WO2020062505A1 - 相机和无人机 - Google Patents

相机和无人机 Download PDF

Info

Publication number
WO2020062505A1
WO2020062505A1 PCT/CN2018/116473 CN2018116473W WO2020062505A1 WO 2020062505 A1 WO2020062505 A1 WO 2020062505A1 CN 2018116473 W CN2018116473 W CN 2018116473W WO 2020062505 A1 WO2020062505 A1 WO 2020062505A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
lens
distance measuring
distance
camera
Prior art date
Application number
PCT/CN2018/116473
Other languages
English (en)
French (fr)
Inventor
滕文猛
俞利富
曹子晟
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201880039191.9A priority Critical patent/CN110972516A/zh
Publication of WO2020062505A1 publication Critical patent/WO2020062505A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/10Rotorcrafts
    • B64U10/13Flying platforms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/54Mounting of pick-up tubes, electronic image sensors, deviation or focusing coils
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/55Optical parts specially adapted for electronic image sensors; Mounting thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/57Mechanical or electrical details of cameras or camera modules specially adapted for being embedded in other devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals
    • H04N23/671Focus control based on electronic image sensor signals in combination with active ranging signals, e.g. using light or sound signals emitted toward objects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U20/00Constructional aspects of UAVs
    • B64U20/80Arrangement of on-board electronics, e.g. avionics systems or wiring
    • B64U20/87Mounting of imaging devices, e.g. mounting of gimbals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2101/00UAVs specially adapted for particular uses or applications
    • B64U2101/30UAVs specially adapted for particular uses or applications for imaging, photography or videography

