WO2020063081A1 - X80m深海抗应变管线钢及轧制工艺 - Google Patents

X80m深海抗应变管线钢及轧制工艺 Download PDF

Info

Publication number
WO2020063081A1
WO2020063081A1 PCT/CN2019/097827 CN2019097827W WO2020063081A1 WO 2020063081 A1 WO2020063081 A1 WO 2020063081A1 CN 2019097827 W CN2019097827 W CN 2019097827W WO 2020063081 A1 WO2020063081 A1 WO 2020063081A1
Authority
WO
WIPO (PCT)
Prior art keywords
rolling
temperature
pipeline steel
rolling process
deep sea
Prior art date
Application number
PCT/CN2019/097827
Other languages
English (en)
French (fr)
Inventor
翟冬雨
Original Assignee
南京钢铁股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 南京钢铁股份有限公司 filed Critical 南京钢铁股份有限公司
Publication of WO2020063081A1 publication Critical patent/WO2020063081A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/02Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of sheets
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese

Definitions

  • the invention relates to the technical field of steel smelting, in particular to X80M deep sea strain resistant pipeline steel and rolling process.
  • the present invention provides an X80M deep sea strain resistant pipeline steel, the chemical composition and mass percentage of which are as follows: C: 0.030% to 0.050%, Si: 0.10% to 0.35%, Mn: 1.30% to 1.60%, P ⁇ 0.010%, S ⁇ 0.0020%, Nb: 0.030% to 0.070%, Ti: 0.006% to 0.020%, Ni: 0.65% to 0.85%, Cr ⁇ 0.02%, Mo: 0.31% to 0.36%, Cu ⁇ 0.02 %, V ⁇ 0.02%, Al: 0.015% ⁇ 0.050%, Ca: 0.0005% ⁇ 0.030%, Ceq ⁇ 0.45, Pcm ⁇ 0.19, the balance is Fe and impurities.
  • the present invention conducts an in-depth analysis of the deep sea and seismic service environment of pipeline steel.
  • the ultra-low carbon and high nickel design scheme is adopted to improve the low-temperature toughness properties of the steel plate.
  • the purpose of fine grain size is achieved through the design of niobium and titanium.
  • Molybdenum is added to improve the uniformity of the steel plate thickness direction and the strength of the steel plate.
  • the wall thickness is 20 mm to 40 mm.
  • the chemical composition and mass percentage of the aforementioned X80M deep sea strain resistant pipeline steel are as follows: C: 0.033%, Si: 0.16%, Mn: 1.36%, P: 0.008%, S: 0.0016%, Nb: 0.059%, Ti : 0.013%, Ni: 0.83%, Cr: 0.002%, Mo: 0.33%, Cu: 0.02%, V: 0.002%, Alt: 0.036%, Ca: 0.0018%, Ceq: 0.38, Pcm: 0.15, and the balance is Fe and impurities.
  • the chemical composition and mass percentage of the aforementioned X80M deep sea strain resistant pipeline steel are as follows: C: 0.049%, Si: 0.31%, Mn: 1.58%, P: 0.009%, S: 0.0015%, Nb: 0.062%, Ti : 0.017%, Ni: 0.68%, Cr: 0.02%, Mo: 0.35%, Cu: 0.02%, V: 0.02%, Alt: 0.033%, Ca: 0.0020%, Ceq: 0.40, Pcm: 0.17, and the balance is Fe and impurities.
  • Another object of the present invention is to provide a X80M deep sea strain resistant pipeline steel rolling process including the following steps:
  • the billet is heated by a stepping furnace.
  • the total heating time is 10min / cm ⁇ 13min / cm (cm represents the thickness of the billet).
  • the soaking time requires more than 40min.
  • the target tapping temperature is 1150 °C ⁇ 1160 °C.
  • the rolling process uses a two-stage rolling process.
  • the initial rolling rolling temperature is 1030 ° C ⁇ 1080 ° C
  • the initial rolling end temperature is 950 ° C ⁇ 1020 ° C
  • the second stage rolling temperature is 730 ° C ⁇ 760 ° C
  • the final rolling temperature 730 °C ⁇ 750 °C;
  • the ultra-rapid cooling technology is used to cool the rolled steel plate, the water inlet temperature is 695 ° C to 705 ° C, and the steel plate redness temperature is 200 ° C to 230 ° C;
  • step S3 The aforementioned rolling process of X80M deep sea strain-resistant pipeline steel, step S3, the average rolling reduction of the initial rolling is more than 27mm, the rolling reduction of the last three passes is greater than 20%, and the rolling reduction of the last pass is greater than 22%. During the rolling process, the rolling force was greater than 9000kN in two passes.
