WO2020063826A1 - 人工晶体半成品成型模具、成型方法及人工晶体半成品 - Google Patents

人工晶体半成品成型模具、成型方法及人工晶体半成品 Download PDF

Info

Publication number
WO2020063826A1
WO2020063826A1 PCT/CN2019/108428 CN2019108428W WO2020063826A1 WO 2020063826 A1 WO2020063826 A1 WO 2020063826A1 CN 2019108428 W CN2019108428 W CN 2019108428W WO 2020063826 A1 WO2020063826 A1 WO 2020063826A1
Authority
WO
WIPO (PCT)
Prior art keywords
mold
auxiliary
optical
region
finished product
Prior art date
Application number
PCT/CN2019/108428
Other languages
English (en)
French (fr)
Inventor
罗敏
曹立
Original Assignee
东莞东阳光科研发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞东阳光科研发有限公司 filed Critical 东莞东阳光科研发有限公司
Priority to CN201980022183.8A priority Critical patent/CN111971154A/zh
Publication of WO2020063826A1 publication Critical patent/WO2020063826A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/14Eye parts, e.g. lenses, corneal implants; Implanting instruments specially adapted therefor; Artificial eyes
    • A61F2/16Intraocular lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/30Mounting, exchanging or centering

Definitions

  • the obtained crystal 8 includes an optical part 81 and an auxiliary part 82.
  • the crystal 8 needs to be cut and processed. Most of the auxiliary part 82 is cut off during cutting, and the remaining part is ⁇ , ⁇ After cutting, the thickness of the optics and ridges must meet certain requirements to achieve the desired mechanical properties. If the thickness of the optical part is too large, the folding performance of the crystal is poor. Injecting through a large-mouth injector will inevitably lead to an increase in the surgical incision of the patient;
  • the crystal formed by the semi-finished mold for artificial crystal of the prior art cannot meet the requirements of the thin crystal thickness and the thickness of the cymbal at the same time.
  • An object of the present invention is to provide an artificial lens semi-finished product forming mold, which can form a stepped surface at the connection position of the optical region and the auxiliary region, and effectively prevent the complications of postoperative posterior capsule turbidity.
  • An object of the present invention is to provide an artificial crystal semi-finished product forming mold, which can directly form a transition step when the artificial crystal semi-finished product is formed in the molding mold, simplify the production process and improve the production efficiency; and can effectively reduce the thickness of the produced crystal.
  • An object of the present invention is to provide an artificial lens forming method by which a semi-finished product of an artificial lens is directly formed into a transition step when it is molded in a forming mold, thereby simplifying a production process and improving production efficiency.
  • An object of the present invention is to provide an artificial lens semi-finished product.
  • the artificial lens semi-finished product has a transition step after the mold is formed, and can be quickly manufactured into an artificial lens finished product.
  • the artificial lens finished product can effectively prevent the Capsule turbidity complications occur; and it can effectively reduce the thickness of the crystal while satisfying the mechanical properties of the diaphragm.
  • an artificial crystal semi-finished product forming mold which includes a first mold and a second mold.
  • the first mold includes a first optical region and a first auxiliary region.
  • the first auxiliary region is located in the first optical region.
  • the second mode includes a second optical region and a second auxiliary region, and the second auxiliary region is located on the periphery of the second optical region;
  • a step surface is provided at a connection position between the first optical region and the first auxiliary region, and one end of the step surface is connected to the first optical region through a step extension surface, and the other end of the step surface is connected to the first surface.
  • the first auxiliary zone is connected, and the height difference of the stepped surface is greater than zero;
  • a distance between the step surface and an edge of the first optical region is greater than zero
  • the second auxiliary region and the second optical region are connected by a tapered bevel
  • the first auxiliary area includes a first auxiliary end surface
  • the second auxiliary area includes a second auxiliary end surface
  • the step extension surface is disposed at an edge of the first optical area
  • the first auxiliary end surface and the first auxiliary surface The distance between the two auxiliary end faces is smaller than the distance between the step extension surface and the second auxiliary end face;
  • a distance from an end of the tapered inclined surface connected to the second auxiliary end surface to the first auxiliary end surface is greater than a distance of an end of the tapered inclined surface connected to the second optical region to the first auxiliary end surface.
  • the first optical region, the first auxiliary region, the second optical region, and the second auxiliary region collectively constitute a molding cavity of a semi-finished product of an artificial lens.
  • the height difference of the stepped surface is 0.05 mm or more and 0.2 mm or less.
  • a distance between the stepped surface and an edge of the first optical region is 0.2 mm or more and 1.0 mm or less.
  • the first mold is a female mold
  • the second mold is a male mold
  • the stepped surface is disposed on the female mold
  • the tapered inclined surface is disposed on the male mold.
  • the step surface is an arc surface, that is, an intersection line of the step surface and a vertical plane passing through the center of the first optical region is two arc lines.
  • the stepped surface is an arc surface convex in the direction of the first optical region.
  • the radian of the arc surface is small, and it will not affect the normal demolding operation after the semi-finished product of the artificial lens is formed.
  • an edge contour of the first optical region is circular, and an intersection line of the step surface and a horizontal plane is a concentric circle of the edge contour of the first optical region.
  • the tapered inclined surface is an inclined arc surface.
  • the inclined arc surface is an arc surface which is convex toward a direction close to the step surface.
  • the inclined arc surface is an arc surface protruding in a direction away from the step surface.
  • the tapered inclined surface when the tapered inclined surface is a conical surface, it means that the cross-sectional profile of the tapered inclined surface is an inclined straight line; when the tapered inclined surface is an inclined arc surface, it means that the sectional profile of the tapered inclined surface is an inclined arc, so The radian of the inclined arc surface is small, and it will not affect the normal demolding operation after the semi-finished product of the artificial lens is formed.
  • the height of the positioning boss is less than or equal to the depth of the positioning groove. In the clamping state, the positioning boss is inserted into the positioning groove, and the rotation axis of the positioning boss and the positioning groove The axes of rotation are on the same straight line.
  • the positioning boss is located outside the first auxiliary region, and the positioning groove is located outside the second auxiliary region.
  • positioning protrusions and positioning grooves formed by rotating and extending in a circumferential direction are provided to enable the first mold and the second mold to achieve automatic centering and positioning, and effectively ensure the positioning protrusions in a clamping state.
  • the rotation axis of the positioning groove is on the same straight line.
  • the structural design of the rotation axis of the positioning boss and the center line of the first optical region on the same straight line, and the rotation axis of the positioning groove and the center line of the second optical region The structural design on the same straight line makes the center line of the first optical zone and the center line of the second optical zone on the same straight line, thereby avoiding optical eccentricity after the first mold and the second mold are clamped. , Effectively improve the imaging quality of the product.
  • the first mold and the second mold can be relatively rotated, thereby making the positioning more reliable and the rotation capable
  • the foreign objects such as burrs existing in the positioning boss or the positioning groove are smoothed, so that the positioning of the first mold and the second mold is more accurate.
  • the first mold is a male mold
  • the second mold is a female mold
  • the positioning projection is a first projection provided at the bottom of the male mold
  • the positioning recess is
  • the groove is a second groove provided on the top of the female mold; when the mold is closed, the male mold is disposed above the female mold, and the first projection is inserted into the second groove.
  • the second boss By setting the second boss on the female mold and simultaneously setting the corresponding first groove on the male mold, the second boss is inserted into the first groove when the mold is closed.
  • the rapid and effective centering positioning of the female mold and the male mold can be achieved, and optical eccentricity of the first optical region and the second optical region can be avoided.
  • the first mold is a male mold
  • the second mold is a female mold
  • the positioning projection is a first projection provided at the bottom of the male mold
  • the positioning recess is
  • the groove is a second groove provided on the top of the female mold; the bottom of the male mold is further provided with a first groove, and the top of the female mold is further provided with a second boss, the second boss The height is less than or equal to the depth of the first groove.
  • the positioning boss is an annular boss formed by one continuous rotation
  • the positioning groove is an annular groove formed by one continuous rotation
  • the positioning projections are arc-shaped projections arranged at intervals, the rotation axes of the arc-shaped projections are the same, the rotation radius of the arc-shaped projections are the same, and the positioning grooves are rotated continuously for one revolution. Formed annular groove;
  • the positioning bosses are arc-shaped bosses arranged at intervals, the rotation axes of the arc-shaped bosses are the same, the rotation radii of the arc-shaped bosses are the same, and the positioning grooves are arranged at several intervals.
  • the arc-shaped grooves have the same rotation axis of the arc-shaped grooves, and the arc-shaped grooves have the same rotation radius.
  • the arc-length of the arc-shaped grooves is greater than the arc-length of the arc-shaped bosses. length.
  • the arc length of the arc-shaped groove is greater than the arc length of the arc-shaped boss, so that It is beneficial to quickly insert the arc-shaped boss into the arc-shaped groove, which makes the operation more convenient.
  • the arc-shaped boss after the arc-shaped boss is inserted into the arc-shaped groove, it can rotate around a rotation axis within a certain range. To smooth out foreign objects such as burrs.
  • annular boss is a continuous and complete boss, there are no gaps that may be jammed and ejected. Therefore, the use of the annular boss can make the clamping operation easier and faster.
  • the annular groove is a continuous and complete groove, and there are no protrusions that may become stuck and die, the use of the annular groove can make the mold clamping operation simpler and faster.
  • a root of the positioning boss is provided with an inverted groove recessed toward the inside of the first mold
  • the slot of the positioning groove is provided with a slot chamfer.
  • the root of the positioning boss and the notch of the positioning groove may not completely fit due to processing errors. In this way, the first mold and the second mold cannot be completely adhered to each other, which leads to problems such as excessive scraps and excessive thickness of the molded semi-finished product.
  • the chamfer or the chamfer of the notch By setting the chamfer or the chamfer of the notch, the above problems can be effectively avoided, the requirement for the machining accuracy of the mold can be reduced, and the production cost can be reduced and the production efficiency can be improved.
  • the chamfered groove and the chamfered chamfer the interference between the positioning boss and the positioning groove can be effectively avoided, the positioning accuracy can be further effectively improved, and the optical alignment reliability after the mold clamping is ensured.
  • a cross-sectional shape of the positioning boss is rectangular, and a cross-sectional shape of the positioning groove is rectangular;
  • a cross-sectional shape of the positioning groove is a triangle.
  • a protruding end of the positioning boss is provided with a convex chamfer.
  • the positioning boss can more easily enter the positioning groove, reduce the difficulty of operation, and improve production efficiency.
  • a cross-sectional shape of the positioning boss is a square.
  • a cross-sectional shape of the positioning boss is trapezoidal, a bottom of the trapezoid is located at an end of the positioning boss near the root, and a cross-sectional shape of the positioning groove is trapezoidal;
  • the cross-sectional shape of the positioning groove is rectangular
  • a cross-sectional shape of the positioning groove is a triangle.
  • the cross-sectional shape of the positioning boss is trapezoidal, so that the positioning boss can be more easily inserted into the positioning groove, reducing operation difficulty, improving production efficiency, and simultaneously realizing the first mold and the Centering and positioning of the second module improves alignment accuracy.
  • the cross-sectional shape of the positioning boss is an isosceles trapezoid.
  • a cross-sectional shape of the positioning boss is a triangle, and a cross-sectional shape of the positioning groove is a triangle;
  • the cross-sectional shape of the positioning groove is rectangular
  • a cross-sectional shape of the positioning groove is trapezoidal.
  • the cross-sectional shape of the positioning boss is an isosceles triangle or an equilateral triangle.
  • the first mold is detachably connected to the positioning boss.
  • the traditional processing technique of setting a step on the edge of the optical part of an intraocular lens is turning processing during the forming process of the artificial lens.
  • the precision of the artificial lens is very high, and the precision of the turning process is extremely high.
  • the processing conditions are very harsh, and at the same time, the productivity of the artificial crystal is low, the production cost is high, and the product reject rate is high.
  • the step surface is provided in the molding cavity of the semi-finished product of the artificial lens, so that the semi-finished product of the artificial lens can be directly formed into a transition step consistent with the shape of the step surface when the semi-finished product is formed in the forming mold, and the transition step does not need to be formed by turning to simplify production Technology to improve production efficiency, and by making the connection position of the optical part and the auxiliary part of the intraocular lens a transitional step, it can effectively prevent the complications of postoperative posterior capsule turbidity.
  • the tapered inclined surface is provided in the molding cavity of the semi-finished product of the artificial crystal, and the distance between the stepped surface and the edge of the first optical region is greater than zero, which can ensure that the mechanical properties of the crystal chirp are met. While reducing the thickness of the semi-finished IOL.
  • a semi-finished artificial lens including an optical portion and an auxiliary portion, the auxiliary portion being located at the periphery of the optical portion, the optical portion including an opposing optical front surface and an optical rear surface, and the auxiliary portion including The opposite auxiliary front end surface and the auxiliary rear end surface are provided with a transition step at a connection position between the optical rear surface and the auxiliary rear end surface, and one end of the transition step is connected to the optical rear surface through the transition surface, and the transition step The other end is connected to the auxiliary rear end surface, and the height difference of the transition step is greater than zero;
  • the artificial lens semi-finished product is made of the aforementioned artificial lens semi-finished product forming mold, and the shape and size of the transition step of the artificial lens semi-finished product are consistent with the shape and size of the step surface of the artificial lens semi-finished product mold.
  • the shape of the transitional conical bevel of the intraocular lens semi-finished product is consistent with the shape and size of the conical bevel of the intraocular lens semi-finished product mold.
  • the height difference of the transition step is 0.05 mm or more and 0.2 mm or less.
  • a distance between the transition step and an edge of the optical back surface is 0.2 mm or more and 1.0 mm or less.
  • the transition step of the semi-finished artificial lens is a complete circle of 360 degrees, and most of the transition step of 360-degree is cut and discarded in subsequent processing.
  • the number of finished artificial crystals is two
  • the transition step only has two sections in the final finished artificial lens, and the center angle of the arc corresponding to the transition step in each section is 30 degrees.
  • the cutting process will also form another right-angled edge, that is, the contour edge of the artificial crystal, and the auxiliary part is the original structure of the crystal cymbals.
  • the two sections of the auxiliary part that remain after cutting constitute the crystal cymbals of the artificial crystal.
  • the transitional conical bevel of the semi-finished artificial lens is a complete 360-degree circle.