Definitions

  • the embodiments of the present disclosure belong to the technical field of photography, and relate to a camera and a drone.
  • the user When using a shooting device to shoot a subject, the user needs to manually adjust the focus of the lens assembly by operating the focusing mechanism on the shooting device to obtain clear image information.
  • the user During the focusing process of the shooting device, the user needs to shoot the subject according to his own experience and the proficiency of the focusing mechanism. The repeatability is poor, the level between different users is uneven, and the user experience is poor.
  • Some shooting devices have an auto-focus mechanism.
  • SLR digital cameras use a phase-difference detection method for focusing.
  • This focusing scheme achieves high-speed focusing by detecting how many differences exist in the front-back direction of the focus point.
  • this focusing method has high requirements on light and high requirements on the hardware performance of the shooting device. Low focusing efficiency and poor user experience in low light conditions.
  • embodiments of the present disclosure provide a camera and a drone.
  • a camera including a camera body, a distance measurement component, a lens component and a control module mounted on the camera body, the distance measurement component is mounted on the lens component, and The distance measuring component is used to measure distance information between a subject and the lens component, and the control module is used to receive the distance information transmitted by the distance measuring component and adjust the lens according to the distance information The focal length of the component.
  • a measurement direction of the distance measuring component is parallel to an axis direction of the lens component.
  • the distance measuring component is fixed to the lens component; or the distance measuring component is attached to the lens component.
  • the ranging component emits a detection medium in the direction of the subject, and receives the detection medium reflected from the subject to the ranging component, so that the ranging component acquires distance information.
  • the detection medium is infrared
  • the ranging component includes a TOF sensor.
  • the ranging component includes a transmitter, a receiver, and a processor, the transmitter and the receiver are electrically connected to the processor, respectively, and the transmitter is configured to transmit a detection medium, and the receiver
  • the processor is configured to receive a detection medium reflected from the subject, and the processor is configured to acquire distance information and send the distance information to the control module.
  • the lens component includes an image sensor electrically connected to the control module and a lens mounted on the image sensor, and the distance measuring component is mounted on the lens.
  • the axis of the lens is perpendicular to the mounting plane of the image sensor, and the measurement direction of the ranging component is perpendicular to the mounting plane of the image sensor.
  • control module includes a focusing module and a chip module respectively electrically connected to the lens component, and the focusing module adjusts the focal length of the lens component according to the distance information sent by the distance measuring component, and the lens
  • the component captures and sends image information to the chip module, and the chip module is used to process the image information.
  • a drone includes a body, a camera as described above, and the camera is connected to the body.
  • the distance measuring component can actively measure the distance between the subject and the lens component and obtain corresponding distance information.
  • the control module controls the lens component to focus according to the distance information measured by the distance measuring component.
  • the autofocus effect is good and the shooting effect is good.
  • the lens assembly automatically adjusts focus and obtains high-quality graphic information, which is easy to operate and has a good user experience.
  • FIG. 1 is a schematic diagram of a front view structure of a camera according to an exemplary embodiment of the present disclosure.
  • FIG. 2 is a cross-sectional structural diagram of a distance measuring component mounted on a lens component according to an exemplary embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional structure diagram of a distance measuring component attached to a lens component according to an exemplary embodiment of the present disclosure.
  • Fig. 4 is a schematic structural diagram of a camera applied to a drone according to an exemplary embodiment of the present disclosure.
  • the camera body 10 the lens component 20; the lens 21; the image sensor 22; the ranging component 30; the transmitter 31; the receiver 32; the control module 40; the chip module 41; the focusing module 42; the camera 100; the body 200; PTZ 300.
  • the camera 100 includes a camera body 10, a distance measuring module 30, a lens module 20 and a control module 40 assembled on the camera body 10, and the distance measuring module 30 is installed on the lens module 20. .
  • the distance measuring component 30 is used to measure the distance information between the subject and the lens component 20, and the control module 40 is used to receive the distance information transmitted by the distance measuring component 30 and adjust the focal length of the lens component 20 according to the distance information.
  • the camera body 10 is a hollow frame-shaped structure, and the lens assembly 20 is mounted on the camera body 10 and at least partially inside the camera body 10.
  • the distance measuring component 30 is installed on the lens component 20, and the two have an integrated structure, and the position adjustment is convenient. That is, the distance between the center of the distance measuring module 30 and the center of the lens module 20 is preset, so that the distance measuring module 30 and the lens module 20 do not interfere with each other, and by adjusting the distance and angle between the distance measuring module 30 and the lens module 20, The distance information measured by the distance measuring component 30 is substantially equal to the distance between the lens component 20 and the subject.
  • the control module 40 is installed in the camera body 10 and is electrically connected to the lens component 20 and the distance measurement component 30, respectively.
  • the distance measurement component 30 can send corresponding electrical signals generated by the distance measurement information to the control module 40.
