WO2020063103A1 - 发光二极管灯丝和发光二极管灯丝灯泡 - Google Patents

发光二极管灯丝和发光二极管灯丝灯泡 Download PDF

Info

Publication number
WO2020063103A1
WO2020063103A1 PCT/CN2019/098580 CN2019098580W WO2020063103A1 WO 2020063103 A1 WO2020063103 A1 WO 2020063103A1 CN 2019098580 W CN2019098580 W CN 2019098580W WO 2020063103 A1 WO2020063103 A1 WO 2020063103A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
emitting diode
glass
substrate
phosphor
Prior art date
Application number
PCT/CN2019/098580
Other languages
English (en)
French (fr)
Inventor
张国兴
赖中平
Original Assignee
张国兴
赖中平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 张国兴, 赖中平 filed Critical 张国兴
Publication of WO2020063103A1 publication Critical patent/WO2020063103A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/232Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating an essentially omnidirectional light distribution, e.g. with a glass bulb
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/233Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings specially adapted for generating a spot light distribution, e.g. for substitution of reflector lamps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • F21K9/23Retrofit light sources for lighting devices with a single fitting for each light source, e.g. for substitution of incandescent lamps with bayonet or threaded fittings
    • F21K9/235Details of bases or caps, i.e. the parts that connect the light source to a fitting; Arrangement of components within bases or caps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V17/00Fastening of component parts of lighting devices, e.g. shades, globes, refractors, reflectors, filters, screens, grids or protective cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/70Cooling arrangements characterised by passive heat-dissipating elements, e.g. heat-sinks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V31/00Gas-tight or water-tight arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01KELECTRIC INCANDESCENT LAMPS
    • H01K1/00Details
    • H01K1/02Incandescent bodies
    • H01K1/04Incandescent bodies characterised by the material thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/64Heat extraction or cooling elements
    • H01L33/644Heat extraction or cooling elements in intimate contact or integrated with parts of the device other than the semiconductor body

