WO2021035704A1 - 成像装置的对焦方法、组件、成像装置和可移动物体 - Google Patents

成像装置的对焦方法、组件、成像装置和可移动物体 Download PDF

Info

Publication number
WO2021035704A1
WO2021035704A1 PCT/CN2019/103759 CN2019103759W WO2021035704A1 WO 2021035704 A1 WO2021035704 A1 WO 2021035704A1 CN 2019103759 W CN2019103759 W CN 2019103759W WO 2021035704 A1 WO2021035704 A1 WO 2021035704A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
focus
focusing
imaging device
imaging
Prior art date
Application number
PCT/CN2019/103759
Other languages
English (en)
French (fr)
Inventor
韩守谦
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2019/103759 priority Critical patent/WO2021035704A1/zh
Priority to CN201980030107.1A priority patent/CN112136310A/zh
Publication of WO2021035704A1 publication Critical patent/WO2021035704A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/67Focus control based on electronic image sensor signals

Definitions

  • This application relates to the field of imaging control technology, and in particular, to a focusing method of an imaging device, a focusing component of an imaging device, an imaging device, a movable object, and a computer-readable storage medium.
  • imaging devices such as cameras use the CDAF (contrast detection auto focus) method for focusing.
  • the contrast focusing method needs to control the continuous movement of the focus motor while also comparing the contrast of each frame of image.
  • the comparison result of multiple frames determines the peak point of contrast and then determines the focus position.
  • the focus motor needs to detect all positions in the stroke. Therefore, the imaging device has a long focus time, which cannot meet the rapid speed at this stage. The need for focusing.
  • This application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • the first aspect of the present application is to provide a focusing method of an imaging device.
  • the second aspect of the present application is to provide a focusing assembly of an imaging device.
  • the third aspect of the present application is to provide an imaging device.
  • the fourth aspect of this application is to propose a movable object.
  • the fifth aspect of the present application is to provide a computer-readable storage medium.
  • a focusing method of an imaging device which includes: obtaining the object distance of the imaging object; determining the focusing position of the focusing motor according to the object distance; controlling the focusing motor to move to the focusing position.
  • the focusing method of an imaging device proposed in this application is used to control an imaging device including a focus motor, specifically, directly control the focus motor to move to the focus position, where the focus position corresponds to the object distance of the imaging object, because the focus motor is no longer It is necessary to move to all positions and compare the contrast of each frame of image, thus improving the focusing speed of the imaging device.
  • a focusing component of an imaging device including: a controller; a memory for storing a computer program; the controller executes the computer program stored in the memory to realize: determining a focusing motor according to the object distance The focus position; control the focus motor to move to the focus position.
  • an imaging device including: a focus motor and a focus assembly connected to the focus motor, the focus assembly is used to: determine the focus position of the focus motor according to the object distance, and control the focus motor to move to Focus position.
  • the focusing assembly controls the focusing motor to move to the focusing position corresponding to the object distance, so that the imaging device can perform the shooting action. Because the focusing motor no longer needs to move to all positions and for each frame of image Contrast contrast is performed, thus improving the focusing speed of the imaging device.
  • a movable object is proposed, wherein the movable object includes any one of the imaging devices described above.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the focusing method of the imaging device as described above are realized.
  • FIG. 1 shows a schematic flowchart of a focusing method of an imaging device according to an embodiment of the present application
  • FIG. 2 shows a schematic flowchart of a focusing method of an imaging device according to another embodiment of the present application
  • FIG. 3 shows a schematic flowchart of a focusing method of an imaging device according to another embodiment of the present application
  • FIG. 4 shows a schematic flowchart of a focusing method of an imaging device according to an embodiment of the present application
  • FIG. 5 shows a schematic block diagram of a focusing component of an imaging device according to an embodiment of the present application
  • Fig. 6 shows a schematic block diagram of an imaging device according to an embodiment of the present application.
  • FIG. 7 shows a schematic block diagram of an imaging device according to another embodiment of the present application.
  • the imaging devices involved in this application include: camera components used to capture images and products composed of camera components used to capture images.
  • Products include but are not limited to cameras, camcorders, mobile phones, tablet computers, etc.
  • the imaging device further includes a focus motor, where the focus motor is a motor (motor), such as a driving motor.
  • the focus motor is a motor (motor), such as a driving motor.
  • a focusing method of an imaging device including:
  • S104 Determine the focus position of the focus motor according to the object distance
  • S106 Control the focus motor to move to the focus position.
  • the focusing method of an imaging device proposed in the present application is used to control an imaging device that includes a focus motor. Specifically, the object distance of the imaging object is acquired first, and then the focus motor is directly controlled to move to the focusing position according to the acquired object distance. The position corresponds to the object distance of the imaging object. Since the focusing motor can directly move to the focusing position according to the object distance, it is no longer necessary to move to all positions and perform contrast comparison on each frame of image, thereby improving the focusing speed of the imaging device.
  • the object distance of the imaging object may be the object distance corresponding to a certain point position in the FOV (field of view, field of view) of the imaging device, or may include the object distance corresponding to multiple point positions, where a certain point The position may be the center position of the FOV of the imaging device.
  • the user's setting sequence of multiple point positions can be received, and the focus motor can be controlled to move to the corresponding focus position in the set sequence, so as to realize the multiple point sequence of the imaging object. Focus and shoot.
  • a focusing method of an imaging device including:
  • S206 Determine a focus position corresponding to the object distance according to the mapping relationship between the object distance and the focus position;
  • the mapping relationship between the object distance and the focus position is established in advance, so that after the object distance of the imaging object is obtained, the focus position corresponding to the object distance can be quickly determined by searching directly according to the mapping relationship. In this process, there is no need to perform calculations based on the object distance of the imaging object. Therefore, the amount of calculation is effectively reduced and the focusing speed of the focusing motor is improved.
  • the mapping range between the object distance and the focus position can also be established. Specifically, when the object distance is between the first preset value and the second preset value, the corresponding focus positions are the same, so that Achieve rapid determination of the focus position. In other embodiments, the mapping range between the object distance and the focus position can be established. Specifically, the focus position corresponding to the object distance between the first preset value and the second preset value is within a certain range, for example, The focus position corresponding to an object distance of 100 meters to 102 meters is between 0.3 mm and 0.32 mm.
  • the settings of the first preset value and the second preset value are related to the lens parameters of the imaging device.
  • the object distance set composed of the first preset value and the second preset value has multiple .
  • a focusing method of an imaging device including:
  • S304 Determine the focus position of the focus motor according to the object distance
  • the focus motor is also controlled to focus, ensuring that the imaging device can obtain a clear image, and avoiding the low accuracy of the object distance measurement of the imaging object or the movement of the focus motor Unclear imaging caused by deviations in the process to the focus position, etc. occurs.
  • the focus motor is controlled to move to the vicinity of the focus position, and then focus is achieved according to the method of contrast focusing.
  • the step of controlling the focus motor to focus specifically includes: controlling the focus motor to focus within the position interval. Coke.
  • the focus motor is prevented from trying to focus at a position outside the position range, thus reducing the distance that the focusing motor needs to move when focusing, and ensuring focus Under the premise of, the time required for the focusing motor to achieve focus is reduced, so as to achieve rapid focusing of the imaging device.
  • the step of controlling the focus motor to focus is specifically included: controlling the focus motor to focus according to the contrast focus mode.
  • the focus motor before the imaging device performs focus in the contrast focus mode, the focus motor has been controlled to move to the focus position or near the focus position according to the mapping relationship between the object distance and the focus position. Therefore, the contrast focus mode is used for focusing.
  • the contrast focus mode is used for focusing.
  • the time required for the imaging device in the focusing process is effectively reduced, and the focusing speed is improved.
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • a focusing method of an imaging device including:
  • S402 Receive a distance value between the distance measuring device and the imaging object, and determine the object distance of the imaging object according to the distance value.
  • S404 Determine the focus position of the focus motor according to the object distance
  • S406 Control the focus motor to move to the focus position.
  • the imaging device includes a distance measuring device for determining the distance value between itself and the imaging object, so that the imaging device determines the object distance of the imaging object according to the distance value, so that the distance measuring device can determine the distance between itself and the imaging object.
  • the focus motor is quickly controlled according to the measured distance value, so as to realize the rapid focus of the imaging device.
  • the distance measuring device includes, but is not limited to, one or more of monocular distance measuring device, binocular distance measuring device, laser distance measuring device, distance measuring device using time-of-flight technology, and structured light distance measuring device.
  • the distance measuring device and the imaging device are connected in a wired or wireless manner, so that the object distance measured by the distance measuring device is sent to the imaging device.
  • the distance measuring device and the imaging device exchange data through a server, and the imaging device acquires the distance measuring device through the server to obtain the distance value between itself and the imaging object, and the positional relationship between the distance measuring device and the lens of the imaging device , And determine the object distance according to the position relationship and the distance value.
