WO2020019261A1 - 共光路数码成像的激光测距仪 - Google Patents

共光路数码成像的激光测距仪 Download PDF

Info

Publication number
WO2020019261A1
WO2020019261A1 PCT/CN2018/097271 CN2018097271W WO2020019261A1 WO 2020019261 A1 WO2020019261 A1 WO 2020019261A1 CN 2018097271 W CN2018097271 W CN 2018097271W WO 2020019261 A1 WO2020019261 A1 WO 2020019261A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
optical path
module
digital imaging
reference point
Prior art date
Application number
PCT/CN2018/097271
Other languages
English (en)
French (fr)
Inventor
付陆欣
邢志成
Original Assignee
深圳市瑞尔幸电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市瑞尔幸电子有限公司 filed Critical 深圳市瑞尔幸电子有限公司
Priority to CN201880066825.XA priority Critical patent/CN111344598B/zh
Priority to PCT/CN2018/097271 priority patent/WO2020019261A1/zh
Publication of WO2020019261A1 publication Critical patent/WO2020019261A1/zh
Priority to US16/857,166 priority patent/US11828876B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4812Constructional features, e.g. arrangements of optical elements common to transmitter and receiver transmitted and received beams following a coaxial path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/86Combinations of lidar systems with systems other than lidar, radar or sonar, e.g. with direction finders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/10Position of receiver fixed by co-ordinating a plurality of position lines defined by path-difference measurements, e.g. omega or decca systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/18Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using ultrasonic, sonic, or infrasonic waves
    • G01S5/24Position of single direction-finder fixed by determining direction of a plurality of spaced sources of known location
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4808Evaluating distance, position or velocity data
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4811Constructional features, e.g. arrangements of optical elements common to transmitter and receiver
    • G01S7/4813Housing arrangements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/497Means for monitoring or calibrating
    • G01S7/4972Alignment of sensor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/10Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type
    • G02B6/12Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings of the optical waveguide type of the integrated circuit kind
    • G02B2006/12083Constructional arrangements
    • G02B2006/12121Laser
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37281Laser range finder
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/37Measurements
    • G05B2219/37425Distance, range