Definitions

  • the invention relates to a structure of a light bulb, in particular to a light-emitting diode filament and a light-emitting diode filament light bulb having the effects of improving heat dissipation and reducing dark areas.
  • LED chips light-emitting diode chips
  • the light emitting diode filament includes a transparent substrate, an LED chip fixed on the surface of the transparent substrate, and a package.
  • a luminescent powder layer covering the entire transparent substrate and the LED chip. From a cross-section of this light emitting diode filament, the phosphor powder layer is continuously surrounded around the entire transparent substrate and the periphery of the LED chip. Therefore, the patented technology claims that the excitation light generated by the LED chip can excite the phosphor layer to emit 4PI light.
  • LED filament bulbs have better luminous performance than traditional incandescent bulbs, the heat generated by LEDs will seriously affect the life of LEDs. Therefore, how to dissipate heat effectively is one of the important issues that LED filament bulbs must overcome. .
  • the United States Patent No. 9,933,121B2 which was granted by the present inventor, proposes a method for manufacturing an LED bulb with heat radiation filaments, comprising: providing a substrate, There are conductive parts at both ends for electrically connecting electronic circuits; LED chips, wires and phosphors are fixed on the front side of the substrate to form LED filaments; and a thermal radiation ink is coated on the back of the substrate (thermal radiation heat dissipation ink), and then the thermal radiation heat dissipation ink coated on the back of the substrate is dried to form a thermal radiation heat dissipation film.
  • the heat radiation ability of the LED filament can be improved by the heat radiation film on the back of the substrate.
  • a light emitting diode filament light bulb structure which includes: a lamp cap, a filament holder, a transparent lamp housing and at least one light emitting diode filament.
  • the lamp cap can be connected to an external power source to provide driving light emitting diodes
  • the driving power of the filament, the filament support and the lamp head are electrically connected
  • the filament support includes a two-metal support
  • the light-emitting diode filament has two electrode pins and the two-metal support are electrically connected to form a driving circuit
  • the surface of the two-metal support is coated with Graphene or boron nitride (BN) coatings form a heat radiation and black body radiation layer.
  • BN boron nitride
  • the back of the substrate of the light emitting diode filament has a heat radiation film; the heat is dissipated through the metal bracket, heat radiation and black body radiation layer, and heat radiation.
  • the film can increase the thermal conductivity and heat radiation area of the filament bracket and the light emitting diode filament, promote the heat convection of the gas inside the transparent lamp housing and improve the heat radiation ability, and improve the heat dissipation and heat radiation effect of the light emitting diode filament bulb.
  • the technical problem to be solved by the present invention is to provide a light emitting diode filament and a light emitting diode filament light bulb with improved heat dissipation capability and reduced dark area.
  • an embodiment of the light emitting diode filament structure of the present invention includes: a light-transmittable substrate; at least one LED chip is fixed on the front surface of the light-transmissive substrate; The two ends of the material have a first electrode pin and a second electrode pin in series with the LED chip.
  • a heat-emitting layer is formed on the back or front of the light-transmitting substrate, and a phosphor is arranged.
  • the phosphor encapsulates the LED chip therein and exposes a portion of the first electrode pin and a portion of the second electrode pin; wherein the heat-emitting layer is made of electromagnetic radiation particles, and the LED chip
  • the generated excitation light can directly stimulate the phosphor to emit light, and part of the excitation light of the LED chip can excite the heat-emitting light-emitting layer after passing through the light-transmissive substrate; wherein the different electromagnetic wave radiation particles of the heat-emitting light-emitting layer can be affected by the aforementioned partial chip
  • the excitation light excites and emits light, and can also generate thermal radiation by thermal excitation, and can further absorb infrared light and heat radiation to emit visible light, thereby improving light emitting diodes. Cooling capacity and reduce the dark areas of the wire.
  • An aspect of the present invention includes a light emitting diode filament bulb, which includes: a transparent lamp housing, a lamp cap, a driver, at least one filament support, and at least one light emitting diode filament;
  • the inside of the transparent lamp shell is hollow to form a sealed cavity.
  • the transparent lamp shell can transmit light and has an exhaust pipe to communicate the cavity and the outside of the transparent lamp shell.
  • the lamp cap is connected to the bottom end of the transparent lamp shell.
  • a first power terminal and a second power terminal for electrically connecting an external power source;
  • the light-emitting diode filament includes: a light-transmitting substrate, at least one LED chip is fixed on the front surface of the light-transmitting substrate, and a first electrode pin and a second The electrode pins are connected in series with the LED chip.
  • a heat-emitting and light-emitting layer is formed on the back of the light-transmitting substrate, and a phosphor is disposed on the front of the light-transmitting substrate.
  • the heat-emitting and light-emitting layer includes a plurality of electromagnetic wave powders (including phosphor powder, heat radiation powder, or infrared light to visible light conversion material) in different radiation bands ),
  • the excitation light generated by the LED chip can directly stimulate the phosphor to emit light, and part of the excitation light generated by the LED chip can pass through the light-transmitting substrate to excite the heat-emitting layer to emit light; the electromagnetic wave powder of the heat-emitting layer can be affected by the LED chip
  • the generated part of the excitation light is excited to emit light, or heat radiation can be generated by thermal excitation, or infrared light can be absorbed to emit visible light, thereby improving the light emitting diode. Cooling capacity and reduce the dark areas of the wire.
  • the light-transmittable substrate includes any one of a ceramic substrate, a glass substrate, a sapphire substrate, a plastic substrate, and a paper substrate.
  • the translucent substrate includes any one of a flexible ceramic substrate, a flexible glass substrate, a flexible plastic, and a flexible paper substrate.
  • the electromagnetic wave powder of the heat radiation and light emitting layer includes any one or a combination of phosphor powder, heat radiation powder, and infrared light to visible light up-conversion materials.
  • the phosphors of the heat-emitting layer include: aluminate phosphors, nitride phosphors, nitrogen oxide phosphors, silicate phosphors, fluoride phosphors, tin-sulfur alloy phosphors, and quantum dot phosphors. Either or a combination thereof.
  • the heat radiation powder of the heat radiation layer includes: any one of a carbon material, metal particles, ceramic powder, and heat radiation glue, or a combination thereof.
  • the infrared to visible light up-conversion materials of the heat-emitting and light-emitting layer include: a rare earth ion-doped halide material system, a fluorine compound material system, a oxyfluoride material system, an oxide material system, a sulfide-containing material system, silicon oxide, and Any one or a combination of phosphates.
  • the up-converted material that converts infrared light to visible light can emit visible light through the excitation of infrared light and heat radiation.
  • M Al, Ti, V
  • the carbon materials as the heat radiation powder include: graphene, carbon black, graphite, graphite, carbon nanotubes, carbon sixty, activated carbon, biocarbon , bamboo charcoal, and coal ash, or any combination thereof.
  • the metal particles as the heat radiation powder include: copper (Cu), nickel (Ni), zinc (Zn), iron (Fe), cobalt (Co), silver (Ag), gold (Au), and platinum (Pt) And any one or a combination of these alloys.
  • the ceramic powder as the heat radiation powder includes oxide ceramics, nitride ceramics, carbide ceramics, boride ceramics, silicide ceramics, fluoride ceramics, sulfide ceramics, and infrared-ray radiation powders. ) Any one or combination thereof.
  • the heat radiation adhesive material as the heat radiation powder includes any one or a combination of silica gel, acrylic resin, epoxy resin, polyurethane resin, and polyimide resin.
  • the chamber is filled with a gas having a low viscosity coefficient and a high thermal conductivity, and the gas includes any of hydrogen (H2), helium (He), and argon (Ar). One or a mixture.
  • the cavity of the transparent lamp housing is sealed under vacuum or low pressure.
  • the said low pressure is 0.01 to 0.1 MPa.
  • the cavity of the transparent lamp housing is sealed at a low pressure or normal pressure, and the cavity is filled with a gas having a low viscosity coefficient and a high thermal conductivity, and the gas includes: hydrogen (H2), Any one of helium (He) and argon (Ar) or a mixture thereof.
  • the beneficial effect of the present invention is that the light emitting diode filament package provided by the present invention can improve the heat dissipation ability and reduce the dark area through the heat radiation and light emitting layer on the back of the transparent substrate.
  • FIG. 1 is a sectional structural view of an embodiment of a light emitting diode filament of the present invention
  • Fig. 2 is a sectional structural view at the A-A position in Fig. 1;
  • FIG. 3 is a schematic view of a light emitting operation of the light emitting diode filament of the present invention.
  • 4A and 4B are schematic diagrams of a light emitting action of another embodiment of the light emitting diode filament of the present invention.
  • FIG. 5 is a sectional structural view of an embodiment of a light emitting diode filament lamp according to the present invention.
  • FIG. 6 is a sectional structural view of another embodiment of the light emitting diode filament lamp of the present invention.
  • the first power supply terminal 62 The second power supply terminal 70
  • FIG. 1 is a sectional structural view of an embodiment of a light emitting diode filament 1 of the present invention.
  • An embodiment structure of the light emitting diode filament 1 proposed by the present invention includes:
  • a light-transmissive substrate 10, at least one LED chip 20 is fixed on the front surface of the light-transmissive substrate 10, and has a first electrode pin 11 and a second electrode at both ends of the light-transmissive substrate 10.
  • the pins 12 and the LED chip 20 are connected in series.
  • a heat-emitting layer 30 is formed on the back or front of the light-transmissive substrate 10.
  • the heat-emitting layer 30 includes a plurality of electromagnetic wave powders (including fluorescent powder and heat radiation powder) of different radiation bands.
  • a fluorescent glue is coated on the front surface of the light-transmissive substrate 10 to form a fluorescent body 40.
  • the fluorescent body 40 encapsulates the LED chip 20 therein.
  • the first electrode pin 11 and the second electrode pin 12 partially expose the fluorescent body 20.
