% and a minimum content of more than 1 wt .-% is set. Furthermore, for the sum of Mn and Al, a minimum content (in% by weight) greater than 6.5 and less than 10 should be maintained to achieve the desired
  • a content of Mn + Al of 10% by weight or more deteriorates the castability, thereby decreasing the yield and thus increasing the cost.
  • contents of Mn + Al of 6.5% by weight or less sufficient austenite stability for the desired Conversion behavior can be ensured.
  • Silicon Si The optional addition of Si at levels greater than 0.05 wt% hinders carbon diffusion, reduces specific gravity, and increases strength and elongation and toughness properties. Furthermore, an improvement in cold rollability by alloying Si could be observed. Contents of more than 0.7 wt .-% lead to embrittlement of the material and affect the hot and cold rollability and coatability
  • Chromium Cr The optional addition of Cr improves strength and reduces corrosion rate, retards ferrite and pearlite formation, and forms carbides.
  • the maximum content is set at 3% by weight, since higher contents are one
  • Efficacy Minimum Cr content is set at 0.1% by weight.
  • Molybdenum Mo acts as a carbide former, increasing strength and increasing resistance to delayed cracking and hydrogen embrittlement. Contents of Mo of more than 0.9 wt .-% worsen the
  • Phosphorus P is a trace element from iron ore and is found in iron lattice as
  • the sulfur content is limited to values less than 0.05 wt .-%.
  • Nitrogen N Is also an accompanying element of steelmaking. In the dissolved state, it improves the strength and toughness properties of steels containing more than 4 manganese by weight of manganese containing more than or equal to 4% by weight. Low Mn-alloyed steels of less than 4 wt% with free nitrogen tend to have a strong aging effect. The nitrogen diffuses at low temperatures at dislocations and blocks them. It causes an increase in strength combined with a rapid loss of toughness. A bonding of the nitrogen in the form of nitrides, for example, by alloying of aluminum or titanium possible, with particular aluminum nitrides negative on the
  • the nitrogen content is limited to less than 0.02 wt .-%.
  • Titanium Ti As a carbide former, it refines grain, improving its strength, toughness, and elongation properties while reducing intergranular corrosion. Contents of Ti exceeding 0.3% by weight deteriorate the elongation properties, therefore, a maximum content of Ti of 0.3% by weight is set. Optionally, a minimum content of 0.005 is set to bind nitrogen and advantageously precipitate Ti.
  • Boron B Delays the austenite transformation, improves the hot working properties of steels and increases the strength at room temperature. It unfolds its effect even at very low alloy contents. Contents above 0.01% by weight greatly deteriorate the elongation and toughness properties, and therefore the maximum content is set to 0.01% by weight. Optionally, a minimum level of 0.0005% by weight is set to take advantage of the strength-enhancing effect of boron.
  • alloy 1 contains in part the following elements in the listed contents in% by weight:
  • the steel strips made from the aforementioned alloy 1 were cold rolled for comparison, i. at room temperature and thus below 50 ° C, and also rolled according to the invention at 250 ° C.
  • the measured rolling forces are given below:
  • Cumulative rolling force is understood to mean adding up the rolling forces of the individual passes in order to obtain a comparable measure of the force required.
  • the rolling force was standardized to a bandwidth of 1000 mm.
  • the degree of deformation e is defined as the quotient of the change in thickness Ad of the steel strip examined by the initial thickness dO of the steel strip examined.
  • the rolling force reduction is the calculated reduction in rolling force at 250 ° C as compared with the cold rolling force.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