  • the server may be a cloud server. After the distance measuring device measures the distance between itself and the imaging object, it uploads it to the cloud server, and then the cloud server sends it to the imaging device.
  • the field of view of the imaging device includes at least one focus area; the step of determining the object distance specifically includes: determining the object distance of the imaging object under the at least one focus area according to the distance value.
  • the object distance of the imaging object under at least one focus area can be determined by the distance value, so that the imaging device can image the imaging object according to the focus area Since the focus area is distributed in the field of view of the imaging device, the user can select the corresponding focus area for imaging as needed, which is convenient for composition during the imaging process.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • the step of determining the object distance according to the distance value specifically includes: determining the positional relationship between the distance measuring device and the lens of the imaging device; and determining the object distance according to the positional relationship and the distance value.
  • the distance measuring device and the imaging device have a fixed or variable relative position relationship.
  • the distance measuring device and the lens of the imaging device have a fixed or variable relative position relationship.
  • the positional relationship between the distance measuring device and the lens can be calibrated in advance, for example, using a translation matrix and/or a rotation matrix to transform the distance between the distance measuring device and the imaging object into the object distance of the imaging object, that is, imaging The distance value between the optical center of the lens of the device and the imaging object.
  • the distance measurement can be The distance value between the device and the imaging object is taken as the object distance of the imaging object.
  • the focusing method of the imaging device further includes: acquiring first field of view information of the lens of the imaging device and second field of view information of the distance measuring device; determining that the second field of view information includes the first field of view information, Perform the steps to control the movement of the focus motor to the focus position.
  • the imaging device it is determined whether the second field of view information of the distance measuring device includes the first field of view information of the lens of the imaging device, so that the imaging device can determine the distance value of the imaging object according to the distance measuring device, and then determine the object of the imaging object. Distance to achieve rapid focusing of the imaging device.
  • the first field of view information may also include second field of view information.
  • the distance measuring device can only focus on the second field of view information included in the first field of view information.
  • the first field of view information and the second field of view information include a partial outline or an overall outline of the imaging object.
  • the distance measuring device includes but is not limited to at least one of the following: monocular distance measuring device, binocular distance measuring device, laser distance measuring device, and distance measuring device using time-of-flight technology , Structured light ranging device.
  • the distance measuring device may include one or more of a monocular distance measuring device, a binocular distance measuring device, a laser distance measuring device, a distance measuring device using time-of-flight technology, and a structured light distance measuring device, The selection can be made according to the imaging device, the imaging object and the use environment.
  • the distance measuring device includes multiple types of the above-mentioned devices, the multiple devices are used in combination to improve the accuracy of the object distance of the imaging object.
  • Embodiment 11 is a diagrammatic representation of Embodiment 11:
  • the focusing method of the imaging device further includes: determining that the change value of the object distance is greater than a specified threshold value, and starting a continuous auto-focusing mode for focusing.
  • the imaging device starts the continuous automatic
  • the focus mode is used to achieve continuous focus on the imaging object, and provides a determination condition for enabling the continuous auto focus mode, thereby improving the user experience.
  • Embodiment 12 is a diagrammatic representation of Embodiment 12
  • a focusing assembly 500 of an imaging device is proposed.
  • the imaging device includes a focusing motor
  • the focusing assembly 500 of the imaging device includes: a controller 502; a memory 504; In storing a computer program; the controller 502 executes the computer program stored in the memory 504 to achieve: determine the focus position of the focus motor according to the object distance; control the focus motor to move to the focus position.
  • the focusing assembly 500 of the imaging device proposed in the present application includes a controller 502 and a memory 504, wherein the memory 504 is used to store a computer program, and the controller 502 executes the computer program stored in the memory 504 to realize: direct control of the focus motor Move to the focus position, where the focus position corresponds to the object distance of the imaging object. Since the focus motor no longer needs to move to all positions and perform contrast comparison for each frame of image, the focusing speed of the imaging device is improved.
  • the controller 502 executes a computer program stored in the memory 504 to realize: pre-establishing the mapping relationship between the object distance and the focus position, and determining the focus position corresponding to the object distance according to the mapping relationship between the object distance and the focus position.
  • the mapping relationship between the object distance and the focus position is established in advance, so that after the object distance of the imaging object is obtained, the focus position corresponding to the object distance can be quickly determined by searching directly according to the mapping relationship. In this process, there is no need to The object distance of the imaging object is calculated, therefore, the amount of calculation is effectively reduced and the focusing speed of the focusing motor is improved.
  • the object distance may be multiple according to the number of imaging objects, and the object distance of one of the imaging objects is selected according to the user's selection.
  • Embodiment 13 is a diagrammatic representation of Embodiment 13:
  • a focusing assembly 500 of an imaging device includes a focusing motor.
  • the focusing assembly 500 of the imaging device includes: a controller 502; a memory 504 for storing Computer program; the controller 502 executes the computer program stored in the memory 504 to achieve: determine the focus position of the focus motor according to the object distance; control the focus motor to move to the focus position, and after the step of controlling the focus motor to move to the focus position, control the focus The motor is in focus.
  • the focus motor is also controlled to focus, ensuring that the imaging device can obtain a clear image, and avoiding the low accuracy of the object distance measurement of the imaging object or the movement of the focus motor Unclear imaging caused by deviations in the process to the focus position, etc. occurs.
  • the controller 502 executes the computer program stored in the memory 504 to realize: Control the focus motor to focus in the position interval.
  • the focus motor is prevented from trying to focus at a position outside the position range, thus reducing the distance that the focusing motor needs to move when focusing, and ensuring focus Under the premise of, the time required for the focusing motor to achieve focus is reduced, so as to achieve rapid focusing of the imaging device.
  • Embodiment 15 is a diagrammatic representation of Embodiment 15:
  • the controller 502 executes a computer program stored in the memory 504 to realize: controlling the focus motor to focus according to the contrast focus mode.
  • the focus motor before the imaging device performs focus in the contrast focus mode, the focus motor has been controlled to move to the focus position according to the mapping relationship between the object distance and the focus position. Therefore, the contrast focus mode is used to focus the focus. There is no need to determine the moving direction of the focus motor, and there is no need to perform contrast comparison for the position experienced by the focus motor during the moving process. Therefore, the time required for the imaging device in the focusing process is effectively reduced and the focusing speed is improved.
  • the imaging device further includes a distance measuring device, the distance measuring device is used to obtain the distance value between the distance measuring device and the imaging object, and the controller 502 executes the storage in the memory 504
  • the computer program in order to realize: receive the distance value between the distance measuring device and the imaging object, and determine the object distance of the imaging object according to the distance value.
  • the imaging device includes a distance measuring device for determining the distance value between itself and the imaging object, so that the imaging device determines the object distance of the imaging object according to the distance value, so that the distance measuring device can determine the distance between itself and the imaging object.
  • the focus motor is quickly controlled according to the measured distance value, so as to realize the rapid focus of the imaging device.
  • the field of view of the imaging device includes at least one focus area
  • the controller 502 executes the computer program stored in the memory 504 to realize: determine at least one focus area according to the distance value. The object distance of the imaging object under the area.
  • the object distance of the imaging object under at least one focus area can be determined by the distance value, so that the imaging device can image the imaging object according to the focus area Since the focus area is distributed in the field of view of the imaging device, the user can select the corresponding focus area for imaging as needed, which is convenient for composition during the imaging process.
  • Embodiment 18 is a diagrammatic representation of Embodiment 18:
  • the controller 502 executes a computer program stored in the memory 504 to realize: determine the positional relationship between the distance measuring device and the lens of the imaging device; The value determines the object distance.
  • the distance measuring device and the imaging device have a fixed or variable relative position relationship.
  • the distance measuring device and the lens of the imaging device have a fixed or variable relative position relationship.
  • the positional relationship between the distance measuring device and the lens can be calibrated in advance, for example, using a translation matrix and a rotation matrix to transform the distance between the distance measuring device and the imaging object into the object distance of the imaging object, that is, the object distance of the imaging device The distance value between the optical center of the lens and the imaging object.
  • the distance measurement can be The distance value between the device and the imaging object is taken as the object distance of the imaging object.
  • the controller 502 executes a computer program stored in the memory 504 to achieve: obtain the first field of view information of the lens of the imaging device and the second field of view of the distance measuring device Information; determine that the second field of view information contains the first field of view information, and execute the step of controlling the focus motor to move to the focus position.
  • the imaging device it is determined whether the second field of view information of the distance measuring device includes the first field of view information of the lens of the imaging device, so that the imaging device can determine the distance value of the imaging object according to the distance measuring device, and then determine the object of the imaging object. Distance to achieve rapid focusing of the imaging device.
  • the first field of view information may also include second field of view information.
  • the distance measuring device can only focus on the second field of view information included in the first field of view information.
  • the first field of view information and the second field of view information include a partial outline or an overall outline of the imaging object.
  • Embodiment 20 is a diagrammatic representation of Embodiment 20.
  • the distance measuring device includes at least one of the following: monocular distance measuring device, binocular distance measuring device, laser distance measuring device, distance measuring device using time-of-flight technology, structured light Ranging device.