  • step S4 The aforementioned X80M deep sea strain resistant pipeline steel rolling process, step S4, the cooling header flow 1 to 14 groups boil water from front to back, the roll speed is set to 0.9m / s to 1.3m / s, and the acceleration is 0.006m / s 2 to 0.012 m / s 2 .
  • step S5 the cutting head and tail are more than 1000 mm, and the sides are more than 80 mm.
  • the surface inspection is free of scratches, pits, and indentations.
  • the wall thickness design in the present invention fully considers the harsh environment of deep sea pipelines, which is affected by natural disasters such as seawater pressure, ocean currents, earthquakes;
  • the rolling process in the present invention uses low temperature austenitization, which effectively refines the grain size of the structure.
  • the TMCP rolling process and the rapid cooling technology after rolling are mainly used to obtain uniform and fine quasi-polygon ferrite (content 60-70%). ), A small amount of mixed structure of bainite and Mayo Island, this kind of structure has good plasticity, and can effectively resist geological disasters caused by volcanic eruption, earthquake, tsunami, etc. At the same time, this kind of organization has good horizontal and vertical toughness to meet deep sea service Requirements
  • the rolling process step S2 in the present invention ensures that the core of the slab is sufficiently austenitized
  • the rolling reduction, rolling reduction and rolling force in the rolling process step S3 of the present invention ensure a sufficient amount of deformation at the core of the steel sheet, and achieve the purpose of refining the grain size of the structure;
  • the present invention adopts suitable composition design, and obtains uniform and fine quasi-polygonal ferrite (content 60-70%) through ultra-low temperature heating process, TMCP rolling process and post-rolling rapid cooling technology suitable for material requirements. ), A small amount of mixed structure of bainite and Mayo Island. This kind of structure has tight intergranular bonding, excellent strength and toughness, and has deep sea seismic performance performance, which meets the customer's pipeline transportation requirements within 2000 meters in the deep sea.
  • FIG. 1 is a typical micrograph of a steel plate obtained in Example 1 under a metallographic microscope
  • Example 2 is a morphology diagram of a tensile curve when the tensile properties of the steel sheet in Example 1 are checked for tensile properties;
  • Example 3 is a typical micrograph of a steel plate obtained in Example 2 under a metallographic microscope
  • FIG. 4 is a morphology diagram of a tensile curve when the tensile properties of the steel sheet of Example 2 are checked for tensile properties.
  • the X80M deep-sea strain resistant pipeline steel provided in this embodiment has a thickness of 20 mm to 40 mm and the chemical composition and mass percentage are as follows: C: 0.033%, Si: 0.16%, Mn: 1.36%, and P: 0.008%. S: 0.0016%, Nb: 0.059%, Ti: 0.013%, Ni: 0.83%, Cr: 0.002%, Mo: 0.33%, Cu: 0.02%, V: 0.002%, Alt: 0.036%, Ca: 0.0018%, Ceq: 0.38, Pcm: 0.15, the balance is Fe and impurities.
  • the above-mentioned X80M deep sea strain resistant pipeline steel rolling process includes the following steps:
  • the specifications of the billet are 260mm ⁇ 2570mm.
  • the table inspection is qualified and the surface temperature is 230 degrees.
  • the billet is sent to the heating furnace for heating by rail;
  • the billet is heated by a step-type heating furnace, the total heating time is 268min, the soaking time requires more than 45min, and the tapping temperature is 1153 °C;
  • the rolling process uses a two-stage rolling process.
  • the initial rolling rolling temperature is 1053 ° C
  • the initial rolling finishing temperature is 985 ° C
  • the second rolling opening temperature is 751 ° C
  • the final rolling temperature is 740 ° C.
  • the average rolling reduction The volume is 28mm, and the rolling reductions in the last three passes of the initial rolling are 21%, 22%, and 23%.
  • the rolling force of the second pass is 9300kN and the rolling force of the third pass is 9100kN.
  • the ultra-rapid cooling technology is used to cool the rolled steel plate.