  • the control module 40 obtains distance information according to the electrical signal, and controls the lens assembly 20 to automatically focus according to the distance information, and then receives and processes image information of the subject captured by the lens assembly 20.
  • the camera 100 actively measures the distance information between the subject and the camera 100 through the distance measuring component 30, and automatically adjusts the focal length of the lens component 20 according to the distance information, so that the lens component 20 can capture high-quality image information, and the operation is convenient, The user experience is good.
  • the lens assembly 20 is fixed on the camera body 10.
  • the lens assembly 20 and the camera body 10 maintain a preset attitude and position and rotate or move with the camera body 10.
  • the lens assembly 20 is provided with an axis, and the axis is the center line of the shooting direction of the lens assembly 20.
  • the ranging component 30 is fixed to the lens component 20 and the measurement direction of the ranging component 30 faces outside the camera body 10.
  • the shooting direction of the ranging component 30 is at a preset angle with the axis of the lens component 20 to make the ranging component
  • the distance information measured at 30 is basically the same as the actual distance between the lens assembly 20 and the subject, such as the preset angle is set to -5 degrees to +5 degrees.
  • the measurement direction of the distance measuring component 30 is parallel to the axis direction of the lens component 20. That is, the shooting direction of the ranging component 30 is at an angle of 0 degrees with the axis of the lens component 20.
  • the distance information measured by the distance measuring component 30 is the actual distance, and the measurement accuracy is high.
  • the relative position and relative posture between the distance measuring component 30 and the lens component 20 are fixed, which include the following fixing methods:
  • the distance measuring component 30 is fixed to the lens component 20.
  • the lens assembly 20 is provided with a mounting portion for fixing the lens assembly 20 so that the distance measuring assembly 30 and the lens assembly 20 form an integrated structure, and the relative positions of the two are fixed.
  • the lens assembly 20 is provided with a mounting portion for installing the distance measuring assembly 30, and the distance measuring assembly 30 is integrally mounted to the lens assembly 20, which is convenient to install and has high cooperation accuracy.
  • the measurement direction of the distance measuring assembly 30 and the axis of the lens assembly 20 are parallel to each other, and the adjustment of the two is convenient.
  • a circuit board is provided on the lens assembly 20, and the distance measuring assembly 30 is fixed on the circuit board.
  • the distance measuring component 30 is attached to the lens component 20.
  • the housing of the distance measuring unit 30 and the lens unit 20 are matched with each other, so that the distance measuring unit 30 fits on the outer side wall of the lens unit 20.
  • the distance measuring component 30 and the lens component 20 are provided with complementary positioning structures to coordinate positioning, such as providing a complementary positioning structure such as a guide groove and a guide boss.
  • the distance measuring component 30 and the lens component 20 are provided with a matching structure for coordinated positioning.
  • the housing of the lens component 20 is cylindrical, and the housing of the distance measuring component 30 is provided with an arc-shaped recess with the housing of the lens component 20. groove.
  • the distance-measuring component 30 is attached to the outer side wall of the lens component 20 and is spaced a predetermined distance from the lens component 20. The mating position of the distance-measuring component 30 and the lens component 20 is accurate.
  • the distance measuring component 30 is fixed on the lens component 20 and is integrally moved and installed with the lens component 20 as a whole.
  • the two are convenient to adjust and have high position accuracy. After the adjustment of the measurement direction of the distance measuring assembly 30 and the axis direction of the lens assembly 20 is completed, it is integrally mounted to the camera body 10, with high measurement accuracy and convenient position adjustment.
  • the lens assembly 20 includes an image sensor 22 electrically connected to the control module 40 and a lens 21 mounted on the image sensor 22, and a distance measuring assembly 30 is mounted on the lens 21.
  • the lens 21 receives the light reflected by the subject and converts the light into a corresponding electric signal through the image sensor 22, and the electric signal is transmitted to the control module 40.
  • the axis of the lens 21 is the axis of the lens assembly 20.
  • the distance measuring assembly 30 is mounted on the lens 21 and is parallel to the axis of the lens 21 so that the subject corresponding to the lens 21 is the measurement object of the distance measuring assembly 30.
  • the subject is the same, and the measurement accuracy is high.
  • the relative attitude and position of the distance measuring component 30 and the lens 21 are fixed, and the assembly is convenient.
  • the axis of the lens 21 is perpendicular to the mounting plane of the image sensor 22, and the measurement direction of the distance measuring component 30 is perpendicular to the mounting plane of the image sensor 22.
  • the light reflected by the subject enters the lens 21, and the lens 21 guides the light to the image sensor 22 and is converted into a corresponding electrical signal by the image sensor 22.
  • the axis of the lens 21 is perpendicular to the mounting plane of the image sensor 22, and the shooting direction of the lens 21 is perpendicular to the mounting plane of the image sensor 22. That is, the angle between the measuring direction of the distance measuring component 30 and the axis of the lens component 20 can be adjusted by adjusting the angle between the distance measuring component 30 and the mounting plane.
  • the axis position and angle of the distance measuring component 30 relative to the lens component 20 can be adjusted conveniently.
  • the distance measuring component 30 is mounted on a mounting plane.
  • the ranging component 30 emits a detection medium in the direction of the subject, and receives the detection medium reflected from the subject to the ranging component 30, so that the ranging component 30 obtains the distance information.
  • the ranging component 30 includes a transmitter 31, a receiver 32, and a processor.
  • the transmitter 31 and the receiver 32 are electrically connected to the processor, respectively.