  • the distance measuring device may include one or more of a monocular distance measuring device, a binocular distance measuring device, a laser distance measuring device, a distance measuring device using time-of-flight technology, and a structured light distance measuring device, The selection can be made according to the imaging device, the imaging object and the use environment.
  • the distance measuring device includes multiple types of the above-mentioned devices, the multiple devices are used in combination to improve the accuracy of the object distance of the imaging object.
  • Embodiment 21 is a diagrammatic representation of Embodiment 21.
  • a focusing assembly 500 of an imaging device includes a focusing motor.
  • the focusing assembly 500 of the imaging device includes: a controller 502; a memory 504 for storing Computer program; the controller 502 executes the computer program stored in the memory 504 to realize: determine the focus position of the focus motor according to the object distance; control the movement of the focus motor to the focus position; determine that the change value of the object distance is greater than the specified threshold, and start continuous autofocus Mode to focus.
  • the imaging device starts the continuous automatic
  • the focus mode is used to achieve continuous focus on the imaging object, and provides a determination condition for enabling the continuous auto focus mode, thereby improving the user experience.
  • Embodiment 22 is a diagrammatic representation of Embodiment 22.
  • an imaging device 600 is proposed.
  • the imaging device 600 includes a focus motor 602 and a focus component 604 connected to the focus motor 602.
  • the focus component 604 is used for : Determine the focus position of the focus motor 602 according to the object distance, and control the focus motor 602 to move to the focus position.
  • the imaging device 600 proposed in the present application includes a focus motor 602 and a focus component 604 connected to the focus motor 602.
  • the focus component 604 determines the focus position of the focus motor 602 according to the object distance, and directly controls the focus motor 602 to move to the focus position. Wherein, the focus position corresponds to the object distance of the imaging object. Since the focus motor 602 no longer needs to move to all positions and perform contrast comparison for each frame of image, the focusing speed of the imaging device 600 is improved.
  • the focusing component 604 is specifically configured to: establish a mapping relationship between the object distance and the focus position in advance, and determine the focus position corresponding to the object distance according to the mapping relationship between the object distance and the focus position.
  • the mapping relationship between the object distance and the focus position is established in advance, so that after the object distance of the imaging object is obtained, the focus position corresponding to the object distance can be quickly determined by searching directly according to the mapping relationship. In this process, there is no need to The object distance of the imaging object is calculated, therefore, the amount of calculation is effectively reduced, and the focusing speed of the focusing motor 602 is improved.
  • Embodiment 23 is a diagrammatic representation of Embodiment 23.
  • an imaging device 600 is proposed.
  • the imaging device 600 includes a focus motor 602 and a focus assembly 604 connected to the focus motor 602.
  • the focus assembly 604 is used to determine the focus of the focus motor 602 according to the object distance. Focus position, and control the focus motor 602 to move to the focus position; and control the focus motor 602 to focus.
  • the focus motor 602 is also controlled to focus, ensuring that the imaging device 600 can obtain a clear image, and avoiding the low accuracy of the object distance measurement of the imaging object.
  • the focus motor 602 moves to the focus position, there are situations such as unclear imaging caused by deviations.
  • Embodiment 24 is a diagrammatic representation of Embodiment 24.
  • the focusing component 604 when the focus position is a position interval composed of the first position and the second position, the focusing component 604 is specifically configured to: control the focus motor 602 to focus in the position interval.
  • the focus motor 602 is controlled to focus on the position interval to avoid the focus motor 602 trying to focus at a position outside the position interval, thus reducing the distance that the focus motor 602 needs to move during focusing.
  • the time required for the focus motor 602 to focus is reduced, so that the imaging device 600 can quickly focus.
  • Embodiment 25 is a diagrammatic representation of Embodiment 25.
  • the focusing component 604 is specifically used to control the focusing motor 602 to focus according to the contrast focusing mode.
  • the focus motor 602 before the imaging device 600 performs focus in the contrast focus mode, the focus motor 602 has been controlled to move to the focus position according to the mapping relationship between the object distance and the focus position. Therefore, the contrast focus mode is used for focusing. During the process, there is no need to determine the direction of movement of the focus motor 602, and at the same time, there is no need to perform contrast comparison for the position experienced by the focus motor 602 during the movement process. Therefore, the time required for the imaging device 600 in the focusing process is effectively reduced, and the focus is improved. speed.
  • Embodiment 26 is a diagrammatic representation of Embodiment 26.
  • the imaging device 600 further includes a distance measuring device 606.
  • the distance measuring device 606 is used to obtain the distance value between the distance measuring device 606 and the imaging object, and the focusing component 604 also uses Yu: Receive the distance value between the distance measuring device 606 and the imaging object, and determine the object distance of the imaging object according to the distance value.
  • the imaging device 600 includes a distance measuring device 606 for determining the distance value between itself and the imaging object, so that the imaging device 600 determines the object distance of the imaging object according to the distance value, so that the distance measuring device 606 is After the distance value to the imaging object is measured, the focus motor 602 is quickly controlled according to the measured distance value, so as to realize the rapid focus of the imaging device 600.
  • Embodiment 27 is a diagrammatic representation of Embodiment 27.
  • the distance measuring device 606 is a binocular distance measuring device, and the binocular distance measuring device is used to obtain the distance value between itself and the imaging object, and send the distance value To the focusing component 604; the focusing component 604 is also used to obtain the positional relationship between the binocular distance measuring device and the lens of the imaging device 600, and determine the object distance according to the positional relationship and the distance value.
  • the binocular distance measuring device includes, for example, two cameras and a control device connected to the two cameras.
  • the focusing component 604 communicates with the control device to obtain the binocular distance measuring device and the imaging device 600.
  • the position relationship of the lens, the object distance is determined according to the position relationship and the distance value.
  • the binocular distance measuring device and the lens of the imaging device 600 have a fixed or variable relative position relationship. After the binocular distance measuring device determines the distance value from the imaging object, perform position transformation according to the position relationship to obtain imaging The object distance of the object.
  • the positional relationship between the binocular distance measuring device and the lens can be calibrated in advance, such as using a translation matrix and a rotation matrix to transform the distance value between the binocular distance measuring device and the imaging object into the object distance of the imaging object, That is, the distance value between the optical center of the lens of the imaging device 600 and the imaging object.
  • the distance value between the binocular distance measuring device and the imaging object into the object distance of the imaging object only the translation matrix is applied for transformation, and the difference between the distance value and the object distance value is small, you can change The distance value between the binocular distance measuring device and the imaging object is taken as the object distance of the imaging object.
  • the binocular distance measuring device and the focusing assembly 604 are connected in a wired or wireless manner.
  • the binocular distance measuring device and the focusing component 604 exchange data through a server, and the focusing component 604 obtains the binocular distance measuring device through the server to obtain the distance value between itself and the imaging object, and the binocular distance measuring device
  • the positional relationship with the lens of the imaging device 600, and the object distance is determined according to the positional relationship and the distance value.
  • the binocular distance measuring device can also realize the control of the depth of field of the imaging object, such as selecting a relatively close position or a relatively far position to the imaging object to determine the object distance of the imaging object.
  • Embodiment 28 is a diagrammatic representation of Embodiment 28:
  • the distance measuring device 606 is a laser distance measuring device, and the laser distance measuring device is used to obtain the distance value between itself and the imaging object, and send the distance value to the focus Component 604; the focusing component 604 is also used to obtain the positional relationship between the laser distance measuring device and the lens of the imaging device 600, and determine the object distance according to the positional relationship and the distance value.
  • the laser distance measuring device includes, for example, a laser receiver that includes a laser transmitter, a laser receiver used in conjunction with the laser transmitter, and a control device respectively connected to the laser transmitter and the laser receiver, wherein the focusing component 604 Communicate with the control device to obtain the positional relationship between the laser distance measuring device and the lens of the imaging device 600, and determine the object distance according to the positional relationship and the distance value.
  • the laser transmitter and the laser receiver used in conjunction with the laser transmitter are integrated.
  • the laser distance measuring device and the lens of the imaging device 600 have a fixed or variable relative position relationship. After the laser distance measuring device determines the distance to the imaging object, perform position transformation according to the position relationship to obtain the imaging object Object distance.
  • the positional relationship between the laser ranging device and the lens can be calibrated in advance, for example, using a translation matrix and a rotation matrix to transform the distance between the laser ranging device and the imaging object into the object distance of the imaging object, that is, imaging The distance value between the optical center of the lens of the device 600 and the imaging object.
  • the distance value between the laser distance measuring device and the imaging object into the object distance of the imaging object only the translation matrix is applied for transformation, and the difference between the distance value and the object distance value is small.
  • the distance value between the distance measuring device and the imaging object is taken as the object distance of the imaging object.
  • the laser distance measuring device and the focusing assembly 604 are connected in a wired or wireless manner.