  • the drop surface of the transition step is a vertical surface
  • the drop surface of the transition step is an arc surface, that is, the intersection line of the drop surface of the transition step and a vertical plane passing through the center of the optical portion is two arc lines.
  • the drop surface of the transition step is an arc surface convex toward the auxiliary portion.
  • the edge contour of the optical portion is circular, and the intersection of the drop surface of the transition step and the horizontal plane is a concentric circle of the edge contour of the optical portion.
  • the intersecting line between the drop surface of the transition step and the horizontal plane is four straight lines connected in sequence, and the four straight lines connected in sequence form a rectangle.
  • transitional tapered inclined surface when the transitional tapered inclined surface is a conical surface, it means that the cross-sectional profile of the transitional tapered inclined surface is an inclined straight line; when the transitional tapered inclined surface is an inclined arc surface, the cross-sectional profile of the transitional tapered inclined surface is inclined.
  • an artificial lens semi-finished product forming mold, a forming method, and an artificial lens semi-finished product are provided.
  • a stepped surface having a height difference is provided at a connection position between the first optical region and the first auxiliary region, so that the artificial lens semi-finished product is directly formed in a molding mold.
  • the transition step simplifies the production process and improves the production efficiency.
  • the transition position of the optical part and the auxiliary part of the artificial crystal semi-finished product is formed to make the artificial crystal semi-finished product molded in the mold automatically have a "360-degree right angle" that is well known in the art. Edge "original structure, thus effectively preventing the occurrence of complications of posterior capsule turbidity in the clinic.
  • FIG. 4 is a schematic cross-sectional view of an artificial lens semi-finished product forming mold according to the first embodiment
  • FIG. 5 is a partially enlarged view at C in FIG. 4; FIG.
  • FIG. 6 is a partially enlarged view at D in FIG. 4; FIG.
  • FIG. 8 is a plan view of a female mold according to the first embodiment
  • FIG. 9 is a schematic diagram of a crystal made of a semi-finished lens forming mold of artificial crystal according to the first embodiment
  • FIG. 10 is a partially enlarged view at J in FIG. 9; FIG.
  • FIG. 11 is a bottom view of a male die provided with a plurality of arc-shaped first bosses
  • FIG. 13 is a partial schematic view of an artificial lens semi-finished product forming mold according to the third embodiment.
  • Example 14 is a schematic cross-sectional view of an artificial lens semi-finished product forming mold of Example 4.
  • FIG. 15 is a partially enlarged view at E in FIG. 14; FIG.
  • FIG. 16 is a schematic diagram of a crystal made of an artificial crystal semi-finished product forming mold according to the fourth embodiment.
  • 17 is a schematic cross-sectional view of an artificial lens semi-finished product forming mold of Example 5.
  • FIG. 18 is a partially enlarged view at F in FIG. 17; FIG.
  • FIG. 19 is a bottom view of the male mold in the fifth embodiment.
  • Example 21 is a schematic cross-sectional view of an artificial lens semi-finished product forming mold of Example 6;
  • FIG. 22 is a partially enlarged view at G in FIG. 21;
  • FIG. 23 is a perspective view of a first boss in the sixth embodiment
  • FIG. 24 is a schematic structural diagram of an artificial lens semi-finished product according to the eighth embodiment.
  • 25 is a top view of the semi-finished product of the artificial lens according to the eighth embodiment.
  • FIG. 26 is a top view of the artificial lens semi-finished product according to the ninth embodiment.
  • an artificial lens semi-finished product forming mold includes a male mold 1 and a female mold 2.
  • the male mold 1 is disposed above the female mold 2, and a middle region of the male mold 1 is an arc region protruding upward.
  • the centerline of the arc-shaped area is the centerline of the first optical area of the male mold 1; the middle area of the female mold 2 is a concave area that is concave downward, and the centerline of the arc-shaped area is the second optical area of the female mold 2 Center line.
  • a first auxiliary area is provided on the periphery of the first optical area
  • a second auxiliary area is provided on the periphery of the second optical area.
  • the first optical area, the first auxiliary area, and the second The optical region and the second auxiliary region together constitute a molding cavity 3 of the semi-finished product of the artificial lens.
  • a step surface 7 is provided at a connection position between the first optical region and the first auxiliary region.
  • One end of the step surface 7 is connected to the first optical region through a step extension surface 93, and the step surface 7 The other end of the step is connected to the first auxiliary region.
  • the end of the step surface 7 connected to the first optical region is higher than the end of the step surface 7 connected to the first auxiliary region.
  • the height difference H1 of the step surface 7 is 0.1. mm.
  • the first auxiliary area includes a first auxiliary end surface 91
  • the second auxiliary area includes a second auxiliary end surface 92
  • a step extension surface 93 is provided at an edge of the first optical area
  • the first auxiliary end surface 91 and the second auxiliary surface The distance between the end surfaces 92 is smaller than the distance between the step extension surface 93 and the second auxiliary end surface 92.
  • a step surface 7 is provided on the entire 360-degree circumference of the periphery of the first optical zone.
  • the transition step in the crystal semi-finished product made by the artificial crystal semi-finished product forming mold is a complete circle of 360 degrees, and most of the transition steps of 360 degrees are cut and discarded in the subsequent cutting processing During processing, most of the auxiliary parts around the optical part are cut off, and the remaining auxiliary parts are the finished product of the artificial lens.
  • the transition step only retains the transition step on the crystal ⁇ in the final finished artificial lens. When the number of the finished iris is two, the transition step retains only two sections in the final finished artificial lens.
  • the central angle of the arc corresponding to the transition step in the segment is 30 degrees.
  • the cutting process will also form another right-angled edge, that is, the contour edge of the artificial lens.
  • the height difference H1 of the stepped surface 7 may be 0.05 mm, 0.15 mm, or 0.2 mm.
  • the traditional processing technique of setting a transition step on the edge of the optical part of an intraocular lens is turning processing during the forming process of the artificial lens, but the precision of the artificial crystal is very high, and the precision of the turning process is extremely high for the equipment , The processing conditions are very harsh, at the same time, it will cause low productivity of artificial crystals, high production costs and high product rejection rate.
  • the step surface 7 is provided in the molding cavity of the semi-finished product of the artificial lens, so that the semi-finished product of the artificial lens can be directly formed into a transition step when it is formed in the molding die, and the transition step does not need to be formed by turning. This simplifies the production process and improves the production efficiency.
  • the connection position between the optical part and the auxiliary part of the intraocular lens forms a transitional step, which can effectively prevent the complications of posterior capsule turbidity after operation.
  • the edge contour of the first optical region is circular
  • the step surface 7 is a vertical plane
  • the line of intersection between the step surface 7 and the horizontal plane is a concentric circle of the edge contour of the first optical region.
  • the distance L between the stepped surface 7 and the edge of the first optical region is 0.5 mm.
  • the crystal 8 made by the artificial crystal semi-finished product forming mold of this embodiment is shown in FIG. 9.
  • the distance L between the stepped surface 7 and the edge of the first optical region may be 0.2 mm, 0.6 mm, or 1.0 mm.
  • the stepped surface may also be a curved surface protruding in the direction of the first auxiliary region or protruding in the direction of the first optical region.
  • the second auxiliary region and the second optical region are connected by a tapered inclined surface 10, and an end of the tapered inclined surface 10 connected with the second auxiliary end surface is connected to the first auxiliary end surface.
  • the distance is greater than the distance from the end of the tapered inclined surface 10 connected to the second optical region to the first auxiliary end surface.
  • an end of the tapered inclined surface 10 connected to the second optical region is higher than an end of the tapered inclined surface 10 connected to the second auxiliary region.
  • a tapered inclined surface 10 is provided on the entire circumference of 360 degrees of a side of the second auxiliary region near the second optical region. Specifically, as shown in FIG.
  • the transitional conical bevel 84 in the crystal semi-finished product made by the artificial semi-finished product forming mold is a complete 360-degree turn, and most of the 360-degree transitional conical bevel is used in subsequent processing. After cutting and discarding, the transitional conical bevel only retains the transitional conical bevel where the ⁇ is connected to the optical part in the final IOL finished product.
  • the tapered inclined surface 10 is a conical surface, and the line of intersection between the tapered inclined surface and the horizontal plane is a concentric circle of the edge contour of the second optical region.
  • the crystal 8 made by the artificial lens semi-finished product forming mold in this embodiment is shown in FIG. 9, and the transitional tapered inclined surface 84 is an inclined surface, as shown in FIG. 10.
  • the tapered inclined surface may also be an arc surface protruding toward the direction near the step surface or an arc surface protruding toward the direction away from the step surface.
  • the intersection of the tapered slope and the horizontal plane is Concentric circles of edge contours of the second optical zone.
  • the corresponding transitional inclined surface of the crystal 8 made by the artificial crystal semi-finished product forming mold is an arcuate surface protruding toward the direction near the transition step or an arcuate surface protruding toward the direction away from the transition step.
  • the finished artificial lens has a transitional step 83 and a transitional tapered inclined surface 84, and the position of the thinnest part of the thickness is the position where the optical part is connected to the optical part or the position of the transitional step, and the transitional tapered inclined surface 84
  • the length of the projection on the transition surface 811 is 1, and l may be greater than the length L of the transition step extension surface, or equal to L, or less than L.
  • A is the angle between the transitional tapered slope and the transitional step extension.
  • h> H that is, the thickness of the edge of the optical portion of the artificial lens in the prior art is greater than the thickness of the edge of the optical portion of the artificial lens in the solution of the present invention.
  • a first boss 101 is provided at the bottom of the male mold 1 to rotate in a circumferential direction. As shown in FIG. 7, the first boss 101 is an annular boss. The rotation axis of is on the same straight line as the center line of the first optical region.
  • a second groove 201 is provided on the top of the female mold 2 so as to rotate in a circumferential direction. As shown in FIG. 6, the second groove 201 is an annular groove, the cross-sectional shape of the second groove 201 is trapezoidal, and the second groove 201 The rotation axis of is on the same straight line as the center line of the second optical region. In this embodiment, the height of the first boss 101 is smaller than the depth of the second groove 201.
  • the height of the first boss may be equal to the depth of the second groove.
  • the first projection 101 is inserted into the second groove 201, and the rotation axis of the first projection 101 and the rotation axis of the second groove 201 are on the same straight line, so that the The center line is on the same straight line as the center line of the second optical zone, which effectively improves the optical alignment accuracy and improves the imaging effect of the product.
  • positioning is mainly performed by providing a first projection 101 on the male mold 1 and a second groove 201 on the female mold 2 to ensure positioning, so as to ensure that the centers of the optical regions of the male mold 1 and the female mold 2 are on the same straight line. To avoid optical eccentricity, which in turn affects the imaging quality of the product.
  • the width of the root of the first boss 101 is large, the width of the protruding end is small, the width of the notch of the second groove 201 is large, and the width of the bottom of the groove is small
  • This design makes it easier for the first boss 101 to enter the second groove 201, which is more conducive to rapid positioning.
  • this design can realize automatic centering and positioning, which further improves the rotation axis and the first boss 101 of the first boss 101.
  • the alignment accuracy of the rotation axis of the two grooves 201 is achieved, so as to achieve accurate alignment of the center line of the first optical region and the center line of the second optical region.
  • the first boss 101 is set as a continuous and complete annular boss, which cooperates with the annular second groove 201. Since the annular first boss 101 has no discontinuity and no gap, the risk of seizure and ejection is eliminated. It is more conducive to quickly and conveniently inserting the first boss 101 into the second groove 201 to achieve rapid positioning. After the male mold 1 and the female mold 2 are fitted, the male mold 1 and the female mold 2 can be rotated relatively. The rotation can make the positioning more reliable. If there is a foreign matter such as a burr in the first boss 101 or the second groove 201, it can be rotated. Grinding off the burrs makes the positioning of male mold 1 and female mold 2 more accurate.
  • FIG. 5 is a partial enlarged view of the position C in FIG. 4.
  • the root of the first boss 101 is provided with an inverted groove 4 recessed inside the male mold 1, and the notch of the second groove 201 is provided with a notch Chamfer 5. Due to the inevitable error during processing, when the first boss 101 and the second groove 201 are fitted and used, if the inverted groove 4 or the notch chamfer 5 is not provided, the root of the first boss 101 and the second concave
  • the notch of the groove 201 may be inconsistent due to processing errors, and eventually cannot be fully fitted. This will make the male mold 1 and the female mold 2 incompletely bonded, resulting in a semi-finished artificial crystal. There are problems such as excessive scrap and excessive thickness.
  • the chamfer 4 or the chamfer 5 of the notch the above problems can be effectively avoided, and the processing accuracy requirements of the mold are reduced, thereby reducing the production cost and improving the production efficiency.
  • the first bosses 101 may also be arranged as four equally spaced, unconnected, identical arc-shaped bosses. Of course, it can also be set as 3 or 2 or even 1 arc boss. Setting the first boss 101 as a plurality of spaced apart, unconnected, identical arc-shaped bosses is beneficial to saving molding materials and reducing molding costs.
  • the edge contour of the first optical region is circular
  • the step surface 7 is a vertical plane
  • the line of intersection between the step surface 7 and the horizontal plane is tangent to the edge contour of the first optical region.
  • the stepped surface may also be a curved surface protruding in the direction of the first auxiliary region or protruding in the direction of the first optical region.
  • the intersection of the step surface and the horizontal plane is a multi-line straight line
  • the minimum distance between the intersection of the step surface and the horizontal plane and the edge contour of the first optical zone is 0.2 mm or 0.4 mm or 0.6 mm or 1.0mm.
  • intersection of the step surface and the horizontal plane may also be a wavy line.
  • the cross-sectional shapes of the first boss 101 and the second groove 201 are rectangular, wherein a protruding end of the first boss 101 is provided with a boss chamfer 6, and the first
  • the cross-sectional shape of the boss 101 is designed to be rectangular, and a convex chamfer 6 is provided at the protruding end of the first boss 101, which can ensure that the first boss 101 can be easily inserted into the second groove 201, and at the same time, the production of the mold can be reduced. Difficulty and simplified production process, thereby reducing production costs.
  • the cross-sectional shapes of the first boss and the second groove may also be triangles. Setting the triangles not only allows rapid positioning, but also saves material. It is also possible to set the cross-sectional shape of the first boss to be triangular or trapezoidal, and the cross-sectional shape of the second groove to be rectangular. The width of the notch of the second groove is equal to the width of the root of the first boss. effect.
  • the female mold 2 includes a first optical region and a first auxiliary region
  • the male mold 1 includes a second optical region and a second auxiliary region