L'invention concerne un procédé de fabrication d'une bande d'acier à résistance très élevée, à effet TRIP/TWIP, laquelle est peu coûteuse et la bande d'acier présentant des propriétés améliorées lors du traitement ultérieure, en particulier, une bonne combinaison de propriétés de résistance mécanique et de déformation, de résistance élevée à la formation de fissures retardée induite par l'hydrogène et de résistance à la fragilisation par l'hydrogène et de résistance à la fragilisation par les métaux liquides. Le procédé comprend les étapes suivantes : la fusion de l'acier en fusion contenant (en % p/p) : C : 0,1 à <0,3 ; Mn : 4 à <8 ; AI : > 1 à 2,9 ; P : < 0,05 ; S : < 0,05 ; N : < 0,02 ; le reste étant constitué de fer et d'impuretés inévitables, en ajoutant de l'alliage facultatif d'un ou de plusieurs des éléments suivants (en % p/p) : Si : 0,05 à 0,7 ; Cr : 0,1 à 3 ; Mo : 0,01 à 0,9 ; Ti : 0,005 à 0,3 ; B : 0,0005 à 0,01 lors d'un processus dans un haut-fourneau ou au four à arc avec le traitement, facultatif, sous vide de la matière en fusion ; la coulée de l'acier en fusion en une bande préliminaire, au moyen d'un procédé de coulée en bande horizontale ou verticale quasi horizontale ou la coulée de l'acier en fusion en une brame ou en une brame mince, au moyen d'un procédé de coulée des brames horizontales ou verticales ou d'un procédé de coulée des brames minces ; le chauffage à une température de laminage comprise entre 1050°C et 1250°C ou le laminage en ligne hors de la chaleur de coulée ; le laminage à chaud de la bande préliminaire ou de la brame ou de la brame mince en une bande laminée à chaude, d'une épaisseur de 12 à 0,8 mm, à température de laminage comprise entre 1050°C et 800°C ; le bobinage de la bande laminée à chaud, à une température de plus de 200°C à 800°C ; le décapage de la bande laminée à chaud ; le recuit de la bande laminée à chaud dans une installation de recuit continu ou discontinu, à une durée de recuit de 1 min à 48 h et à des températures comprises entre 540°C et 840°C ; le laminage à froid de la bande laminée à chaud, à température ambiante ou à température élevée, lors d'une ou des plusieurs passes de laminage ; la galvanisation électrolytique facultative ou la galvanisation à chaud de la bande d'acier ou l'application d'un revêtement organique ou inorganique différents. L'invention concerne également une bande d'acier à résistance très élevée et peu coûteuse, présentant des propriétés améliorées lors du traitement ultérieure.
EP17757729.3A 2016-08-23 2017-08-18 Procédé de fabrication d'une bande d'acier à résistance très élevée présentant des propriétés améliorées lors du traitement ultérieur et une telle bande d'acier Active EP3504349B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102016115618.3A DE102016115618A1 (de) 2016-08-23 2016-08-23 Verfahren zur Herstellung eines höchstfesten Stahlbandes mit verbesserten Eigenschaften bei der Weiterverarbeitung und ein derartiges Stahlband
DE102016121002 2016-11-03
PCT/EP2017/070913 WO2018036918A1 (fr) 2016-08-23 2017-08-18 Procédé de fabrication d'une bande d'acier à résistance très élevée présentant des propriétés améliorées lors du traitement ultérieur et une telle bande d'acier

Publications (2)

Publication Number Publication Date
EP3504349A1 true EP3504349A1 (fr) 2019-07-03
EP3504349B1 EP3504349B1 (fr) 2024-04-03

Family

ID=59702700

Family Applications (1)

Application Number Title Priority Date Filing Date
EP17757729.3A Active EP3504349B1 (fr) 2016-08-23 2017-08-18 Procédé de fabrication d'une bande d'acier à résistance très élevée présentant des propriétés améliorées lors du traitement ultérieur et une telle bande d'acier

Country Status (6)