  • the light-emitting action of the light-emitting diode filament light bulb is shown in FIG. 3.
  • the excitation light generated by the LED chip 20 (the excitation light is usually blue light, which is shown by a dashed line in FIG.
  • the partial excitation light can pass through the light-transmitting substrate 10 and then excite the heat-emitting light-emitting layer 30 to emit light (usually white light, which is shown by a solid line in FIG. 3), wherein the aforementioned part of the excitation light can stimulate heat radiation
  • the phosphor of the layer 30 emits light, so the heat-emitting light-emitting layer 30 can generate light on the back of the light-emitting diode filament 1 and reduce the dark area of the light-emitting diode filament 1.
  • the heat-radiating powder of the heat-emitting light-emitting layer 30 can generate heat radiation by thermal excitation. In order to improve the heat radiation effect of the light emitting diode filament 1. Furthermore, the infrared-to-visible up-converting material of the heat-emitting light-emitting layer 30 can absorb infrared light and heat radiation to generate visible light, so as to synchronize the heat radiation effect of the LED filament 1 and reduce the dark area of the LED filament 1.
  • One embodiment of forming a heat-emitting and light-emitting layer 30 on the back or front side of the light-transmitting substrate 10 includes: adding electromagnetic wave powder to silica gel and mixing, and then coating the light-transmitting substrate with a glue or a glue. The back surface or front surface of the material 10 further forms a heat-emitting and light-emitting layer 30.
  • Another feasible implementation method includes: directly placing the electromagnetic wave powder with the light-transmitting substrate 10 on the back or front surface of the light-transmitting substrate 10 The back surface of the light-transmitting substrate 10 is sintered.
  • FIG. 4A and FIG. 4B are schematic diagrams of a light emitting action of another embodiment of the light emitting diode filament of the present invention.
  • the LED chip 20 in FIG. 4A is a back-plated chip.
  • the excitation light generated by the LED chip 20 (the excitation light is usually blue light, which is shown by a dashed line in FIG. 4A) is emitted to both sides.
  • the excitation light generated by the LED chip 20 can be Directly excite the phosphor contained in the phosphor 40 to emit light (illustrated by a solid line in FIG.
  • the LED chip 20 of FIG. 4B is a back-less plated chip.
  • the excitation light generated by the LED chip 20 (the excitation light is usually blue light, which is shown by a dashed line in FIG. 4A) can be emitted to the surroundings without obstruction.
  • the excitation light can directly excite the phosphor contained in the phosphor 40 to emit light (illustrated by a solid line in FIG. 4B), for example, mixed into white light; part of the excitation light of the LED chip 20 can pass through a light-transmissive substrate
  • the material 10 then excites the phosphor contained in the heat-emitting light-emitting layer 30 to emit light.
  • the light-transmitting substrate 10 may be made of a transparent or translucent material.
  • a preferred embodiment of the material for manufacturing the light-transmitting substrate 10 includes a ceramic substrate, a glass substrate, and a sapphire substrate. , Plastic substrate and paper substrate.
  • the material for manufacturing the light-transmissive substrate 10 is a flexible material, including: a flexible ceramic substrate, a flexible glass substrate, a flexible plastic, and a flexible paper substrate. Therefore, the light emitting diode filament 1 can be bent, and is suitable for being applied to a light emitting diode filament light bulb having an arc-shaped transparent lamp housing 50 (see FIG. 6).
  • the light emitting diode filament 1 includes a plurality of LED chips 20 (see FIG. 1) connected in series, and the LED chip 20 is fixed on the front surface of the light-transmitting substrate 10 by using a transparent die-cast adhesive 22. Any two adjacent LED chips 20 are connected in series using metal wires 21, and the LED chips 20 may be a horizontal (normal) LED structure, a vertical structure (LED structure), and a flip structure (LED structure) )
  • An LED chip 20 made of any one of the packaging structures is a preferred embodiment.
  • the width of the LED chip 20 is smaller than the width of the cross-section of the light-transmissive substrate 10, so that it is arranged on the light-transmissive substrate.
  • the phosphor 40 on the front surface of the material 10 can better cover the LED chip 20 and the metal wire 21, and a part of the excitation light generated by the LED chip 20 can also pass through the light-transmissive substrate 10 to excite the heat-emitting light-emitting layer 30 to emit light. .
  • the heat-emitting light-emitting layer 30 includes a plurality of electromagnetic wave powders in different radiation bands, wherein the electromagnetic wave powder includes any one or a combination of a fluorescent powder, a thermal radiation powder, and an up-conversion material that converts infrared light to visible light.
  • the phosphors of the heat-emitting light-emitting layer 30 include: aluminate phosphors, nitride phosphors, nitrogen oxide phosphors, silicate phosphors, fluoride phosphors, tin-sulfur alloy phosphors, and quantum dot phosphors. Any one or a combination thereof.
  • the heat radiation powder of the heat radiation layer 30 includes any one or a combination of carbon materials, metal particles, ceramic powders, and heat radiation glues.
  • This kind of heat radiation powder is basically a variety of Heat radiation powder in different electromagnetic wave bands. This heat radiation powder can be excited by the heat generated by the light emitting diode filament 1 to generate heat radiation to improve the heat radiation effect of the light emitting diode filament 1.
  • the infrared light to visible light up-conversion material of the heat-emitting and light-emitting layer 30 includes: a rare-earth ion-doped halide material system, a fluorine compound material system, a oxyfluoride material system, an oxide material system, a sulfide-containing material system, and silicon oxide With any one or a combination of phosphates.
  • the up-converted material that converts infrared light to visible light can emit visible light through the excitation of infrared light and heat radiation, and synchronously improves the heat radiation effect of the light emitting diode filament 1.
  • carbon materials used as heat radiation powder include: graphene, carbon black, graphite, graphite, carbon nanotubes, carbon sixty, activated carbon, biocarbon, Any one or a combination of bamboo charcoal and coal ash.
  • the metal particles used as the heat radiation powder include: copper (Cu), nickel (Ni), zinc (Zn), iron (Fe), cobalt (Co), silver (Ag), gold (Au), platinum (Pt), and Any of these alloys or a combination thereof.
  • ceramic powders as heat radiation powder include: oxide ceramics, nitride ceramics, carbide ceramics, boride ceramics, silicide ceramics, fluoride ceramics, sulfide ceramics, and other infrared-ray radiation powders (infrared-ray radiation powders) ) Any one or combination thereof.
  • the heat radiation adhesive material as the heat radiation powder includes any one or a combination of silica gel, acrylic resin, epoxy resin, polyurethane resin, and polyimide resin.
  • FIG. 5 is a sectional structural view of an embodiment of a light emitting diode filament light bulb according to the present invention.
  • An embodiment of the light emitting diode filament light bulb includes a transparent lamp housing 50, a lamp head 60, a driver 70, at least one filament holder, and at least one of the foregoing light emitting diode filaments 1.
  • the inside of the transparent lamp housing 50 is hollow to form a sealed cavity 51.
  • the transparent lamp housing 50 can transmit light and has an exhaust pipe 52 for communicating with the outside of the cavity 51 and the transparent lamp housing 50.
  • the lamp cap 60 is connected to the transparent lamp. At the bottom end of the casing 50, the lamp cap 60 has a first power source terminal 61 and a second power source terminal 62 for electrically connecting an external power source.
  • the exhaust pipe 52 of the transparent lamp housing 50 is sealed by the base 60. In other embodiments, the exhaust pipe 52 of the transparent lamp housing 50 can also be sealed by a sealing assembly.
  • the driver 70 is placed in the lamp cap 60, and the driver 70 is interposed between the transparent lamp shell 50 and the lamp cap 60.
  • the driver 70 can directly or indirectly electrically connect the first electrode pin 11 and the second electrode pin of the light emitting diode filament 1. 12, and the first power terminal 61 and the second power terminal 62 of the base 60, the driver 70 is used to convert external power into driving power for driving the LED filament 1.
  • the cavity 51 of the transparent lamp housing 50 is in a sealed state with a vacuum or a low pressure of 0.01 to 0.1 MPa.
  • the cavity 51 of the transparent lamp housing 50 is in a low-pressure or normal-pressure sealed state, and the cavity 51 is filled with a gas having a low viscosity coefficient and a high thermal conductivity.
  • the gas includes: Any one of hydrogen (H2), helium (He), and argon (Ar), or a mixture thereof, can increase the thermal conductivity and heat radiation area of the light emitting diode filament 1, and promote the thermal convection of the gas inside the transparent lamp housing 50 and improve The effect of heat radiation further improves the heat dissipation and heat radiation effect of the LED filament lamp.
  • the filament bracket includes two metal brackets 81 and 82.
  • the two metal brackets 81 and 82 pass through the transparent lamp shell 50 and are tightly combined with the transparent lamp shell 50.
  • the transparent lamp housing 50 is made of glass or plastic material, and can be tightly combined with the two metal brackets 81 and 82 while forming the transparent lamp housing 50.
  • the two metal brackets The top ends of 81 and 82 enter the cavity 51 of the transparent lamp housing 50 to electrically connect the first electrode pin 11 and the second electrode pin 12 of the light emitting diode filament 1, and the bottom ends of the two metal brackets 81 and 82 pass through After the transparent lamp shell 50 is electrically connected to the driver 70, the driver 70 can indirectly and electrically connect the first electrode pin 11 and the second electrode pin 12 of the LED filament 1 through two metal brackets 81 and 82.
  • the structure of another embodiment of the filament support is shown in FIG. 6.
  • the filament support includes a post 83 extending into the cavity 51 and two metal wires 84 and 85 passing through the post 83.
  • a preferred embodiment is When the transparent lamp housing 50 is made of glass or plastic, a pillar 83 is formed at the same time, so that the pillar 83 can be integrated with the transparent lamp housing 50. Two metal wires 84 and 85 pass through the pillar 83 and are tightly combined with the pillar 83.
  • the bottom ends of the two metal wires 84 and 85 are electrically connected to the driver 70 after passing through the pillar 83, and the top ends of the two metal wires 84 and 85 enter the cavity 51 of the transparent lamp housing 50
  • the first electrode pin 11 and the second electrode pin 12 of the light emitting diode filament 1 are electrically connected.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Led Device Packages (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Securing Globes, Refractors, Reflectors Or The Like (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Arrangement Of Elements, Cooling, Sealing, Or The Like Of Lighting Devices (AREA)