  • the cooling header flow is 1 to 14 sets of boiling water from front to back, the roll speed is 1.10m / s, the acceleration is 0.008m / s 2 , and the water inlet temperature is 698 °C Redness temperature of steel plate is 208 °C;
  • the steel plate is cooled to 180 ° C and warmed, and then cut, marked, inspected, and stored after the table inspection.
  • the cutting head and tail are more than 1000mm and the sides are more than 80mm.
  • the table inspection is free of scratches, pits and pressure. mark.
  • the chemical composition and mass percentage of X80M deep sea strain resistant pipeline steel provided in this embodiment are as follows: C: 0.049%, Si: 0.31%, Mn: 1.58%, P: 0.009%, S: 0.0015%, Nb: 0.062 %, Ti: 0.017%, Ni: 0.68%, Cr: 0.02%, Mo: 0.35%, Cu: 0.02%, V: 0.02%, Alt: 0.033%, Ca: 0.0020%, Ceq: 0.40, Pcm: 0.17, The balance is Fe and impurities.
  • the above-mentioned X80M deep sea strain resistant pipeline steel rolling process includes the following steps:
  • the specifications of the billet are 260mm ⁇ 2570mm.
  • the table is qualified and the surface temperature is 260 ° C.
  • the billet is sent to the heating furnace for heating by rail;
  • the billet is heated by a step-type heating furnace, the total heating time is 283 minutes, the soaking time requires more than 43 minutes, and the target tapping temperature is 1158 ° C;
  • the rolling process uses a two-stage rolling process.
  • the initial rolling rolling temperature is 1068 ° C
  • the initial rolling end temperature is 992 ° C
  • the austenitizing temperature is 1158 ° C
  • the second stage rolling temperature is 736 ° C
  • the final rolling temperature is 739 °C
  • the average rolling reduction in the preliminary rolling is more than 28mm
  • the rolling reduction in the last three passes is 21%, 22%, 23%
  • the rolling force in the second pass is 9500kN
  • the rolling force in the third pass 9300kN the rolling force in the third pass 9300kN
  • the ultra-rapid cooling technology is used to cool the rolled steel plate.
  • the cooling header flow is 1 to 14 sets of boiling water from front to back, the roll speed is set to 1.0m / s, the acceleration is 0.008m / s2, and the water inlet temperature is 702 ° C. , The redness temperature of the steel plate is 219 °C;
  • the steel plate is cooled to 190 ° C for warming, and then cut, marked, inspected, and stored after the table inspection.
  • the cutting head and tail are more than 1000mm and the sides are more than 80mm. There is no scratch, pit or pressure on the table inspection. mark.
  • the structure of the steel plate is mainly composed of uniform and fine quasi-polygonal ferrite (content 60% to 70%), and contains a small amount of bainite and Mayo Island mixed structure, which is uniformly fine and dense, which is beneficial to Improving the service performance of pipeline steel plates in the harsh environment of the deep sea.
  • Example 1 The test results of the mechanical properties of the pipeline steel obtained in Example 1 and Example 2 are as follows:
  • composition and performance of the steel plate meet the relevant requirements of API 5L, meet the customer's use requirements, and meet the design requirements.
  • the invention solves the problem of matching the toughness and strength of the steel plate through the unique composition design.
  • the rolling process fully considers the matching of equipment capabilities and temperature points, effectively degrades the grain size of the structure, and helps improve the strength and toughness of the product.
  • Controlling the water inlet temperature of the steel plate, increasing the ferrite content inside the structure, ensuring that the uniform and fine quasi-polygonal ferrite content reaches 60 to 70%, and there is a small amount of mixed structure of bainite and Mayo Island, which improves the seismic performance of the product This guarantees the possibility of steel plates serving in the harsh geological conditions of the deep sea, meets the requirements of China's heavy equipment to reach the top of the world, and meets the requirements of customers.