Definitions

  • the invention relates to a photoelectric measuring device, in particular to a laser rangefinder for digital imaging of a common optical path.
  • Laser distance measurement uses laser to accurately measure the distance of a target.
  • Existing laser rangefinders can be combined with digital imaging equipment to aim at the target through the display of the digital imaging equipment.
  • the combined device of digital imaging equipment is often a multi-optical path system, that is, a laser ranging transmitter, a receiving optical path, and a digital imaging optical path.
  • the design of this optical path system makes three optical appearances on the appearance of the laser rangefinder.
  • the overall lens product is lacking.
  • the lens of the existing digital imaging equipment needs to adjust the focus when observing objects at different distances.
  • the focus method is to use the image comparison algorithm of the image sensor to determine the focal length.
  • the focus of a distant target is compared with the image, the data value cannot be accurately obtained, and can only be compensated by the depth of field of the image.
  • the present invention provides a laser rangefinder for digital imaging of a common optical path.
  • the laser ranging optical path and the digital imaging optical path are designed as a coaxial common optical path, which greatly reduces the size of the device, so that The integrity of the product is guaranteed.
  • the focal length of the lens based on digital imaging equipment when observing different objects is related to the distance of the observed object.
  • the laser rangefinder for digital imaging of the common optical path according to the present invention can automatically control the digital The imaging focal length is adjusted, and the laser distance measurement value is fully used as the lens focal length adjustment parameter, so that the distance measurement data is fully utilized, and the operation efficiency is greatly improved, especially when it is necessary to adjust the digital imaging magnification.
  • the invention provides a laser rangefinder for digital imaging of a common optical path, which includes a housing component and a control and display component, a mounting component, an imaging module, and a laser module provided in the housing component.
  • the laser module includes laser emission.
  • Device, laser receiving device and reference point indicating device, the imaging module is used for digital imaging of a target, the imaging module and the laser module are sequentially arranged on the mounting assembly in the longitudinal direction and are respectively Electrically connected to the control and display assembly, the optical path of the laser emitting device and the optical path of the laser receiving device and the optical path of the reference point indicating device are set to be independent from each other, and the optical path of the laser emitting device is shot in the middle
  • the optical axis toward the target is set on the same straight line as the optical axis indicating the reference point generated by the optical path of the reference point indicating device.
  • the laser module is movably mounted on the mounting component, so that the inclination of the laser module relative to the mounting component can be adjusted.
  • the mounting component is movably mounted in the housing component, so that the inclination of the mounting component relative to the housing component can be adjusted.
  • the imaging module includes: a lens group, an image sensor, a lens group mounting member, a magnification adjustment worm and a focus adjustment worm, and the lens group and the image sensor are mounted on the mounting assembly through the lens mounting member. on.
  • control and display component is configured to control the magnification adjustment worm and the focal length adjustment worm according to a result of laser ranging to adjust the magnification and the focal length of the lens group, respectively.
  • the laser emitting device includes: a laser emitter for emitting a laser beam; a first total reflection mirror for totally reflecting the laser beam; a first laser focusing lens for causing the laser beam Intersect to form a collimated ranging laser; bandpass filter to allow the ranging laser to pass and prevent natural light from passing; and dichroic mirrors to reflect the ranging laser and allow Natural light passes.
  • the laser receiving device includes: a dichroic mirror for reflecting the ranging laser and allowing natural light to pass; a band-pass filter for allowing the ranging laser to pass and preventing natural light from passing; the second A laser focusing lens for converging the ranging laser; a second total reflection mirror for totally reflecting the converged ranging laser; and a laser receiver for converting the received optical signal into an electrical signal.
  • the laser emitting device and the receiving device share the band-pass filter and the dichroic mirror.
  • the reference point indicating device includes: a light emitting diode for generating a visible indicating light source; an aperture plate for limiting a light-emitting aperture of the visible indicating light source; and a reflector for reflecting the light passing through the aperture plate.
  • control and display component includes a main control circuit, a display, a key control board, and a sensor.
  • the senor is selected from one or more of the following: a wind speed and direction sensor, an orientation sensor, an angle sensor, a temperature sensor, a humidity sensor, an atmospheric pressure sensor, and a global positioning system.
  • the main control circuit includes a signal processing circuit and a servo control circuit
  • the signal processing circuit is configured to be able to receive electrical signals from the sensor and the laser module and perform processing operations on the electrical signals.
  • the servo control circuit is configured to be able to adjust the magnification and focal length of the imaging module.
  • the laser rangefinder for digital imaging of the common optical path according to the present invention further includes an optical eyepiece assembly, and the academic eyepiece assembly is detachably installed at the rear end of the housing assembly, so that the eyepiece center of the optical eyepiece assembly also It is arranged on the same straight line as the optical axis of the laser emitting device that strikes the target.
  • the user can directly observe the display according to the usage habits, or observe through the eyepiece.
  • the laser rangefinder of the common optical path digital imaging according to the present invention compresses the multi-axis system in the prior art into one axis, which improves the efficiency of aiming and greatly reduces the volume of the device, so that the integrity of the product is guaranteed.
  • the focal length of the lens group is directly adjusted using the laser ranging data, and the ranging value of the laser ranging is used as a parameter of the lens focal length adjustment, so that the ranging data is fully utilized, and the speed and accuracy are higher, Especially when the magnification needs to be adjusted, the focal length can be adjusted quickly and correspondingly, which greatly improves the operating efficiency of the device.
  • FIG. 1 shows a schematic diagram of an embodiment of a laser rangefinder for digital imaging of a common optical path according to the present invention
  • FIG. 2 shows an inner view of the laser rangefinder of the common optical path digital imaging of FIG. 1 with a part of the housing component removed;
  • FIG. 3 shows a schematic diagram of the laser rangefinder with the common optical path digital imaging of FIG. 1 removed from the housing component;
  • FIG. 4 shows a side view of the laser rangefinder of the common optical path digital imaging of FIG. 1 with the shell component removed;
  • FIG. 5 shows a schematic diagram of an imaging module of the laser rangefinder of the common optical path digital imaging of FIG. 1;
  • FIG. 6 is a schematic diagram of a laser module of the laser rangefinder of the common optical path digital imaging of FIG. 1;
  • FIG. 7 shows a schematic diagram of a photoelectric module of a laser module of the laser rangefinder of the common optical path digital imaging of FIG. 1;
  • FIG. 8a shows a schematic diagram of a laser emitting device of a laser module
  • 8b shows a schematic diagram of a laser receiving device of a laser module
  • FIG. 8c shows a schematic diagram of a reference point indicating device of a laser module
  • FIG. 9 shows a schematic diagram of another embodiment of a laser rangefinder for digital imaging of a common optical path according to the present invention.
  • the laser rangefinder 100 mainly includes a housing component 510 and a control and display component, a mounting component, an imaging module and a laser module installed in the housing component 510.
  • the imaging module and the laser module are movably connected to the casing through a mounting component.
  • the housing component 510 of the laser rangefinder 100 includes a housing 501, a front cover 502, a rear cover 503, and a bracket 506.
  • the control and display component includes a main control circuit and a display 406 and a key control board 405.
  • the main control circuit includes a signal processing circuit 401 and a servo control circuit 402, and the signal processing circuit 401 and / or the servo control circuit 402 is further provided with a sensor selected from one or more of the following: wind speed and direction sensor 404, Azimuth sensors, angle sensors, temperature sensors, humidity sensors, atmospheric pressure sensors, and global positioning systems.
  • a wireless transmission module is provided in the main control circuit, so that the laser rangefinder 100 and the external device can perform wireless transmission of data.
  • the control and display component further includes an external interface circuit board 407, and the laser rangefinder 100 and external devices can also perform wired transmission of data through the USB interface 408 provided on the external interface circuit board 407.
  • an external interface protection cover 505 is preferably provided on the housing component.
  • the external interface circuit board 407 further includes an SD card slot 409 for receiving an SD card for storing data.
  • the control and display component further includes a power source 403.
  • the power source 403 may be a lithium battery, a nickel-cadmium battery, or the like.
  • the housing component is preferably provided with a power source cover 504.
  • the mounting assembly includes a mounting base 301, and the middle of the mounting base 301 is hinged to the casing 501 through the first moving ball head 302, thereby movably mounting the mounting base 301 in the inner space of the casing 501.
  • the front end of the mounting base 301 is also connected to the casing 501 through the first up-and-down adjustment mechanism 303 and the first left-right adjustment mechanism 304, so that the mounting base 301 and other components attached thereto can be accurately controlled as a whole relative to the housing assembly. Angle of inclination.
  • the imaging module is arranged on the mounting base 301, please refer to FIG. 5 at the same time.
  • the imaging module includes a lens group 201, an image sensor 202, a lens group mounting member 203, a magnification adjustment worm 204, and a focus adjustment worm 205.
  • the lens group mounting member 203 is used to mount the lens group 201 and the image sensor 202 on the mounting base 301. In order to clearly show the image sensor 202, the lens group mounting member 203 is omitted in FIG.
  • the magnification adjustment worm 204 and the focal length adjustment worm 205 are respectively used to adjust the magnification and the focal length of the lens group 201.
  • magnification adjusting worm 204 and the focus adjusting worm 205 are controlled by a main control circuit.
  • the image sensor 202 is used for collecting images captured by the lens group 201. After being processed by the control and display component, the captured images can be displayed on the display 406, and can be stored and recorded in a memory (such as an SD card).
  • a laser module for ranging and aiming is also arranged on the mounting base 301 in sequence with the imaging module in the longitudinal direction. Please refer to FIG. 6 at the same time. In order to clearly show the laser module and the connection relationship between the laser module and the mounting base 301, FIG. 6 further omits the control and display component and the imaging module based on FIG. 3.
  • the laser module includes a laser module frame 113 having a cylindrical structure, the cylindrical structure having two end surfaces that are open, and at least one bottom surface perpendicular to the end surface.
  • a front end of the laser module frame 113 is hinged to the mounting base 301 through a second moving ball head 305, so that the laser module frame 113 can be movably mounted on the mounting base 301.
  • the rear end of the laser module frame 113 is also connected to the mounting base 301 through the second up and down adjustment mechanism 306 and the second left and right adjustment mechanism 307, so that the laser module frame 113 and other attached thereto can be accurately controlled.
  • a photoelectric module is arranged on the laser module frame 113.
  • the laser module frame 113 is omitted in FIG. 7 and only the optoelectronic components are shown.
  • the photoelectric module of the laser module includes a laser emitting device, a laser receiving device, and a reference point indicating device.