Abstract

本发明提供一种发光二极管灯丝和发光二极管灯丝灯泡,其中的发光二极管灯丝包括:一可透光的基材,至少一个LED芯片固定在可透光的基材的正面,在可透光的基材两端具有一第一电极引脚和一第二电极引脚和所述发光二极管芯片串联,以及一荧光体,荧光体配置在可透光的基材的正面,荧光体将LED芯片封装于其中并露出部分第一电极引脚和部分第二电极引脚;一散热发光层形成在可透光的基材的背面或正面,散热发光层包含多种不同辐射波段的电磁波粉体。

Description

发光二极管灯丝和发光二极管灯丝灯泡
本申请要求于2018年09月27日提交中国专利局、申请号为201811127617.4、发明名称为“发光二极管灯丝和发光二极管灯丝灯泡”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及一种灯泡的构造,特别是一种具有改进散热能力和减少暗区之功效的发光二极管灯丝和发光二极管灯丝灯泡。
背景技术
由于发光二极管的优异特性,已有厂商以发光二极管芯片(LED芯片)制成发光二极管灯丝并封装入透明灯泡,用以取代传统的白炽灯泡。
在已公开的欧洲专利EP2535640B1,提出了一种发光二极管灯泡以及可以产生4PI光的发光二极管灯丝,这种发光二极管灯丝包括:一透明基材,固定在透明基材的表面的LED芯片,以及包覆整个透明基材和LED芯片的荧光粉胶层(luminescent powder layer),从这种发光二极管灯丝的横断面观查,荧光粉胶层是在整个透明基材和LED芯片的外围连续地围绕一圈,因此该专利技术声称LED芯片产生的激发光可以激发荧光粉胶层发光就能产生4PI光。
发光二极管灯丝灯泡比传统的白炽灯泡虽然有更佳的发光性能表现,但是发光二极管产生的热量会严重影响发光二极管的寿命,因此,如何有效地散热是发光二极管灯丝灯泡必需克服的重要问题之一。
为解决发光二极管灯丝灯泡的散热问题,在本发明人获得授权的美 国专利US9,933,121B2,提出一种制造具热辐射散热灯丝之LED灯泡的方法,包含:提供一基材,在基材的两端具有导电部用以电性连接电子电路;在基材的前侧(front side)固定LED芯片、导线和荧光体形成LED灯丝(LED filament);在基材的背面涂布热辐射散热油墨(thermal radiation heat dissipation ink),然后干燥涂布在基材背面的热辐射散热油墨以形成热辐射散热膜(thermal radiation dissipation film)。通过基材背面的热辐射散热膜,可以改进LED灯丝的散热能力。
在本发明人获得授权的欧洲专利EP3208514B1,提出了一种发光二极管灯丝灯泡的构造,包括:灯头、灯丝支架、透明灯壳和至少一发光二极管灯丝,灯头可连接外部电源用以提供驱动发光二极管灯丝的驱动电力,灯丝支架和灯头电性连接,灯丝支架包括二金属支架,发光二极管灯丝具有二个电极引脚分别和二金属支架电性连接形成驱动回路,其中二金属支架的表面涂覆含有石墨烯(graphene)或氮化硼(BN)的涂料形成一散热及黑体辐射层,发光二极管灯丝的基材的背面具有热辐射散热膜;透过金属支架、散热及黑体辐射层以及热辐射散热膜,可以增加灯丝支架和发光二极管灯丝的导热性及热辐射面积,促进透明灯壳内部气体的热对流以及提高热辐射能力,改进发光二极管灯丝灯泡的散热及热辐射效果。
前述的US9,933,121B2和EP3208514B1专利技术可以解决发光二极管灯丝灯泡的散热问题,但是在发光二极管灯丝的基材的背面仍然存在暗区(dark region)的现象。
发明内容
本发明所要解决的技术问题在于提供一种改进散热能力和减少暗区的发光二极管灯丝和发光二极管灯丝灯泡。
为解决上述的技术问题,本发明发光二极管灯丝的一种实施例构造, 包括:一可透光的基材,至少一LED芯片固定在可透光的基材的正面,在可透光的基材的两端具有一第一电极引脚和一第二电极引脚和LED芯片串联,一散热发光层形成在可透光的基材的背面或正面,以及一荧光体,所述荧光体配置(disposed on)在可透光的基材的正面,荧光体将LED芯片封装于其中并露出部分第一电极引脚和部分第二电极引脚;其中散热发光层是由电磁波辐射颗粒,LED芯片产生的激发光可以直接激发荧光体发光,LED芯片的部分激发光可以穿过可透光的基材之后激发散热发光层发光;其中该散热发光层的该不同电磁波辐射颗粒可以受前述的部分芯片激发光的激发而发光,也可以由热激发而产生热辐射,以及可以进一步吸收红外光热辐射线而发出可见光,进而改进发光二极管灯丝的散热能力和减少暗区。
本发明的一方面包括一种发光二极管灯丝灯泡,包括:一透明灯壳、一灯头、一驱动器、至少一灯丝支架和至少一发光二极管灯丝;
其中透明灯壳的内部中空形成密封的一腔室,该透明灯壳可以透光并且具有一排气管用以连通腔室和透明灯壳的外部,灯头连接在透明灯壳的底端,灯头具有一第一电源端和一第二电源端用以电性连接外部电源;
其中发光二极管灯丝包括:一可透光的基材,至少一LED芯片固定在可透光的基材的正面,在可透光的基材的两端具有一第一电极引脚和一第二电极引脚和LED芯片串联,一散热发光层形成在可透光的基材的背面,以及一荧光体,荧光体配置(disposed on)在可透光的基材的正面,荧光体将LED芯片封装于其中并露出部分第一电极引脚和部分第二电极引脚;其中散热发光层包含多种不同辐射波段的电磁波粉体(包含荧光粉、热辐射粉或红外光转可见光的上转材料),LED芯片产生的激发光可以直接激发荧光体发光,LED芯片产生的部分激发光可以穿过可透光的基材之后激发散热发光层发光;其中散热发光层的电磁波粉体可以受LED芯片产生的部分激发光的激发而发光,或是可以由热激发而产生热辐射,或是可以吸收红外光 热辐射线而发出可见光,进而改进发光二极管灯丝的散热能力和减少暗区。
其中可透光的基材包括:陶瓷基材、玻璃基材、蓝宝石基材、塑料基材和纸基材其中的任一种。
其中可透光的基材包括:可弯曲的陶瓷基材、可弯曲的玻璃基材、可弯曲塑料和可弯曲纸基材其中的任一种。
其中散热发光层的电磁波粉体包含荧光粉、热辐射粉与红外光转可见光的上转材料(IR to Visible up-conversion materials)其中的任一种或其组合。
其中散热发光层的荧光粉包括:铝酸盐荧光粉、氮化物荧光粉、氮氧化物荧光粉、硅酸盐荧光粉、氟化物荧光粉、锡硫合金化合物荧光粉和量子点荧光粉其中的任一种或其组合。
其中散热发光层的热辐射粉包括:碳材料、金属颗粒(metal particles)、陶瓷粉体和热辐射胶材其中的任一种或其组合。
其中散热发光层的红外光转可见光的上转材料包括:稀土离子掺杂的卤化物材料体系、氟化合物材料体系、氟氧化合物材料体系、氧化物材料体系、含硫化物材料体系、氧化硅与磷酸盐类其中的任一种或其组合。红外光转可见光的上转材料可以经由红外光热辐射线的激发而发出可见光。