  • the transmitter 31 is configured to transmit the detection medium
  • the receiver 32 is configured to receive the detection medium reflected from the subject
  • the processor is configured to acquire distance information and send the distance information to the control module 40.
  • the transmitter 31 transmits a detection medium, which is reflected by the subject and is received by the receiver 32. Accordingly, a time difference is generated between the time when the transmitter 31 sends the detection medium and the time when the receiver 32 receives the reflected detection medium.
  • the processor calculates distance information according to the time difference information and the parameter information of the detection medium, and the processor transmits the distance information to the control module 40 in the form of an electrical signal; or the processor passes the time difference information and the parameter information of the detection medium through electricity.
  • the signal is transmitted to the control module 40 to enable the control module 40 to obtain distance information through calculation.
  • the distance detection between the camera 100 and the subject is convenient.
  • the transmission time is set to t1
  • the infrared rays are reflected by the subject and received by the receiver 32
  • the reception time is set to t2
  • corresponding distance information can be obtained according to the distance formula, and the distance information can be obtained conveniently.
  • the distance measuring component 30 obtains the distance information between the camera 100 and the subject according to the time value of transmitting and receiving the detection medium.
  • the detection medium may be a light-based medium or an acoustic wave-based medium.
  • the detection medium is infrared, and the ranging component 30 includes a TOF (Time of Flight) sensor.
  • the ranging component 30 uses a TOF sensor.
  • the TOF sensor emits modulated infrared rays, and the infrared rays are reflected after encountering the subject.
  • the TOF sensor converts the distance of the photographed scene by calculating the infrared emission and reflection time difference or phase difference. It has high measurement accuracy and fast measurement speed.
  • the distance-measuring component 30 is mounted on the lens component 20 and has high distance measurement accuracy.
  • the ranging component 30 is mounted on the lens component 20 with a small installation space and a high degree of equipment concentration.
  • control module 40 includes a focusing module 42 and a chip module 41 that are electrically connected to the lens assembly 20, respectively.
  • the focusing module 42 adjusts the focal length of the lens assembly 20 according to the distance information sent by the distance measuring assembly 30.
  • the lens assembly 20 shoots and sends image information to the chip module 41, and the chip module 41 is used to process the image information.
  • the focusing module 42 uses an AF (Automatic Focus) system
  • the chip module 41 uses an ISP (Image Signal Processor) image module 41.
  • ISP Image Signal Processor
  • the focusing module 42 and the distance measuring component 30 are electrically connected to each other.
  • the distance measuring component 30 obtains distance information according to the transmission and reception data of the detection medium, and the distance information is sent to the focus module 42.
  • the focusing module 42 adjusts the focal length of the lens 21 according to the distance information, so that the lens 21 can collect appropriate image information of the subject.
  • the image sensor 22 converts the corresponding light into image information in the form of an electrical signal, which is transmitted to the chip module 41.
  • the chip module 41 generates corresponding graphic data according to the electrical signals, and the graphic data is displayed through the display module.
  • the graphic data can be transmitted to the identifiable device through the display screen that comes with the device to facilitate user identification, and the user experience is good.
  • the camera body 10 is configured as a frame structure, such as the camera body 10 is configured as a housing of a digital camera, a housing of an imaging device, a housing of a mobile phone, and a frame-shaped housing of another photographing device.
  • the device body is provided with a photographing hole, and the axis of the lens assembly 20 coincides with the axis of the photographing hole.
  • the device main body is also provided with at least one detection hole, and the ranging component 30 transmits and receives the detection medium through the at least one detection hole, which has less signal blocking and good ranging effect.
  • the camera 100 disclosed in the above embodiments can be applied to digital cameras, action cameras, cameras, and other shooting devices.
  • the distance measuring component 30 is fixed on the lens component 20 to improve the convenience of adjustment between the distance measuring component 30 and the lens component 20 and the adjustment accuracy is high.
  • the camera 100 disclosed in the foregoing embodiment may also be mounted on a movable platform to implement mobile shooting corresponding image information or generate corresponding 3D information.
  • the camera 100 is applied to a drone.
  • the drone includes a body 200 and a camera 100 disclosed in the foregoing embodiment.
  • the camera 100 is connected to the body 200.
  • the body 200 may be a single-rotor or multi-rotor body 200.
  • the camera 100 is mounted on the body 200 and moves randomly with the body 200.
  • the camera 100 is mounted on a multi-rotor fuselage 200 such as a four-rotor, a six-rotor, and an eight-rotor.
  • a gimbal 300 is provided on the body 200, and the camera 100 is mounted on the gimbal 300.
  • the gimbal 300 can drive the camera 100 to adjust the shooting angle, and the shooting method is more flexible.
  • the ranging component 30 transmits and receives a corresponding detection medium to a shooting object or an object on a flight path at a preset frequency, and has high detection efficiency, fast data update speed, high focusing efficiency, and good image imaging effect.
  • the camera 100 is applied to a handheld device.
  • the handheld device includes a handheld device and the camera 100 disclosed in the above embodiment.
  • the camera 100 is mounted on the handheld device.
  • the handheld device is provided with control keys for controlling the camera 100, so that the ranging module 30 and the lens assembly 20 operate under the control button activation command, and shoot corresponding image information, which is convenient to operate.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Studio Devices (AREA)