Abstract

一种X80M深海抗应变管线钢,涉及钢铁轧制领域,其化学成分及质量百分比如下:C:0.030%~0.050%,Si:0.10%~0.35%,Mn:1.30%~1.60%,P≤0.010%,S≤0.0020%,Nb:0.030%~0.070%,Ti:0.006%~0.020%,Ni:0.65%~0.85%,Cr≤0.02%,Mo:0.31%~0.36%,Cu≤0.02%,V≤0.02%,Al:0.015%~0.050%,Ca:0.0005%~0.030%,Ceq≤0.45,Pcm≤0.19,余量为Fe和杂质,满足深海抗震区域服役性能。

Description

X80M深海抗应变管线钢及轧制工艺 技术领域
本发明涉及钢铁冶炼技术领域,特别是涉及X80M深海抗应变管线钢及轧制工艺。
背景技术
随着世界经济的飞速发展,石油天然气的需求日益增加,海洋海底蕴藏着大量的石油资源,石油开发后通过管道运输经济安全。随着我国经济的不断发展,钢铁冶炼技术不断提升,管线产品已经成功开发了1500米深海、极低冻土区域、抗重酸性条件等服役条件,经实践验证,服役的钢板性能稳定,因此,根据国家能源发展需求,开发深海抗震区域的管道运输成为下一个开发热点。
发明内容
为了解决以上技术问题,本发明提供一种X80M深海抗应变管线钢,其化学成分及质量百分比如下:C:0.030%~0.050%,Si:0.10%~0.35%,Mn:1.30%~1.60%,P≤0.010%,S≤0.0020%,Nb:0.030%~0.070%,Ti:0.006%~0.020%,Ni:0.65%~0.85%,Cr≤0.02%,Mo:0.31%~0.36%,Cu≤0.02%,V≤0.02%,Al:0.015%~0.050%,Ca:0.0005%~0.030%,Ceq≤0.45,Pcm≤0.19,余量为Fe和杂质。
技术效果:本发明对管线钢深海及抗震服役环境进行了深入分析,采用超低碳、高镍设计方案,提高了钢板的深海低温韧性性能,通过铌、钛设计达到细化晶粒度的目的,加入钼用来提高钢板厚度方向的组织均匀性及钢板强度。
本发明进一步限定的技术方案是:
进一步的,壁厚为20mm~40mm。
前所述的X80M深海抗应变管线钢,其化学成分及质量百分比如下:C:0.033%,Si:0.16%,Mn:1.36%,P:0.008%,S:0.0016%,Nb:0.059%,Ti:0.013%,Ni:0.83%,Cr:0.002%,Mo:0.33%,Cu:0.02%,V:0.002%,Alt: 0.036%,Ca:0.0018%,Ceq:0.38,Pcm:0.15,余量为Fe和杂质。
前所述的X80M深海抗应变管线钢,其化学成分及质量百分比如下:C:0.049%,Si:0.31%,Mn:1.58%,P:0.009%,S:0.0015%,Nb:0.062%,Ti:0.017%,Ni:0.68%,Cr:0.02%,Mo:0.35%,Cu:0.02%,V:0.02%,Alt:0.033%,Ca:0.0020%,Ceq:0.40,Pcm:0.17,余量为Fe和杂质。
本发明的另一目的在于提供一种X80M深海抗应变管线钢轧制工艺,包括以下步骤:
S1、坯料入炉前对坯料表面质量进行表检,表检合格且表面温度在300度以下方可入炉;
S2、采用步进式加热炉对坯料加热,总加热时间为10min/cm~13min/cm(cm代表坯料厚度),均热时间要求40min以上,目标出钢温度为1150℃~1160℃;
S3、轧制过程采用二阶段轧制工艺,初轧开轧温度为1030℃~1080℃,初轧终了温度为950℃~1020℃,二阶段开轧温度为730℃~760℃,终轧温度为730℃~750℃;
S4、采用超快冷技术对轧制后的钢板进行冷却,入水温度为695℃~705℃,钢板返红温度200℃~230℃;
S5、钢板达到冷床冷却至200℃以下后进行温矫,然后进行剪切、标志、探伤、表检后入库。
前所述的X80M深海抗应变管线钢轧制工艺,步骤S3,初轧平均压下量27mm以上,初轧最后三道次压下率大于20%,末道次压下率大于22%,精轧过程中有两道次轧制力大于9000kN。
前所述的X80M深海抗应变管线钢轧制工艺,步骤S4,冷却集管流量1~14组由前到后开水,辊速设定0.9m/s~1.3m/s,加速度0.006m/s 2~0.012m/s 2
前所述的X80M深海抗应变管线钢轧制工艺,步骤S5,剪切头尾1000mm以上,两边80mm以上,表检无划伤、凹坑、压痕。
本发明的有益效果是:
(1)本发明中壁厚设计充分考虑了深海管线环境恶劣,受海水压力、洋流、地震等自然灾害影响;
(2)本发明中轧制工艺采用低温奥氏体化,有效细化组织晶粒度,通过TMCP轧制工艺、轧后快冷技术得到均匀细小准多边形铁素为主(含量60~70%)、少量贝氏体、马奥岛的混合组织,这种组织具有良好的塑性,能有效抵制火山喷发、地震、海啸等带来的地质灾害,同时这种组织横纵向韧性良好,满足深海服役的要求;
(3)本发明中轧制工艺步骤S2确保了铸坯心部充分奥氏体化;
(4)本发明中轧制工艺步骤S3中压下量、压下率和轧制力大小确保了钢板心部有充分的变形量,达到细化组织晶粒度的目的;