Country Link
US (2) US20190185951A1 (fr)
EP (1) EP3504349B1 (fr)
KR (1) KR102401569B1 (fr)
CN (1) CN109642263B (fr)
RU (1) RU2714975C1 (fr)
WO (1) WO2018036918A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019209933A1 (fr) 2018-04-24 2019-10-31 Nucor Corporation Alliages d'acier exempts d'aluminium et leurs procédés de fabrication
CN108998741B (zh) * 2018-05-29 2020-02-14 西南交通大学 超高强韧性中锰相变诱发塑性钢及其制备方法
WO2021089851A1 (fr) * 2019-11-08 2021-05-14 Ssab Technology Ab Produit en acier au manganèse à haute résistance et son procédé de fabrication
CN111621624B (zh) * 2020-05-11 2021-10-22 北京交通大学 提高中锰钢耐氢致延迟断裂性能的工艺方法
CN111850410B (zh) * 2020-07-30 2022-02-15 吉林建龙钢铁有限责任公司 一种打包带用冷硬卷板及其制备方法
CN112226679B (zh) * 2020-09-14 2022-06-21 包头钢铁(集团)有限责任公司 一种冷轧980MPa级马氏体钢及其生产方法
CN114606430B (zh) * 2022-03-01 2023-05-12 兴机电器有限公司 一种低碳Fe-Mn-Al-Si系TWIP钢及其制备方法
CN115261739A (zh) * 2022-08-03 2022-11-01 海宁瑞奥金属科技有限公司 一种搅拌头材料
CN116005078B (zh) * 2023-01-14 2024-09-24 重庆大学 一种层状异构组织高强钢的制造方法
CN116219300A (zh) * 2023-02-15 2023-06-06 武汉科技大学 硼微合金化高强塑性冷轧中锰钢及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3935965C1 (fr) * 1989-10-26 1991-05-08 Mannesmann Ag, 4000 Duesseldorf, De
JP3317303B2 (ja) 1991-09-17 2002-08-26 住友金属工業株式会社 局部延性の優れた高張力薄鋼板とその製造法
FR2796083B1 (fr) 1999-07-07 2001-08-31 Usinor Procede de fabrication de bandes en alliage fer-carbone-manganese, et bandes ainsi produites
KR101027250B1 (ko) * 2008-05-20 2011-04-06 주식회사 포스코 고연성 및 내지연파괴 특성이 우수한 고강도 냉연강판,용융아연 도금강판 및 그 제조방법
JP5287770B2 (ja) * 2010-03-09 2013-09-11 Jfeスチール株式会社 高強度鋼板およびその製造方法
EP2383353B1 (fr) * 2010-04-30 2019-11-06 ThyssenKrupp Steel Europe AG Acier à résistance élevée comprenant du Mn, produit plat en acier composé d'un tel acier et son procédé de fabrication
PL2700728T3 (pl) * 2011-04-21 2018-03-30 Nippon Steel & Sumitomo Metal Corporation Blacha stalowa cienka walcowana na zimno o wysokiej wytrzymałości, wysoce jednorodnej rozciągliwości i doskonałej podatności na powiększanie otworu oraz sposób jej wytwarzania
DE102012013113A1 (de) 2012-06-22 2013-12-24 Salzgitter Flachstahl Gmbh Hochfester Mehrphasenstahl und Verfahren zur Herstellung eines Bandes aus diesem Stahl mit einer Mindestzugfestigkleit von 580MPa
CN102758133B (zh) * 2012-07-26 2013-12-25 宝山钢铁股份有限公司 一种1000MPa级别的高强塑积汽车用钢及其制造方法
CN102912219A (zh) * 2012-10-23 2013-02-06 鞍钢股份有限公司 一种高强塑积trip钢板及其制备方法
RU2631219C2 (ru) * 2013-05-06 2017-09-19 Зальцгиттер Флахшталь Гмбх Способ изготовления деталей из легкой конструкционной стали и детали из легкой конструкционной стали
WO2015011510A1 (fr) * 2013-07-25 2015-01-29 Arcelormittal Investigación Y Desarrollo Sl Joint soudé par points utilisant une résistance élevée et un formage élevé et son procédé de production
DE102015112889A1 (de) * 2015-08-05 2017-02-09 Salzgitter Flachstahl Gmbh Hochfester manganhaltiger Stahl, Verwendung des Stahls für flexibel gewalzte Stahlflachprodukte und Herstellverfahren nebst Stahlflachprodukt hierzu
US11414720B2 (en) * 2016-01-29 2022-08-16 Jfe Steel Corporation High-strength steel sheet for warm working and method for manufacturing the same
CN106244918B (zh) * 2016-07-27 2018-04-27 宝山钢铁股份有限公司 一种1500MPa级高强塑积汽车用钢及其制造方法

Also Published As

Publication number Publication date
CN109642263A (zh) 2019-04-16
WO2018036918A1 (fr) 2018-03-01
US20210147953A1 (en) 2021-05-20
KR20190042022A (ko) 2019-04-23
US20190185951A1 (en) 2019-06-20
RU2714975C1 (ru) 2020-02-21
EP3504349B1 (fr) 2024-04-03
CN109642263B (zh) 2021-02-26
KR102401569B1 (ko) 2022-05-23