Abstract

一种相机和无人机。相机(100)包括相机主体(10)、测距组件(30)、装配于所述相机主体(10)的镜头组件(20)及控制模块(40),所述测距组件(30)装配于所述镜头组件(20)。所述测距组件(30)用于测量被摄物体与所述镜头组件(20)之间的距离信息,所述控制模块(40)用于接收所述测距组件(30)传递的所述距离信息,并根据所述距离信息调节所述镜头组件(20)的焦距。测距组件(30)能主动测量被摄物体与镜头组件(20)之间的距离并获取相应地距离信息,控制模块(40)根据测距组件(30)测得的距离信息控制镜头组件(20)调焦,自动对焦效果好,拍摄效果好。镜头组件(20)自动调焦并获得高质量的图形信息,操作方便,用户体验好。

Description

相机和无人机 技术领域
本公开实施例属于拍摄技术领域,涉及一种相机和无人机。
背景技术
在使用拍摄设备对被摄物体进行拍摄作业时,用户需操作拍摄设备上的调焦机构手动调节镜头组件的焦距,以获取清晰的图像信息。在拍摄设备的调焦过程中,用户需要根据自身的经验及对调焦机构使用熟练度对被摄物体进行拍摄,其重复性差,不同用户间的水平参差不齐,用户体验差。
在一些拍摄设备中具有自动调焦机制,在相关技术中,单反数码相机使用相位差检测方式的对焦方案。此对焦方案是通过检测对焦点前后方向存在多少差值来实现高速合焦的。相应地,该对焦方式对光线要求高,并且对拍摄设备的硬件性能要求高。在弱光条件下对焦效率低,用户体验差。
实用新型内容
有鉴于此,本公开实施例提供一种相机和无人机。
具体地,本公开实施例是通过如下技术方案实现的:
根据本公开实施例的第一方面,提供了一种相机,包括相机主体、测距组件、装配于所述相机主体的镜头组件及控制模块,所述测距组件装配于所述镜头组件,所述测距组件用于测量被摄物体与所述镜头组件之间的距离信息,所述控制模块用于接收所述测距组件传递的所述距离信息,并根据所述距离信息调节所述镜头组件的焦距。
可选地,所述测距组件的测量方向与所述镜头组件的轴线方向平行。
可选地,所述测距组件固定于所述镜头组件;或所述测距组件贴合于所述镜头组件。
可选地,所述测距组件向所述被摄物体方向发射检测介质,并接收自所述被摄物体反射至所述测距组件的检测介质,以使所述测距组件获取距离信息。
可选地,所述检测介质为红外线,所述测距组件包括TOF传感器。
可选地,所述测距组件包括发射器、接收器及处理器,所述发射器与所述接收器分别与所述处理器电性连接,所述发射器用于发射检测介质,所述接收器用于接收自所述被摄物体反射的检测介质,所述处理器用于获取距离信息并将所述距离信息发送至所述控制模块。
可选地,所述镜头组件包括与所述控制模块电性连接的图像传感器和安装于所述图像传 感器的镜头,所述测距组件安装于所述镜头。
可选地,所述镜头的轴线垂直于所述图像传感器的安装平面,所述测距组件的测量方向垂直于所述图像传感器的安装平面。
可选地,所述控制模块包括分别与所述镜头组件电性连接的对焦模块和芯片模块,所述对焦模块根据所述测距组件发送的距离信息调节所述镜头组件的焦距,所述镜头组件拍摄并向所述芯片模块发送图像信息,所述芯片模块用于处理图像信息。
根据本公开实施例的第二方面,提供了一种无人机,所述无人机包括机身、如上所述的相机,所述相机与所述机身连接。
本公开提供的实施例公开的技术方案可以具有以下有益效果:
测距组件能主动测量被摄物体与镜头组件之间的距离并获取相应地距离信息,控制模块根据测距组件测得的距离信息控制镜头组件调焦,自动对焦效果好,拍摄效果好。镜头组件自动调焦并获得高质量的图形信息,操作方便,用户体验好。
附图说明
图1是本公开一示例性实施例示出的相机的主视结构示意图。
图2是本公开一示例性实施例示出的测距组件安装于镜头组件的剖视结构示意图。
图3是本公开一示例性实施例示出的测距组件贴合于镜头组件的剖视结构示意图。
图4是本公开一示例性实施例示出的相机应用于无人机的结构示意图。
图中,相机主体10;镜头组件20;镜头21;图像传感器22;测距组件30;发射器31;接收器32;控制模块40;芯片模块41;对焦模块42;相机100;机身200;云台300。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
如图1和图2所示,在一实施例中,相机100包括相机主体10、测距组件30、装配于相 机主体10的镜头组件20及控制模块40,测距组件30装配于镜头组件20。测距组件30用于测量被摄物体与镜头组件20之间的距离信息,控制模块40用于接收测距组件30传递的距离信息,并根据距离信息调节镜头组件20的焦距。
相机主体10设为中空的框架形结构,镜头组件20安装于相机主体10且至少部分设于相机主体10内。测距组件30安装于镜头组件20,两者呈一体结构,位置调节方便。即测距组件30中心与镜头组件20中心间隔预设距离,以使测距组件30与镜头组件20互不干扰,又能通过调节测距组件30与镜头组件20之间的间距及角度,以使测距组件30测量的距离信息基本上等同于镜头组件20与被摄物体之间的距离。
控制模块40安装于相机主体10内并分别与镜头组件20及测距组件30电连接,其中,测距组件30能将测量距离信息产生的相应电信号发送至控制模块40。控制模块40根据电信号获取距离信息,并根据该距离信息控制镜头组件20自动对焦,再接收并处理镜头组件20拍摄的被摄物体的图像信息。
相机100通过测距组件30主动测量被摄物体与相机100之间的距离信息,并根据该距离信息自动调节镜头组件20的焦距,以使镜头组件20能拍摄高质量的图像信息,操作便捷,用户体验好。
镜头组件20固设于相机主体10,镜头组件20与相机主体10保持预设的姿态及位置并随相机主体10转动或移动。其中,镜头组件20设有一轴线,该轴线即为镜头组件20的拍摄方向的中心线。测距组件30固定于镜头组件20且测距组件30的测量方向朝向相机主体10外,可选地,测距组件30的拍摄方向与镜头组件20的轴线呈预设角度,以使测距组件30测量的距离信息与镜头组件20和被摄物体之间的实际距离基本相同,如该预设角度设为-5度~+5度。在一实施例中,测距组件30的测量方向与镜头组件20的轴线方向平行。即测距组件30的拍摄方向与镜头组件20的轴线呈0度角。测距组件30测量的距离信息即为实际距离,测量准确度高。
如图2和图3所示,测距组件30与镜头组件20之间的相对位置及相对姿态固定,其包括以下几种固定方式:
一、测距组件30固定于镜头组件20。在镜头组件20上设有安装部位,该安装部位用于固定镜头组件20,以使测距组件30和镜头组件20构成一体结构,两者相对位置固定不变。镜头组件20设置安装部位用于安装测距组件30,测距组件30整体安装至镜头组件20,安装方便,配合精度高。调整测距组件30的测量方向与镜头组件20的轴线互相平行,两者调节方便。例如,在镜头组件20上设有线路板,测距组件30固定于线路板上。