其中红外光转可见光的上转材料进一步包括:氟砷盐酸基玻璃(Fluorinated arsenic chloride-based glass)、氟氧化物玻璃(Al 2O 3,CdF 2,PbF 2,YF 3)、ZBLAN玻璃(Nd 3Pb 5M 3F 19:M=Al,Ti,V,Cr,Fe,Ga;Ho 3BaY 2F 8;Pr3K2YF5)、AlF3基玻璃、氟铝(Alumina Yttrium Floride)系统中高掺杂(ErF 3)、氟锆铝(Alumina Zirconium Floride)玻璃系统中高掺杂(ErF 3)、Er 3Cs 3Lu 2Br 9玻璃、GGSX(Pr 3GeS 2Ga 2S 3CsCl)玻璃、PGPNO(Pr 3GeO 2PbONb 2O 5)玻璃、Er 3TeO玻璃、La 2S 3玻璃、磷酸盐(Phosphate) 玻璃、氟硼酸盐(Fluoro-Boric acid salt)玻璃、及碲酸盐(Tellurium acid salt)玻璃其中的任一种或其组合。
作为所述热辐射粉的碳材料包括:石墨烯(graphene)、碳黑(carbon black)、石墨(graphite)、碳纳米管(carbon nanotubes)、碳六十、活性碳(activated carbon)、生物碳、竹炭和煤灰其中的任一种或其组合。
作为所述热辐射粉的金属颗粒包括:铜(Cu)、镍(Ni)、锌(Zn)、铁(Fe)、钴(Co)、银(Ag)、金(Au)、铂(Pt)和它们的合金其中的任一种或其组合。
作为所述热辐射粉的陶瓷粉体包括:氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、硼化物陶瓷、硅化物陶瓷、氟化物陶瓷、硫化物陶瓷和红外光辐射粉末(infrared-ray radiation powders)其中的任一种或其组合。
作为所述热辐射粉的热辐射胶材包括:硅胶、压克力树脂、环氧树脂、聚氨酯树脂和聚酰亚胺树脂其中的任一种或其组合。
作为本发明的一种优选实施例,所述腔室之中填充有低黏度系数和高导热系数的气体,所述气体包括:氢(H2)、氦(He)和氩(Ar)其中的任一种或其混合。
作为本发明的一种优选实施例,其中透明灯壳的腔室是真空或低压的密封状态。
其中所述的低压是0.01至0.1MPa。
作为本发明的一种优选实施例,其中透明灯壳的腔室是低压或常压的密封状态,腔室之中填充有低黏度系数和高导热系数的气体,气体包括:氢(H2)、氦(He)和氩(Ar)其中的任一种或其混合。
本发明的有益效果在于,本发明提出的发光二极管灯丝装可以藉由可透光的基材的背面的散热发光层,改进散热能力和减少暗区。
有关本发明的其它功效及实施例的详细内容,配合图式说明如下。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1是本发明发光二极管灯丝的一种实施例的断面构造图;
图2是图1在A-A位置的断面构造图;
图3是本发明发光二极管灯丝的发光动作示意图;
图4A和图4B是本发明发光二极管灯丝的另一种实施例的发光动作示意图;
图5是本发明发光二极管灯丝灯泡的一种实施例的断面构造图;
图6是本发明发光二极管灯丝灯泡的另一种实施例的断面构造图。
符号说明
1发光二极管灯丝    10可透光的基材
11第一电极引脚     12第二电极引脚
20 LED芯片         21金属导线     22固晶胶
30散热发光层       40荧光体       50透明灯壳
51腔室             52排气管       60灯头
61第一电源端       62第二电源端   70驱动器
81,82金属支架     83柱体         84,85金属线
具体实施方式
在下文的实施方式中所述的位置关系,包括:上,下,左和右,若无特别指明,皆是以图式中组件绘示的方向为基准。
首先请参阅图1,是本发明发光二极管灯丝1的一种实施例的断面构造图。
本发明提出的发光二极管灯丝1的一种实施例构造包括:
一可透光的基材10,至少一LED芯片20固定在可透光的基材10的正面,在可透光的基材10的两端具有一第一电极引脚11和一第二电极引脚12和LED芯片20串联,一散热发光层30形成在可透光的基材10的背面或正面,散热发光层30包含多种不同辐射波段的电磁波粉体(包含荧光粉、热辐射粉及红外光转可见光的上转材料其中的任一种或其组合);以及一荧光体40,荧光体40配置(disposed on)在可透光的基材10的正面,例如使用含有荧光粉的荧光胶涂布在可透光的基材10的正面以形成荧光体40,荧光体40将LED芯片20封装于其中,第一电极引脚11和第二电极引脚12部分露出荧光体20之外;发光二极管灯丝灯泡的发光动作如图3所示,LED芯片20产生的激发光(激发光通常为蓝光,图3中以虚线绘示)可以直接激发荧光体40发光产生照明用的光线(通常为白光,图3中以实线绘示),LED芯片20的部分激发光可以穿过可透光的基材10之后激发散热发光层30发光产生照明用的光线(通常为白光,图3中以实线绘示),其中前述的部分激发光可以激发散热发光层30的荧光粉发光,因此散热发光层30可以在发光二极管灯丝1的背面产生光线,减少发光二极管灯丝1的暗区,而散热发光层30的热辐射粉可以由热激发产生热辐射,用以增进发光二极管灯丝1的散热效果。更进一步,散热发光层30的红外光转可见光的上转材料可以吸收红外光热辐射产生可见光,用以同步增进发光二极管灯丝1 的散热效果与减少发光二极管灯丝1的暗区。
在可透光的基材10的背面或正面形成散热发光层30的一种实施方式包括:将电磁波粉体加入硅胶中混合,再用涂胶或点胶的方式涂布在可透光的基材10的背面或正面,进而形成散热发光层30;另一种可行的实施方式包括:在可透光的基材10的背面或正面,将电磁波粉体直接和可透光的基材10一起烧结在可透光的基材10的背面。
请参阅图4A和图4B,是本发明发光二极管灯丝的另一种实施例的发光动作示意图。其中图4A的LED芯片20是一种有背镀芯片,LED芯片20产生的激发光(激发光通常为蓝光,图4A中以虚线绘示)向两侧发射,LED芯片20产生的激发光可以直接激发荧光体40中含有的荧光粉发光产生照明用的光线(图4A中以实线绘示),例如混合成白光;LED芯片20的部分激发光可以穿过可透光的基材10之后激发散热发光层30中含有的荧光粉发光。图4B的LED芯片20是一种无背镀芯片,LED芯片20产生的激发光(激发光通常为蓝光,图4A中以虚线绘示)可以不受遮蔽地向四周发射,LED芯片20产生的激发光可以直接激发荧光体40中含有的荧光粉发光产生照明用的光线(图4B中以实线绘示),例如混合成白光;LED芯片20的部分激发光可以穿过可透光的基材10之后激发散热发光层30中含有的荧光粉发光。
可透光的基材10可以是使用透明或半透明的材料制造,所述制造可透光的基材10的材料的一种较佳实施方式包括:陶瓷基材、玻璃基材、蓝宝石基材、塑料基材和纸基材其中的任一种。在另一种较佳的实施方式,制造可透光的基材10的材料是可弯曲的材料,包括:可弯曲的陶瓷基材、可弯曲的玻璃基材、可弯曲塑料和可弯曲纸基材其中的任一种,因此,发光二极管灯丝1可以弯曲,适合应用在具有弧形的透明灯壳50的发光二极管灯丝灯泡(见图6)。