  • the stepped surface 7 is provided on the female mold 2 with a tapered bevel. 10 is set on the male mold, and the male mold 1 is located above the female mold 2 in the closed state.
  • the end of the step surface 7 connected to the first optical region is lower than the end of the step surface 7 connected to the first auxiliary region.
  • the height difference H1 of the stepped surface 7 is 0.15 mm.
  • the end of the tapered inclined surface 10 connected to the second optical region is lower than the end of the tapered inclined surface 10 connected to the second auxiliary region.
  • the first auxiliary area includes a first auxiliary end surface 91
  • the second auxiliary area includes a second auxiliary end surface 92
  • an edge of the first optical area is provided with a step extension surface 93
  • the first auxiliary end surface 91 and the second auxiliary surface The distance between the end surfaces 92 is smaller than the distance between the step extension surface 93 and the second auxiliary end surface 92.
  • a step surface 7 is provided on the entire 360-degree circumference of the periphery of the first optical zone.
  • the edge contour of the first optical region is circular
  • the step surface 7 is a vertical plane
  • the line of intersection of the step surface 7 and the horizontal plane is a concentric circle of the edge contour of the first optical region.
  • the distance L between the stepped surface 7 and the edge of the first optical region is 1.0 mm.
  • the crystal 8 made by the artificial crystal semi-finished product forming mold of this embodiment is shown in FIG. 16.
  • the stepped surface may also be a curved surface protruding in the direction of the first auxiliary region or protruding in the direction of the first optical region.
  • the male mold 1 is provided with a first groove 102; the female mold 2 is provided with a second boss 202, the cross-sectional shape of the second boss 202 is rectangular, and the cross-sectional shape of the first groove 102 is rectangular.
  • the second boss 202 is inserted into the first groove 102 to achieve the clamping of the male mold 1 and the female mold 2 and play a positioning role, thereby ensuring that the centers of the optical areas of the male mold 1 and the female mold 2 are in the same In a straight line to avoid optical eccentricity, which will affect the product imaging quality.
  • an artificial crystal semi-finished product forming mold includes a male mold 1 and a female mold 2.
  • the male mold 1 is disposed above the female mold 2, and the middle region of the male mold 1 is an arc region protruding upward.
  • the centerline of the arc-shaped area is the centerline of the first optical area of the male mold 1; the middle area of the female mold 2 is a concave area that is concave downward, and the centerline of the arc-shaped area is the second optical area of the female mold 2 Center line.
  • a first auxiliary area is provided on the periphery of the first optical area
  • a second auxiliary area is provided on the periphery of the second optical area.
  • the first optical area, the first auxiliary area, and the second The optical region and the second auxiliary region together constitute a molding cavity 3 of the semi-finished product of the artificial lens.
  • a step surface 7 is provided at a connection position between the first optical region and the first auxiliary region, and one end of the step surface 7 is connected to the first optical region through a step extension surface 93.
  • the step surface 7 The other end of the step is connected to the first auxiliary region.
  • the end of the step surface 7 connected to the first optical region is higher than the end of the step surface 7 connected to the first auxiliary region.
  • the first auxiliary area includes a first auxiliary end surface 91
  • the second auxiliary area includes a second auxiliary end surface 92
  • a step extension surface 93 is provided at an edge of the first optical area
  • the first auxiliary end surface 91 and the second auxiliary surface The distance between the end surfaces 92 is smaller than the distance between the step extension surface 93 and the second auxiliary end surface 92.
  • a step surface 7 is provided on the entire 360-degree circumference of the periphery of the first optical zone.
  • the edge contour of the first optical region is circular
  • the step surface 7 is a vertical plane
  • the line of intersection between the step surface 7 and the horizontal plane is the circumscribed square of the edge contour of the first optical region .
  • the stepped surface may also be a curved surface protruding in the direction of the first auxiliary region or protruding in the direction of the first optical region.
  • a first boss 101 is provided on one side of the bottom of the male mold 1.
  • the first boss 101 includes three spaced-apart, mutually independent arc-shaped bosses.
  • the cross-sectional shape of the first boss 101 is Trapezoid; the other side of the bottom of the male mold 1 is provided with a first groove 102, the first groove 102 is an arc-shaped groove formed by rotating 180 degrees around the circumferential direction, and the cross-sectional shape of the first groove 102 is trapezoidal.
  • a second groove 201 is provided on one side of the top of the female mold 2.
  • the second groove 201 is an arc-shaped groove formed by rotating 180 degrees in the circumferential direction.
  • the cross-sectional shape of the second groove 201 is Trapezoid; the other side of the top of the female mold 2 is provided with a second boss 202, the second boss 202 includes three spaced-apart, mutually independent arc-shaped bosses, and the cross-sectional shape of the second boss 202 is trapezoidal.
  • the height of the first boss 101 is less than the depth of the second groove 201, and the height of the second boss 202 is less than the depth of the first groove 102.
  • the first boss 101 is inserted into the second groove 201.
  • the second boss 202 is simultaneously inserted into the first groove 102 to achieve positioning, so that the center line of the first optical region and the center line of the second optical region are on a straight line.
  • the first protrusion 101 and the first groove 102 are provided on the male mold 1 and the second groove 201 and the second protrusion 202 are provided on the female mold 2 respectively, which can not only quickly locate the male mold but also ensure the male mold.
  • the center of the optical area of 1 and the female mold 2 is on the same straight line to avoid optical eccentricity, which will affect the product quality. It can also make the force between the male mold 1 and the female mold 2 more uniform, thereby making the positioning more uniform and accurate. To ensure high-quality production of products.
  • an artificial lens semi-finished product forming mold includes a male mold 1, a female mold 2, and a first boss 101.
  • the male mold 1 is disposed above the female mold 2, and the middle region of the male mold 1 is convex upward.
  • the center line of the curved area is the center line of the first optical area of the male mold 1; the middle area of the female mold 2 is a downwardly curved arc area, and the center line of the curved area is the female mold The centerline of the second optical zone of 2.
  • a first auxiliary area is provided on the periphery of the first optical area
  • a second auxiliary area is provided on the periphery of the second optical area.
  • the first optical area, the first auxiliary area, and the second The optical region and the second auxiliary region together constitute a molding cavity 3 of the semi-finished product of the artificial lens.
  • a step surface 7 is provided at a connection position between the first optical region and the first auxiliary region, and one end of the step surface 7 is connected to the first optical region through a step extension surface 93.
  • the step surface 7 The other end of the step is connected to the first auxiliary region.
  • the end of the step surface 7 connected to the first optical region is higher than the end of the step surface 7 connected to the first auxiliary region.
  • the height difference H1 of the step surface 7 is 0.2. mm, the end of the tapered slope 10 connected to the second optical region is lower than the end of the tapered slope 10 connected to the second auxiliary region.
  • the first auxiliary area includes a first auxiliary end surface 91, the second auxiliary area includes a second auxiliary end surface 92, a step extension surface 93 is provided at an edge of the first optical area, and the first auxiliary end surface 91 and the second auxiliary surface The distance between the end surfaces 92 is smaller than the distance between the step extension surface 93 and the second auxiliary end surface 92.
  • a step surface 7 is provided on the entire 360-degree circumference of the periphery of the first optical zone.
  • the edge contour of the first optical region is circular
  • the step surface 7 is a vertical plane
  • the line of intersection between the step surface 7 and the horizontal plane is a concentric circle of the edge contour of the first optical region.
  • the distance L between the stepped surface 7 and the edge of the first optical region is 1.0 mm.
  • the stepped surface may also be a curved surface protruding in the direction of the first auxiliary region or protruding in the direction of the first optical region.
  • the bottom of the male mold 1 is provided with a first annular groove 102 having a trapezoidal cross-section; the top of the female mold 2 is provided with a second ring-shaped recess 201 having a trapezoidal cross-section.
  • the first boss 101 is a 360-degree continuous and complete annular boss.
  • the upper and lower ends of the first boss 101 have a small width at the upper and lower ends and a large middle width.
  • the cross-sectional shape of the first boss 101 is connected by two symmetrical trapezoids.
  • the height of the first boss 101 is less than the sum of the depth of the first groove 102 and the depth of the second groove 201.
  • the upper part of the first boss 101 is inserted into the first groove 102 in the clamping state; the first boss 101 The lower part is inserted into the second groove 201.
  • the first boss 101, the male mold 1 and the female mold 2 cooperate with each other independently.
  • first place the female mold 2 on a horizontal table and then insert the lower part of the first boss 101 into the female mold 2.
  • the first boss 101 and the female mold 2 are positioned relative to each other; then the male mold 1 is placed above the first boss 101 and the upper part of the first boss 101 is inserted into the male mold 1.
  • the first boss 101 and the male mold 1 are positioned relative to each other. In this way, the positioning between the male mold 1, the female mold 2, and the first boss 101 is achieved.
  • the center line of the first optical area and the center line of the second optical area are on a straight line.
  • the first boss 101 During the mold opening and closing process, the first boss 101 often needs to withstand large pressure, which causes easy wear and deformation.
  • the first boss 101 is set as a detachable independent component, which is convenient to replace the first boss regularly. 101, which is conducive to the sustainable use of male mold 1 and female mold 2, reducing waste and reducing production costs.
  • the ring-shaped first bosses may also be provided as a plurality of the same arc-shaped bosses distributed at intervals, and the arc-shaped bosses are evenly distributed in the second grooves of the female mold, and then Cooperating with the first groove on the male mold, not only the rapid positioning can be realized, but also the damaged arc-shaped boss can be replaced without replacing the entire annular boss, which can further save production costs and avoid waste.
  • a method for forming an artificial crystal semi-finished product includes the following steps: providing the above-mentioned artificial crystal semi-finished product forming mold, and filling a crystal raw material into a molding cavity of the artificial crystal semi-finished product forming mold, so that the crystal raw material is formed in the artificial crystal semi-finished product. Cured in the mold.
  • the traditional processing technique of setting a step on the edge of the optical part of an intraocular lens is turning processing during the forming process of the artificial lens.
  • the precision of the artificial lens is very high, and the precision of the turning process is extremely high.
  • the processing conditions are very harsh, and at the same time, the productivity of the artificial crystal is low, the production cost is high, and the product reject rate is high.
  • the step surface is provided in the molding cavity of the semi-finished product of the artificial lens, so that the semi-finished product of the artificial lens can be directly formed into a transition step when it is molded in the forming mold, and the transition step does not need to be formed by turning. This simplifies the production process and improves production efficiency.
  • Forming a transition step between the connection position of the optical part and the auxiliary part of the intraocular lens can effectively prevent the complications of posterior capsule turbidity after operation.
  • the tapered inclined surface is provided in the molding cavity of the semi-finished product of the artificial crystal, and the distance between the stepped surface and the edge of the first optical region is greater than zero, which can ensure that the mechanical properties of the crystal chirp are met.
  • the thickness of the semi-finished IOL is reduced.
  • an artificial lens semi-finished product which includes an optical portion 81 and an auxiliary portion 82.
  • the auxiliary portion 82 is located on the periphery of the optical portion 81.
  • the optical portion 81 includes an opposing optical front surface 812 and an optical rear surface 813.
  • the auxiliary portion 82 includes an opposite auxiliary front end surface 821 and an auxiliary rear end surface 822.
  • a connection step between the optical rear surface 813 and the auxiliary rear end surface 822 is provided with a transition step 83.
  • One end of the transition step 83 is connected to the optical rear surface 813 through the transition surface 811.
  • the other end of the transition step 83 is connected to the auxiliary rear end surface 822.
  • the height difference H1 of the transition step 83 is 0.1 mm.
  • the distance between the drop surface of the transition step 83 and the edge of the optical back surface 813 is greater than zero.
  • the transition surface 811 is disposed on the edge of the optical rear surface 813, and the distance between the auxiliary rear end surface 822 and the auxiliary front end surface 821 is smaller than the distance between the transition surface 811 and the auxiliary front end surface 821.
  • the optical front surface 812 is connected to the auxiliary front surface 821 through a transitional tapered inclined surface.
  • the distance from the end of the transitional tapered inclined surface 84 to the auxiliary front surface 821 to the auxiliary rear end surface 822 is greater than the end of the transitional tapered inclined surface 84 connected to the optical front surface 812. Distance to auxiliary rear end face 822.
  • the transitional step 83 of the semi-finished artificial lens is a complete 360-degree circle. Most of the transitional step 83 of the 360-degree is cut and discarded in the subsequent cutting processing. During the cutting processing, the auxiliary portion 82 around the optical portion 81 is cut. Most of the cuts are left, and the remaining auxiliary part is the puppet of the finished IOL.
  • the transition step 83 only retains the transition step on the crystal ⁇ in the final finished artificial lens. When the number of the finished iris is two, the transition step 83 retains only two sections in the final finished artificial lens, and each section transitions.
  • the center angle of the arc corresponding to the step 83 is 30 degrees.
  • the cutting process will also form another right-angled edge, that is, the contour edge of the artificial lens.
  • the height difference H1 of the transition step may be 0.05 mm, 0.15 mm, or 0.2 mm.
  • the edge contour of the optical portion 81 is circular
  • the drop surface of the transition step 83 is a vertical surface
  • the intersection of the drop surface of the transition step 83 and the horizontal plane is a concentric circle of the edge contour of the optical portion 81.
  • the distance between the step surface of the transition step 83 and the edge of the optical portion 81 is 0.5 mm.
  • the distance L between the step surface of the transition step and the edge of the optical portion may be 0.2 mm, 0.4 mm, or 1.0 mm.
  • the drop surface of the transition step is a curved surface that is convex toward the auxiliary portion or convex toward the optical portion.
  • the edge contour of the optical portion 81 is circular
  • the drop surface of the transition step 83 is a vertical plane
  • the intersection line of the drop surface of the transition step 83 and the horizontal plane is a plurality of straight lines tangent to the edge contour of the optical portion 81.
  • the intersection of the drop surface of the transition step 83 and the horizontal plane is a straight line of four consecutive segments, and the straight line of four consecutive segments forms a rectangle.
  • the drop surface of the transition step is a curved surface that is convex toward the auxiliary portion or convex toward the optical portion.
  • the intersection of the step surface of the transition step and the horizontal plane is a multiple straight line
  • the minimum distance between the intersection of the step surface of the transition step and the horizontal plane and the edge contour of the optical part is 0.2 mm or 0.5 mm or 0.7. mm or 1.0mm.
  • intersection of the drop surface of the transition step and the horizontal plane may also be a wavy line.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ophthalmology & Optometry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Biomedical Technology (AREA)
  • Cardiology (AREA)
  • Vascular Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Prostheses (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)