二、测距组件30贴合于镜头组件20。测距组件30的外壳与镜头组件20相互匹配,以 使测距组件30贴合于镜头组件20的外侧壁。可选地,测距组件30与镜头组件20设置互补定位结构以配合定位,如设置导向凹槽和导向凸台等互补定位结构。可选地,测距组件30与镜头组件20设置配合性的结构以配合定位,如镜头组件20的外壳设为圆柱形,测距组件30的外壳设有与镜头组件20的外壳的弧形凹槽。测距组件30贴合于镜头组件20的外侧壁并与镜头组件20间隔预设距离,测距组件30与镜头组件20的配合位置准确。
测距组件30固定于镜头组件20上并与镜头组件20一体整体移动及安装,两者调节方便,位置精度高。在完成测距组件30的测量方向和镜头组件20的轴线方向调整后,再一体安装至相机主体10,测量精度高,位置调节方便。
在一可选地实施例中,镜头组件20包括与控制模块40电性连接的图像传感器22和安装于图像传感器22的镜头21,测距组件30安装于镜头21。
镜头21接收被摄物体反射的光线并将该光线通过图像传感器22转换成相应地电信号,该电信号传递至控制模块40。镜头21的轴线即为镜头组件20的轴线,测距组件30安装于镜头21上并与镜头21的轴线平行,以使镜头21所对应的被摄物体即为测距组件30的测量对象,两者所针对的被摄物体一致,测量精度高。测距组件30与镜头21相对姿态及相对位置固定,装配方便。
在一可选地实施例中,镜头21的轴线垂直于图像传感器22的安装平面,测距组件30的测量方向垂直于图像传感器22的安装平面。
被摄物体反射的光线沿进入镜头21,镜头21将光线引导至图像传感器22并经图像传感器22转换成相应地电信号。镜头21的轴线垂直于图像传感器22的安装平面,其镜头21的拍摄方向与图像传感器22的安装平面垂直。即通过调整测距组件30与安装平面的角度既能调整测距组件30的测量方向与镜头组件20的轴线的角度,测距组件30相对于镜头组件20的轴线位置和角度调节方便。在一可选地实施方式中,测距组件30安装于安装平面。
在一实施例中,测距组件30向被摄物体方向发射检测介质,并接收自被摄物体反射至测距组件30的检测介质,以使测距组件30获取距离信息。
在一实施例中,测距组件30包括发射器31、接收器32及处理器,发射器31与接收器32分别与处理器电性连接。发射器31用于发射检测介质,接收器32用于接收自被摄物体反射的检测介质,处理器用于获取距离信息并将距离信息发送至控制模块40。
发射器31发射检测介质,该检测介质经被摄物体反射后被接收器32所接收,相应地,在发射器31发出检测介质的时间与接收器32接收反射的检测介质的时间之间产生时间差,处理器根据该时间差信息及检测介质的参数信息运算获取距离信息,处理器将该距离信息通过电信号的形式传递至控制模块40;或者处理器将该时间差信息及检测介质的参数信息通过 电信号的形式传递至控制模块40,以使控制模块40运算获取距离信息,相机100与被摄物体之间的距离检测方便。如发射器31发射红外线,该发射时间设为t1,该红外线经被摄物体反射后被接收器32所接收,该接收时间设为t2,两者的时间差值T,T=t2-t1。相应地,根据距离公式即可获取相应地距离信息,距离信息获取方便。
测距组件30通过根据发射和接收检测介质的时间值,以获取相机100与被摄物体之间的距离信息。可选地,该检测介质可以为光线类介质或声波类介质。在一可选地实施例中,检测介质为红外线,测距组件30包括TOF(Time of Flight)传感器。
测距组件30为采用TOF传感器,TOF传感器发出经调制的红外线,该红外线遇被摄物体后反射,TOF传感器通过计算红外线发射和反射时间差或相位差来换算被拍摄景物的距离。其测量精度高,测量速度快。测距组件30安装于镜头组件20上,其距离测量准确性高。测距组件30安装于镜头组件20上,安装空间小,设备集中度高。
在一实施例中,控制模块40包括分别与镜头组件20电性连接的对焦模块42和芯片模块41,对焦模块42根据测距组件30发送的距离信息调节镜头组件20的焦距。镜头组件20拍摄并向芯片模块41发送图像信息,芯片模块41用于处理图像信息。可选地,对焦模块42采用AF(Automatic Focus,自动对焦)系统,芯片模块41采用ISP(Image Signal Processor,图像处理器)芯片模块41。
对焦模块42与测距组件30相互电性连接,测距组件30根据检测介质的收发数据获取距离信息,该距离信息发送至对焦模块42。对焦模块42根据该距离信息调整镜头21的焦距,以使镜头21能采集被摄物体适宜的图像信息。图像传感器22将相应地光线转换成电信号形式的图像信息,该电信号传递至芯片模块41。芯片模块41根据电信号生成相应的图形数据,图形数据通过显示模块显示。如图形数据通过设备自带的显示屏或可传输至可识别设备上,以方便用户识别,用户体验好。
在一实施例中,相机主体10设为框架结构,如相机主体10设为数码相机的外壳、摄像设备的外壳、手机的外壳及其他拍摄设备的框架形外壳。在设备主体上设有拍摄孔,镜头组件20的轴线与拍摄孔的轴线重合。在设备主体上还设有至少一个探测孔,测距组件30通过至少一个探测孔发射及接收检测介质,信号阻挡少,测距效果好。
上述实施例公开的相机100可应用于数码相机、运动相机、摄像头及其他拍摄设备中。测距组件30固定于镜头组件20上,以提高测距组件30与镜头组件20之间的调节便捷性,调节精度高。
如图4所示,上述实施例公开的相机100还可装配于可移动平台上,以实现移动拍摄相应地图像信息或生成相应地的3D信息。在一实施例中,相机100应用于无人机上。其中, 无人机包括机身200和如上述实施例公开的相机100,相机100与机身200连接。
机身200可设为单旋翼或多旋翼的机身200,相机100安装于机身200上并随机身200移动。如相机100安装于四旋翼、六旋翼、八旋翼等多旋翼机身200上。可选地,在机身200上设有云台300,相机100安装于云台300上。云台300可带动相机100调整拍摄角度,拍摄方式更加灵活。测距组件30在预设频率下向拍摄物体或飞行路径上的物体发射并接收相应地检测介质,检测效率高,数据更新速度快,调焦效率高,图像成像效果好。
在一实施例中,相机100应用于手持设备上,其中,手持设备包括手持装置和如上述实施例公开的相机100,相机100安装于手持装置上。手持装置设有控制相机100的控制按键,以使测距组件30和镜头组件20在控制按键的激活命令下运行,并拍摄相应地的图像信息,操作方便。
以上仅为本公开的较佳实施例而已,并不用以限制本公开,凡在本公开的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本公开保护的范围之内。