  • the laser ranging device and the focusing component 604 exchange data through a server, and the focusing component 604 obtains the laser ranging device through the server to obtain the distance value between itself and the imaging object, and the laser ranging device and the imaging device 600 lens position relationship, and determine the object distance according to the position relationship and distance value.
  • the ranging coverage area of the laser ranging device can be increased.
  • the laser distance measuring device can measure multiple object distance information to inform the multiple object distance information in the area where the imaging object is located, so as to facilitate the selection of the foreground and the foreground.
  • the laser ranging device is a single-point laser, and the area ranging can be achieved by adjusting the laser direction of the laser ranging device.
  • the laser ranging device is a multi-point laser, so as to achieve simultaneous acquisition of the distance values of multiple imaging objects at the same time, and simultaneously achieve regional ranging.
  • the laser ranging device is a lidar, and the depth of field information of the imaging object is obtained through the lidar.
  • the laser ranging device may also be a millimeter wave radar or the like, which is not limited here.
  • Embodiment 29 is a diagrammatic representation of Embodiment 29.
  • the distance measuring device 606 is a distance measuring device applying time-of-flight technology, and the distance measuring device applying time-of-flight technology is used to obtain the distance value between itself and the imaging object. , And send the distance value to the focusing component 604; the focusing component 604 is also used to obtain the positional relationship between the distance measuring device applying the time-of-flight technology and the lens of the imaging device 600, and determine the object distance according to the positional relationship and the distance value.
  • the distance measuring device using time-of-flight technology includes, for example, at least one signal emitting component and a control device connected to the signal emitting component, wherein the focusing component 604 communicates with the control device to obtain the time-of-flight technology.
  • the positional relationship between the distance measuring device and the lens of the imaging device 600 determines the object distance based on the positional relationship and the distance value.
  • the distance measuring device applying the time-of-flight technology and the lens of the imaging device 600 have a fixed or variable relative positional relationship. After the distance measuring device applying the time-of-flight technology determines the distance to the imaging object, the positional relationship is Perform position transformation to get the object distance of the imaging object.
  • the positional relationship between the distance measuring device using time-of-flight technology and the lens can be calibrated in advance, for example, using a translation matrix and a rotation matrix to transform the distance value between the distance measuring device using time-of-flight technology and the imaging object into The object distance of the imaging object, that is, the distance value between the optical center of the lens of the imaging device 600 and the imaging object.
  • the distance value between the distance measuring device using time-of-flight technology and the imaging object into the object distance of the imaging object only the translation matrix is applied for transformation, and the difference between the distance value and the value of the object distance is small .
  • the distance value between the distance measuring device applying the time-of-flight technology and the imaging object can be used as the object distance of the imaging object.
  • the distance measuring device applying the time-of-flight technology and the focusing assembly 604 are connected in a wired or wireless manner.
  • the data exchange between the distance measuring device applying the time-of-flight technology and the focusing component 604 is performed by the server, and the focusing component 604 obtains the distance measuring device applying the time-of-flight technology through the server to obtain the distance value between itself and the imaging object.
  • the positional relationship between the distance measuring device applying the time-of-flight technology and the lens of the imaging device 600, and the object distance is determined according to the positional relationship and the distance value.
  • Embodiment 30 is a diagrammatic representation of Embodiment 30.
  • the distance measuring device 606 is a structured light distance measuring device, and the structured light distance measuring device is used to obtain the distance value between itself and the imaging object, and send the distance value.
  • the focusing component 604 is also used to obtain the positional relationship between the structured light ranging device and the lens of the imaging device 600, and determine the object distance according to the positional relationship and the distance value.
  • the structured light ranging device includes at least one signal emitting component and a control device connected to the signal emitting component, wherein the focusing component 604 communicates with the control device to obtain the structured light ranging device and the imaging device
  • the position relationship of the 600 lens is based on the position relationship and the distance value to determine the object distance.
  • the structured light ranging device and the lens of the imaging device 600 have a fixed or variable relative positional relationship. After the structured light ranging device determines the distance to the imaging object, perform position transformation according to the positional relationship to obtain imaging The object distance of the object.
  • the positional relationship between the structured light ranging device and the lens can be calibrated in advance, for example, using a translation matrix and a rotation matrix to transform the distance value between the structured light ranging device and the imaging object into the object distance of the imaging object, That is, the distance value between the optical center of the lens of the imaging device 600 and the imaging object.
  • the distance value between the structured light ranging device and the imaging object is taken as the object distance of the imaging object.
  • the structured light ranging device and the focusing assembly 604 are connected in a wired or wireless manner.
  • the structured light ranging device and the focusing component 604 exchange data through a server, and the focusing component 604 obtains the structured light ranging device through the server for obtaining the distance value between itself and the imaging object, and the structured light ranging device
  • the positional relationship with the lens of the imaging device 600, and the object distance is determined according to the positional relationship and the distance value.
  • Embodiment 31 is a diagrammatic representation of Embodiment 31.
  • the focusing component 604 is also used to determine that the lens of the structured light ranging device and the imaging device 600 are set on different PTZ and the coverage area of the structured light ranging device does not meet the set area range, and drive the structure The pan/tilt on which the optical distance measuring device is positioned rotates.
  • the lens of the structured light ranging device and the imaging device 600 are set on different pan/tilts, and when it is detected that the coverage area of the structured light ranging device does not meet the set area range, the structured light ranging device is driven. Rotate the current pan/tilt to increase or adjust the coverage area of the structured light ranging device, so that the structured light ranging device can cover the image area of the lens of the imaging device 600, so that the focusing component 604 controls the focusing motor 602 to quickly focus.
  • Embodiment 32 is a diagrammatic representation of Embodiment 32.
  • the field of view of the lens of the imaging device 600 includes at least one focus area
  • the focus component 604 is further configured to determine the object distance of the at least one focus area according to the distance value.
  • the object distance of the imaging object under the at least one focus area can be determined by the distance value, so that the imaging device 600 can align the focus area according to the distance value.
  • the imaging object is imaged. Since the focus area is distributed in the field of view of the imaging device 600, the user can select the corresponding focus area for imaging as needed, which is convenient for composition during the imaging process. In an embodiment, a single focus area may be focused, or multiple focus areas may be focused.
  • the imaging device 600 further has an instruction receiving device for receiving a user's control instruction, wherein the instruction receiving device is used for selecting a focus area, so that the focusing component 604 determines the focus area selected by the user after the user selects the focus area.
  • the object distance of the object can be adjusted manually by the user.
  • the instruction receiving device is a physical button or a touch screen provided on the imaging device 600, and the selection of the focus area can be displayed through the touch screen.
  • the imaging device 600 is connected to a server, and the user selects the focus area through setting parameters of the imaging device 600 in the server, and optionally, the focus area is adjusted or selected through a mobile terminal interacting with the server.
  • the mobile terminal includes, but is not limited to, a remote control, a laptop computer, a mobile phone, a tablet, and the like.
  • Embodiment 33 is a diagrammatic representation of Embodiment 33.
  • the focusing component 604 is further used to: obtain the first field of view information of the lens of the imaging device 600 and the second field of view information of the distance measuring device; determine that the second field of view information includes the first field of view information, The step of controlling the movement of the focus motor 602 to the focus position is performed.
  • the imaging device 600 it is determined whether the second field of view information of the distance measuring device includes the first field of view information of the lens of the imaging device 600, so that the imaging device 600 can determine the distance value of the imaging object according to the distance measuring device, and then determine the imaging object The object distance of the imaging device 600 realizes the rapid focusing of the imaging device 600.
  • the first field of view information may also include second field of view information.
  • the distance measuring device can only focus on the second field of view information included in the first field of view information.
  • the first field of view information and the second field of view information include a partial outline or an overall outline of the imaging object.
  • the first field of view information and the second field of view information also include limit angles, etc., where the focusing component 604 can control the first field of view by controlling the relative position of the lens in the lens of the imaging device 600 and/or the control parameters of the distance measuring device. The information and the second field of view information are adjusted.
  • Embodiment 34 is a diagrammatic representation of Embodiment 34.
  • the lenses of the distance measuring device 606 and the imaging device 600 are arranged on the same pan/tilt or the lenses of the distance measuring device 606 and the imaging device 600 are arranged on different pan/tilts.
  • the lenses of the ranging device 606 and the imaging device 600 are set on the same pan-tilt or the lenses of the ranging device 606 and the imaging device 600 are set on different pan-tilts to meet actual setup requirements, such as reducing The volume of the imaging device 600.
  • the distance measuring device 606 is arranged on a pan-tilt where the lens of the imaging device 600 is located, and further, on one side of the lens of the imaging device 600, to reduce the object distance calculation process of the imaging object due to the distance measuring device 606.
  • the calculation amount generated when the lens of the imaging device 600 is set on a different platform, thereby reducing the calculation time.
  • the lenses of the distance measuring device 606 and the imaging device 600 are respectively arranged on different pan-tilts, so as to design the space where the lenses of the distance measuring device 606 and the imaging device 600 are located to meet the installation needs of the actual scene, such as
  • the lens of the imaging device 600 is set under the wing of the aircraft according to installation requirements, and the distance measuring device 606 is set at the head of the aircraft.