Abstract

本发明公开人工晶体半成品成型模具,包括第一模和第二模,第一模包括第一光学区和第一辅助区,第二模包括第二光学区和第二辅助区,第一光学区与第一辅助区的连接位置设置有台阶面,台阶面的一端通过台阶延伸面与第一光学区连接,台阶面的另一端与第一辅助区连接,台阶面的高度差大于零,台阶面与第一光学区的边缘的距离大于零,第二辅助区与第二光学区之间通过锥形斜面连接。本方案还公开使用该成型模具的成型方法及获得的人工晶体半成品。本方案通过设置台阶面和锥形斜面,使人工晶体在成型模具中成型时直接形成过渡台阶,简化生产工艺,提高生产效率,且能在满足襻力学性能的同时有效降低晶体厚度。

Description

人工晶体半成品成型模具、成型方法及人工晶体半成品 技术领域
本发明涉及人工晶体制作技术领域,尤其涉及一种人工晶体半成品成型模具、成型方法及人工晶体半成品。
背景技术
随着社会的发展,在人体内植入人工晶体越来越得到大众的认可,其中,比较常见的包括在人体眼睛植入人工晶体以解决视力问题。在实际使用中,人工晶体在植入人体后容易产生术后后囊膜浑浊(posterior capsule opacification,简称PCO)等并发症,后囊膜浑浊会导致人体眼睛视力下降而无法看清东西,并发症对人体造成极大伤害,必须进行有效控制。目前采用最多的防止术后PCO的方式是,将晶体光学区边缘做成锐利的夹角,一般做成直角边。晶体光学区后表面与后囊膜紧密贴合,在光学区边缘夹角处后囊膜发生弯曲皱缩,从而阻滞LEC细胞向光学区与后囊膜接触的部分前移增殖,从而防止PCO的发生。
另外,一般情况下,在人工晶体的光学部边缘设置台阶的传统加工工艺是在人工晶体成型过程中进行车削处理,但人工晶体的要求精度非常高,车削处理对设备的精度要求极高,加工条件非常苛刻,同时会造成人工晶体的生产效率低,生产成本高和产品废品率高。
如图1所示,现有技术的人工晶体半成品成型模具分为上下两部分,上部分命名为阳模1,下部分命名为阴模2。阳模1和阴模2结合会形成一个成型腔3,人工晶体即在该成型腔3内成型。在阳模1成型腔内位于光学区边缘处设置台阶面,这种成型模具制成的人工晶体半成品如图2所示,过渡台阶83的落差面与光学部81边缘相重叠,即过渡台阶83的落差面与光学部81边缘的距离为零。人工晶体半成品通过模具成型后,制得的晶体8包括光学部81和辅助部82,需要对晶体8进行切襻加工,切襻时将辅助部82大部分切除,留下部分即为襻,襻切割后,光学部及襻的厚度必须满足一定的要求,以达到理想的力学性能。光学部的厚度太大,则晶体折叠性能差,需通过较大口的推注器推注,必然导致病人手术切口增大;襻最薄处厚度太薄,可能无法达到襻的力学要求。
图3为图2中B处局部放大示意图,过渡台阶83直接与光学部81相连,过渡台阶83的高度为h1,晶体光学部81边缘厚度为h,襻与光学部81相连部分的厚度为h2,由图可知,h2即为襻的最薄处。可知:
h2=h-h1
在h不变时,如h1较小时,则此时直角边防止PCO的作用会降低;
如h1较大时,h2则相对减小,则此时产品襻的力学性能会相对降低。
显然,针对上述方案,为了同时达到较好的力学性能及防止PCO作用,需要增大h,即增大晶体光学部的厚度,此时晶体光学部的整体厚度会增加,晶体折叠性能变差,需通过较大口的推注器推注,必然导致病人手术切口增大。
即现有技术的人工晶体半成品成型模具成型出来的晶体,无法同时满足晶体厚度薄且襻的厚度能符合力学要求。
因此,如何对现有的人工晶体半成品成型模具进行改进,使生产的人工晶体克服上述缺陷,是本领域技术人员亟待解决的一个问题。
发明内容
本发明的一个目的在于:提供一种人工晶体半成品成型模具,能在光学区与辅助区的连接位置形成台阶面,有效防止术后后囊膜浑浊并发症的产生。
本发明的一个目的在于:提供一种人工晶体半成品成型模具,使人工晶体半成品在成型模具中成型时直接形成过渡台阶,简化生产工艺,提高生产效率;且能有效降低生产出来的晶体的厚度。
本发明的一个目的在于:提供一种人工晶体成型方法,通过该方法使人工晶体半成品在成型模具中成型时直接形成过渡台阶,简化生产工艺,提高生产效率。
本发明的一个目的在于:提供一种人工晶体半成品,该人工晶体半成品在模具成型后便具有过渡台阶,能够快速制作为人工晶体成品,并使人工晶体成品在植入人体后有效防止术后后囊膜浑浊并发症的产生;且能在满足襻力学性能的同时,有效降低晶体厚度。
为达此目的,本发明采用以下技术方案:
一方面,提供一种人工晶体半成品成型模具,包括第一模和第二模,所述第一模包括第一光学区和第一辅助区,所述第一辅助区位于所述第一光学区的外围,所述第二模包括第二光学区和第二辅助区,所述第二辅助区位于所述第二光学区的外围;
所述第一光学区与所述第一辅助区的连接位置设置有台阶面,所述台阶面的一端通过台阶延伸面与所述第一光学区连接,所述台阶面的另一端与所述第一辅助区连接,所述台阶面的高度差大于零;
所述台阶面与所述第一光学区的边缘的距离大于零;
所述第二辅助区与所述第二光学区之间通过锥形斜面连接;
所述第一辅助区包括第一辅助端面,所述第二辅助区包括第二辅助端面,所述台阶延伸面设置在所述第一光学区的边缘,所述第一辅助端面与所述第二辅助端面的距离小于所述台阶延伸面与所述第二辅助端面的距离;
所述锥形斜面与所述第二辅助端面连接的一端到所述第一辅助端面的距离大于所述锥形斜面与所述第二光学区连接的一端到所述第一辅助端面的距离。
优选的,所述第一光学区、第一辅助区、第二光学区和第二辅助区共同构成人工晶体半成品的成型腔。
优选的,所述台阶面的高度差是0.05mm以上0.2mm以下。
优选的,所述台阶面与所述第一光学区的边缘的距离是0.2mm以上1.0mm以下。
优选的,所述第一光学区的外围360度的整个圆周上均设置有所述台阶面。
作为一种优选的技术方案,所述第一模是阳模,所述第二模是阴模,所述台阶面设置在所述阳模上,所述锥形斜面设置在所述阴模上,合模状态下所述阳模位于所述阴模的上方,所述台阶面与所述第一光学区连接的一端高于所述台阶面与所述第一辅助区连接的一端,所述锥形斜面与所述第二光学区连接的一端高于所述锥形斜面与所述第二辅助区连接的一端。
优选的,所述第一光学区是阳模光学区,所述第一辅助区是阳模辅助区,所述台阶面设置在所述阳模光学区与所述阳模辅助区的连接位置;所述第二光学区是阴模光学区,所述第二辅助区是阴模辅助区,所述锥形斜面设置在所述阴模光学区与所述阴模辅助区的连接位置。
作为一种优选的技术方案,所述第一模是阴模,所述第二模是阳模,所述台阶面设置在所述阴模上,所述锥形斜面设置在所述阳模上,合模状态下所述阳模位于所述阴模的上方,所述台阶面与所述第一光学区连接的一端低于所述台阶面与所述第一辅助区连接的一端,所述锥形斜面与所述第二光学区连接的一端低于所述锥形斜面与所述第二辅助区连接的一端。
优选的,所述第一光学区是阴模光学区,所述第一辅助区是阴模辅助区,所述台阶面设置在所述阴模光学区与所述阴模辅助区的连接位置;所述第二光学区是阳模光学区,所述第二辅助区是阳模辅助区,所述锥形斜面设置在所述阳模光学区与所述阳模辅助区的连接位置。
作为一种优选的技术方案,所述台阶面是一个竖直面;
或者,所述台阶面是一个弧面,即所述台阶面与经过所述第一光学区的中心的竖直平面的相交线是两根弧线。
优选的,所述台阶面是一个朝所述第一辅助区方向凸起的弧面。
优选的,所述台阶面是一个朝所述第一光学区方向凸起的弧面。
具体地,该弧面的弧度是较小的,不会影响人工晶体半成品成型后的正常脱模操作。
作为一种优选的技术方案,所述台阶面与水平面的相交线是曲线或者多段直线。
优选的,所述第一光学区的边缘轮廓是圆形,所述台阶面与水平面的相交线是所述第一光学区的边缘轮廓的同心圆。
优选的,所述台阶面与水平面的相交线是波浪线。
优选的,所述台阶面与水平面的相交线是四段依次连接的直线,四段依次连接的直线构成矩形。
作为一种优选的技术方案,所述锥形斜面是圆锥面;
或者,所述锥形斜面是倾斜弧面。
优选的,所述倾斜弧面是一个朝向靠近所述台阶面方向凸起的弧面。
优选的,所述倾斜弧面是一个朝向远离所述台阶面方向凸起的弧面。
具体地,当锥形斜面是圆锥面时,是指所述锥形斜面的断面轮廓为倾斜直线;当锥形斜面是倾斜弧面时,是指锥形斜面的断面轮廓为倾斜弧线,所述倾斜弧面的弧度是较小的,不会影响人工晶体半成品成型后的正常脱模操作。
作为一种优选的技术方案,所述第一模上绕圆周方向旋转延伸设置有定位凸台,所述定位凸台的旋转轴与所述第一光学区的中心线在同一条直线上,所述第二模绕圆周方向旋转延伸设置有定位凹槽,所述定位凹槽的旋转轴与所述第二光学区的中心线在同一条直线上;
所述定位凸台的高度小于或者等于所述定位凹槽的深度,合模状态下所述定位凸台插入所述定位凹槽中,所述定位凸台的旋转轴与所述定位凹槽的旋转轴在同一条直线上。
优选的,所述定位凸台位于所述第一辅助区的外侧,所述定位凹槽位于所述第二辅助区的外侧。
具体地,通过设置绕圆周方向旋转延伸形成的定位凸台和定位凹槽,使所述第一模和所述第二模实现自动对中定位,并有效保证合模状态下所述定位凸台的旋转轴与所述定位凹槽的旋转轴在同一条直线上。进一步地,通过所述定位凸台的旋转轴与所述第一光学区的中心线在同一条直线上的结构设计,以及所述定位凹槽的旋转轴与所述第二光学区的中心线在同一条直线上的结构设计,使所述第一光学区的中心线与所述第二光学区的中心线在同一条直线上,从而避免第一模与第二模合模后的光学偏心,有效提高产品的成像质量。
具体地,由于采用旋转延伸形成的定位凸台和定位凹槽,因此在第一模和第二模嵌合后,第一模和第二模可以相对转动,从而使定位更可靠,而且转动能够磨平所述定位凸台或所述定位凹槽中存在的毛刺等异物,使第一模和第二模的定位更精准。
作为一种优选的技术方案,所述第一模为阳模,所述第二模为阴模,所述定位凸台是设置在所述阳模 的底部的第一凸台,所述定位凹槽是设置在所述阴模的顶部的第二凹槽;合模时,所述阳模设置在所述阴模的上方,所述第一凸台插入所述第二凹槽中。
通过在所述阳模上设置所述第一凸台,同时在所述阴模上设置相应的所述第二凹槽,合模时将所述第一凸台插入所述第二凹槽中能够实现所述阳模与所述阴模的快速有效对中定位,避免所述第一光学区与所述第二光学区的光学偏心。
作为一种优选的技术方案,所述第一模为阴模,所述第二模为阳模,所述定位凸台是设置在所述阴模的顶部的第二凸台,所述定位凹槽是设置在所述阳模的底部的第一凹槽;合模时,所述阳模设置在所述阴模的上方,所述第二凸台插入所述第一凹槽中。
通过在所述阴模上设置所述第二凸台,同时在所述阳模上设置相应的所述第一凹槽,合模时将所述第二凸台插入所述第一凹槽中能够实现所述阴模与所述阳模的快速有效对中定位,避免所述第一光学区与所述第二光学区的光学偏心。
作为一种优选的技术方案,所述第一模为阳模,所述第二模为阴模,所述定位凸台是设置在所述阳模的底部的第一凸台,所述定位凹槽是设置在所述阴模的顶部的第二凹槽;所述阳模的底部还设有第一凹槽,所述阴模的顶部还设有第二凸台,所述第二凸台的高度小于或者等于第一凹槽的深度,合模时,所述阳模设置在所述阴模的上方,所述第一凸台插入所述第二凹槽中,所述第二凸台插入所述第一凹槽。