(5)本发明采用合适的成分设计,通过适合材质要求的超低温加热工艺、TMCP轧制工艺、轧后快冷技术,得到了以均匀细小的准多边形铁素体为主(含量60~70%)、少量贝氏体、马奥岛的混合组织,这种组织晶粒间结合紧密,强度、韧性优异,具有深海抗震区域服役性能,满足了客户在深海2000米以内的管道输送要求。
附图说明
图1为实施例1得到的钢板在金相显微镜下典型的组织形貌图;
图2为实施例1钢板检查拉伸性能时的拉伸曲线的取值形貌图;
图3为实施例2得到的钢板在金相显微镜下典型的组织形貌图;
图4为实施例2钢板检查拉伸性能时的拉伸曲线的取值形貌图。
具体实施方式
实施例1
本实施例提供的一种X80M深海抗应变管线钢,钢板的厚度为20mm~40mm,其化学成分及质量百分比如下:C:0.033%,Si:0.16%,Mn:1.36%,P:0.008%,S:0.0016%,Nb:0.059%,Ti:0.013%,Ni:0.83%,Cr:0.002%,Mo:0.33%,Cu:0.02%,V:0.002%,Alt:0.036%,Ca:0.0018%,Ceq:0.38,Pcm:0.15,余量为Fe和杂质。
上述X80M深海抗应变管线钢轧制工艺,包括以下步骤:
S1、坯料规格为260mm×2570mm,入炉前对坯料表面质量进行表检,表检合格且表面温度为230度,坯料通过轨道传送至加热炉加热;
S2、采用步进式加热炉对坯料加热,总加热时间为268min,均热时间要求45min以上,出钢温度为1153℃;
S3、轧制过程采用二阶段轧制工艺,初轧开轧温度为1053℃,初轧终了温度为985℃,二阶段开轧温度为751℃,终轧温度为740℃,初轧平均压下量28mm,初轧最后三道次压下率21%、22%、23%,精轧过程中第二道次轧制力9300kN,第三道次轧制力9100kN;
S4、采用超快冷技术对轧制后的钢板进行冷却,冷却集管流量1~14组由前到后开水,辊速1.10m/s,加速度0.008m/s 2,入水温度为698℃,钢板返红温度208℃;
S5、钢板达到冷床冷却至180℃进行温矫,然后进行剪切、标志、探伤、表检后入库,剪切头尾1000mm以上,两边80mm以上,表检无划伤、凹坑、压痕。
实施例2
本实施例提供的一种X80M深海抗应变管线钢,其化学成分及质量百分比如下:C:0.049%,Si:0.31%,Mn:1.58%,P:0.009%,S:0.0015%,Nb:0.062%, Ti:0.017%,Ni:0.68%,Cr:0.02%,Mo:0.35%,Cu:0.02%,V:0.02%,Alt:0.033%,Ca:0.0020%,Ceq:0.40,Pcm:0.17,余量为Fe和杂质。
上述X80M深海抗应变管线钢轧制工艺,包括以下步骤:
S1、坯料规格为260mm×2570mm,入炉前对坯料表面质量进行表检,表检合格且表面温度为260度,坯料通过轨道传送至加热炉加热;
S2、采用步进式加热炉对坯料加热,总加热时间为283min,均热时间要求43min以上,目标出钢温度为1158℃;
S3、轧制过程采用二阶段轧制工艺,初轧开轧温度为1068℃,初轧终了温度为992℃,奥氏体化温度1158℃,二阶段开轧温度为736℃,终轧温度为739℃,初轧平均压下量28mm以上,初轧最后三道次压下率21%、22%、23%,精轧过程中第二道次轧制力9500kN,第三道次轧制力9300kN;
S4、采用超快冷技术对轧制后的钢板进行冷却,冷却集管流量1~14组由前到后开水,辊速设定1.0m/s,加速度0.008m/s2,入水温度为702℃,钢板返红温度219℃;
S5、钢板达到冷床冷却至190℃进行温矫,然后进行剪切、标志、探伤、表检后入库,剪切头尾1000mm以上,两边80mm以上,表检无划伤、凹坑、压痕。
观察实施例1与实施例2得到的钢板在金相显微镜下典型的组织形貌图及拉伸性能时拉伸曲线图。由图可见,钢板的组织为以均匀细小准多边形铁素体为主(含量60%~70%),并含有少量贝氏体、马奥岛的混合组织,该组织均匀细小且致密,有利于提高管线钢板在深海恶劣环境下的服役性能。
实施例1与实施例2所得管线钢的力学性能测试结果如下表:
Figure PCTCN2019097827-appb-000001
Figure PCTCN2019097827-appb-000002
由上表可知,钢板的成分、性能符合API 5L相关要求,满足客户的使用需求,达到了设计要求。
本发明通过独特的成份设计,解决了钢板韧性与强度匹配的问题,轧制工艺充分考虑了设备能力与温度点的匹配,有效降级了组织晶粒度,利于提高产品的强度与韧性,通过严格控制钢板的入水温度,提高了组织内部铁素体含量,确保了均匀细小准多边形铁素体含量达到60~70%,同时存在少量贝氏体、马奥岛的混合组织,提高了产品抗震性能,保证了钢板在深海恶劣地质条件下服役的可能性,满足了我国国之重器走向世界之巅的要求,满足了客户的使用要求。
除上述实施例外,本发明还可以有其他实施方式。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。