作为本发明的一种优选实施方式,发光二极管灯丝1包括数个串联的LED芯片20(见图1),LED芯片20使用透明的固晶胶22固定在可透光的基材10的正面,任二个相邻的LED芯片20之间使用金属导线21串联,LED芯片20可以是采用水平结构(horizontal(normal)LED structure)、垂直结构(Vertical LED structure)和倒装结构(Flip Chip LED structure)其中的任一种封装结构制成的LED芯片20,较佳的一种实施例,LED芯片20的宽度小于可透光的基材10的横断面的宽度,这样配置在可透光的基材10的正面的荧光体40可以更好的包覆住LED芯片20和金属导线21,而且LED芯片20产生的部分激发光也能够穿过可透光的基材10之后激发散热发光层30发光。
散热发光层30包含多种不同辐射波段的电磁波粉体,其中电磁波粉体包含荧光粉、热辐射粉与红外光转可见光的上转材料其中的任一种或其组合。
其中散热发光层30的荧光粉包括:铝酸盐荧光粉、氮化物荧光粉、氮氧化物荧光粉、硅酸盐荧光粉、氟化物荧光粉、锡硫合金化合物荧光粉和量子点荧光粉其中的任一种或其组合。
其中散热发光层30的热辐射粉包括:碳材料、金属颗粒(metal particles)、陶瓷粉体和热辐射胶材其中的任一种或其组合,这种热辐射粉基本上是多种可以产生不同电磁波段的热辐射粉,这种热辐射粉可以被发光二极管灯丝1产生的热激发产生热辐射,用以增进发光二极管灯丝1的散热效果。
其中散热发光层30的红外光转可见光的上转材料包括:稀土离子掺杂的卤化物材料体系、氟化合物材料体系、氟氧化合物材料体系、氧化物材料体系、含硫化物材料体系、氧化硅与磷酸盐类其中的任一种或其组合。红外光转可见光的上转材料可以经由红外光热辐射线的激发而发出可见 光,同步增进发光二极管灯丝1的散热效果。
其中红外光转可见光的上转材料进一步包括:氟砷盐酸基玻璃(Fluorinated arsenic chloride-based glass)、氟氧化物玻璃(Al 2O 3,CdF 2,PbF 2,YF 3)、ZBLAN玻璃(Nd 3Pb 5M 3F 19:M=Al,Ti,V,Cr,Fe,Ga;Ho 3BaY 2F 8;Pr 3K 2YF 5)、AlF 3基玻璃、氟铝(Alumina Yttrium Floride)系统中高掺杂(ErF 3)、氟锆铝(Alumina Zirconium Floride)玻璃系统中高掺杂(ErF 3)、Er 3Cs 3Lu 2Br 9玻璃、GGSX(Pr 3GeS 2Ga 2S 3CsCl)玻璃、PGPNO(Pr 3GeO 2PbONb 2O 5)玻璃、Er 3TeO玻璃、La 2S 3玻璃、磷酸盐(Phosphate)玻璃、氟硼酸盐(Fluoro-Boric acid salt)玻璃、及碲酸盐(Tellurium acid salt)玻璃其中的任一种或其组合。
其中作为热辐射粉的碳材料包括:石墨烯(graphene)、碳黑(carbon black)、石墨(graphite)、碳纳米管(carbon nanotubes)、碳六十、活性碳(activated carbon)、生物碳、竹炭和煤灰其中的任一种或其组合。
其中作为热辐射粉的金属颗粒包括:铜(Cu)、镍(Ni)、锌(Zn)、铁(Fe)、钴(Co)、银(Ag)、金(Au)、铂(Pt)和它们的合金其中的任一种或其组合。
其中作为热辐射粉的陶瓷粉体包括:氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、硼化物陶瓷、硅化物陶瓷、氟化物陶瓷、硫化物陶瓷和其它红外光辐射粉末(infrared-ray radiation powders)其中的任一种或其组合。
其中作为热辐射粉的热辐射胶材包括:硅胶、压克力树脂、环氧树脂、聚氨酯树脂与聚酰亚胺树脂其中的任一种或其组合。
请参阅图5,是本发明发光二极管灯丝灯泡的一种实施例的断面构造图。发光二极管灯丝灯泡的一种实施例构造,包括:一透明灯壳50、一灯头60、一驱动器70、至少一灯丝支架和至少一个前述的发光二极管灯丝1。
其中透明灯壳50的内部中空形成密封的一腔室51,透明灯壳50可 以透光并且具有一排气管52用以连通腔室51和透明灯壳50的外部,灯头60连接在透明灯壳50的底端,灯头60具有一第一电源端61和一第二电源端62用以电性连接外部电源。其中一种实施例构造,是利用灯头60密封透明灯壳50的排气管52,在其它的实施例也可以藉由密封组件密封透明灯壳50的排气管52。
驱动器70置入灯头60之中,驱动器70介于透明灯壳50和灯头60之间,驱动器70可以直接或间接地电性连接发光二极管灯丝1的第一电极引脚11和第二电极引脚12,以及灯头60的第一电源端61和第二电源端62,驱动器70用以将外部电源转换成为驱动发光二极管灯丝1的驱动电力。
作为本发明的一种优选实施方式,其中透明灯壳50的腔室51是真空或是0.01至0.1MPa低压的密封状态。
作为本发明的另一种优选实施方式,透明灯壳50的腔室51是低压或常压的密封状态,而且在腔室51之中填充有低黏度系数和高导热系数的气体,气体包括:氢(H2)、氦(He)和氩(Ar)其中的任一种或其混合,可以增加发光二极管灯丝1的导热性及热辐射面积,具有促进透明灯壳50内部气体的热对流以及提高热辐射的功效,进而改进发光二极管灯丝灯泡的散热及热辐射效果。
所述灯丝支架的一种实施例构造如图5所示,灯丝支架包括二个金属支架81和82,二个金属支架81和82穿过透明灯壳50并且和透明灯壳50紧密结合在一起而不会影响腔室51的密封状态,一般而言透明灯壳50是使用玻璃或塑料材料制造,可以在形成透明灯壳50的同时和二个金属支架81和82紧密结合,二个金属支架81和82的顶端进入透明灯壳50的腔室51用以电性连接发光二极管灯丝1的第一电极引脚11和第二电极引脚12,二个金属支架81和82的底端穿过透明灯壳50之后电性连接驱动器70,驱动器70就可以藉由二个金属支架81和82间接地电性连接发光二极管灯 丝1的第一电极引脚11和第二电极引脚12。
灯丝支架的另一种实施例构造如图6所示,灯丝支架包括延伸入腔室51的一柱体83和二条穿过柱体83的金属线84和85,较佳的一种实施方式是在使用玻璃或塑料制作透明灯壳50的同时形成柱体83,这样柱体83可以和透明灯壳50结合成一体,二条金属线84和85穿过柱体83并且和柱体83紧密结合在一起而不会影响腔室51的密封状态,二条金属线84和85的底端穿过柱体83之后电性连接驱动器70,二条金属线84和85的顶端进入透明灯壳50的腔室51用以电性连接发光二极管灯丝1的第一电极引脚11和第二电极引脚12。
以上所述的实施例及/或实施方式,仅是用以说明实现本发明技术的较佳实施例及/或实施方式,并非对本发明技术的实施方式作任何形式上的限制,任何本领域技术人员,在不脱离本发明内容所公开的技术手段的范围,当可作些许的更动或修饰为其它等效的实施例,但仍应视为与本发明实质相同的技术或实施例。