通过在所述阳模上设置所述第一凸台和所述第一凹槽,同时在所述阴模上设置相应的所述第二凹槽和所述第二凸台,合模时将所述第一凸台插入所述第二凹槽中,同时将所述第二凸台插入所述第一凹槽中能够实现所述阴模与所述阳模的快速有效对中定位,避免所述第一光学区与所述第二光学区的光学偏心。
作为一种优选的技术方案,所述定位凸台为连续旋转一周形成的环形凸台,所述定位凹槽为连续旋转一周形成的环形凹槽;
或者,所述定位凸台为若干间隔设置的弧形凸台,若干所述弧形凸台的旋转轴相同,若干所述弧形凸台的旋转半径相同,所述定位凹槽为连续旋转一周形成的环形凹槽;
或者,所述定位凸台为若干间隔设置的弧形凸台,若干所述弧形凸台的旋转轴相同,若干所述弧形凸台的旋转半径相同,所述定位凹槽为若干间隔设置的弧形凹槽,若干所述弧形凹槽的旋转轴相同,若干所述弧形凹槽的旋转半径相同,所述弧形凹槽的弧长长度大于所述弧形凸台的弧长长度。
优选的,所述弧形凸台等间隔分布,所述弧形凹槽等间隔分布。
优选的,当所述定位凸台是弧形凸台,所述定位凹槽是弧形凹槽时,所述弧形凹槽的弧长大于所述弧形凸台的弧长,从而更有利于快速的将所述弧形凸台插进所述弧形凹槽中,使操作更加便捷,同时使所述弧形凸台插入所述弧形凹槽后可以绕旋转轴在一定范围内旋转,以磨平毛刺等异物。
具体地,由于所述环形凸台是连续完整的凸台,不存在任何可能出现卡紧、顶死的缝隙,因此采用所述环形凸台能够使合模操作更加简单、快速。
具体地,由于所述环形凹槽是连续完整的凹槽,不存在任何可能出现卡紧、顶死的突起,因此采用所述环形凹槽能够使合模操作更加简单、快速。
具体地,由于所述弧形凸台是间隔分布的,因此采用所述弧形凸台既能够保证准确定位,又能够节省制作材料,降低成本。
作为一种优选的技术方案,所述定位凸台的根部设有向所述第一模的内部凹陷的倒槽;
和/或,所述定位凹槽的槽口设有槽口倒角。
具体地,由于加工的时候难免存在误差,当将第一模和第二模合模使用时,所述定位凸台的根部与所述定位凹槽的槽口可能会由于加工误差无法完全贴合,这样就会使第一模和第二模之间无法完全贴合,从而导致成型出来的人工晶体半成品存在边角料过多、厚度过大等问题。而设置倒槽或者槽口倒角,就可以有效避免以上问题,降低对模具的加工精度要求,进而降低生产成本,提高生产效率。通过设置所述倒槽、所述槽口倒角,能够有效避免所述定位凸台与所述定位凹槽干涉,进一步有效提高定位的精度,保证合模后的光学对位可靠性。
作为一种优选的技术方案,所述定位凸台的截面形状是矩形,所述定位凹槽的截面形状是矩形;
或者,所述定位凹槽的截面形状是梯形;
或者,所述定位凹槽的截面形状是三角形。
优选的,当所述定位凹槽的截面形状是矩形时,所述定位凸台的突起端设置有凸台倒角。通过设置所述凸台倒角,能够使所述定位凸台更加容易进入所述定位凹槽,降低操作难度,提高生产效率。
优选的,所述定位凸台的截面形状是正方形。
作为一种优选的技术方案,所述定位凸台的截面形状是梯形,梯形的下底位于所述定位凸台靠近根部的一端,所述定位凹槽的截面形状是梯形;
或者,所述定位凹槽的截面形状是矩形;
或者,所述定位凹槽的截面形状是三角形。
具体地,所述定位凸台的截面形状是梯形,使所述定位凸台能够更加容易插入所述定位凹槽,降低操作难度,提高生产效率,同时也能够实现所述第一模与所述第二模的对中定位,提高对位精度。
优选的,所述定位凸台的截面形状是等腰梯形。
作为一种优选的技术方案,所述定位凸台的截面形状是三角形,所述定位凹槽的截面形状是三角形;
或者,所述定位凹槽的截面形状是矩形;
或者,所述定位凹槽的截面形状是梯形。
优选的,所述定位凸台的截面形状是等腰三角形或等边三角形。
作为一种优选的技术方案,所述第一模与所述定位凸台可拆卸连接。
优选的,所述定位凸台是一个环状的柱体,或者若干段独立的圆弧状柱体。
具体地,所述定位凸台的一端通过过盈配合或者螺钉固定等可拆卸连接方式与第一模连接,所述定位凸台的另一端突出第一模的外面,用以插入所述定位凹槽,使第一模与第二模实现定位。由于在模具开合过程中,所述定位凸台经常需要承受较大的压力和摩擦力,容易导致所述定位凸台磨损或者变形,将所述定位凸台设置为可拆卸的独立部件,有利于实现所述定位凸台的定期更换,保证模具的精度。
另一方面,提供一种人工晶体半成品成型方法,包括以下步骤:提供上述的人工晶体半成品成型模具,在所述人工晶体半成品成型模具的成型腔内灌注晶体原材料,使所述晶体原材料在所述人工晶体半成品成型模具内固化成型。
具体地,一般情况下,在人工晶体的光学部边缘设置台阶的传统加工工艺是在人工晶体成型过程中进行车削处理,但人工晶体的要求精度非常高,车削处理对设备的精度要求极高,加工条件非常苛刻,同时会造成人工晶体的生产率低,生产成本高和产品废品率高。本方案通过在人工晶体半成品的成型腔内设置所述台阶面,使人工晶体半成品在成型模具中成型时直接形成与所述台阶面形状一致的过渡台阶,无需通过车削处理形成过渡台阶,简化生产工艺,提高生产效率,而且通过使人工晶体的光学部与辅助部的连接 位置形成过渡台阶,能有效防止术后后囊膜浑浊并发症的产生。而且,本方案通过在人工晶体半成品的成型腔内设置所述锥形斜面,且所述台阶面与所述第一光学区的边缘的距离大于零,能能在保证满足晶体襻的力学性能要求的同时降低人工晶体半成品的厚度。
又一方面,提供一种人工晶体半成品,包括光学部和辅助部,所述辅助部位于所述光学部的外围,所述光学部包括相对的光学前表面与光学后表面,所述辅助部包括相对的辅助前端面与辅助后端面,所述光学后表面与所述辅助后端面的连接位置设置有过渡台阶,所述过渡台阶的一端通过过渡面与所述光学后表面连接,所述过渡台阶的另一端与所述辅助后端面连接,所述过渡台阶的高度差大于零;
所述过渡台阶的落差面与所述光学后表面的边缘的距离大于零;
所述过渡面设置在所述光学后表面的边缘,所述辅助后端面与所述辅助前端面的距离小于所述过渡面与所述辅助前端面的距离;
所述光学前表面通过过渡锥形斜面与所述辅助前端面连接;
所述过渡锥形斜面与所述辅助前端面连接的一端到所述辅助后端面的距离大于所述过渡锥形斜面与所述光学前表面连接的一端到所述辅助后端面的距离。
优选的,所述人工晶体半成品由上述的人工晶体半成品成型模具制成,人工晶体半成品的所述过渡台阶的形状尺寸与人工晶体半成品模具的所述台阶面的形状尺寸一致。人工晶体半成品的所述过渡锥形斜面的形状与人工晶体半成品模具的所述锥形斜面的形状尺寸一致。
具体地,所述人工晶体半成品的光学前表面由上述人工晶体半成品成型模具的第一光学区限位制成,所述人工晶体半成品的光学后表面由上述人工晶体半成品成型模具的第二光学区限位制成,所述人工晶体半成品的辅助后端面由上述的人工晶体半成品成型模具的第一辅助端面限位制成,所述人工晶体半成品的辅助前端面由上述的人工晶体半成品成型模具的第二辅助端面限位制成,所述人工晶体半成品的过渡面由上述的人工晶体半成品成型模具的台阶延伸面限位制成,所述人工晶体半成品的过渡锥形斜面由上述的人工晶体半成品成型模具的锥形斜面限位制成。
优选的,所述过渡台阶的高度差是0.05mm以上0.2mm以下。
优选的,所述过渡台阶与所述光学后表面的边缘的距离是0.2mm以上1.0mm以下。
优选的,该人工晶体半成品的所述过渡台阶是360度完整一圈,360度的所述过渡台阶大部分在后续的加工处理中被切割并废弃,当人工晶体成品襻的数量为两条时,所述过渡台阶在最终的人工晶体成品中仅仅保留两段,且每段所述过渡台阶所对应的弧的圆心角是30度。另外,切割加工同时会形成另一条的直角边,即人工晶体的轮廓边,而辅助部则是晶体襻成型的原始结构,辅助部在切割后保留的两段结构即构成人工晶体的晶体襻。该人工晶体半成品的所述过渡锥形斜面是360度完整一圈。
本方案描述的人工晶体半成品相对于最终植入人体的产品是一种晶体半成品,需要在本方案的人工晶体半成品的基础上进行进一步加工处理后才能用于植入人体,但本方案的人工晶体半成品也是一种晶体产品类型,可以作为一种医学产品单独进行销售,以服务下游的成品生产企业。
作为一种优选的技术方案,所述过渡台阶的落差面是一个竖直面;
或者,所述过渡台阶的落差面是一个弧面,即所述过渡台阶的落差面与经过所述光学部的中心的竖直平面的相交线是两根弧线。
优选的,所述过渡台阶的落差面是一个朝所述辅助部方向凸起的弧面。
优选的,所述过渡台阶的落差面是一个朝所述光学部方向凸起的弧面。
作为一种优选的技术方案,所述过渡台阶的落差面与水平面的相交线是曲线或者多段直线。
优选的,所述光学部的边缘轮廓是圆形,所述过渡台阶的落差面与水平面的相交线是所述光学部的边缘轮廓的同心圆。
优选的,所述过渡台阶的落差面与水平面的相交线是波浪线。
优选的,所述过渡台阶的落差面与水平面的相交线是四段依次连接的直线,四段依次连接的直线构成矩形。
作为一种优选的技术方案,所述过渡锥形斜面是圆锥面;
或者,所述过渡锥形斜面是倾斜弧面。
优选的,所述倾斜弧面是一个朝向靠近所述过渡台阶方向凸起的弧面。
优选的,所述倾斜弧面是一个朝向远离所述过渡台阶方向凸起的弧面。
具体地,当过渡锥形斜面是圆锥面时,是指所述过渡锥形斜面的断面轮廓为倾斜直线;当过渡锥形斜面是倾斜弧面时,是指过渡锥形斜面的断面轮廓为倾斜弧线。
本发明的有益效果为:
提供一种人工晶体半成品成型模具、成型方法及人工晶体半成品,通过在第一光学区与第一辅助区的连接位置设置具有高度差的台阶面,使人工晶体半成品在成型模具中成型时直接形成过渡台阶,简化生产工艺,提高生产效率,同时通过使人工晶体半成品的光学部与辅助部的连接位置形成过渡台阶,使在该模具中成型的人工晶体半成品自动具备本领域熟知的“360度直角边”的原始结构,从而在临床中有效防止术后后囊膜浑浊并发症的产生。
同时,本发明通过在第二辅助区与第二光学区之间设置锥形斜面连接,使人工晶体半成品在成型模具中成型时直接形成过渡锥形斜面,切襻加工后得到的人工晶体成品仍保留有过渡锥形斜面,由于人工晶体成品同时具有上述的过渡台阶及过渡锥形斜面,且过渡台阶与光学部边缘的距离大于零,因此人工晶体成品襻最薄处的厚度不至于太薄,使得人工晶体在设计之初,能在满足襻力学性能要求的同时,有效降低人工晶体光学部的厚度,即有效降低人工晶体的整体厚度,从而使人工晶体折叠性能好,无需通过较大口的推注器推注,病人手术切口小。
另外,本发明通过设置绕圆周方向旋转延伸形成的定位凸台和定位凹槽,使所述第一模和所述第二模实现自动对中定位,操作简单快捷,并有效保证合模状态下所述定位凸台的旋转轴与所述定位凹槽的旋转轴在同一条直线上。进一步通过所述定位凸台的旋转轴与所述第一光学区的中心线在同一条直线上的结构设计,以及所述定位凹槽的旋转轴与所述第二光学区的中心线在同一条直线上的结构设计,使所述第一光学区的中心线与所述第二光学区的中心线在同一条直线上,从而避免第一模与第二模合模后的光学偏心,有效提高产品的成像质量。
附图说明
下面根据附图和实施例对本发明作进一步详细说明。
图1为现有技术所述的人工晶体半成品成型模具示意图;
图2为由图1的人工晶体半成品成型模具制成的晶体示意图;
图3为图2中B处的局部放大图;
图4为实施例一所述的人工晶体半成品成型模具的断面示意图;
图5为图4中C处的局部放大图;
图6为图4中D处的局部放大图;
图7为实施例一所述的阳模的仰视图;
图8为实施例一所述的阴模的俯视图;
图9为实施例一所述的人工晶体半成品成型模具制成的晶体的示意图;
图10为图9中J处的局部放大图;
图11为设有多段圆弧第一凸台的阳模的仰视图;