Claims (8)

  1. 一种X80M深海抗应变管线钢,其特征在于,其化学成分及质量百分比如下:C:0.030%~0.050%,Si:0.10%~0.35%,Mn:1.30%~1.60%,P≤0.010%,S≤0.0020%,Nb:0.030%~0.070%,Ti:0.006%~0.020%,Ni:0.65%~0.85%,Cr≤0.02%,Mo:0.31%~0.36%,Cu≤0.02%,V≤0.02%,Al:0.015%~0.050%,Ca:0.0005%~0.030%,Ceq≤0.45,Pcm≤0.19,余量为Fe和杂质。
  2. 根据权利要求1所述的X80M深海抗应变管线钢,其特征在于,壁厚为20mm~40mm。
  3. 根据权利要求1所述的X80M深海抗应变管线钢,其特征在于,其化学成分及质量百分比如下:C:0.033%,Si:0.16%,Mn:1.36%,P:0.008%,S:0.0016%,Nb:0.059%,Ti:0.013%,Ni:0.83%,Cr:0.002%,Mo:0.33%,Cu:0.02%,V:0.002%,Alt:0.036%,Ca:0.0018%,Ceq:0.38,Pcm:0.15,余量为Fe和杂质。
  4. 根据权利要求1所述的X80M深海抗应变管线钢,其特征在于,其化学成分及质量百分比如下:C:0.049%,Si:0.31%,Mn:1.58%,P:0.009%,S:0.0015%,Nb:0.062%,Ti:0.017%,Ni:0.68%,Cr:0.02%,Mo:0.35%,Cu:0.02%,V:0.02%,Alt:0.033%,Ca:0.0020%,Ceq:0.40,Pcm:0.17,余量为Fe和杂质。
  5. 一种X80M深海抗应变管线钢轧制工艺,其特征在于,包括以下步骤:
    S1、坯料入炉前对坯料表面质量进行表检,表检合格且表面温度在300度以下方可入炉;
    S2、采用步进式加热炉对坯料加热,总加热时间为10min/cm~13min/cm(cm代表坯料厚度),均热时间要求40min以上,目标出钢温度为1150℃~1160℃;
    S3、轧制过程采用二阶段轧制工艺,初轧开轧温度为1030℃~1080℃,初轧终了温度为950℃~1020℃,二阶段开轧温度为730℃~760℃,终轧温 度为730℃~750℃;
    S4、采用超快冷技术对轧制后的钢板进行冷却,入水温度为695℃~705℃,钢板返红温度200℃~230℃;
    S5、钢板达到冷床冷却至200℃以下后进行温矫,然后进行剪切、标志、探伤、表检后入库。
  6. 根据权利要求5所述的X80M深海抗应变管线钢轧制工艺,其特征在于:所述步骤S3,初轧平均压下量27mm以上,初轧最后三道次压下率大于20%,末道次压下率大于22%,精轧过程中有两道次轧制力大于9000kN。
  7. 根据权利要求5所述的X80M深海抗应变管线钢轧制工艺,其特征在于:所述步骤S4,冷却集管流量1~14组由前到后开水,辊速设定0.9m/s~1.3m/s,加速度0.006m/s 2~0.012m/s 2
  8. 根据权利要求5所述的X80M深海抗应变管线钢轧制工艺,其特征在于:所述步骤S5,剪切头尾1000mm以上,两边80mm以上,表检无划伤、凹坑、压痕。
PCT/CN2019/097827 2018-09-29 2019-07-26 X80m深海抗应变管线钢及轧制工艺 WO2020063081A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811145293.7 2018-09-29
CN201811145293.7A CN109338213B (zh) 2018-09-29 2018-09-29 X80m深海抗应变管线钢及轧制工艺