Similar Documents

Publication Publication Date Title
EP3504349B1 (fr) Procédé de fabrication d&#39;une bande d&#39;acier à résistance très élevée présentant des propriétés améliorées lors du traitement ultérieur et une telle bande d&#39;acier
DE60214086T2 (de) Hochduktiles Stahlblech mit exzellenter Pressbarkeit und Härtbarkeit durch Verformungsalterung sowie Verfahren zu dessen Herstellung
EP3535431B1 (fr) Produit d&#39;acier à teneur en manganèse intermédiaire pour application à basse température et son procédé de fabrication
DE60116477T2 (de) Warm-, kaltgewalzte und schmelz-galvanisierte stahlplatte mit exzellentem reckalterungsverhalten
CA2941202C (fr) Procede pour fabriquer un produit plat en acier tres resistant
EP2383353B1 (fr) Acier à résistance élevée comprenant du Mn, produit plat en acier composé d&#39;un tel acier et son procédé de fabrication
DE60125253T2 (de) Hochfestes warmgewalztes Stahlblech mit ausgezeichneten Reckalterungseigenschaften
EP1807542A1 (fr) Bande ou tole d&#39;acier extremement resistante a proprietes twip et procede de fabrication de ladite bande a l&#39;aide de la &#34;coulee directe de bandes&#34;
WO2010054813A1 (fr) Feuillard d&#39;acier au manganèse à teneur accrue en phosphore et son procédé de fabrication
EP3332046B1 (fr) Acier au manganèse à haute résistance contenant de l&#39;aluminium, procédé de fabrication d&#39;un produit plat en acier à partir de cet acier et produit plat en acier fabriqué d&#39;après celui-ci
EP3974554A1 (fr) Produit plan en acier ayant une bonne résistance au vieillissement et son procédé de fabrication
EP3332047A1 (fr) Acier hautement résistant contenant du manganèse, utilisation de l&#39;acier pour des produits plats en acier laminés flexibles et procédé de fabrication et produit plat en acier le concernant
EP3512968B1 (fr) Procédé pour fabriquer un produit plat en acier à partir d&#39;un acier au manganèse et produit plat en acier résultant
DE69713639T2 (de) Stahl, Stahlblech mit hervorragender Bearbeitbarkeit und dessen Herstellungsverfahren durch Elektrostahlofen und Vakuumentgasung
WO2015117934A1 (fr) Produit en acier plat de résistance élevée ayant une texture à base de bainite et de martensite et procédé de fabrication d&#39;un tel produit en acier plat
EP3512967A1 (fr) Procédé pour la fabrication d&#39;une pièce façonnée en un produit plat en acier contenant du manganèse et pièce correspondante
WO2019115551A1 (fr) Produit plat en acier laminé à chaud, à rigidité élevée, doté d&#39;une résistance à la fissuration de bords élevée ainsi que d&#39;une capacité de durcissement à la cuisson élevée, procédé de fabrication d&#39;un tel produit plat en acier
DE102016115618A1 (de) Verfahren zur Herstellung eines höchstfesten Stahlbandes mit verbesserten Eigenschaften bei der Weiterverarbeitung und ein derartiges Stahlband
EP3551776A1 (fr) Procédé de fabrication d&#39;une bande laminée à chaud ou à froid et/ou d&#39;un produit plat en acier laminé de manière flexible constitué par un acier contenant du manganèse, hautement solide et produit plat en acier ainsi obtenu
DE102016117494A1 (de) Verfahren zur Herstellung eines umgeformten Bauteils aus einem mittelmanganhaltigen Stahlflachprodukt und ein derartiges Bauteil
EP3469108B1 (fr) Procédé de fabrication d&#39;une bande d&#39;acier laminée à froid présentant des propriétés trip à partir d&#39;un acier à résistance élevée contenant du manganèse
EP3771746A1 (fr) Acier, produit plan en acier, procédé de fabrication d&#39;un produit plan en acier et utilisation
DE102022121780A1 (de) Verfahren zur Herstellung eines kaltgewalzten Stahlflachprodukts

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20190314

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

17Q First examination report despatched

Effective date: 20201124

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: EXAMINATION IS IN PROGRESS

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502017015993

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: C21D0008020000

Ipc: C22C0038120000

Ref country code: DE

Ref legal event code: R079

Free format text: PREVIOUS MAIN CLASS: C21D0008020000

Ipc: C22C0038120000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

RIC1 Information provided on ipc code assigned before grant

Ipc: C22C 38/14 20060101ALI20231011BHEP

Ipc: C22C 38/06 20060101ALI20231011BHEP

Ipc: C22C 38/04 20060101ALI20231011BHEP

Ipc: C22C 38/02 20060101ALI20231011BHEP

Ipc: C21D 8/02 20060101ALI20231011BHEP

Ipc: C22C 38/58 20060101ALI20231011BHEP

Ipc: C22C 38/18 20060101ALI20231011BHEP

Ipc: C22C 38/12 20060101AFI20231011BHEP

INTG Intention to grant announced

Effective date: 20231107

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502017015993

Country of ref document: DE

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20240403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240803

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240403

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240403

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240403

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240821

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20240805

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240829

Year of fee payment: 8