  • the laser emitting device includes: a laser transmitter 101 for emitting a laser beam; a first total reflection mirror 102 for total reflection of the laser beam; a first laser focusing lens 103 for intersecting the laser beams to A collimated ranging laser is formed; a band-pass filter 104 is used to allow the ranging laser to pass and prevent natural light from passing; and a dichroic mirror (Dichroic mirrors) 105 is used to reflect the ranging laser and allow natural light to pass.
  • a laser transmitter 101 for emitting a laser beam
  • a first total reflection mirror 102 for total reflection of the laser beam
  • a first laser focusing lens 103 for intersecting the laser beams to A collimated ranging laser is formed
  • a band-pass filter 104 is used to allow the ranging laser to pass and prevent natural light from passing
  • a dichroic mirror (Dichroic mirrors) 105 is used to reflect the ranging laser and allow natural light to pass.
  • the laser receiving device includes: a dichroic mirror 105 for reflecting the ranging laser and allowing natural light to pass; a band-pass filter 104 for allowing the ranging laser to pass and preventing natural light from passing; a second laser focusing lens 108 for A second total reflection mirror 107 for total reflection of the collected distance measurement laser; and a laser receiver 106 for converting the received optical signal into an electrical signal.
  • the laser emitting device and the laser receiving device share the dichroic mirror 105 and the band-pass filter 104.
  • the reference point indicating device includes: a light emitting diode 109 for generating a visible indicating light source; a diaphragm 110 for limiting a light emitting aperture of the visible indicating light source; a reflector 111 for reflecting the limited visible indicating light source; and a concave surface
  • the focusing lens 112 is used for converging the visible indicator light source into a real image point, that is, the reference point.
  • the laser transmitter 101 and the laser receiver 106 are arranged below the cylindrical structure of the laser module frame 113, and the first total reflection mirror 102 and the second total reflection mirror 107 are arranged side by side and obliquely at the laser transmitter 101 and the laser receiving, respectively. Front of the device 106.
  • the first laser focusing lens 103 and the second laser focusing lens 108 are arranged above the first total reflection mirror 102 and the second total reflection mirror 107, respectively, and are preferably arranged on the bottom surface of the cylindrical structure and parallel thereto.
  • the band-pass filter 104 is arranged above and parallel to the first laser focusing lens 103 and the second laser focusing lens 108, and is preferably also arranged on the bottom surface of the cylindrical structure.
  • the dichroic mirror 105 is disposed above the band-pass filter 104, and is slopingly fixed to the inside of the cylindrical structure of the laser module frame 113 and divides the internal space of the cylindrical structure into two parts.
  • the concave focusing lens 112 is arranged on the rear side of the dichroic mirror 105, the light emitting diode 109 and the diaphragm 110 are arranged on the side of the concave focusing lens 112, and the reflecting mirror 111 is arranged in front of the light path of the light emitting diode 109.
  • FIGS. 8a to 8c The operation mode of the above-mentioned photovoltaic module will be described in detail below with reference to FIGS. 8a to 8c.
  • 8a to 8c only show components required for the laser light emitting device, the laser receiving device, and the reference point indicating device to complete their respective optical paths.
  • FIG. 8 a shows the optical path of the laser emitting device in a side view.
  • the laser emitter 101 emits a laser beam having a specific wavelength band (for example, a 905 nm band), and is totally reflected by the first total reflection mirror 102 and passes through.
  • the first laser focusing lens 103 converges to form a collimated ranging laser.
  • the ranging laser passes through the band-pass filter 104, reaches the dichroic mirror 105, and then reflects again, and is directed toward a specified target. After the ranging laser reaches the specified target, it will be reflected. See Figure 8b, which shows the optical path of the laser receiving device in a side-viewing angle.
  • the partially reflected ranging laser returns to the dichroic mirror 105 again, and then reflects. Passes through the band-pass filter 104 in sequence, converges through the second laser focusing lens 108, and then reflects after reaching the second total reflection mirror 107, and finally reaches the laser receiver 106.
  • the laser receiver 106 will receive the optical signal. Into electrical signals. Thus, the distance between the target and the laser rangefinder is measured.
  • the arrangement of the dichroic mirror 105 makes it impossible for the ranging laser to pass through the dichroic mirror 105 and enter the natural light region at the rear end of the dichroic mirror 105.
  • the arrangement of the band-pass filter 104 makes it impossible for the light entering the laser module frame 113 other than the range-finding laser to be received by the laser receiver 106, thereby avoiding interference of other light on distance measurement.
  • a reference point indicating device is provided at the rear end of the dichroic mirror 105.
  • the light-emitting diode 109 generates a visible indicating light source
  • the diaphragm 110 limits the light-emitting diameter of the visible indicating light source and then reflects to the reflector 111 to reflect. Then, it is reflected by the concave focusing lens 112 and converged at a certain point to generate a real image of the light source point, which is the reference point.
  • the optical path of the indicated reference point is set such that the optical axis of the indicated reference point is on the same straight line as the optical axis of the ranging laser light which is directed toward the target. Therefore, the indicated reference point is also referred to as a laser indicated reference point.
  • the laser indication reference point can be collected by the back-end image sensor 202 when collecting natural light. Therefore, the position where the laser indication reference point displayed on the display screen is superimposed on the natural light imaging is the distance the laser actually points. Position so that the target can be aimed.
  • the key control board 405 is triggered to drive the signal processing circuit 401 to generate a signal.
  • the laser transmitter 101 receives the signal and emits a ranging laser.
  • the laser receiver 106 receives the ranging laser reflected by the target and sends
  • the optical signal is converted into an electric signal, and the electric signal is transmitted to the signal processing circuit 401 for processing, and then the processed measurement data is transmitted to the display 406 to directly display the measurement result.
  • the measurement data processed by the signal processing circuit 401 is also transmitted to the servo control circuit 402 to control the focus adjustment worm 205 to drive the lens group 201 to adjust the focus, that is, the actual measurement data is used to control the focus of the lens group 201.
  • a closed-loop control is formed, so that the natural light image collected by the image sensor 202 always maintains the best definition.
  • the button control board 405 can be triggered to drive the main control circuit to control the magnification adjustment worm 204 to drive the lens group 201 to adjust the magnification.
  • the focal length is greatly shifted due to the change in the physical position of the optical structure, resulting in a decrease in the sharpness of the image collected by the image sensor 202. Therefore, while the magnification adjustment of the worm 204 moves, the signal processing circuit 401 and the servo control circuit 402 also control the focus adjustment worm 205 with the data of the laser ranging to drive the lens group 201 to fine-tune the focus, and always ensure that the image sensor 202 captures Natural light images maintain optimal sharpness.
  • FIG. 9 a schematic diagram of another embodiment of a laser rangefinder according to the present invention is basically the same as the embodiment shown in FIG. 1 (the same components are not marked here), except that The laser rangefinder 600 is based on the embodiment of FIG. 1, and an optical eyepiece assembly 601 is detachably installed at the rear end of the display.
  • the eyepiece center of the optical eyepiece assembly 601 and the optical path of the laser emitting device are also shot toward the target.
  • the optical axes of the objects are arranged on the same straight line. The user can directly observe the display according to the usage habits, or observe through the eyepiece.
  • the laser rangefinder according to the present invention can be used independently.
  • the laser reference datum point can be used as the reference center of the product
  • the center of the display screen can be used as the reference center of the product
  • any point on the display screen can be used as the product. Center of reference.
  • the second vertical adjustment mechanism 306 and the second left-right adjustment mechanism 307 are controlled by triggering the key control board 405 to drive the main control circuit to drive the laser module to move relative to the mounting base 301 ,
  • the laser pointer is moved to any position on the display screen, and the closed-loop control described above is used to make the area where the laser pointer is the sharpest area. This method will leave a physical red dot in the recorded image or video.
  • the center point of the display screen is used as the reference center of the product, the center point of the display screen is used as the reference point of the display screen at this time, and the key control board 405 is triggered to drive the main control circuit to control the second up and down adjustment mechanism 306 and the second left and right
  • the adjustment mechanism 307 drives the laser module to move relative to the mounting base 301, so that the laser-referenced reference point is moved to coincide with the reference point on the display screen (that is, the center point of the display screen).
  • the laser indication reference point always coincides with the center point of the display screen, and the relative movement of the laser module and the mounting base 301 is no longer performed, that is, the laser module and the mounting base 301 are relatively fixed.
  • the key control board 405 is triggered to drive the main control circuit to control the first up and down adjustment mechanism 303 and the first left and right adjustment mechanism 304 to drive the mounting base 301 and the imaging module and laser module thereon as a whole Relative to the casing 501, that is, the reference point displayed on the display screen is stationary, and the image generated by the image sensor 202 is moved. Similarly, through the above-mentioned closed-loop control, the center area of the display screen is the clearest area of the image. This method does not leave a physical red dot in the recorded image or video.
  • the operation method is basically the same as that of the monitor center of the product as the reference center of the product, except that the reference point of the monitor screen is not necessarily the center point of the monitor screen.
  • the reference point area of the monitor screen is the clearest area of the image.
  • the target can be aimed and the keypad control panel can be triggered for distance measurement.
  • the laser rangefinder according to the present invention can also be attached to other equipment (for example, weapons) for use.
  • the laser rangefinder can use the center of the display screen as the reference center of the product, or the display screen. Any point is the reference center of the product.
  • the center point of the display screen is used as the reference point of the display screen.
  • the first up and down adjustment mechanism 303 and the first left and right adjustment mechanism 304 need to be controlled to drive the mounting base 301 and
  • the above imaging module and laser module are moved relative to the casing 501 as a whole, and the reference point of the display screen is adjusted to coincide with the aiming center of other equipment.
  • control the second up and down adjustment mechanism 306 and the second left and right adjustment mechanism 307 to drive the laser module to move relative to the mounting base 301, so that the laser reference point is moved to the reference point on the display screen (that is, the center point of the display screen) coincide.
  • the three points of the laser indication reference point, the reference point of the display screen, and the aiming center of other devices are overlapped.
  • the laser indication reference point can be continuously turned on or off according to the user's habits.
  • the operation method is basically the same as that of the monitor center of the product as the reference center of the product, except that the reference point of the monitor screen is not necessarily the center point of the monitor screen. Instead, you need to first define the aiming center of other equipment as the reference point of the display screen, so that it is no longer necessary to move the mounting base 301 and the imaging module and laser module above it relative to the casing 501. Then, the laser-referenced reference point is moved to coincide with the reference point of the display screen by operation, thereby realizing the coincidence of the three points of the laser-referenced reference point, the reference point of the display screen, and the aiming center of other devices.
  • the target can be aimed, and the keypad control panel can be triggered to perform ranging and other device operations.
  • Magnification adjustment worm 505 external interface protection cover
  • the first up and down adjusting mechanism 601 eyepiece