图12为实施例二所述的阳模的仰视图;
图13为实施例三的人工晶体半成品成型模具的局部示意图;
图14为实施例四的人工晶体半成品成型模具的断面示意图;
图15为图14中E处的局部放大图;
图16为实施例四所述的人工晶体半成品成型模具制成的晶体的示意图;
图17为实施例五的人工晶体半成品成型模具的断面示意图;
图18为图17中F处的局部放大图;
图19为实施例五中阳模的仰视图;
图20为实施例五中阴模的俯视图;
图21为实施例六的人工晶体半成品成型模具的断面示意图;
图22为图21中G处的局部放大图;
图23为实施例六的第一凸台轴测图;
图24为实施例八所述的人工晶体半成品的结构示意图;
图25为实施例八所述的人工晶体半成品的俯视图;
图26为实施例九所述的人工晶体半成品的俯视图。
图1至图26中:
1、阳模;101、第一凸台;102、第一凹槽;
2、阴模;201、第二凹槽;202、第二凸台;
3、成型腔;
4、倒槽;
5、槽口倒角;
6、凸台倒角;
7、台阶面;
8、晶体;81、光学部;811、过渡面;812、光学前表面;813、光学后表面;82、辅助部;821、辅助前端面;822、辅助后端面;83、过渡台阶;84、过渡锥形斜面;
91、第一辅助端面;92、第二辅助端面;93、台阶延伸面;
10、锥形斜面。
具体实施方式
下面结合附图并通过具体实施方式来进一步说明本发明的技术方案。
实施例一
如图4所示,一种人工晶体半成品成型模具,包括阳模1和阴模2,阳模1设置在阴模2的上方,阳模1的中间区域为向上凸起的弧形区域,该弧形区域的中心线为阳模1的第一光学区的中心线;阴模2的中间区域为向下凹陷的弧形区域,该弧形区域的中心线为阴模2的第二光学区的中心线。
于本实施例中,所述第一光学区的外围设置有第一辅助区,所述第二光学区的外围设置有第二辅助区,所述第一光学区、第一辅助区、第二光学区和第二辅助区共同构成人工晶体半成品的成型腔3。如图6所示,所述第一光学区与所述第一辅助区的连接位置设置有台阶面7,台阶面7的一端通过台阶延伸面93与所述第一光学区连接,台阶面7的另一端与所述第一辅助区连接,台阶面7与所述第一光学区连接的一端高于台阶面7与所述第一辅助区连接的一端,台阶面7的高度差H1是0.1mm。所述第一辅助区包括第一辅助端面91,所述第二辅助区包括第二辅助端面92,台阶延伸面93设置在所述第一光学区的边缘,第一辅助端面91与第二辅助端面92的距离小于台阶延伸面93与第二辅助端面92的距离。所述第一光学区的外围360度的整个圆周上均设置有台阶面7。具体地,该人工晶体半成品成型模具制成的晶体半成品中的所述过渡台阶是360度完整一圈,360度的所述过渡台阶大部分在后续的切襻加工处理中被切割并废弃,切襻加工处理时将光学部外围的辅助部大部分切除,剩余的辅助部即为人工晶体成品的襻。所述过渡台阶在最终的人工晶体成品中仅仅保留晶体襻上的过渡台阶,当人工晶体成品襻的数量为两条时,所述过渡台阶在最终的人工晶体成品中仅仅保留两段,且每段所述过渡台阶所对应的弧的圆心角是30度。另外,切割加工同时会形成另一条的直角边,即人工晶体的轮廓边。于其它实施例中,台阶面7的高度差H1也可以是0.05mm或0.15mm或0.2mm。
具体地,一般情况下,在人工晶体的光学部边缘设置过渡台阶的传统加工工艺是在人工晶体成型过程中进行车削处理,但人工晶体的要求精度非常高,车削处理对设备的精度要求极高,加工条件非常苛刻,同时会造成人工晶体的生产率低,生产成本高和产品废品率高。本方案通过在人工晶体半成品的成型腔内设置台阶面7,使人工晶体半成品在成型模具中成型时直接形成过渡台阶,无需通过车削处理形成过渡台阶,简化生产工艺,提高生产效率,而且通过使人工晶体的光学部与辅助部的连接位置形成过渡台阶,能有效防止术后后囊膜浑浊并发症的产生。
于本实施例中,所述第一光学区的边缘轮廓是圆形,台阶面7是一个竖直面,台阶面7与水平面的相交线是所述第一光学区的边缘轮廓的同心圆。台阶面7与所述第一光学区的边缘的距离L是0.5mm。通过本实施例人工晶体半成品成型模具制成的晶体8如图9所示。于其它实施例中,台阶面7与所述第一光学区的边缘的距离L也可以是0.2mm或0.6mm或1.0mm。于其它实施例中,所述台阶面也可以是一个朝所述第一辅助区方向凸起或者朝所述第一光学区方向凸起的弧面。
于本实施例中,所述第二辅助区与所述第二光学区之间通过锥形斜面10连接,锥形斜面10与所述第二辅助端面连接的一端到所述第一辅助端面的距离大于锥形斜面10与所述第二光学区连接的一端到所述第一辅助端面的距离。于本实施例中,锥形斜面10与所述第二光学区连接的一端高于锥形斜面10与所述第二辅助区连接的一端。所述第二辅助区靠近第二光学区的一侧360度的整个圆周上均设置有锥形斜面10。具体地,如图9所示,该人工晶体半成品成型模具制成的晶体半成品中的过渡锥形斜面84是360度完整一圈,360度的过渡锥形斜面大部分在后续的加工处理中被切割并废弃,所述过渡锥形斜面在最终的人工晶体成品中仅仅保留襻与光学部相连处的过渡锥形斜面。
于本实施例中,锥形斜面10是一个圆锥面,锥形斜面与水平面的相交线是所述第二光学区的边缘轮 廓的同心圆。通过本实施例人工晶体半成品成型模具制成的晶体8如图9所示,过渡锥形斜面84是倾斜面,如图10所示。于其它实施例中,所述锥形斜面也可以是一个朝向靠近所述台阶面方向凸起的弧面或者朝向远离所述台阶面方向凸起的弧面,锥形斜面与水平面的相交线是所述第二光学区的边缘轮廓的同心圆。对应的通过人工晶体半成品成型模具制成的晶体8的过渡倾斜面是一个朝向靠近所述过渡台阶方向凸起的弧面或一个朝向朝向远离所述过渡台阶方向凸起的弧面。
具体的,如图10所示,人工晶体成品具有过渡台阶83与过渡锥形斜面84,襻厚度最薄处的位置为襻与光学部相连的位置或过渡台阶处的位置,过渡锥形斜面84在过渡面811上的投影的长度为l,l可以大于过渡台阶延伸面的长度L,或等于L,或小于L。其中A为过渡锥形斜面与过渡台阶延伸面的夹角。
当l≥L时,与现有技术相比,襻的厚度增量为H3=L*tanA;
当l<L时,与现有技术相比,襻的厚度增量为H3=l*tanA。
襻最薄处厚度为H2=H或H2=H-H1+H3,其中,H为光学部边缘厚度,H1为过渡台阶高度。
将本发明的方案与现有技术相比,若要保证两种方案襻最薄处厚度相等即h2=H2,台阶高度相等即h1=H1,
那么,将会使h>H,即现有技术中人工晶体光学部边缘厚度大于本发明方案人工晶体光学部边缘厚度,现有技术中人工晶体的整体厚度明显较厚,较厚的晶体不利于折叠和推注。
通过本发明方案的设计,可以获得较大的过渡台阶高度H1,提高了防止PCO的作用,同时获得符合力学要求的襻的厚度,且降低了人工晶体的整体厚度。
阳模1的底部绕圆周方向旋转延伸设置有第一凸台101,如图7所示,第一凸台101是环形凸台,第一凸台101的截面形状为梯形,第一凸台101的旋转轴与所述第一光学区的中心线在同条直线上。阴模2的顶部绕圆周方向旋转延伸设置有第二凹槽201,如图6所示,第二凹槽201是环形凹槽,第二凹槽201的截面形状为梯形,第二凹槽201的旋转轴与所述第二光学区的中心线在同一条直线上。于本实施例中,第一凸台101的高度小于第二凹槽201的深度,当然,于其它实施例中,第一凸台的高度可以等于第二凹槽的深度。合模状态下,第一凸台101插入第二凹槽201中,第一凸台101的旋转轴与第二凹槽201的旋转轴在同一条直线上,从而使所述第一光学区的中心线与所述第二光学区的中心线在同一条直线上,有效提高光学对位精度,提高产品的成像效果。
本实施例中,主要通过在阳模1上设置第一凸台101与阴模2上设置第二凹槽201配合进行定位,进而保证阳模1和阴模2的光学区中心在同一条直线上,以避免产生光学偏心,进而影响产品成像品质。
将第一凸台101和第二凹槽201的截面形状设计为梯形,那么第一凸台101的根部宽度大,突起端宽度小,第二凹槽201的槽口宽度大,槽底宽度小,这样的设计可以使第一凸台101更容易进入第二凹槽201中,更有利于快速定位,而且这样的设计能够实现自动对中定位,进一步提高第一凸台101的旋转轴与第二凹槽201的旋转轴的对位精度,从而实现所述第一光学区的中心线与所述第二光学区的中心线的精确对位。
将第一凸台101设置为连续的完整的环形凸台,与环形的第二凹槽201配合,由于环形的第一凸台101无间断和无缝隙,消除的卡紧、顶死的风险,更有利于快速方便地把第一凸台101插入第二凹槽201,实现快速定位。阳模1和阴模2嵌合后,阳模1和阴模2可以相对转动,转动可以使定位更可靠,如果第一凸台101或者第二凹槽201中存在毛刺等异物,通过转动可以磨掉毛刺,使阳模1和阴模2的定位更精准。
图5是图4中C位置的局部放大图,如图5所示,第一凸台101的根部设有向阳模1内部凹陷的倒槽 4,第二凹槽201的槽口设有槽口倒角5。由于加工的时候难免存在误差,当将第一凸台101和第二凹槽201嵌合使用时,如果不设置倒槽4或者槽口倒角5,第一凸台101的根部和第二凹槽201的槽口可能会因为加工误差导致二者的夹角不一致,最终无法完全贴合,这样就会使阳模1模和阴模2之间无法完全贴合,导致成型出来的人工晶体半成品存在边角料过多、厚度过大等问题。而设置倒槽4或者槽口倒角5,就可以有效的避免以上问题,降低对模具的加工精度要求,进而降低生产成本,提高生产效率。
可以理解,于其它实施例中,如图11所示,第一凸台101也可以设置为四段等间隔分布的、不相连的、相同的弧形凸台。当然也可以设置为3段或者2段甚至1段弧形凸台。将第一凸台101设置为若干间隔分布的、不相连的、相同的弧形凸台,有利于节省制模材料,降低制模成本。
实施例二
本实施例与实施例一的区别在于:
如图12所示,所述第一光学区的边缘轮廓是圆形,台阶面7是一个竖直面,台阶面7与水平面的相交线是与所述第一光学区的边缘轮廓相切的多段直线。于其它实施例中,所述台阶面也可以是一个朝所述第一辅助区方向凸起或者朝所述第一光学区方向凸起的弧面。
于其它实施例中,台阶面与水平面的相交线是多段直线,且台阶面与水平面的相交线与所述第一光学区的边缘轮廓之间的最小距离是0.2mm或0.4mm或0.6mm或1.0mm。
于其它实施例中,台阶面与水平面的相交线也可以是波浪线。
实施例三
本实施例与实施例一的区别在于:
于本实施例中,如图13所示,第一凸台101和第二凹槽201的截面形状为矩形,其中,第一凸台101的突起端设置有凸台倒角6,将第一凸台101的截面形状设计为矩形,并在第一凸台101的突起端设置凸台倒角6,能够保证第一凸台101容易的插进第二凹槽201,同时能够降低模具的制作难度和简化制作工艺,从而降低制作成本。
当然,于其它实施例中,第一凸台和第二凹槽的截面形状还可以是三角形,设为三角形除了可以快速定位,还可以节省材料。也可以将第一凸台的截面形状设置为三角形或者梯形,将第二凹槽的截面形状设置为矩形,第二凹槽的槽口宽度等于第一凸台的根部宽度即可起到配合定位作用。
实施例四