Publications (1)

Publication Number Publication Date
WO2020063081A1 true WO2020063081A1 (zh) 2020-04-02

Family

ID=65307315

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/097827 WO2020063081A1 (zh) 2018-09-29 2019-07-26 X80m深海抗应变管线钢及轧制工艺

Country Status (2)

Country Link
CN (1) CN109338213B (zh)
WO (1) WO2020063081A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109234622B (zh) * 2018-09-29 2020-08-18 南京钢铁股份有限公司 X80m深海抗应变管线钢及冶炼工艺
CN109811263B (zh) * 2019-03-14 2021-01-26 南京钢铁股份有限公司 一种b级抗酸管线钢板及生产工艺
CN109913752B (zh) * 2019-03-14 2020-11-20 南京钢铁股份有限公司 一种极寒环境用x80m管线钢及生产方法
CN109913753B (zh) * 2019-03-14 2021-01-26 南京钢铁股份有限公司 一种b级抗酸管线钢板及轧制工艺
CN109957721A (zh) * 2019-03-28 2019-07-02 南京钢铁股份有限公司 一种具有止裂性能的深海管线钢板及轧制工艺
CN110157978A (zh) * 2019-05-07 2019-08-23 南京钢铁股份有限公司 一种提高高钢级管线钢表面质量的生产方法
CN110016616A (zh) * 2019-05-07 2019-07-16 南京钢铁股份有限公司 一种改善钢板带状组织的生产方法
CN110076196B (zh) * 2019-05-15 2020-05-22 南京钢铁股份有限公司 一种集装箱船用止裂钢的生产方法
CN111842489B (zh) * 2020-07-01 2022-02-08 东北大学 一种提高热轧管线钢表面质量的方法
CN111842546A (zh) * 2020-07-10 2020-10-30 首钢集团有限公司 一种改善tmcp宽厚板二次板形的设备及方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288532A (ja) * 2000-02-02 2001-10-19 Kawasaki Steel Corp ラインパイプ用高強度高靱性継目無鋼管
JP2005186162A (ja) * 2003-12-02 2005-07-14 Jfe Steel Kk 耐サワー特性に優れた高靭性厚肉溶接鋼管
JP2006144037A (ja) * 2004-11-16 2006-06-08 Nippon Steel Corp 時効後の変形特性に優れたパイプライン用高強度鋼管およびその製造方法
CN102367540A (zh) * 2011-11-09 2012-03-07 南京钢铁股份有限公司 一种基于炉卷轧机生产的深海管线钢及其制备方法
CN107099745A (zh) * 2017-04-01 2017-08-29 江阴兴澄特种钢铁有限公司 高碳当量低温高韧性的x80弯管用管线钢板及其制造方法
CN107099744A (zh) * 2017-04-01 2017-08-29 江阴兴澄特种钢铁有限公司 一种抗hic的x80弯管用管线钢板及其制造方法
CN107557683A (zh) * 2017-08-16 2018-01-09 南京钢铁股份有限公司 一种高磷铁水生产厚壁大口径抗酸耐蚀管线钢的方法
CN107604249A (zh) * 2017-08-11 2018-01-19 江阴兴澄特种钢铁有限公司 一种经济型抗hic及抗ssccx80ms管线钢及其制造方法
CN109234622A (zh) * 2018-09-29 2019-01-18 南京钢铁股份有限公司 X80m深海抗应变管线钢及冶炼工艺