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

一种共光路数码成像的激光测距仪(100),包括外壳组件(510)以及设置于外壳组件(510)内的控制和显示组件、安装组件、成像模组和激光模组,激光模组包括激光发射装置、激光接收装置和基准点指示装置,成像模组用于目标物的数码成像,成像模组和激光模组在纵向上依次排列地安装在安装组件上并分别与控制和显示组件电连接,激光发射装置的光路和激光接收装置的光路与基准点指示装置的光路被设置为相互独立,且激光发射装置的光路中射向目标物的光轴与基准点指示装置的光路产生的指示基准点的光轴设置在同一条直线上。

Description

共光路数码成像的激光测距仪 技术领域
本发明涉及一种光电测量装置,特别地,涉及一种共光路数码成像的激光测距仪。
背景技术
激光测距是利用激光对目标的距离进行准确测定。用激光测距仪进行测量时需要对目标物进行瞄准,现有的激光测距仪可与数码成像设备相结合,通过数码成像设备的显示来对目标物进行瞄准。目前数码成像设备结合后的装置往往是多光路系统,即有激光测距的发射、接收光路还有数码成像的光路,这种光路系统的设计使得整个激光测距仪的外观上出现三个光学镜头产品整体感欠缺。
现有数码成像设备的镜头在观察不同距离物体时需要调焦,调焦方式是采用图像传感器的图像比对算法来确定焦距,对于距离较远图像其在图像传感器表面的成像较小,因此对远距离目标的焦点进行图像比对时,数据值无法准确获得,只能通过图像景深来弥补。
发明内容
为解决现有技术存在的问题,本发明提供一种共光路数码成像的激光测距仪,其将激光测距光路与数码成像光路设计为同轴共光路,大大减小了装置的尺寸,使得产品的整体性得到了保证。
此外,基于数码成像设备的镜头在观察不同物体时的焦距与被观察物体的距离是相关的,根据本发明的共光路数码成像的激光测距仪能够根据激光测距数据通过控制系统自动对数码成像的焦距进行调整,充分利用激光测距的测距值作为镜头焦距调整的参数,使得测距数据得到充分的利用,大大提高了操作效率,特别在需要调整数码成像的倍率时尤为显著。
本发明提供一种共光路数码成像的激光测距仪,包括外壳组件以及设置于外壳组件内的控制和显示组件、安装组件、成像模组、和激光模组,所述激光模组包括激光发射装置、激光接收装置和基准点指示装置,所述成像模组用于目标物的数码成像,所述成像模组和所述激光模组在纵向上依次排列地安装在所述安装组件上并分别与所述控制和显示组件电连接,所述激光发射装置的光路和所述激光接收装置的光路与所述基准点指示装置的光路被设置为相互独立,且所述激光发射装置的光路中射向目标物的光轴与基准点指示装置 的光路产生的指示基准点的光轴设置在同一条直线上。
优选地,所述激光模组可移动地安装在所述安装组件上,使得能够调节所述激光模组相对于所述安装组件的倾斜度。
优选地,所述安装组件可移动地安装在所述外壳组件内,使得能够调节所述安装组件相对于所述外壳组件的倾斜度。
优选地,所述成像模块包括:镜头组、图像传感器、镜头组安装构件、倍率调整蜗杆和焦距调整蜗杆,所述镜头组和所述图像传感器通过所述镜头安装构件被安装在所述安装组件上。
优选地,所述控制和显示组件被设置为根据激光测距的结果来控制所述倍率调整蜗杆和所述焦距调整蜗杆以分别调节所述镜头组的倍率和焦距。
优选地,所述激光发射装置包括:激光发射器,用于发射激光束;第一全反射镜,用于对所述激光束进行全反射;第一激光聚焦透镜,用于使所述激光束交汇以形成准直的测距激光;带通滤光镜,用于允许所述测距激光通过并阻止自然光通过;和二向色镜(Dichroic Mirrors),用于反射所述测距激光并允许自然光通过。
优选地,所述激光接收装置包括:二向色镜,用于反射所述测距激光并允许自然光通过;带通滤光镜,用于允许所述测距激光通过并阻止自然光通过;第二激光聚焦透镜,用于汇聚所述测距激光;第二全反射镜,用于对汇聚的所述测距激光进行全反射;和激光接收器,用于将接收的光信号转换为电信号。
优选地,所述激光发射装置和所述接收装置共用所述带通滤光镜和所述二向色镜。
优选地,所述基准点指示装置包括:发光二极管,用于产生可见指示光源;光阑片,用于限制所述可见指示光源的发光口径;反射镜,用于反射通过光阑片的所述可见指示光源;和凹面聚焦透镜,用于使所述可见指示光源汇聚成一个实像点,形成所述指示基准点。
优选地,所述控制和显示组件包括主控电路、显示器、按键控制板和传感器。
优选地,所述传感器选自于以下的一个或多个:风速风向传感器、方位传感器、角度传感器、温度传感器、湿度传感器、大气压力传感器和全球定位系统。
优选地,所述主控电路包括信号处理电路和伺服控制电路,所述信号处理电路被设置为能够接收来自于所述传感器和所述激光模组的电信号并对所述电信号进行处理运算;伺服控制电路被设置为能够对所述成像模组的倍率和焦距进行调节。
优选地,根据本发明的共光路数码成像的激光测距仪还包括光学目镜组件,所述学目镜组件可拆卸地安装于所述外壳组件的后端,使得所述光学目镜组件的目镜中心也与所述激光发射装置的光路中射向目标物的光轴设置在同一直线上。使用者可根据使用习惯直接 观察显示器,或通过目镜进行观察。
根据本发明的共光路数码成像的激光测距仪将现有技术中的多轴系统压缩为一轴,提高了瞄准的效率并同时大大减小了装置的体积,使得产品的整体性得到了保证。此外,直接使用激光测距的数据对镜头组的焦距进行调整,充分利用激光测距的测距值作为镜头焦距调整的参数,使得测距数据得到充分的利用,速度快而且准确度更高,尤其在需要对倍率进行调整时,可以迅速相应地调整焦距,大大提高了装置的操作效率。
附图说明
图1示出了根据本发明的共光路数码成像的激光测距仪的一实施例的示意图;
图2示出了图1的共光路数码成像的激光测距仪的去掉部分外壳组件的内视图;
图3示出了图1的共光路数码成像的激光测距仪的去掉外壳组件的示意图;
图4示出了图1的共光路数码成像的激光测距仪的去掉外壳组件的侧视图;
图5示出了图1的共光路数码成像的激光测距仪的成像模组的示意图;
图6示出了图1的共光路数码成像的激光测距仪的激光模组的示意图;
图7示出了图1的共光路数码成像的激光测距仪的激光模组的光电组件的示意图;
图8a示出了激光模组的激光发射装置的示意图;
图8b示出了激光模组的激光接收装置的示意图;
图8c示出了激光模组的基准点指示装置的示意图;
图9示出了根据本发明的共光路数码成像的激光测距仪的另一实施例的示意图。
具体实施方式
图1至图7其示出了根据本发明的共光路数码成像的激光测距仪100的一实施例。该激光测距仪100主要包括外壳组件510、以及安装于外壳组件510内的控制和显示组件、安装组件、成像模组和激光模组。所述成像模组和激光模组通过安装组件可活动地连接于机壳上。
请同时参见图1和图2,激光测距仪100的外壳组件510包括机壳501、前盖502、后盖503、支架506。