  • Embodiment 35 is a diagrammatic representation of Embodiment 35.
  • the focusing component 604 is further configured to: determine that the change value of the object distance is greater than a specified threshold, and start the continuous auto-focus mode for focusing.
  • the imaging device 600 is activated continuously.
  • the auto-focus mode is used to achieve continuous focus on the imaging object, and it provides a determination condition for enabling the continuous auto-focus mode, thereby improving the user experience.
  • Embodiment 36 is a diagrammatic representation of Embodiment 36.
  • a movable object including: the imaging device of any one of the above.
  • movable objects include, but are not limited to, unmanned aerial vehicles, unmanned vehicles, or mobile robots.
  • mobile robots include, but are not limited to, sweeping robots, nanny robots, and spraying robots, and may also include vision-based grasping robots.
  • the movable object further includes: a body and a power device, wherein the power device can drive the body of the movable object to move or relatively rotate to drive the imaging device provided on the body to move.
  • An imaging device can achieve rapid focusing when a movable object performs tasks such as photographing and recording, and then complete photographing and photographing tasks, so as to ensure that the images obtained by photographing and photographing are clear.
  • the movable object includes a movable object body and a remote control device for controlling it, wherein the focusing component and the focusing motor in the imaging device are arranged on the movable object body, and the distance measuring device may be arranged on the movable object body On, or fixedly arranged in a fixed arrangement relative to the earth.
  • the distance measuring device of the imaging device is arranged on the movable object body, and the focusing assembly and the focusing motor in the imaging device are fixedly arranged relative to the ground.
  • the movable object further includes a remote control device for controlling it, the distance measuring device of the imaging device is arranged on the remote control device, and the focusing component and the focusing motor in the imaging device are arranged on the movable object body.
  • the movable object body and the remote control device that controls it perform data interaction through wired or wireless data.
  • the movable object body and the remote control device that controls it interact through the server.
  • Embodiment 37 is a diagrammatic representation of Embodiment 37.
  • a computer-readable storage medium on which a computer program is stored, and when the computer program is executed by a processor, the steps of the focusing method of the imaging device as described above are implemented.
  • the computer-readable storage medium includes, but is not limited to, magnetic disk storage, CD-ROM, optical storage, and the like.
  • connection can be a fixed connection, a detachable connection, or an integral connection; it can be directly connected or indirectly connected through an intermediate medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Automatic Focus Adjustment (AREA)
  • Studio Devices (AREA)

Abstract

一种成像装置的对焦方法、一种成像装置的对焦组件(500)、一种成像装置、一种可移动物体和一种计算机可读存储介质。其中,成像装置的对焦方法包括:(S102)获取成像对象的物距;(S104)根据物距确定对焦电机的对焦位置;(S106)控制对焦电机运动至对焦位置,其中,对焦位置与成像对象的物距相对应,由于对焦电机不再需要移动到所有位置以及对每一帧图像进行对比度对比,因此提高了成像装置的对焦速度。

Description

成像装置的对焦方法、组件、成像装置和可移动物体 技术领域
本申请涉及成像控制技术领域,具体而言,涉及一种成像装置的对焦方法、一种成像装置的对焦组件、一种成像装置、一种可移动物体和一种计算机可读存储介质。
背景技术
相关技术方案中,如相机等成像装置采用CDAF(contrast detection auto focus,反差对焦)方式进行对焦,反差对焦的对焦方式需要控制对焦电机不断移动的同时,还需要比较每一帧图像的对比度,根据对多帧的对比结果确定对比度的峰值点,进而确定对焦位置,在此过程中,对焦电机需要对行程中的所有位置进行检测,因此,成像装置的对焦时间较长,无法满足现阶段的快速对焦的需求。
申请内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的第一方面在于提出了一种成像装置的对焦方法。
本申请的第二方面在于提出了一种成像装置的对焦组件。
本申请的第三方面在于提出了一种成像装置。
本申请的第四方面在于提出了一种可移动物体。
本申请的第五方面在于提出了一种计算机可读存储介质。
有鉴于此,根据本申请的第一方面,提出了一种成像装置的对焦方法,包括:获取成像对象的物距;根据物距确定对焦电机的对焦位置;控制对焦电机运动至对焦位置。
本申请提出的成像装置的对焦方法,用于控制包含对焦电机的成像装置,具体地,直接控制对焦电机移动至对焦位置,其中,对焦位置与成像 对象的物距相对应,由于对焦电机不再需要移动到所有位置以及对每一帧图像进行对比度对比,因此提高了成像装置的对焦速度。