如图14和图15所示,阴模2包括第一光学区和第一辅助区,阳模1包括第二光学区和第二辅助区,台阶面7设置在阴模2上,锥形斜面10设置在阳模上,合模状态下阳模1位于阴模2的上方,台阶面7与所述第一光学区连接的一端低于台阶面7与所述第一辅助区连接的一端,台阶面7的高度差H1是0.15mm,锥形斜面10与所述第二光学区连接的一端低于锥形斜面10与所述第二辅助区连接的一端。所述第一辅助区包括第一辅助端面91,所述第二辅助区包括第二辅助端面92,所述第一光学区的边缘设置有台阶延伸面93,第一辅助端面91与第二辅助端面92的距离小于台阶延伸面93与第二辅助端面92的距离。所述第一光学区的外围360度的整个圆周上均设置有台阶面7。
于本实施例中,所述第一光学区的边缘轮廓是圆形,台阶面7是一个竖直面,台阶面7与水平面的相 交线是所述第一光学区的边缘轮廓的同心圆。台阶面7与所述第一光学区的边缘的距离L是1.0mm。通过本实施例人工晶体半成品成型模具制成的晶体8如图16所示。于其它实施例中,所述台阶面也可以是一个朝所述第一辅助区方向凸起或者朝所述第一光学区方向凸起的弧面。
阳模1上设置第一凹槽102;阴模2上设置第二凸台202,第二凸台202的截面形状是矩形,第一凹槽102的截面形状是矩形。
使用时,第二凸台202插进第一凹槽102中,实现阳模1和阴模2的合模,并且起到定位作用,进而保证阳模1和阴模2的光学区中心在同一条直线上,以避免产生光学偏心,进而影响产品成像品质。
实施例五
如图17所示,一种人工晶体半成品成型模具,包括阳模1和阴模2,阳模1设置在阴模2的上方,阳模1的中间区域为向上凸起的弧形区域,该弧形区域的中心线为阳模1的第一光学区的中心线;阴模2的中间区域为向下凹陷的弧形区域,该弧形区域的中心线为阴模2的第二光学区的中心线。
于本实施例中,所述第一光学区的外围设置有第一辅助区,所述第二光学区的外围设置有第二辅助区,所述第一光学区、第一辅助区、第二光学区和第二辅助区共同构成人工晶体半成品的成型腔3。如图18所示,所述第一光学区与所述第一辅助区的连接位置设置有台阶面7,台阶面7的一端通过台阶延伸面93与所述第一光学区连接,台阶面7的另一端与所述第一辅助区连接,台阶面7与所述第一光学区连接的一端高于台阶面7与所述第一辅助区连接的一端,台阶面7的高度差H1是0.05mm,锥形斜面10与所述第二光学区连接的一端低于锥形斜面10与所述第二辅助区连接的一端。所述第一辅助区包括第一辅助端面91,所述第二辅助区包括第二辅助端面92,台阶延伸面93设置在所述第一光学区的边缘,第一辅助端面91与第二辅助端面92的距离小于台阶延伸面93与第二辅助端面92的距离。所述第一光学区的外围360度的整个圆周上均设置有台阶面7。
于本实施例中,所述第一光学区的边缘轮廓是圆形,台阶面7是一个竖直面,台阶面7与水平面的相交线是所述第一光学区的边缘轮廓的外切正方形。于其它实施例中,所述台阶面也可以是一个朝所述第一辅助区方向凸起或者朝所述第一光学区方向凸起的弧面。
如图19所示,阳模1的底部的一侧设置有第一凸台101,第一凸台101包括三段间隔的、相互独立的弧形凸台,第一凸台101的截面形状为梯形;阳模1的底部的另一侧设置有第一凹槽102,第一凹槽102是绕圆周方向旋转180度形成的弧形凹槽,第一凹槽102的截面形状为梯形。如图20所示,阴模2的顶部的一侧设置有第二凹槽201,第二凹槽201是绕圆周方向旋转180度形成的弧形凹槽,第二凹槽201的截面形状为梯形;阴模2的顶部的另一侧设置有第二凸台202,第二凸台202包括三段间隔的、相互独立的弧形凸台,第二凸台202的截面形状为梯形。第一凸台101的高度小于第二凹槽201的深度,第二凸台202的高度小于第一凹槽102的深度,合模状态下,第一凸台101插入第二凹槽201中,第二凸台202同时插进第一凹槽102中,实现定位,使第一光学区的中心线与第二光学区的中心线在一条直线上。
本实施例中在阳模1上设置第一凸台101和第一凹槽102与阴模2上设置第二凹槽201和第二凸台202分别配合使用,不仅可以快速定位,保证阳模1和阴模2的光学区中心在同一条直线上,以避免产生光学偏心,进而影响产品品质;还可以使阳模1和阴模2之间的受力更均匀,进而使定位更均匀准确,保证产品的高质量生产。
实施例六
如图21所示,一种人工晶体半成品成型模具,包括阳模1、阴模2和第一凸台101,阳模1设置在阴模2的上方,阳模1的中间区域为向上凸起的弧形区域,该弧形区域的中心线为阳模1的第一光学区的中心线;阴模2的中间区域为向下凹陷的弧形区域,该弧形区域的中心线为阴模2的第二光学区的中心线。
于本实施例中,所述第一光学区的外围设置有第一辅助区,所述第二光学区的外围设置有第二辅助区,所述第一光学区、第一辅助区、第二光学区和第二辅助区共同构成人工晶体半成品的成型腔3。如图22所示,所述第一光学区与所述第一辅助区的连接位置设置有台阶面7,台阶面7的一端通过台阶延伸面93与所述第一光学区连接,台阶面7的另一端与所述第一辅助区连接,台阶面7与所述第一光学区连接的一端高于台阶面7与所述第一辅助区连接的一端,台阶面7的高度差H1是0.2mm,锥形斜面10与所述第二光学区连接的一端低于锥形斜面10与所述第二辅助区连接的一端。所述第一辅助区包括第一辅助端面91,所述第二辅助区包括第二辅助端面92,台阶延伸面93设置在所述第一光学区的边缘,第一辅助端面91与第二辅助端面92的距离小于台阶延伸面93与第二辅助端面92的距离。所述第一光学区的外围360度的整个圆周上均设置有台阶面7。
于本实施例中,所述第一光学区的边缘轮廓是圆形,台阶面7是一个竖直面,台阶面7与水平面的相交线是所述第一光学区的边缘轮廓的同心圆。台阶面7与所述第一光学区的边缘的距离L是1.0mm。于其它实施例中,所述台阶面也可以是一个朝所述第一辅助区方向凸起或者朝所述第一光学区方向凸起的弧面。
阳模1的底部设置有环形的第一凹槽102,截面形状为梯形;阴模2的顶部设置有环形的第二凹槽201,截面形状为梯形。如图23所示,第一凸台101是一个360度连续完整的环形凸台,第一凸台101的上下两端宽度较小,中间宽度较大,其截面形状为两个对称梯形相连。第一凸台101的高度小于第一凹槽102的深度与第二凹槽201的深度之和,合模状态下第一凸台101的上部插入第一凹槽102中;第一凸台101的下部插入第二凹槽201中。第一凸台101、阳模1和阴模2三者相互独立配合,使用时:先把阴模2放置在水平的工作台上,然后将第一凸台101的下部插进阴模2的顶部的第二凹槽201中,使第一凸台101与阴模2相互定位;再将阳模1放置在第一凸台101的上方,使第一凸台101的上部插进阳模1的底部的第一凹槽102中,使第一凸台101与阳模1相互定位。如此便实现阳模1、阴模2和第一凸台101之间的定位,定位完成后,第一光学区的中心线与第二光学区的中心线在一条直线上。
由于在模具开合过程中,第一凸台101经常需要承受较大的压力,导致容易磨损变形,本实施例将第一凸台101设置为可拆卸的独立部件,方便定期更换第一凸台101,从而有利于阳模1和阴模2的可持续利用,减少浪费,降低生产成本。
当然,于其它实施例中,环形的第一凸台也可以设置为多个间隔分布的相同的弧形凸台,将弧形凸台间隔均匀的分布在阴模的第二凹槽中,然后与阳模上的第一凹槽配合,不仅可以实现快速定位,还可以只更换受损的弧形凸台,不需要将整个环形凸台更换,可以进一步节省生产成本,避免浪费。
实施例七
提供一种人工晶体半成品成型方法,包括以下步骤:提供上述的人工晶体半成品成型模具,在所述人工晶体半成品成型模具的成型腔内灌注晶体原材料,使所述晶体原材料在所述人工晶体半成品成型模具内固化成型。
具体地,一般情况下,在人工晶体的光学部边缘设置台阶的传统加工工艺是在人工晶体成型过程中进行车削处理,但人工晶体的要求精度非常高,车削处理对设备的精度要求极高,加工条件非常苛刻,同时会造成人工晶体的生产率低,生产成本高和产品废品率高。本方案通过在人工晶体半成品的成型腔内设置所述台阶面,使人工晶体半成品在成型模具中成型时直接形成过渡台阶,无需通过车削处理形成过渡台阶,简化生产工艺,提高生产效率,而且通过使人工晶体的光学部与辅助部的连接位置形成过渡台阶,能有效防止术后后囊膜浑浊并发症的产生。而且,本方案通过在人工晶体半成品的成型腔内设置所述锥形斜面,且所述台阶面与所述第一光学区的边缘的距离大于零,能在保证满足晶体襻的力学性能要求的同时降低人工晶体半成品的厚度。
实施例八
如图24和25所示,提供一种人工晶体半成品,包括光学部81和辅助部82,辅助部82位于光学部81的外围,光学部81包括相对的光学前表面812与光学后表面813,辅助部82包括相对的辅助前端面821与辅助后端面822,光学后表面813与辅助后端面822的连接位置设置有过渡台阶83,过渡台阶83的一端通过过渡面811与光学后表面813连接,过渡台阶83的另一端与辅助后端面822连接,过渡台阶83的高度差H1是0.1mm,过渡台阶83的落差面与光学后表面813的边缘的距离大于零。过渡面811设置在光学后表面813的边缘,辅助后端面822与辅助前端面821的距离小于过渡面811与辅助前端面821的距离。光学前表面812通过过渡锥形斜面与辅助前端面821连接,过渡锥形斜面84与辅助前端面821连接的一端到辅助后端面822的距离大于过渡锥形斜面84与光学前表面812连接的一端到辅助后端面822的距离。
该人工晶体半成品的过渡台阶83是360度完整一圈,360度的过渡台阶83大部分在后续的切襻加工处理中被切割并废弃,切襻加工处理时将光学部81外围的辅助部82大部分切除,剩余的辅助部即为人工晶体成品的襻。过渡台阶83在最终的人工晶体成品中仅仅保留晶体襻上的过渡台阶,当人工晶体成品襻的数量为两条时,过渡台阶83在最终的人工晶体成品中仅仅保留两段,且每段过渡台阶83所对应的弧的圆心角是30度。另外,切割加工同时会形成另一条的直角边,即人工晶体的轮廓边。于其它实施例中,过渡台阶的高度差H1也可以是0.05mm或0.15mm或0.2mm。
于本实施例中,光学部81的边缘轮廓是圆形,过渡台阶83的落差面是一个竖直面,过渡台阶83的落差面与水平面的相交线是光学部81的边缘轮廓的同心圆。过渡台阶83的落差面与光学部81的边缘的距离是0.5mm。于其它实施例中,过渡台阶的落差面与光学部的边缘的距离L也可以是0.2mm或0.4mm或1.0mm。于其它实施例中,所述过渡台阶的落差面是一个朝所述辅助部方向凸起或者朝所述光学部方向凸起的弧面。
实施例九
本实施例与实施例八的区别在于:
光学部81的边缘轮廓是圆形,过渡台阶83的落差面是一个竖直面,过渡台阶83的落差面与水平面的相交线是与光学部81的边缘轮廓相切的多段直线。具体地,如图26所示,过渡台阶83的落差面与水平面的相交线是四段依次连接的直线,四段依次连接的直线构成矩形。于其它实施例中,所述过渡台阶的落差面是一个朝所述辅助部方向凸起或者朝所述光学部方向凸起的弧面。
于其它实施例中,过渡台阶的落差面与水平面的相交线是多段直线,且过渡台阶的落差面与水平面的 相交线与光学部的边缘轮廓之间的最小距离是0.2mm或0.5mm或0.7mm或1.0mm。
于其它实施例中,过渡台阶的落差面与水平面的相交线也可以是波浪线。
本文中的“第一”、“第二”仅仅是为了在描述上加以区分,并没有特殊的含义。
需要声明的是,上述具体实施方式仅仅为本发明的较佳实施例及所运用技术原理,在本发明所公开的技术范围内,任何熟悉本技术领域的技术人员所容易想到的变化或替换,都应涵盖在本发明的保护范围内。