图3和图4从两个不同的角度出了该激光测距仪100的内部结构的示意图。其中,控制和显示组件包括主控电路和显示器406和按键控制板405。优选地,所述主控电路包括信号处理电路401和伺服控制电路402,信号处理电路401和/或伺服控制电路402还设置有传感器,选自以下中的一个或多个:风速风向传感器404、方位传感器、角度传感器、 温度传感器、湿度传感器、大气压力传感器和全球定位系统等。优选地,主控电路内设置有无线传输模块,由此激光测距仪100与外部设备可进行数据的无线传输。优选地,所述控制和显示组件还包括外接接口电路板407,激光测距仪100与外部设备也可以通过设置在外接接口电路板407上的USB接口408进行数据的有线传输,在这种情况下,外壳组件上优选地设有外接接口保护盖505。优选地,外接接口电路板407还包括SD卡插槽409,用于接纳用于储存数据的SD卡。优选地,控制和显示组件还包括电源403,电源403可以是锂电池,镍镉电池等,在这样情况下,外壳组件上优选地设有电源盖504。
安装组件包括安装座301,该安装座301的中部下方通过第一移动球头302与机壳501铰接,由此将该安装座301可活动地安装在机壳501的内部空间。在安装座301的前端还通过第一上下调节机构303和第一左右调节机构304与机壳501连接,由此能够精准地控制安装座301及附接在其上的其它部件整体相对于外壳组件的倾斜角度。
所述成像模组布置在安装座301上,请同时参见图5。成像模组包括镜头组201、图像传感器202、镜头组安装构件203、倍率调整蜗杆204和焦距调整蜗杆205。其中,镜头组安装构件203用于将镜头组201和图像传感器202安装在安装座301上,为清楚地示出图像传感器202,在图5中将镜头组安装构件203省去。倍率调整蜗杆204和焦距调整蜗杆205分别用于调节镜头组201的倍率和焦距。本实施例中,倍率调整蜗杆204和焦距调整蜗杆205由主控电路控制。图像传感器202用于采集镜头组201捕捉的图像,经由控制和显示组件处理后,所采集的图像可以在显示器406上显示,并可被储存记录在储存器(例如SD卡)中。
与该成像模组在纵向上依次排列地布置在安装座301上的还有用于测距和瞄准的激光模组,请同时参见图6。为清楚示出激光模组、以及激光模组与安装座301的连接关系,图6在图3的基础上进一步省去了控制和显示组件以及成像模组。
激光模组包括具有筒状结构激光模组框架113,该筒状结构具有开口的两个端面,以及至少一个与该端面垂直的底面。在该激光模组框架113的前端通过第二移动球头305与安装座301铰接,由此将该激光模组框架113可活动地安装在安装座301上。在该激光模组框架113的后端还通过第二上下调节机构306和第二左右调节机构307与安装座301连接,由此能够精准地控制激光模组框架113及附接在其上的其它部件整体相对于安装座301和成像模组的倾斜角度。
请同时参见图7,激光模组框架113上布置有光电组件。为清楚起见,图7省去了激光模组框架113,仅示出了光电组件。激光模组的光电组件包括:激光发射装置、激光接收装置和基准点指示装置。其中,激光发射装置包括:激光发射器101,用于发射激光束; 第一全反射镜102,用于对该激光束进行全反射;第一激光聚焦透镜103,用于使该激光束交汇以形成准直的测距激光;带通滤光镜104,用于允许该测距激光通过并阻止自然光通过;和二向色镜(Dichroic Mirrors)105,用于反射测距激光并允许自然光通过。激光接收装置包括:二向色镜105,用于反射测距激光并允许自然光通过;带通滤光镜104,用于允许该测距激光通过并阻止自然光通过;第二激光聚焦透镜108,用于汇聚折返的测距激光;第二全反射镜107,用于对汇聚的测距激光进行全反射;和激光接收器106,用于将接收的光信号转换为电信号。优选地,激光发射装置和激光接收装置共用二向色镜105和带通滤光镜104。所述基准点指示装置包括:发光二极管109,用于产生可见指示光源;光阑片110,用于限制可见指示光源的发光口径;反射镜111,用于反射被限制的可见指示光源;和凹面聚焦透镜112,用于使可见指示光源汇聚成一个实像点,即指示基准点。
激光发射器101和激光接收器106布置在激光模组框架113的筒状结构的下方,第一全反射镜102和第二全反射镜107并列且倾斜地分别布置在激光发射器101和激光接收器106的前方。第一激光聚焦透镜103和第二激光聚焦透镜108分别布置在第一全反射镜102和第二全反射镜107的上方,优选地布置在该筒状结构的底面并与其平行。带通滤光镜104布置在第一激光聚焦透镜103和第二激光聚焦透镜108的上方并与它们平行,优选地也布置在该筒状结构的底面。二向色镜105布置在带通滤光镜104的上方,其倾斜地固定在激光模组框架113的筒状结构的内部并将该筒状结构的内部空间分隔为两个部分。凹面聚焦透镜112布置在二向色镜105的后侧,发光二极管109和光阑片110布置在凹面聚焦透镜112的侧边,反射镜111则布置在发光二极管109的光路的前方。
下面将结合图8a至图8c对上述光电组件的运作方式进行详细描述。其中图8a至图8c均仅示出了激光发射装置、激光接收装置和基准点指示装置完成各自光路所需的元件。
图8a以侧视的视角示出了激光发射装置的光路,激光发射器101发射出具有某一特定波段(例如,905nm波段)的激光束,经第一全反射镜102发生全反射,穿过第一激光聚焦透镜103后聚交形成准直的测距激光,测距激光穿过带通滤光镜104,到达二向色镜105后再发生反射,射向指定目标物。测距激光达到指定目标物后会发生反射,参见图8b,其以侧视的视角示出了激光接收装置的光路,部分反射回来的测距激光再次回到二向色镜105发生反射,而后依次穿过带通滤光镜104,经第二激光聚焦透镜108汇聚后,到达第二全反射镜107后再发生反射,最终到达激光接收器106,该激光接收器106将接收到的光信号转换为电信号。由此实现了目标物与激光测距仪之间距离的测量。其中,二向色镜105的布置使得测距激光无法透过二向色镜105进入到二向色镜105后端的自然光区域。此外,带通滤光镜104的布置使得进入到激光模组框架113中的除测距激光外的其它波段 的光都无法被激光接收器106所接收,避免了其它光线对距离测量的干扰。
另外,在二向色镜105的后端还设置了基准点指示装置。具体地,参见图8c,其以俯视的视角示出了基准点指示装置的光路,发光二极管109产生可见指示光源,经由光阑片110限制可见指示光源的发光口径后射向反射镜111发生反射,然后经由凹面聚焦透镜112反射并在某一点上汇聚,产生了一个光源点的实像,即指示基准点。该指示基准点光路被设置为使得指示基准点的光轴与射向目标物的测距激光的光轴在同一条直线上,因此该指示基准点也称为激光指示基准点。该激光指示基准点可被后端的图像传感器202在采集自然光时一并被采集到,因此显示器屏幕中所显示出的激光指示基准点叠加到自然光成像中的位置即为测距激光实际上指向的位置,由此可以对目标物进行瞄准。
在需要进行激光测距时,触发按键控制板405以驱动信号处理电路401产生信号,激光发射器101接收信号后发射测距激光,激光接收器106接收到目标物反射回来的测距激光后将光信号转换为电信号,该电信号被传送至信号处理电路401进行处理,然后将处理后的测量数据传送到显示器406中直接显示测量结果。此外,经信号处理电路401处理后的测量数据也被传送到伺服控制电路402,以控制焦距调整蜗杆205带动镜头组201运动以调整焦距,即用实际的测量数据来控制镜头组201的焦距,形成了闭环控制,由此使得图像传感器202采集到的自然光图像始终保持最佳清晰度。