Claims (18)

  1. 一种相机,其特征在于,包括相机主体、测距组件、装配于所述相机主体的镜头组件及控制模块,所述测距组件装配于所述镜头组件,所述测距组件用于测量被摄物体与所述镜头组件之间的距离信息,所述控制模块用于接收所述测距组件传递的所述距离信息,并根据所述距离信息调节所述镜头组件的焦距。
  2. 根据权利要求1所述的相机,其特征在于,所述测距组件的测量方向与所述镜头组件的轴线方向平行。
  3. 根据权利要求2所述的相机,其特征在于,所述测距组件固定于所述镜头组件;或所述测距组件贴合于所述镜头组件。
  4. 根据权利要求1所述的相机,其特征在于,所述测距组件向所述被摄物体方向发射检测介质,并接收自所述被摄物体反射至所述测距组件的检测介质,以使所述测距组件获取距离信息。
  5. 根据权利要求4所述的相机,其特征在于,所述检测介质为红外线,所述测距组件包括TOF传感器。
  6. 根据权利要求4所述的相机,其特征在于,所述测距组件包括发射器、接收器及处理器,所述发射器与所述接收器分别与所述处理器电性连接,所述发射器用于发射检测介质,所述接收器用于接收自所述被摄物体反射的检测介质,所述处理器用于获取距离信息并将所述距离信息发送至所述控制模块。
  7. 根据权利要求1所述的相机,其特征在于,所述镜头组件包括与所述控制模块电性连接的图像传感器和安装于所述图像传感器的镜头,所述测距组件安装于所述镜头。
  8. 根据权利要求7所述的相机,其特征在于,所述镜头的轴线垂直于所述图像传感器的安装平面,所述测距组件的测量方向垂直于所述图像传感器的安装平面。
  9. 根据权利要求1所述的相机,其特征在于,所述控制模块包括分别与所述镜头组件电性连接的对焦模块和芯片模块,所述对焦模块根据所述测距组件发送的距离信息调节所述镜头组件的焦距,所述镜头组件拍摄并向所述芯片模块发送图像信息,所述芯片模块用于处理图像信息。
  10. 一种无人机,其特征在于:所述无人机包括机身、相机,所述相机与所述机身连接;
    所述相机包括相机主体、测距组件、装配于所述相机主体的镜头组件及控制模块,所述测距组件装配于所述镜头组件,所述测距组件用于测量被摄物体与所述镜头组件之间的距离信息,所述控制模块用于接收所述测距组件传递的所述距离信息,并根据所述距离信息调节 所述镜头组件的焦距。
  11. 根据权利要求10所述的无人机,其特征在于,所述测距组件的测量方向与所述镜头组件的轴线方向平行。
  12. 根据权利要求11所述的无人机,其特征在于,所述测距组件固定于所述镜头组件;或所述测距组件贴合于所述镜头组件。
  13. 根据权利要求10所述的无人机,其特征在于,所述测距组件向所述被摄物体方向发射检测介质,并接收自所述被摄物体反射至所述测距组件的检测介质,以使所述测距组件获取距离信息。
  14. 根据权利要求13所述的无人机,其特征在于,所述检测介质为红外线,所述测距组件包括TOF传感器。
  15. 根据权利要求13所述的无人机,其特征在于,所述测距组件包括发射器、接收器及处理器,所述发射器与所述接收器分别与所述处理器电性连接,所述发射器用于发射检测介质,所述接收器用于接收自所述被摄物体反射的检测介质,所述处理器用于获取距离信息并将所述距离信息发送至所述控制模块。
  16. 根据权利要求10所述的无人机,其特征在于,所述镜头组件包括与所述控制模块电性连接的图像传感器和安装于所述图像传感器的镜头,所述测距组件安装于所述镜头。
  17. 根据权利要求16所述的无人机,其特征在于,所述镜头的轴线垂直于所述图像传感器的安装平面,所述测距组件的测量方向垂直于所述图像传感器的安装平面。
  18. 根据权利要求10所述的无人机,其特征在于,所述控制模块包括分别与所述镜头组件电性连接的对焦模块和芯片模块,所述对焦模块根据所述测距组件发送的距离信息调节所述镜头组件的焦距,所述镜头组件拍摄并向所述芯片模块发送图像信息,所述芯片模块用于处理图像信息。
PCT/CN2018/116473 2018-09-26 2018-11-20 相机和无人机 WO2020062505A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880039191.9A CN110972516A (zh) 2018-09-26 2018-11-20 相机和无人机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201821577835.3 2018-09-26
CN201821577835.3U CN208836252U (zh) 2018-09-26 2018-09-26 相机和无人机

Publications (1)

Publication Number Publication Date
WO2020062505A1 true WO2020062505A1 (zh) 2020-04-02

Family

ID=66318450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/116473 WO2020062505A1 (zh) 2018-09-26 2018-11-20 相机和无人机