根据本申请的第二方面,提出了一种成像装置的对焦组件,包括:控制器;存储器,用于存储计算机程序;控制器执行存储在存储器中的计算机程序以实现:根据物距确定对焦电机的对焦位置;控制对焦电机运动至对焦位置。
根据本申请的第三方面,提出了一种成像装置,包括:对焦电机以及与对焦电机相连接的对焦组件,对焦组件用于:根据物距确定对焦电机的对焦位置,以及控制对焦电机运动至对焦位置。
本申请提出的成像装置在进行对焦时,对焦组件控制对焦电机移动至与物距相对应的对焦位置,以便成像装置执行拍摄动作,由于对焦电机不再需要移动到所有位置以及对每一帧图像进行对比度对比,因此提高了成像装置的对焦速度。
根据本申请的第四方面,提出了一种可移动物体,其中,可移动物体包含上述任一项成像装置。
根据本申请的第五方面,提出了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现如上述任一项的成像装置的对焦方法的步骤。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了本申请的一个实施例的成像装置的对焦方法的流程示意图;
图2示出了本申请的又一个实施例的成像装置的对焦方法的流程示意图;
图3示出了本申请的又一个实施例的成像装置的对焦方法的流程示意图;
图4示出了本申请的一个实施例的成像装置的对焦方法的流程示意图;
图5示出了本申请的一个实施例的成像装置的对焦组件的示意框图;
图6示出了本申请的一个实施例的成像装置的示意框图;
图7示出了本申请的又一个实施例的成像装置的示意框图。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不限于下面公开的具体实施例的限制。
本申请涉及到的成像装置包括:用于拍摄图像使用的摄像头组件以及由拍摄图像使用的摄像头组件组成的产品,产品包括但不限于相机、摄录机、手机、平板电脑等。
进一步地,成像装置还包括对焦电机,其中,对焦电机为电机(马达),如驱动用电机。
实施例一:
如图1所示,在本申请第一方面的实施例,提出了一种成像装置的对焦方法,包括:
S102,获取成像对象的物距;
S104,根据物距确定对焦电机的对焦位置;
S106,控制对焦电机运动至对焦位置。
本申请提出的成像装置的对焦方法,用于控制包含对焦电机的成像装置,具体地,先获取成像对象的物距,然后根据获取到的物距直接控制对焦电机移动至对焦位置,其中,对焦位置与成像对象的物距相对应。由于对焦电机可以根据物距直接移动到对焦位置,不再需要移动到所有位置以及对每一帧图像进行对比度对比,因此提高了成像装置的对焦速度。
具体地,成像对象的物距可以是成像装置的FOV(field of view,视场 角)中的某一个点位置对应的物距,也可以包含多个点位置对应的物距,其中,某一点位置可以是成像装置的FOV的中心位置。
可选地,在成像对象的物距具有多个时,可以接收用户对多个点位置的设定顺序,控制对焦电机按照设定顺序运动至对应的对焦位置,以实现成像对象的多点依次对焦和拍摄。
实施例二:
如图2所示,本申请的一个实施例中,提出了一种成像装置的对焦方法,包括:
S202,预先建立物距与对焦位置的映射关系;
S204,获取成像对象的物距;
S206,根据物距与对焦位置的映射关系,确定物距对应的对焦位置;
S208,控制对焦电机运动至对焦位置。
在该实施例中,通过预先建立物距与对焦位置的映射关系,以便在获取得到成像对象的物距后,可以直接根据该映射关系以查找的方式快速确定物距所对应的对焦位置,在此过程中,无需根据成像对象的物距执行计算,因此,有效减少了计算量,提高了对焦电机的对焦速度。
在其他实施例中,也可以建立物距与对焦位置的映射范围,具体地,当物距处于第一预设数值和第二预设数值之间时,其对应的对焦位置是相同的,以实现对焦位置的快速确定。在其他实施例中,可以建立物距与对焦位置的映射范围,具体地,处于第一预设数值和第二预设数值之间的物距对应的对焦位置是在一定范围内的,例如处于100米至102米的物距对应的对焦位置在0.3毫米至0.32毫米之间。
可选地,第一预设数值和第二预设数值的设置与成像装置的镜头参数相关,可选地,由第一预设数值和第二预设数值组成的物距集合具有为多个。
实施例三:
如图3所示,本申请的一个实施例中,提出了一种成像装置的对焦方法,包括:
S302,获取成像对象的物距;
S304,根据物距确定对焦电机的对焦位置;
S306,控制对焦电机运动至对焦位置;
S308,控制对焦电机进行合焦。
在该实施例中,在控制对焦电机运动至对焦位置后,还控制对焦电机进行合焦,确保了成像装置可以得到清晰的像,避免因为成像对象的物距测量的精度较低或者对焦电机运动至对焦位置的过程存在偏差造成的成像不清晰等情况的出现。
例如,在控制对焦电机运动至对焦位置附近,然后根据对比度对焦的方法,进行合焦。
实施例四:
在本说明书中的任一实施例中,在对焦位置是由第一位置和第二位置组成的位置区间时,控制对焦电机进行合焦的步骤,具体包括:在位置区间内控制对焦电机进行合焦。
在该实施例中,通过控制对焦电机进行合焦的位置区间,避免对焦电机在位置区间之外的位置尝试合焦,因此减少了对焦电机在进行合焦时需要移动的距离,在确保合焦的前提下,减少了对焦电机进行合焦时需要的时间,以实现成像装置的快速对焦。
实施例五:
在本说明书中的任一实施例中,控制对焦电机进行合焦的步骤,具体包括:根据反差对焦模式控制对焦电机进行合焦。
在该实施例中,由于成像装置以反差对焦模式的方式进行合焦之前,已经按照物距与对焦位置的映射关系控制对焦电机运动至对焦位置或对焦位置附近,因此,在使用反差对焦模式进行合焦的过程中,无需确定对焦电机的运动方向,同时对于对焦电机移动过程所历经的位置也无需执行对比度的对比,因此,有效降低了成像装置在对焦过程中需要的时间,提高了对焦速度。
实施例六:
在本申请的一个实施例中,如图4所示,提出了一种成像装置的对焦方法,包括:
S402,接收测距装置与成像对象的距离值,并根据距离值确定成像对象的物距;
S404,根据物距确定对焦电机的对焦位置;
S406,控制对焦电机运动至对焦位置。
在该实施例中,成像装置包含用于测定其自身与成像对象之间距离值的测距装置,以便成像装置根据该距离值确定成像对象的物距,进而实现测距装置在测定与成像对象的距离值后,根据测定的距离值进行对焦电机的快速控制,以便实现成像装置的快速对焦。
其中,测距装置包括但不限于单目测距装置、双目测距装置、激光测距装置、应用飞行时间技术的测距装置、结构光测距装置中的一种或多种。
在本申请中的一个实施例中,测距装置与成像装置之间通过有线或者无线的方式进行连接,以便将测距装置测量得到的物距发送给成像装置。
可选地,测距装置与成像装置之间通过服务器进行数据交互,成像装置通过服务器获取测距装置用于获取其自身与成像对象的距离值,以及测距装置与成像装置的镜头的位置关系,并根据位置关系和距离值确定物距。其中,服务器可以是云端服务器,测距装置测量得到其自身与成像对象之间的距离值后,上传至云端服务器,再由云端服务器发送给成像装置。
实施例七:
在本说明书中的任一实施例中,成像装置的视野中包含至少一个对焦区域;确定物距的步骤,具体包括:根据距离值确定至少一个对焦区域下成像对象的物距。
在该实施例中,当成像装置的视野中包含至少一个对焦区域的情况下,可以通过距离值来确定至少一个对焦区域下成像对象的物距,以便成像装置可以根据对焦区域对成像对象进行成像,由于对焦区域分布在成像装置的视野中,因此,用户可以根据需要选择对应的对焦区域进行成像,便于在成像过程进行构图。
实施例八:
在本说明书中的任一实施例中,根据距离值确定物距的步骤,具体包括:确定测距装置与成像装置的镜头的位置关系;根据位置关系和距离值 确定物距。
在该实施例中,测距装置和成像装置具有固定地或者可以变化的相对位置关系,具体地,测距装置与成像装置的镜头具有固定地或者可以变化的相对位置关系,当测距装置确定与成像对象的距离值后,根据位置关系执行位置变换可以得到成像对象的物距。
可选地,测距装置和镜头之间的位置关系可以预先进行标定,如利用平移矩阵和/或旋转矩阵进行变换将测距装置与成像对象的距离值转换成成像对象的物距,即成像装置的镜头的光心与成像对象的距离值。
可选地,在将测距装置与成像对象的距离值转换成成像对象的物距的过程中,只应用到平移矩阵进行变换,且距离值与物距的数值相差较小时,可以将测距装置与成像对象的距离值作为成像对象的物距。
实施例九:
在本说明书中的任一实施例中,成像装置的对焦方法还包括:获取成像装置的镜头的第一视野信息以及测距装置的第二视野信息;确定第二视野信息包含第一视野信息,执行控制对焦电机运动至对焦位置的步骤。
在该实施例中,通过判断测距装置的第二视野信息是否包含成像装置的镜头的第一视野信息,以便成像装置可以根据测距装置来测定成像对象的距离值,进而确定成像对象的物距,实现成像装置的快速对焦。
可选地,第一视野信息也可以包含第二视野信息,此时,测距装置只能对第一视野信息中所包含的第二视野信息进行对焦。
可选地,第一视野信息和第二视野信息中包含成像对象的部分轮廓或整体轮廓。
实施例十:
在本说明书中的任一实施例中,测距装置包括但不限于以下中的至少一种:单目测距装置、双目测距装置、激光测距装置、应用飞行时间技术的测距装置、结构光测距装置。
在该实施例中,测距装置可以包含单目测距装置、双目测距装置、激光测距装置、应用飞行时间技术的测距装置、结构光测距装置中的一种或多种,可以根据成像装置、成像对象和使用环境进行选取,当测距装置包 含多种上述装置时,通过多种装置的组合使用,以提高成像对象的物距的准确性。
实施例十一:
在本说明书中的任一实施例中,成像装置的对焦方法还包括:确定物距的变化值大于指定阈值,启动连续自动对焦模式进行对焦。
在该实施例中,通过对物距进行数据统计,当判定物距的变化值大于指定阈值,如依次获取得到的多个物距之间的数值差大于指定阈值,此时成像装置启用连续自动对焦模式,以实现对成像对象的连续对焦,为启用连续自动对焦模式提供的判定条件,进而提高了用户的使用体验。