进一步地,在使用过程中还需要对镜头组201的倍率进行调整。可通过触发按键控制板405以驱动主控电路来控制倍率调整蜗杆204带动镜头组201运动以调整倍率。倍率调整后由于光学结构件的物理位置发生改变使得焦距产生大幅度的偏移,导致图像传感器202采集的图像的清晰度降低。所以在倍率调整蜗杆204运动的同时,信号处理电路401和伺服控制电路402也结合激光测距的数据控制焦距调整蜗杆205带动镜头组201运动以对焦距进行精细调整,始终保证图像传感器202采集到的自然光图像保持最佳清晰度。
参见图9,根据本发明的激光测距仪的另一实施例的示意图,其与图1所示的实施例基本相同(在此相同的部件不做标记),不同之处在于本实施例的激光测距仪600在图1的实施例的基础上,在显示器的后端还可拆卸地安装有光学目镜组件601,该光学目镜组件601的目镜中心也与激光发射装置的光路中射向目标物的光轴设置在同一直线上。使用者可根据使用习惯直接观察显示器,或通过目镜进行观察。
以下将阐述根据本发明的激光测距仪的使用方法。
一、根据本发明的激光测距仪的单独使用
根据本发明的激光测距仪可以单独使用,此时,可以以激光指示基准点为产品的基准 中心,也可以以显示器屏幕的中心为产品的基准中心,还可以以显示器屏幕的任一点为产品的基准中心。
当以激光指示基准点为产品的基准中心时,通过触发按键控制板405以驱动主控电路来控制第二上下调节机构306和第二左右调节机构307,带动激光模组相对于安装座301移动,使激光指示基准点移动到显示器屏幕上的任一位置,同时通过上述的闭环控制,使得激光指示基准点所停留的区域为图像最清晰的区域。此方式会在记录的图像或录像中留下一个物理红点。
当以显示器屏幕的中心为产品的基准中心时,此时显示器屏幕的中心点作为显示器屏幕的基准点,通过触发按键控制板405以驱动主控电路来控制第二上下调节机构306和第二左右调节机构307,带动激光模组相对于安装座301移动,使激光指示基准点移动至与显示器屏幕上的基准点(即显示器屏幕的中心点)重合。此后在使用时,激光指示基准点始终与显示器屏幕的中心点重合,不再进行激光模组与安装座301的相对移动,即激光模组与安装座301相对固定。若需要更换瞄准位置,则触发按键控制板405以驱动主控电路来控制第一上下调节机构303和第一左右调节机构304,带动安装座301及其上面的成像模组和激光模组作为整体相对于机壳501移动,即显示器屏幕中的显示的基准点是静止不动的,产生移动的是图像传感器202所采集的图像。同样地,通过上述的闭环控制,使得显示器屏幕中心区域为图像最清晰的区域。此方式不会在记录的图像或录像中留下一个物理红点。
当以显示器屏幕的任一点为产品的基准中心时,其操作方式与以显示器屏幕的中心为产品的基准中心的操作基本相同,不同之处在于显示器屏幕的基准点不一定是显示器屏幕的中心点,而是需要首先在显示器屏幕中定义任一点作为显示器屏幕的基准点,再通过操作使激光指示基准点移动至与显示器屏幕的基准点重合(而不是与显示器屏幕的中心位置重合),然后始终保持这两个点重合并相对于显示器屏幕静止,仅移动图像进行瞄准,此时显示器屏幕的基准点区域为图像最清晰的区域。
经过上述调整后可以对目标物进行瞄准,并触发按键控制板进行测距。
二、根据本发明的激光测距仪与其它产品的配合使用
根据本发明的激光测距仪也可以附装在其它设备(例如,武器)上配合使用,此时激光测距仪的,则可以以显示器屏幕的中心为产品的基准中心,也可以以显示器屏幕的任一点为产品的基准中心。
当以显示器屏幕的中心为产品的基准中心时,此时显示器屏幕的中心点作为显示器屏幕的基准点,首先需要控制第一上下调节机构303和第一左右调节机构304,带动安装座301 及其上面的成像模组和激光模组作为整体相对于机壳501移动,将显示器屏幕的基准点调整至与其它设备的瞄准中心重合。然后再控制第二上下调节机构306和第二左右调节机构307,带动激光模组相对于安装座301移动,使激光指示基准点移动至与显示器屏幕上的基准点(即显示器屏幕的中心点)重合。由此实现了激光指示基准点、显示器屏幕的基准点和其它设备的瞄准中心这三点的重合,此后可根据使用者习惯继续打开或者关闭激光指示基准点。
当以显示器屏幕的任一点为产品的基准中心时,其操作方式与以显示器屏幕的中心为产品的基准中心的操作基本相同,不同之处在于显示器屏幕的基准点不一定是显示器屏幕的中心点,而是需要首先在将其它设备的瞄准中心定义为显示器屏幕的基准点,这样则不再需要进行安装座301及其上面的成像模组和激光模组作为整体相对于机壳501的移动,然后再通过操作使激光指示基准点移动至与显示器屏幕的基准点重合,由此实现了激光指示基准点、显示器屏幕的基准点和其它设备的瞄准中心这三点的重合。
经过上述调整后可以对目标物进行瞄准,并触发按键控制板进行测距以及其它设备的操作。
以上所述仅为本发明较佳的具体实施方式,本发明的保护范围不限于以上列举的实施例,任何熟悉本技术领域的技术人员在本发明披露的技术范围内,可显而易见地得到的技术方案的简单变化或等效替换均落入本发明的保护范围内。
附图标记说明
100 激光测距仪                       304 第一左右调节机构
101 激光发射器                       305 第二移动球头
102 第一全反射镜                     306 第二上下调节机构
103 第一激光聚焦透镜                 307 第二左右调节机构
104 带通滤光镜                       401 信号处理电路
105 二向色镜                         402 伺服控制电路
106 激光接收器                       403 电源
107 第二全反射镜                     404 风速风向传感器
108 第二激光聚焦透镜                 405 按键控制板
109 发光二极管                       406 显示器
110 光阑片                           407 外接接口电路板
111 反射镜                           408 USB接口
112 凹面聚焦透镜                     409 SD卡插槽
113 激光模组框架                     501 机壳
201 镜头组                           502 前盖
202 图像传感器                       503 后盖
203 镜头组安装构件                   504 电源盖
204 倍率调整蜗杆                     505 外接接口保护盖
205 焦距调整蜗杆                     506 支架
301 安装座                           510 外壳组件
302 第一移动球头                     600 激光测距仪
303 第一上下调节机构                 601 目镜