Country Status (2)

Country Link
CN (2) CN208836252U (zh)
WO (1) WO2020062505A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112995516B (zh) * 2019-05-30 2022-07-29 深圳市道通智能航空技术股份有限公司 一种对焦方法、装置、航拍相机及无人飞行器
JP7005843B1 (ja) 2020-08-06 2022-01-24 エスゼット ディージェイアイ テクノロジー カンパニー リミテッド 測距装置、撮像装置、及び撮像システム
CN112596324A (zh) * 2020-12-21 2021-04-02 北京航空航天大学 一种基于液体变焦相机的智能机器人视觉识别系统
CN113031196A (zh) * 2021-03-10 2021-06-25 江苏金视传奇科技有限公司 一种多点tof无感自动调焦装置
CN113031195A (zh) * 2021-03-10 2021-06-25 江苏金视传奇科技有限公司 一种红外无感自动调焦装置
CN114598789A (zh) * 2022-03-02 2022-06-07 厦门聚视智创科技有限公司 一种虚拟现实图像采集用触发式变焦系统及其工作方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103048765A (zh) * 2012-12-18 2013-04-17 天津三星光电子有限公司 一种相机调焦装置及方法
CN105100617A (zh) * 2015-07-28 2015-11-25 深圳市万普拉斯科技有限公司 成像设备的对焦控制方法和成像装置
CN106603914A (zh) * 2016-12-14 2017-04-26 天津文林科技有限公司 一种基于光机电一体化无人机定焦系统及定焦方法
CN108156447A (zh) * 2017-11-09 2018-06-12 吴英 基于光点检测的相机成像管理系统
US20180234617A1 (en) * 2017-02-15 2018-08-16 John Przyborski Motion camera autofocus systems
CN207820069U (zh) * 2018-01-25 2018-09-04 深圳市杰普特光电股份有限公司 对焦装置和相机

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104052932A (zh) * 2014-07-03 2014-09-17 深圳市世尊科技有限公司 一种快速对焦的手机摄像模组
EP3296788B1 (en) * 2016-09-15 2018-08-22 Axis AB Method of performing autofocus, autofocus system, and camera comprising an autofocus module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103048765A (zh) * 2012-12-18 2013-04-17 天津三星光电子有限公司 一种相机调焦装置及方法
CN105100617A (zh) * 2015-07-28 2015-11-25 深圳市万普拉斯科技有限公司 成像设备的对焦控制方法和成像装置
CN106603914A (zh) * 2016-12-14 2017-04-26 天津文林科技有限公司 一种基于光机电一体化无人机定焦系统及定焦方法
US20180234617A1 (en) * 2017-02-15 2018-08-16 John Przyborski Motion camera autofocus systems
CN108156447A (zh) * 2017-11-09 2018-06-12 吴英 基于光点检测的相机成像管理系统
CN207820069U (zh) * 2018-01-25 2018-09-04 深圳市杰普特光电股份有限公司 对焦装置和相机

Also Published As

Publication number Publication date
CN208836252U (zh) 2019-05-07
CN110972516A (zh) 2020-04-07

Similar Documents

Publication Publication Date Title
WO2020062505A1 (zh) 相机和无人机
WO2016000533A1 (zh) 一种快速对焦的手机摄像模组
US20180234617A1 (en) Motion camera autofocus systems
US4239356A (en) System for the performance of photographing with a motion picture camera, still picture camera or television camera
WO2018018806A1 (zh) 一种智能云台和利用智能云台进行自拍的方法
JP2023509137A (ja) パノラマ3次元画像をキャプチャ及び生成するシステム及び方法
TWI250793B (en) Range-finding type digital camera
WO2020061849A1 (zh) 拍摄装置、云台相机和无人机
CN105245768A (zh) 一种焦距调节方法、装置和终端
CN110266943A (zh) 一种远程控制摄影云台系统
WO2023197844A1 (zh) 对焦方法、对焦装置、电子设备及无人机
CN109803079A (zh) 一种移动终端及其拍照方法、计算机存储介质
CN112188089A (zh) 距离获取方法及装置、焦距调节方法及装置、测距组件
CN112640421A (zh) 曝光方法、装置、拍摄设备、可移动平台和存储介质
WO2022077748A1 (zh) 拍摄辅助结构及拍摄设备
CN107462967B (zh) 一种激光测距的定焦方法和系统
CN106019531A (zh) 相位测距摄像模组及其自动报警方法
WO2021035704A1 (zh) 成像装置的对焦方法、组件、成像装置和可移动物体
US10171751B2 (en) Superimposing an image on an image of an object being photographed
WO2022022682A1 (zh) 摄像模组装置、多摄摄像模组、摄像系统、电子设备和自动变焦成像方法
WO2020019261A1 (zh) 共光路数码成像的激光测距仪
KR20110082734A (ko) 자동 초점 조절 장치 및 그 방법
JPH054075U (ja) 測距装置および測距装置用発信装置
CN105824100A (zh) 对焦方法和装置
US20190098228A1 (en) Superimposing an image on an image of an object being photographed

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934830

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934830

Country of ref document: EP

Kind code of ref document: A1