实施例十二:
在本申请第二方面的实施例中,如图5所示,提出了一种成像装置的对焦组件500,成像装置包括对焦电机,成像装置的对焦组件500包括:控制器502;存储器504,用于存储计算机程序;控制器502执行存储在存储器504中的计算机程序以实现:根据物距确定对焦电机的对焦位置;控制对焦电机运动至对焦位置。
本申请提出的成像装置的对焦组件500,其包括控制器502和存储器504,其中,存储器504,用于存储计算机程序,控制器502执行存储在存储器504中的计算机程序以实现:直接控制对焦电机移动至对焦位置,其中,对焦位置与成像对象的物距相对应,由于对焦电机不再需要移动到所有位置以及对每一帧图像进行对比度对比,因此提高了成像装置的对焦速度。
可选地,控制器502执行存储在存储器504中的计算机程序以实现:预先建立物距与对焦位置的映射关系,以及根据物距与对焦位置的映射关系,确定物距对应的对焦位置。
通过预先建立物距与对焦位置的映射关系,以便在获取得到成像对象的物距后,可以直接根据该映射关系以查找的方式快速确定物距所对应的对焦位置,在此过程中,无需根据成像对象的物距执行计算,因此,有效减少了计算量,提高了对焦电机的对焦速度。
可选地,物距可以根据成像对象的数量可以是多个,根据用户的选择 选取其中一个成像对象的物距。
实施例十三:
在本申请的一个实施例中,如图5所示,提出了一种成像装置的对焦组件500,成像装置包括对焦电机,成像装置的对焦组件500包括:控制器502;存储器504,用于存储计算机程序;控制器502执行存储在存储器504中的计算机程序以实现:根据物距确定对焦电机的对焦位置;控制对焦电机运动至对焦位置,以及在控制对焦电机运动至对焦位置步骤之后,控制对焦电机进行合焦。
在该实施例中,在控制对焦电机运动至对焦位置后,还控制对焦电机进行合焦,确保了成像装置可以得到清晰的像,避免因为成像对象的物距测量的精度较低或者对焦电机运动至对焦位置的过程存在偏差造成的成像不清晰等情况的出现。
实施例十四:
在本说明书中的任一实施例中,如图5所示,在对焦位置是由第一位置和第二位置组成的位置区间时,控制器502执行存储在存储器504中的计算机程序以实现:在位置区间内控制对焦电机进行合焦。
在该实施例中,通过控制对焦电机进行合焦的位置区间,避免对焦电机在位置区间之外的位置尝试合焦,因此减少了对焦电机在进行合焦时需要移动的距离,在确保合焦的前提下,减少了对焦电机进行合焦时需要的时间,以实现成像装置的快速对焦。
实施例十五:
在本说明书中的任一实施例中,如图5所示,控制器502执行存储在存储器504中的计算机程序以实现:根据反差对焦模式控制对焦电机进行合焦。
在该实施例中,由于成像装置以反差对焦模式的方式进行合焦之前,已经按照物距与对焦位置的映射关系控制对焦电机运动至对焦位置,因此,在使用反差对焦模式进行合焦的过程中,无需确定对焦电机的运动方向,同时对于对焦电机移动过程所历经的位置也无需执行对比度的对比,因此,有效降低了成像装置在对焦过程中需要的时间,提高了对焦速度。
实施例十六:
在本说明书中的任一实施例中,如图5所示,成像装置还包括测距装置,测距装置用于获取测距装置与成像对象的距离值,控制器502执行存储在存储器504中的计算机程序以实现:接收测距装置与成像对象的距离值,并根据距离值确定成像对象的物距。
在该实施例中,成像装置包含用于测定其自身与成像对象之间距离值的测距装置,以便成像装置根据该距离值确定成像对象的物距,进而实现测距装置在测定与成像对象的距离值后,根据测定的距离值进行对焦电机的快速控制,以便实现成像装置的快速对焦。
实施例十七:
在本说明书中的任一实施例中,如图5所示,成像装置的视野中包含至少一个对焦区域,控制器502执行存储在存储器504中的计算机程序以实现:根据距离值确定至少一个对焦区域下成像对象的物距。
在该实施例中,当成像装置的视野中包含至少一个对焦区域的情况下,可以通过距离值来确定至少一个对焦区域下成像对象的物距,以便成像装置可以根据对焦区域对成像对象进行成像,由于对焦区域分布在成像装置的视野中,因此,用户可以根据需要选择对应的对焦区域进行成像,便于在成像过程进行构图。
实施例十八:
在本说明书中的任一实施例中,如图5所示,控制器502执行存储在存储器504中的计算机程序以实现:确定测距装置与成像装置的镜头的位置关系;根据位置关系和距离值确定物距。
在该实施例中,测距装置和成像装置具有固定地或者可以变化的相对位置关系,具体地,测距装置与成像装置的镜头具有固定地或者可以变化的相对位置关系,当测距装置确定与成像对象的距离值后,根据位置关系执行位置变换可以得到成像对象的物距。
可选地,测距装置和镜头之间的位置关系可以预先进行标定,如利用平移矩阵和旋转矩阵进行变换将测距装置与成像对象的距离值转换成成像对象的物距,即成像装置的镜头的光心与成像对象的距离值。
可选地,在将测距装置与成像对象的距离值转换成成像对象的物距的过程中,只应用到平移矩阵进行变换,且距离值与物距的数值相差较小时,可以将测距装置与成像对象的距离值作为成像对象的物距。
实施例十九:
在本说明书中的任一实施例中,如图5所示,控制器502执行存储在存储器504中的计算机程序以实现:获取成像装置的镜头的第一视野信息以及测距装置的第二视野信息;确定第二视野信息包含第一视野信息,执行控制对焦电机运动至对焦位置的步骤。
在该实施例中,通过判断测距装置的第二视野信息是否包含成像装置的镜头的第一视野信息,以便成像装置可以根据测距装置来测定成像对象的距离值,进而确定成像对象的物距,实现成像装置的快速对焦。
可选地,第一视野信息也可以包含第二视野信息,此时,测距装置只能对第一视野信息中所包含的第二视野信息进行对焦。
可选地,第一视野信息和第二视野信息中包含成像对象的部分轮廓或整体轮廓。
实施例二十:
在本说明书中的任一实施例中,测距装置包括以下中的至少一种:单目测距装置、双目测距装置、激光测距装置、应用飞行时间技术的测距装置、结构光测距装置。
在该实施例中,测距装置可以包含单目测距装置、双目测距装置、激光测距装置、应用飞行时间技术的测距装置、结构光测距装置中的一种或多种,可以根据成像装置、成像对象和使用环境进行选取,当测距装置包含多种上述装置时,通过多种装置的组合使用,以提高成像对象的物距的准确性。
实施例二十一:
在本申请的一个实施例中,如图5所示,提出了一种成像装置的对焦组件500,成像装置包括对焦电机,成像装置的对焦组件500包括:控制器502;存储器504,用于存储计算机程序;控制器502执行存储在存储器504中的计算机程序以实现:根据物距确定对焦电机的对焦位置;控制对 焦电机运动至对焦位置;确定物距的变化值大于指定阈值,启动连续自动对焦模式进行对焦。
在该实施例中,通过对物距进行数据统计,当判定物距的变化值大于指定阈值,如依次获取得到的多个物距之间的数值差大于指定阈值,此时成像装置启用连续自动对焦模式,以实现对成像对象的连续对焦,为启用连续自动对焦模式提供的判定条件,进而提高了用户的使用体验。
实施例二十二:
在本申请的第三方面的实施例中,如图6所示,提出了一种成像装置600,成像装置600包括对焦电机602以及与对焦电机602相连接的对焦组件604,对焦组件604用于:根据物距确定对焦电机602的对焦位置,以及控制对焦电机602运动至对焦位置。
本申请提出的成像装置600包括对焦电机602以及与对焦电机602相连接的对焦组件604,其中,对焦组件604根据物距确定对焦电机602的对焦位置,并直接控制对焦电机602移动至对焦位置,其中,对焦位置与成像对象的物距相对应,由于对焦电机602不再需要移动到所有位置以及对每一帧图像进行对比度对比,因此提高了成像装置600的对焦速度。
可选地,对焦组件604具体用于:预先建立物距与对焦位置的映射关系,以及根据物距与对焦位置的映射关系,确定物距对应的对焦位置。
通过预先建立物距与对焦位置的映射关系,以便在获取得到成像对象的物距后,可以直接根据该映射关系以查找的方式快速确定物距所对应的对焦位置,在此过程中,无需根据成像对象的物距执行计算,因此,有效减少了计算量,提高了对焦电机602的对焦速度。
实施例二十三:
在本申请的一个实施例中,提出了一种成像装置600,成像装置600包括对焦电机602以及与对焦电机602相连接的对焦组件604,对焦组件604用于:根据物距确定对焦电机602的对焦位置,以及控制对焦电机602运动至对焦位置;以及控制对焦电机602进行合焦。
在该实施例中,在控制对焦电机602运动至对焦位置后,还控制对焦电机602进行合焦,确保了成像装置600可以得到清晰的像,避免因为成 像对象的物距测量的精度较低或者对焦电机602运动至对焦位置的过程存在偏差造成的成像不清晰等情况的出现。
实施例二十四:
在本说明书中的任一实施例中,在对焦位置是由第一位置和第二位置组成的位置区间时,对焦组件604具体用于:在位置区间内控制对焦电机602进行合焦。
在该实施例中,通过控制对焦电机602进行合焦的位置区间,避免对焦电机602在位置区间之外的位置尝试合焦,因此减少了对焦电机602在进行合焦时需要移动的距离,在确保合焦的前提下,减少了对焦电机602进行合焦时需要的时间,以实现成像装置600的快速对焦。
实施例二十五:
在本说明书中的任一实施例中,对焦组件604具体用于:根据反差对焦模式控制对焦电机602进行合焦。
在该实施例中,由于成像装置600以反差对焦模式的方式进行合焦之前,已经按照物距与对焦位置的映射关系控制对焦电机602运动至对焦位置,因此,在使用反差对焦模式进行合焦的过程中,无需确定对焦电机602的运动方向,同时对于对焦电机602移动过程所历经的位置也无需执行对比度的对比,因此,有效降低了成像装置600在对焦过程中需要的时间,提高了对焦速度。