Claims (13)

  1. 一种共光路数码成像的激光测距仪,包括外壳组件以及设置于外壳组件内的控制和显示组件、安装组件、成像模组、和激光模组,所述激光模组包括激光发射装置、激光接收装置和基准点指示装置,所述成像模组用于目标物的数码成像,所述成像模组和所述激光模组在纵向上依次排列地安装在所述安装组件上并分别与所述控制和显示组件电连接,其特征在于,
    所述激光发射装置的光路和所述激光接收装置的光路与所述基准点指示装置的光路被设置为相互独立,且所述激光发射装置的光路中射向目标物的光轴与基准点指示装置的光路产生的指示基准点的光轴设置在同一条直线上。
  2. 根据权利要求1所述的共光路数码成像的激光测距仪,其特征在于,所述激光模组可移动地安装在所述安装组件上,使得能够调节所述激光模组相对于所述安装组件的倾斜度。
  3. 根据权利要求1所述的共光路数码成像的激光测距仪,其特征在于,所述安装组件可移动地安装在所述外壳组件内,使得能够调节所述安装组件相对于所述外壳组件的倾斜度。
  4. 根据权利要求1所述的共光路数码成像的激光测距仪,其特征在于,所述成像模块包括:镜头组、图像传感器、镜头组安装构件、倍率调整蜗杆和焦距调整蜗杆,所述镜头组和所述图像传感器通过所述镜头安装构件被安装在所述安装组件上。
  5. 根据权利要求4所述的共光路数码成像的激光测距仪,其特征在于,所述控制和显示组件被设置为根据激光测距的结果来控制所述倍率调整蜗杆和所述焦距调整蜗杆以分别调节所述镜头组的倍率和焦距。
  6. 根据权利要求1所述的共光路数码成像的激光测距仪,其特征在于,所述激光发射装置包括:激光发射器,用于发射激光束;第一全反射镜,用于对所述激光束进行全反射;第一激光聚焦透镜,用于使所述激光束交汇以形成准直的测距激光;带通滤光镜,用于允许所述测距激光通过并阻止自然光通过;和二向色镜(Dichroic Mirrors),用于反射所述测距激光并允许自然光通过。
  7. 根据权利要求6所述的共光路数码成像的激光测距仪,其特征在于,所述激光接收装置包括:二向色镜,用于反射所述测距激光并允许自然光通过;带通滤光镜,用于允 许所述测距激光通过并阻止自然光通过;第二激光聚焦透镜,用于汇聚所述测距激光;第二全反射镜,用于对汇聚的所述测距激光进行全反射;和激光接收器,用于将接收的光信号转换为电信号。
  8. 根据权利要求7所述的共光路数码成像的激光测距仪,其特征在于,所述激光发射装置和所述接收装置共用所述带通滤光镜和所述二向色镜。
  9. 根据权利要求7所述的共光路数码成像的激光测距仪,其特征在于,所述基准点指示装置包括:发光二极管,用于产生可见指示光源;光阑片,用于限制所述可见指示光源的发光口径;反射镜,用于反射通过光阑片的所述可见指示光源;和凹面聚焦透镜,用于使所述可见指示光源汇聚成一个实像点,形成所述指示基准点。
  10. 根据权利要求1所述的共光路数码成像的激光测距仪,其特征在于,所述控制和显示组件包括主控电路、显示器、按键控制板和传感器。
  11. 根据权利要求10所述的共光路数码成像的激光测距仪,其特征在于,所述传感器选自于以下的一个或多个:风速风向传感器、方位传感器、角度传感器、温度传感器、湿度传感器、大气压力传感器和全球定位系统。
  12. 根据权利要求10所述的共光路数码成像的激光测距仪,其特征在于,所述主控电路包括信号处理电路和伺服控制电路,所述信号处理电路被设置为能够接收来自于所述传感器和所述激光模组的电信号并对所述电信号进行处理运算;伺服控制电路被设置为能够对所述成像模组的倍率和焦距进行调节。
  13. 根据权利要求1所述的共光路数码成像的激光测距仪,其特征在于,还包括光学目镜组件,所述学目镜组件可拆卸地安装于所述外壳组件的后端,使得所述光学目镜组件的目镜中心也与所述激光发射装置的光路中射向目标物的光轴设置在同一直线上。
PCT/CN2018/097271 2018-07-26 2018-07-26 共光路数码成像的激光测距仪 WO2020019261A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201880066825.XA CN111344598B (zh) 2018-07-26 2018-07-26 共光路数码成像的激光测距仪
PCT/CN2018/097271 WO2020019261A1 (zh) 2018-07-26 2018-07-26 共光路数码成像的激光测距仪
US16/857,166 US11828876B2 (en) 2018-07-26 2020-04-23 Laser rangefinder having common optical path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/097271 WO2020019261A1 (zh) 2018-07-26 2018-07-26 共光路数码成像的激光测距仪

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/857,166 Continuation US11828876B2 (en) 2018-07-26 2020-04-23 Laser rangefinder having common optical path

Publications (1)

Publication Number Publication Date
WO2020019261A1 true WO2020019261A1 (zh) 2020-01-30