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001288532A (ja) * 2000-02-02 2001-10-19 Kawasaki Steel Corp ラインパイプ用高強度高靱性継目無鋼管
JP2005186162A (ja) * 2003-12-02 2005-07-14 Jfe Steel Kk 耐サワー特性に優れた高靭性厚肉溶接鋼管
JP2006144037A (ja) * 2004-11-16 2006-06-08 Nippon Steel Corp 時効後の変形特性に優れたパイプライン用高強度鋼管およびその製造方法
CN102367540A (zh) * 2011-11-09 2012-03-07 南京钢铁股份有限公司 一种基于炉卷轧机生产的深海管线钢及其制备方法
CN107099745A (zh) * 2017-04-01 2017-08-29 江阴兴澄特种钢铁有限公司 高碳当量低温高韧性的x80弯管用管线钢板及其制造方法
CN107099744A (zh) * 2017-04-01 2017-08-29 江阴兴澄特种钢铁有限公司 一种抗hic的x80弯管用管线钢板及其制造方法
CN107604249A (zh) * 2017-08-11 2018-01-19 江阴兴澄特种钢铁有限公司 一种经济型抗hic及抗ssccx80ms管线钢及其制造方法
CN107557683A (zh) * 2017-08-16 2018-01-09 南京钢铁股份有限公司 一种高磷铁水生产厚壁大口径抗酸耐蚀管线钢的方法
CN109234622A (zh) * 2018-09-29 2019-01-18 南京钢铁股份有限公司 X80m深海抗应变管线钢及冶炼工艺

Also Published As

Publication number Publication date
CN109338213A (zh) 2019-02-15
CN109338213B (zh) 2021-01-26

Similar Documents

Publication Publication Date Title
WO2020063081A1 (zh) X80m深海抗应变管线钢及轧制工艺
CN103131962B (zh) 一种高韧性的低合金高强度钢及其调质热处理方法
CN104264054B (zh) 一种550MPa级的耐高温管线钢及其制造方法
CN107619994B (zh) 一种抗co2/h2s及硫酸盐还原菌腐蚀的无缝管线管及其制造方法
CN102373387B (zh) 大应变冷弯管用钢板及其制造方法
WO2020237975A1 (zh) 一种LNG储罐用7Ni钢板及生产工艺
CN108315649B (zh) 连铸坯生产大壁厚超低温管件用钢板及其制备方法
CN106811700B (zh) 一种厚规格抗酸性x60ms热轧卷板及其制造方法
CN105088096B (zh) 一种高应力比高止裂韧性的x80管线钢及其制备方法与应用
CN107988547A (zh) 一种高频电阻焊管用x52ms热轧卷板及其制造方法
CN105039870B (zh) 一种耐低温大应变的x80m管线钢的制备方法与应用
CN109439846A (zh) 一种稀土处理的耐低温x80m管线钢及其制备方法
CN108950388A (zh) 一种低温韧性优异的l485m管线钢及其制造方法
CN102041438A (zh) 低合金高强度结构钢q460c特厚板及其生产方法
WO2023274218A1 (zh) 一种热连轧极限厚度规格高强管线钢板卷及其制造方法
CN114032459B (zh) 一种屈服强度690MPa级高强韧性低屈强比中厚钢板的制备方法
CN109594016A (zh) 一种含稀土的q690cf高强钢板及其制备方法
CN109136756B (zh) NbC纳米颗粒强化X90塑性管用钢板及其制造方法
CN109023068B (zh) Vc纳米颗粒强化x90塑性管用钢板及其制造方法
CN114774797A (zh) 一种液氢容器用奥氏体不锈钢中厚板及其制备方法
CN109957710B (zh) 一种含v大变形x80m管线钢板及其制造方法
CN107974621B (zh) 一种经济型直缝埋弧焊管用x80管线钢板及生产方法
CN109957709B (zh) 一种含v大变形x70m管线钢板及其制造方法
JP2018035381A (ja) ステンレス鋼管の製造方法
CN102534429A (zh) 高强度低屈强比x90热轧钢板及其生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19866143

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19866143

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 521421547

Country of ref document: SA