Claims (27)

  1. 一种发光二极管灯丝,其特征在于,包括:一可透光的基材,至少一LED芯片固定在该可透光的基材的正面,在该可透光的基材的两端具有一第一电极引脚和一第二电极引脚和该LED芯片串联,一散热发光层形成在该可透光的基材的背面或正面,以及一荧光体,该荧光体配置在该可透光的基材的正面,该荧光体将该LED芯片封装于其中并露出部分该第一电极引脚和部分该第二电极引脚;该散热发光层包含多种不同辐射波段的电磁波粉体,该LED芯片产生的激发光可以直接激发该荧光体发光,该LED芯片的部分激发光可以穿过该可透光的基材之后激发该散热发光层发光,其中该散热发光层的该电磁波粉体可以受该LED芯片产生的部分激发光的激发而发光,或是可以由热激发而产生热辐射,或是可以吸收红外光热辐射线而发出可见光。
  2. 根据权利要求1所述的发光二极管灯丝,其特征在于,该可透光的基材包括:陶瓷基材、玻璃基材、蓝宝石基材、塑料基材和纸基材其中的任一种。
  3. 根据权利要求1所述的发光二极管灯丝,其特征在于,该可透光的基材包括:可弯曲的陶瓷基材、可弯曲的玻璃基材、可弯曲塑料和可弯曲纸基材其中的任一种。
  4. 根据权利要求1所述的发光二极管灯丝,其特征在于,该散热发光层的该电磁波粉体包含荧光粉、热辐射粉与红外光转可见光的上转材料其中的任一种或其组合。
  5. 根据权利要求4所述的发光二极管灯丝,其特征在于,该散热发光层的该荧光粉包括:铝酸盐荧光粉、氮化物荧光粉、氮氧化物荧光粉、硅酸盐荧光粉、氟化物荧光粉、锡硫合金化合物荧光粉和量子点荧光粉其中的任一种或其组合。
  6. 根据权利要求4所述的发光二极管灯丝,其特征在于,该散热发光层的该热辐射粉包括:碳材料、金属颗粒、陶瓷粉体和热辐射胶材其中的任一种或其组合。
  7. 根据权利要求4所述的发光二极管灯丝,其特征在于,该散热发光层的该红外光转可见光的上转材料包括:稀土离子掺杂的卤化物材料体系、氟化合物材料体系、氟氧化合物材料体系、氧化物材料体系、含硫化物材料体系、氧化硅与磷酸盐类其中的任一种或其组合。
  8. 根据权利要求6所述的发光二极管灯丝,其特征在于,该碳材料包括:石墨烯、碳黑、石墨、碳纳米管、碳六十、活性碳、生物碳、竹炭和煤灰其中的任一种或其组合。
  9. 根据权利要求6所述的发光二极管灯丝,其特征在于,该金属颗粒包括:铜、镍、锌、铁、钴、银、金、铂和它们的合金其中的任一种或其组合。
  10. 根据权利要求6所述的发光二极管灯丝,其特征在于,该陶瓷粉体包括:氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、硼化物陶瓷、硅化物陶瓷、氟化物陶瓷、硫化物陶瓷和红外光辐射粉末其中的任一种或其组合。
  11. 根据权利要求6所述的发光二极管灯丝,其特征在于,该热辐射胶材包括:硅胶、压克力树脂、环氧树脂、聚氨酯树脂和聚酰亚胺树脂其中的任一种或其组合。
  12. 根据权利要求7所述的发光二极管灯丝,其特征在于,该红外光转可见光的上转材料进一步包括:氟砷盐酸基玻璃、氟氧化物玻璃、ZBLAN玻璃、AlF 3基玻璃、氟铝系统中高掺杂、氟锆铝玻璃系统中高掺杂、Er 3Cs 3Lu 2Br 9玻璃、GGSX玻璃、PGPNO玻璃、Er 3TeO玻璃、La 2S 3玻璃、磷酸盐玻璃、氟硼酸盐玻璃、及碲酸盐玻璃其中的任一种或其组合。
  13. 一种发光二极管灯丝灯泡,其特征在于,包括:一透明灯壳和一灯头;
    该透明灯壳的内部中空形成密封的一腔室,该透明灯壳可以透光并且具有一排气管用以连通该腔室和该透明灯壳的外部,该灯头连接在该透明灯壳的底端,该灯头具有一第一电源端和一第二电源端用以电性连接外部电源;
    该发光二极管灯丝包括:一可透光的基材,至少一LED芯片固定在该可透光的基材的正面,在该可透光的基材的两端具有一第一电极引脚和一 第二电极引脚和该LED芯片串联,一散热发光层形成在该可透光的基材的背面或正面,以及一荧光体,该荧光体配置在该可透光的基材的正面,该荧光体将该LED芯片封装于其中并露出部分该第一电极引脚和部分该第二电极引脚;该散热发光层包含多种不同辐射波段的电磁波粉体,该LED芯片产生的激发光可以直接激发该荧光体发光,该LED芯片产生的部分激发光可以穿过该可透光的基材之后激发该散热发光层发光,其中该散热发光层的该电磁波粉体可以受该LED芯片产生的部分激发光的激发而发光,或是可以由热激发而产生热辐射,或是可以吸收红外光热辐射线而发出可见光。
  14. 根据权利要求13所述的发光二极管灯丝灯泡,其特征在于,该透明灯壳的该腔室是真空的密封状态。
  15. 根据权利要求13所述的发光二极管灯丝灯泡,其特征在于,该透明灯壳的该腔室处于0.01至0.1MPa低压的密封状态。
  16. 根据权利要求13所述的发光二极管灯丝灯泡,其特征在于,该腔室是0.01至0.1MPa低压或是常压,该腔室的内部填充有气体,该气体包括:氢、氦和氩其中的任一种或其混合。
  17. 根据权利要求13所述的发光二极管灯丝灯泡,其特征在于,该可透光的基材包括:陶瓷基材、玻璃基材、蓝宝石基材、塑料基材和纸基材其中的任一种。
  18. 根据权利要求13所述的发光二极管灯丝灯泡,其特征在于,该可透光的基材包括:可弯曲的陶瓷基材、可弯曲的玻璃基材、可弯曲塑料和可弯曲纸基材其中的任一种。
  19. 根据权利要求13所述的发光二极管灯丝灯泡,其特征在于,该散热发光层的该电磁波粉体包含荧光粉、热辐射粉与红外光转可见光的上转材料其中的任一种或其组合。
  20. 根据权利要求19所述的发光二极管灯丝灯泡,其特征在于,该散热发光层的荧光粉包括:铝酸盐荧光粉、氮化物荧光粉、氮氧化物荧光粉、硅酸盐荧光粉、氟化物荧光粉、锡硫合金化合物荧光粉和量子点荧光粉其中的任一种或其组合。
  21. 根据权利要求19所述的发光二极管灯丝灯泡,其特征在于,该散热发光层的该热辐射粉包括:碳材料、金属颗粒、陶瓷粉体和热辐射胶材其中的任一种或其组合。
  22. 根据权利要求19所述的发光二极管灯丝灯泡,其特征在于,该散热发光层的红外光转可见光的上转材料包括:稀土离子掺杂的卤化物材料体系、氟化合物材料体系、氟氧化合物材料体系、氧化物材料体系、含硫化物材料体系、氧化硅与磷酸盐类其中的任一种或其组合。
  23. 根据权利要求21所述的发光二极管灯丝灯泡,其特征在于,该碳材料包括:石墨烯、碳黑、石墨、碳纳米管、碳六十、活性碳、生物碳、竹炭和煤灰其中的任一种或其组合。
  24. 根据权利要求21所述的发光二极管灯丝灯泡,其特征在于,该金属颗粒包括:铜、镍、锌、铁、钴、银、金、铂和它们的合金其中的任一种或其组合。
  25. 根据权利要求21所述的发光二极管灯丝灯泡,其特征在于,该陶瓷粉体包括:氧化物陶瓷、氮化物陶瓷、碳化物陶瓷、硼化物陶瓷、硅化物陶瓷、氟化物陶瓷、硫化物陶瓷和其它红外光辐射粉末其中的任一种或其组合。
  26. 根据权利要求21所述的发光二极管灯丝灯泡,其特征在于,该热辐射胶材包括:硅胶、压克力树脂、环氧树脂、聚氨酯树脂和聚酰亚胺树脂其中的任一种或其组合。
  27. 根据权利要求22所述的发光二极管灯丝灯泡,其特征在于,该红外光转可见光的上转材料进一步包括:氟砷盐酸基玻璃、氟氧化物玻璃、ZBLAN玻璃、AlF 3基玻璃、氟铝系统中高掺杂、氟锆铝玻璃系统中高掺杂、Er 3Cs 3Lu 2Br 9玻璃、GGSX玻璃、PGPNO玻璃、Er 3TeO玻璃、La 2S 3玻璃、磷酸盐玻璃、氟硼酸盐玻璃、及碲酸盐玻璃其中的任一种或其组合。
PCT/CN2019/098580 2018-09-27 2019-07-31 发光二极管灯丝和发光二极管灯丝灯泡 WO2020063103A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811127617.4 2018-09-27
CN201811127617.4A CN110957307A (zh) 2018-09-27 2018-09-27 发光二极管灯丝和发光二极管灯丝灯泡