Family

ID=69182134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097271 WO2020019261A1 (zh) 2018-07-26 2018-07-26 共光路数码成像的激光测距仪

Country Status (3)

Country Link
US (1) US11828876B2 (zh)
CN (1) CN111344598B (zh)
WO (1) WO2020019261A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021243517A1 (zh) * 2020-06-01 2021-12-09 深圳市瑞尔幸电子有限公司 成像设备、共光轴测距成像装置及其共光轴测距成像系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11953291B2 (en) * 2020-09-09 2024-04-09 Lightforce Usa, Inc. Multi-use laser rangefinder

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103402076A (zh) * 2013-07-22 2013-11-20 山东神戎电子股份有限公司 具备目标测距功能的便携式热像摄录仪
CN104977694A (zh) * 2015-07-15 2015-10-14 福建福光股份有限公司 可见光成像与激光测距共光轴镜头及其成像测距方法
CN105629481A (zh) * 2014-11-05 2016-06-01 北京航天计量测试技术研究所 一种高能激光、探测成像光及远距离测距激光共光路结构
CN206479691U (zh) * 2016-12-16 2017-09-08 深圳乐行天下科技有限公司 激光传感器基座、激光传感器和激光测距雷达
CN206649157U (zh) * 2017-02-14 2017-11-17 江苏徕兹测控科技有限公司 一种光路共轴手持激光测距仪
JP2018066571A (ja) * 2016-10-17 2018-04-26 株式会社トプコン レーザスキャナ

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4780738A (en) * 1985-07-19 1988-10-25 Canon Kabushiki Kaisha Lens drive device for camera
US5903996A (en) * 1997-08-01 1999-05-18 Morley; Roland M. Day/night viewing device with laser range finder utilizing two wavelengths of laser light, and method of its operation
US5859693A (en) * 1997-08-26 1999-01-12 Laser Technology, Inc. Modularized laser-based survey system
US7184088B1 (en) * 1998-10-28 2007-02-27 Measurement Devices Limited Apparatus and method for obtaining 3D images
CN2356317Y (zh) * 1999-01-08 1999-12-29 陆建红 瞄准式半导体脉冲激光测距装置
JP4491661B2 (ja) * 1999-11-17 2010-06-30 株式会社トプコン 光波距離計
JP2001324327A (ja) * 2000-05-12 2001-11-22 Asahi Optical Co Ltd 分岐光学系を用いたaf測量機
CN2628995Y (zh) * 2003-06-03 2004-07-28 杨红林 激光测距工程放线测量仪
US20050057745A1 (en) * 2003-09-17 2005-03-17 Bontje Douglas A. Measurement methods and apparatus
US8375620B2 (en) * 2004-03-10 2013-02-19 Raytheon Company Weapon sight having multi-munitions ballistics computer
JP2005331923A (ja) * 2004-04-23 2005-12-02 Goko International Corporation 光学装置及びそれを用いた撮影装置
DE102006040612B4 (de) * 2006-08-30 2011-12-08 Z-Laser Optoelektronik Gmbh Abstandsmessvorrichtung
CN101975953A (zh) * 2010-09-27 2011-02-16 北京航空航天大学 一种手持昼夜激光成像测距仪
US20140063261A1 (en) * 2012-08-29 2014-03-06 Pocket Optics, LLC Portable distance measuring device with a laser range finder, image sensor(s) and microdisplay(s)
CN203101644U (zh) * 2013-01-21 2013-07-31 深圳市瑞尔幸电子有限公司 一种潜望式数码成像激光测距仪
DE102014112794A1 (de) * 2014-09-05 2016-03-10 Carl Zeiss Sports Optics Gmbh System zum modularen Nachrüsten oder Ergänzen eines optischen Geräts mit einer Laserentfernungsmessung
EP3296788B1 (en) * 2016-09-15 2018-08-22 Axis AB Method of performing autofocus, autofocus system, and camera comprising an autofocus module
CN206960653U (zh) * 2017-05-08 2018-02-02 江苏徕兹测控科技有限公司 一种激光测距装置
CN107632297B (zh) * 2017-08-25 2019-08-06 中国科学院西安光学精密机械研究所 一种超轻型激光照射器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103402076A (zh) * 2013-07-22 2013-11-20 山东神戎电子股份有限公司 具备目标测距功能的便携式热像摄录仪
CN105629481A (zh) * 2014-11-05 2016-06-01 北京航天计量测试技术研究所 一种高能激光、探测成像光及远距离测距激光共光路结构
CN104977694A (zh) * 2015-07-15 2015-10-14 福建福光股份有限公司 可见光成像与激光测距共光轴镜头及其成像测距方法
JP2018066571A (ja) * 2016-10-17 2018-04-26 株式会社トプコン レーザスキャナ
CN206479691U (zh) * 2016-12-16 2017-09-08 深圳乐行天下科技有限公司 激光传感器基座、激光传感器和激光测距雷达
CN206649157U (zh) * 2017-02-14 2017-11-17 江苏徕兹测控科技有限公司 一种光路共轴手持激光测距仪

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021243517A1 (zh) * 2020-06-01 2021-12-09 深圳市瑞尔幸电子有限公司 成像设备、共光轴测距成像装置及其共光轴测距成像系统

Also Published As

Publication number Publication date
CN111344598B (zh) 2024-04-16
CN111344598A (zh) 2020-06-26
US20200264283A1 (en) 2020-08-20
US11828876B2 (en) 2023-11-28

Similar Documents

Publication Publication Date Title
US10520306B2 (en) Observation device with a distance meter
US11774557B2 (en) Distance measurement instrument with scanning function
CN101153795B (zh) 激光扫描器
US20150098075A1 (en) Scanner for space measurement
CN113340279B (zh) 具有同轴射束偏转元件的勘测装置
JP2006503275A (ja) 測定器用電子ディスプレイおよび制御装置
CN111060066B (zh) 用于测量物体的测量设备
WO2020019261A1 (zh) 共光路数码成像的激光测距仪
CN213600058U (zh) 激光测距设备及其激光测距仪
CN112584053A (zh) 一种双目视觉激光发射系统及方法
JP7183017B2 (ja) 測量装置及び写真測量方法
CN110018601A (zh) 具有基于激光的测距仪的摄像机系统
EP0217692B1 (fr) Dispositif d'autoalignement pour système optique d'observation d'images infrarouges
KR101005782B1 (ko) 광 스캐너
CN214335222U (zh) 数码成像设备、共光轴测距成像装置及其共光轴测距成像系统
CN217655365U (zh) 双筒望远镜
CN213600889U (zh) 成像设备、共光轴测距成像装置及其共光轴测距成像系统
CN219037767U (zh) 前置瞄准镜及采用前置瞄准镜的双光瞄准系统
WO2021243517A1 (zh) 成像设备、共光轴测距成像装置及其共光轴测距成像系统
CN214756613U (zh) 一种双目视觉激光发射系统
CN108549144A (zh) 测距仪光学系统及望远镜测距仪
CN217604922U (zh) 深度数据测量头和局部深度数据测量设备
JPH09297261A (ja) 撮像装置
CN106019561B (zh) 紧凑型测距望远镜
CN108107569A (zh) 一种光纤发射式成像装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18927432

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/06/2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18927432

Country of ref document: EP

Kind code of ref document: A1