Claims (15)

  1. 一种人工晶体半成品成型模具,其特征在于,包括第一模和第二模,所述第一模包括第一光学区和第一辅助区,所述第一辅助区位于所述第一光学区的外围,所述第二模包括第二光学区和第二辅助区,所述第二辅助区位于所述第二光学区的外围;
    所述第一光学区与所述第一辅助区的连接位置设置有台阶面,所述台阶面的一端通过台阶延伸面与所述第一光学区连接,所述台阶面的另一端与所述第一辅助区连接,所述台阶面的高度差大于零;
    所述台阶面与所述第一光学区的边缘的距离大于零;
    所述第二辅助区与所述第二光学区之间通过锥形斜面连接;
    所述第一辅助区包括第一辅助端面,所述第二辅助区包括第二辅助端面,所述台阶延伸面设置在所述第一光学区的边缘,所述第一辅助端面与所述第二辅助端面的距离小于所述台阶延伸面与所述第二辅助端面的距离;
    所述锥形斜面与所述第二辅助端面连接的一端到所述第一辅助端面的距离大于所述锥形斜面与所述第二光学区连接的一端到所述第一辅助端面的距离。
  2. 根据权利要求1所述的人工晶体半成品成型模具,其特征在于,所述第一模是阳模,所述第二模是阴模,所述台阶面设置在所述阳模上,所述锥形斜面设置在所述阴模上,合模状态下所述阳模位于所述阴模的上方,所述台阶面与所述第一光学区连接的一端高于所述台阶面与所述第一辅助区连接的一端,所述锥形斜面与所述第二光学区连接的一端高于所述锥形斜面与所述第二辅助区连接的一端。
  3. 根据权利要求1或2所述的人工晶体半成品成型模具,其特征在于,所述第一模是阴模,所述第二模是阳模,所述台阶面设置在所述阴模上,所述锥形斜面设置在所述阳模上,合模状态下所述阳模位于所述阴模的上方,所述台阶面与所述第一光学区连接的一端低于所述台阶面与所述第一辅助区连接的一端,所述锥形斜面与所述第二光学区连接的一端低于所述锥形斜面与所述第二辅助区连接的一端。
  4. 根据权利要求1~3中任一项所述的人工晶体半成品成型模具,其特征在于,所述台阶面是一个竖直面;
    或者,所述台阶面是一个弧面。
  5. 根据权利要求1~4中任一项所述的人工晶体半成品成型模具,其特征在于,所述台阶面与水平面的相交线是曲线或者多段直线。
  6. 根据权利要求1~5中任一项所述的人工晶体半成品成型模具,其特征在于,所述锥形斜面是圆锥面;
    或者,所述锥形斜面是倾斜弧面。
  7. 根据权利要求1~6中任一项所述的人工晶体半成品成型模具,其特征在于,所述第一模上绕圆周方向旋转延伸设置有定位凸台,所述定位凸台的旋转轴与所述第一光学区的中心线在同一条直线上,所述第二模绕圆周方向旋转延伸设置有定位凹槽,所述定位凹槽的旋转轴与所述第二光学区的中心线在同一条直线上;
    所述定位凸台的高度小于或者等于所述定位凹槽的深度,合模状态下所述定位凸台插入所述定位凹槽中,所述定位凸台的旋转轴与所述定位凹槽的旋转轴在同一条直线上。
  8. 根据权利要求1~7中任一项所述的人工晶体半成品成型模具,其特征在于,所述第一模为阳模,所述第二模为阴模,所述定位凸台是设置在所述阳模的底部的第一凸台,所述定位凹槽是设置在所述阴模的顶部的第二凹槽;合模时,所述阳模设置在所述阴模的上方,所述第一凸台插入所述第二凹槽中。
  9. 根据权利要求1~8中任一项所述的人工晶体半成品成型模具,其特征在于,所述第一模为阴模,所述第二模为阳模,所述定位凸台是设置在所述阴模的顶部的第二凸台,所述定位凹槽是设置在所述阳模的底部的第一凹槽;合模时,所述阳模设置在所述阴模的上方,所述第二凸台插入所述第一凹槽中。
  10. 根据权利要求1~9中任一项所述的人工晶体半成品成型模具,其特征在于,所述第一模为阳模,所述第二模为阴模,所述定位凸台是设置在所述阳模的底部的第一凸台,所述定位凹槽是设置在所述阴模的顶部的第二凹槽;所述阳模的底部还设有第一凹槽,所述阴模的顶部还设有第二凸台,所述第二凸台的高度小于或者等于第一凹槽的深度,合模时,所述阳模设置在所述阴模的上方,所述第一凸台插入所述第二凹槽中,所述第二凸台插入所述第一凹槽。
  11. 一种人工晶体半成品成型方法,其特征在于,提供权利要求1至10任一项所述的人工晶体半成品成型模具,在所述人工晶体半成品成型模具的成型腔内灌注晶体原材料,使所述晶体原材料在所述人工晶体半成品成型模具内固化成型。
  12. 一种人工晶体半成品,其特征在于,包括光学部和辅助部,所述辅助部位于所述光学部的外围,所述光学部包括相对的光学前表面与光学后表面,所述辅助部包括相对的辅助前端面与辅助后端面,所述光学后表面与所述辅助后端面的连接位置设置有过渡台阶,所述过渡台阶的一端通过过渡面与所述光学后表面连接,所述过渡台阶的另一端与所述辅助后端面连接,所述过渡台阶的高度差大于零;
    所述过渡台阶的落差面与所述光学后表面的边缘的距离大于零;
    所述过渡面设置在所述光学后表面的边缘,所述辅助后端面与所述辅助前端面的距离小于所述过渡面与所述辅助前端面的距离;
    所述光学前表面通过过渡锥形斜面与所述辅助前端面连接;
    所述过渡锥形斜面与所述辅助前端面连接的一端到所述辅助后端面的距离大于所述过渡锥形斜面与所述光学前表面连接的一端到所述辅助后端面的距离。
  13. 根据权利要求12所述的人工晶体半成品,其特征在于,所述过渡台阶的落差面是一个竖直面;
    或者,所述过渡台阶的落差面是一个弧面。
  14. 根据权利要求12或13所述的人工晶体半成品,其特征在于,所述过渡台阶的落差面与水平面的相交线是曲线或者多段直线。
  15. 根据权利要求12~14中任一项所述的人工晶体半成品,其特征在于,所述过渡锥形斜面是圆锥面;
    或者,所述过渡锥形斜面是倾斜弧面。
PCT/CN2019/108428 2018-09-29 2019-09-27 人工晶体半成品成型模具、成型方法及人工晶体半成品 WO2020063826A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201980022183.8A CN111971154A (zh) 2018-09-29 2019-09-27 人工晶体半成品成型模具、成型方法及人工晶体半成品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811148990 2018-09-29
CN201811148990.8 2018-09-29

Publications (1)

Publication Number Publication Date
WO2020063826A1 true WO2020063826A1 (zh) 2020-04-02

Family

ID=69949527

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108428 WO2020063826A1 (zh) 2018-09-29 2019-09-27 人工晶体半成品成型模具、成型方法及人工晶体半成品

Country Status (2)

Country Link
CN (1) CN111971154A (zh)
WO (1) WO2020063826A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11088142B2 (en) 2019-12-26 2021-08-10 Micron Technology, Inc. Integrated assemblies having voids along regions of gates, and methods of forming conductive structures

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1671335A (zh) * 2002-07-30 2005-09-21 雷纳隐形眼镜有限公司 眼内透镜
CN102247222A (zh) * 2010-05-17 2011-11-23 爱博诺德(北京)医疗科技有限公司 软性人工晶体装置
CN103237522A (zh) * 2010-11-24 2013-08-07 参天制药株式会社 眼内透镜
US20130231742A1 (en) * 2003-12-09 2013-09-05 Abbott Medical Optics Inc. Foldable intraocular lens and method of making
CN108081512A (zh) * 2016-11-23 2018-05-29 东莞东阳光科研发有限公司 人工晶体成型模具

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104127262B (zh) * 2013-11-27 2016-07-27 爱博诺德(北京)医疗科技有限公司 散光矫正型人工晶体及其设计和生产方法
CN108081514B (zh) * 2016-11-23 2020-04-21 东莞东阳光医疗智能器件研发有限公司 人工晶体成型模具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1671335A (zh) * 2002-07-30 2005-09-21 雷纳隐形眼镜有限公司 眼内透镜
US20130231742A1 (en) * 2003-12-09 2013-09-05 Abbott Medical Optics Inc. Foldable intraocular lens and method of making
CN102247222A (zh) * 2010-05-17 2011-11-23 爱博诺德(北京)医疗科技有限公司 软性人工晶体装置
CN103237522A (zh) * 2010-11-24 2013-08-07 参天制药株式会社 眼内透镜
CN108081512A (zh) * 2016-11-23 2018-05-29 东莞东阳光科研发有限公司 人工晶体成型模具

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11088142B2 (en) 2019-12-26 2021-08-10 Micron Technology, Inc. Integrated assemblies having voids along regions of gates, and methods of forming conductive structures

Also Published As

Publication number Publication date
CN111971154A (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
EP0993364B1 (en) Injection molding process for rotationally asymmetric contact lens surfaces
TWI449614B (zh) 用於隱形眼鏡製造之模具
JPH02270517A (ja) コンタクトレンズ成型用のプラスチツク材料製モールドおよび成型方法
EP1248702B1 (en) Method for cast molding toric contact lenses
MX2007007852A (es) Montaje de herramienta optica para formacion mejorada de borde lentes y pared de cilindro derecho (pcd).
CA2548735A1 (en) Foldable intraocular lens and method of making
US4165158A (en) Cast contact lenses and method for making same
US20070159593A1 (en) Contact lens
BRPI0619731B1 (pt) Mold for the production of contact lenses
WO2020063826A1 (zh) 人工晶体半成品成型模具、成型方法及人工晶体半成品
TWI404990B (zh) 複曲面隱形眼鏡製造之軸控制
US6923538B2 (en) Method for cast moulding contact lenses with a rounded edge form
CN108081514B (zh) 人工晶体成型模具
CN108081512B (zh) 人工晶体成型模具
TWI587025B (zh) 用於形成眼科裝置之鑄杯組件、用於生產供形成該眼科裝置之鑄杯組件的模具組件、隱形眼鏡及用於製造該隱形眼鏡之方法
JP2011121214A (ja) プラスチック製眼鏡レンズの製造方法、同製造方法によって製造されるレンズ及び眼鏡レンズ用母型
US3697629A (en) Method and product of making multifocal contact lenses and lens blanks
US7628485B2 (en) Contact lens having a uniform horizontal thickness profile
EP3027398B1 (en) Insert assembly for manufacturing intraocular lenses
CN211440840U (zh) 接触透镜模压成型模具
JP2010125292A (ja) 多焦点眼内レンズの製造方法及び該方法で製造された多焦点眼内レンズ
KR101556995B1 (ko) 토릭렌즈 제조방법
US9283718B2 (en) Reduced-tilt back plastic feature for a contact lens mold
CN208026894U (zh) 透镜单元和透镜模具
US9256082B2 (en) Laminated composite lens

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866211

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866211

Country of ref document: EP

Kind code of ref document: A1