Publications (1)

Publication Number Publication Date
WO2020063103A1 true WO2020063103A1 (zh) 2020-04-02

Family

ID=66691119

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/098580 WO2020063103A1 (zh) 2018-09-27 2019-07-31 发光二极管灯丝和发光二极管灯丝灯泡

Country Status (4)

Country Link
JP (2) JP2020053670A (zh)
CN (1) CN110957307A (zh)
TW (2) TWM594672U (zh)
WO (1) WO2020063103A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112768442A (zh) * 2021-02-19 2021-05-07 深圳市艾迪恩科技有限公司 一种彩色外观的led灯丝及灯丝灯

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202058732U (zh) * 2011-03-11 2011-11-30 义乌市菲莱特电子有限公司 一种芯片与荧光粉分离的大功率led白光面板
CN104916764A (zh) * 2015-06-15 2015-09-16 刘海兵 一种led灯芯
CN105042387A (zh) * 2015-08-27 2015-11-11 刘海兵 一种采用led灯芯的灯
CN205065335U (zh) * 2015-09-29 2016-03-02 慈溪锐恩电子科技有限公司 一种新型led球泡灯

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012031533A1 (zh) * 2010-09-08 2012-03-15 浙江锐迪生光电有限公司 LED灯泡及能够4π出光的LED发光条
US20120217862A1 (en) * 2010-12-24 2012-08-30 Panasonic Corporation Light bulb shaped lamp and lighting apparatus
JP5864349B2 (ja) * 2012-04-20 2016-02-17 スタンレー電気株式会社 Led電球
JP2014086224A (ja) * 2012-10-22 2014-05-12 Stanley Electric Co Ltd Led電球
TWI599745B (zh) * 2013-09-11 2017-09-21 晶元光電股份有限公司 可撓式發光二極體組件及發光二極體燈泡
JP6173607B2 (ja) * 2014-01-20 2017-08-02 フィリップス ライティング ホールディング ビー ヴィ 折り返し可能なハウジングを有する照明装置
WO2015135817A1 (en) * 2014-03-13 2015-09-17 Koninklijke Philips N.V. Filament for lighting device
JP6320853B2 (ja) * 2014-06-16 2018-05-09 住友電工プリントサーキット株式会社 照明装置
US9941258B2 (en) * 2014-12-17 2018-04-10 GE Lighting Solutions, LLC LED lead frame array for general illumination
US9933121B2 (en) * 2015-05-26 2018-04-03 Chung-Ping Lai Method of making LED light bulb with graphene filament
JP6551009B2 (ja) * 2015-07-27 2019-07-31 ウシオ電機株式会社 光源装置
GB2547642A (en) * 2016-02-22 2017-08-30 Bgt Mat Ltd Light-emitting diode filament lamp
CN108470811A (zh) * 2018-05-18 2018-08-31 梁倩 Led灯丝灯用封装基板、含有该基板的封装结构及制作工艺
CN210692532U (zh) * 2018-09-27 2020-06-05 Bgt材料有限公司 发光二极管灯丝和发光二极管灯丝灯泡

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202058732U (zh) * 2011-03-11 2011-11-30 义乌市菲莱特电子有限公司 一种芯片与荧光粉分离的大功率led白光面板
CN104916764A (zh) * 2015-06-15 2015-09-16 刘海兵 一种led灯芯
CN105042387A (zh) * 2015-08-27 2015-11-11 刘海兵 一种采用led灯芯的灯
CN205065335U (zh) * 2015-09-29 2016-03-02 慈溪锐恩电子科技有限公司 一种新型led球泡灯

Also Published As

Publication number Publication date
CN110957307A (zh) 2020-04-03
TW202013775A (zh) 2020-04-01
JP2020053670A (ja) 2020-04-02
TWM594672U (zh) 2020-05-01
JP3221601U (ja) 2019-06-06

Similar Documents

Publication Publication Date Title
US8159131B2 (en) Light emitting device having a transparent thermally conductive layer
US8390193B2 (en) Light emitting device with phosphor wavelength conversion
JP4417906B2 (ja) 発光装置及びその製造方法
WO2012053134A1 (ja) 実装用基板、発光装置及びランプ
US20130200778A1 (en) Light emitting device
WO2012090356A1 (ja) 発光装置、発光モジュール及びランプ
JP2010015754A (ja) ランプおよび照明装置
US10096749B2 (en) Illumination light source, illumination apparatus, outdoor illumination apparatus, and vehicle headlight
JP2011519149A (ja) 半導体発光装置とこれを用いた光源装置
KR20110003586A (ko) 발광 장치
JP2008300570A (ja) 発光装置
JP2004071908A (ja) 発光装置
JP2008071954A (ja) 光源装置
JP2004119634A (ja) 発光装置
JP5561330B2 (ja) 発光装置
US10283683B1 (en) Filament structure and LED light bulb having the same
WO2020063103A1 (zh) 发光二极管灯丝和发光二极管灯丝灯泡
CN112166354A (zh) 波长转换元件以及光源装置
EP3514439A1 (en) Led filament and led light bulb having the same
CN210692532U (zh) 发光二极管灯丝和发光二极管灯丝灯泡
JP2005005544A (ja) 白色発光素子
JPWO2011151954A1 (ja) 固体発光素子を光源とするランプ、及び照明装置
TW201721053A (zh) 燈殼整合型發光二極體及其製作方法
EP2713411B1 (en) Luminescence device
JP4928013B1 (ja) 発光装置、発光モジュール及びランプ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19864583

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19864583

Country of ref document: EP

Kind code of ref document: A1