实施例二十六:
在本说明书中的任一实施例中,如图7所示,成像装置600还包括测距装置606,测距装置606用于获取测距装置606与成像对象的距离值,对焦组件604还用于:接收测距装置606与成像对象的距离值,并根据距离值确定成像对象的物距。
在该实施例中,成像装置600包含用于测定其自身与成像对象之间距离值的测距装置606,以便成像装置600根据该距离值确定成像对象的物距,进而实现测距装置606在测定与成像对象的距离值后,根据测定的距离值进行对焦电机602的快速控制,以便实现成像装置600的快速对焦。
实施例二十七:
在本说明书中的任一实施例中,如图7所示,测距装置606为双目测距装置,双目测距装置用于获取其自身与成像对象的距离值,并将距离值发送至对焦组件604;对焦组件604还用于:获取双目测距装置与成像装置600的镜头的位置关系,根据位置关系和距离值确定物距。
在该实施例中,双目测距装置包括如包含两个摄像头,以及与两个摄像头相连接的控制装置,其中,对焦组件604与控制装置相通信,获取双目测距装置与成像装置600的镜头的位置关系,根据位置关系和距离值确定物距。
可选地,双目测距装置与成像装置600的镜头具有固定地或者可以变化的相对位置关系,当双目测距装置确定与成像对象的距离值后,根据位置关系执行位置变换可以得到成像对象的物距。
可选地,双目测距装置和镜头之间的位置关系可以预先进行标定,如利用平移矩阵和旋转矩阵进行变换将双目测距装置与成像对象的距离值转换成成像对象的物距,即成像装置600的镜头的光心与成像对象的距离值。
可选地,在将双目测距装置与成像对象的距离值转换成成像对象的物距的过程中,只应用到平移矩阵进行变换,且距离值与物距的数值相差较小时,可以将双目测距装置与成像对象的距离值作为成像对象的物距。
可选地,双目测距装置与对焦组件604之间通过有线或者无线的方式进行连接。
可选地,双目测距装置与对焦组件604之间通过服务器进行数据交互,对焦组件604通过服务器获取双目测距装置用于获取其自身与成像对象的距离值,以及双目测距装置与成像装置600的镜头的位置关系,并根据位置关系和距离值确定物距。
可选地,双目测距装置还能实现对成像对象的景深的控制,如选取相对与成像对象相对较近的位置或相对较远的位置来确定成像对象的物距。
实施例二十八:
在本说明书中的任一实施例中,如图7所示,测距装置606为激光测距装置,激光测距装置用于获取其自身与成像对象的距离值,并将距离值 发送至对焦组件604;对焦组件604还用于:获取激光测距装置与成像装置600的镜头的位置关系,根据位置关系和距离值确定物距。
在该实施例中,激光测距装置包括如包含激光发射器、与激光发射器相配合使用的激光接收器,以及分别与激光发射器和激光接收器相连接的控制装置,其中,对焦组件604与控制装置相通信,获取激光测距装置与成像装置600的镜头的位置关系,根据位置关系和距离值确定物距。
可选地,激光发射器、与激光发射器相配合使用的激光接收器集成设置。
可选地,激光测距装置与成像装置600的镜头具有固定地或者可以变化的相对位置关系,当激光测距装置确定与成像对象的距离值后,根据位置关系执行位置变换可以得到成像对象的物距。
可选地,激光测距装置和镜头之间的位置关系可以预先进行标定,如利用平移矩阵和旋转矩阵进行变换将激光测距装置与成像对象的距离值转换成成像对象的物距,即成像装置600的镜头的光心与成像对象的距离值。
可选地,在将激光测距装置与成像对象的距离值转换成成像对象的物距的过程中,只应用到平移矩阵进行变换,且距离值与物距的数值相差较小时,可以将激光测距装置与成像对象的距离值作为成像对象的物距。
可选地,激光测距装置与对焦组件604之间通过有线或者无线的方式进行连接。
可选地,激光测距装置与对焦组件604之间通过服务器进行数据交互,对焦组件604通过服务器获取激光测距装置用于获取其自身与成像对象的距离值,以及激光测距装置与成像装置600的镜头的位置关系,并根据位置关系和距离值确定物距。
可选地,通过控制激光发射器的激光具有一定的发散角,以提高激光测距装置的测距覆盖面积。
可选地,激光测距装置可以测量多重物距信息,以告知成像对象所在的区域内的多重物距信息,以方便做前后景倾向性选择。
可选地,激光测距装置为单点激光,通过调整激光测距装置的激光朝向以实现区域测距。
可选地,激光测距装置为多点激光,以实现同时对多个成像对象的距离值的同时获取,同时实现区域测距。
可选地,激光测距装置为激光雷达,通过激光雷达来获取成像对象的景深信息。当然,在其他实施例中,激光测距装置也可以为毫米波雷达等,在此不作限定。
实施例二十九:
在本说明书中的任一实施例中,如图7所示,测距装置606为应用飞行时间技术的测距装置,应用飞行时间技术的测距装置用于获取其自身与成像对象的距离值,并将距离值发送至对焦组件604;对焦组件604还用于:获取应用飞行时间技术的测距装置与成像装置600的镜头的位置关系,根据位置关系和距离值确定物距。
在该实施例中,应用飞行时间技术的测距装置包括如包含至少一个信号发射部件以及与信号发射部件相连接的控制装置,其中,对焦组件604与控制装置相通信,获取应用飞行时间技术的测距装置与成像装置600的镜头的位置关系,根据位置关系和距离值确定物距。
可选地,应用飞行时间技术的测距装置与成像装置600的镜头具有固定地或者可以变化的相对位置关系,当应用飞行时间技术的测距装置确定与成像对象的距离值后,根据位置关系执行位置变换可以得到成像对象的物距。
可选地,应用飞行时间技术的测距装置和镜头之间的位置关系可以预先进行标定,如利用平移矩阵和旋转矩阵进行变换将应用飞行时间技术的测距装置与成像对象的距离值转换成成像对象的物距,即成像装置600的镜头的光心与成像对象的距离值。
可选地,在将应用飞行时间技术的测距装置与成像对象的距离值转换成成像对象的物距的过程中,只应用到平移矩阵进行变换,且距离值与物距的数值相差较小时,可以将应用飞行时间技术的测距装置与成像对象的距离值作为成像对象的物距。
可选地,应用飞行时间技术的测距装置与对焦组件604之间通过有线或者无线的方式进行连接。
可选地,应用飞行时间技术的测距装置与对焦组件604之间通过服务器进行数据交互,对焦组件604通过服务器获取应用飞行时间技术的测距装置用于获取其自身与成像对象的距离值,以及应用飞行时间技术的测距装置与成像装置600的镜头的位置关系,并根据位置关系和距离值确定物距。
实施例三十:
在本说明书中的任一实施例中,如图7所示,测距装置606为结构光测距装置,结构光测距装置用于获取其自身与成像对象的距离值,并将距离值发送至对焦组件604;对焦组件604还用于:获取结构光测距装置与成像装置600的镜头的位置关系,根据位置关系和距离值确定物距。
在该实施例中,结构光测距装置包括如包含至少一个信号发射部件以及与信号发射部件相连接的控制装置,其中,对焦组件604与控制装置相通信,获取结构光测距装置与成像装置600的镜头的位置关系,根据位置关系和距离值确定物距。
可选地,结构光测距装置与成像装置600的镜头具有固定地或者可以变化的相对位置关系,当结构光测距装置确定与成像对象的距离值后,根据位置关系执行位置变换可以得到成像对象的物距。
可选地,结构光测距装置和镜头之间的位置关系可以预先进行标定,如利用平移矩阵和旋转矩阵进行变换将结构光测距装置与成像对象的距离值转换成成像对象的物距,即成像装置600的镜头的光心与成像对象的距离值。
可选地,在将结构光测距装置与成像对象的距离值转换成成像对象的物距的过程中,只应用到平移矩阵进行变换,且距离值与物距的数值相差较小时,可以将结构光测距装置与成像对象的距离值作为成像对象的物距。
可选地,结构光测距装置与对焦组件604之间通过有线或者无线的方式进行连接。
可选地,结构光测距装置与对焦组件604之间通过服务器进行数据交互,对焦组件604通过服务器获取结构光测距装置用于获取其自身与成像对象的距离值,以及结构光测距装置与成像装置600的镜头的位置关系, 并根据位置关系和距离值确定物距。
实施例三十一:
在上述实施例中,对焦组件604还用于:确定结构光测距装置与成像装置600的镜头设置在不同的云台上且结构光测距装置的覆盖区域不满足设定区域范围,驱动结构光测距装置所对在的云台转动。
在该实施例中,结构光测距装置与成像装置600的镜头设置在不同的云台上,在检测到结构光测距装置的覆盖区域不满足设定区域范围,驱动结构光测距装置所对在的云台转动以增大或者调整结构光测距装置的覆盖区域,以实现结构光测距装置可以覆盖成像装置600的镜头的画面区域,以便对焦组件604控制对焦电机602进行快速对焦。
实施例三十二:
在本说明书中的任一实施例中,成像装置600的镜头的视野中包含至少一个对焦区域,对焦组件604还用于:根据距离值确定至少一个对焦区域的物距。
在该实施例中,当成像装置600的镜头的视野中包含至少一个对焦区域的情况下,可以通过距离值来确定至少一个对焦区域下成像对象的物距,以便成像装置600可以根据对焦区域对成像对象进行成像,由于对焦区域分布在成像装置600的视野中,因此,用户可以根据需要选择对应的对焦区域进行成像,便于在成像过程进行构图。在一种实施例中,可以对单一的对焦区域进行对焦,也可以对多个对焦区域进行对焦。
可选地,成像装置600还具有用于接收用户的控制指令的指令接收装置,其中,指令接收装置用于选取对焦区域,以便对焦组件604在确定用户选择的对焦区域后,确定对焦区域下成像对象的物距,以实现用户手动调整。
可选地,指令接收装置是设置在成像装置600的上的物理按键或触控屏,对焦区域的选取可以通过该触控屏进行显示。
可选地,成像装置600与服务器相连接,用户通过服务器中对成像装置600的设置参数来选取对焦区域,可选地,通过与服务器进行交互的移动终端来调整或选取对焦区域。
可选地,移动终端包括但不限于遥控器、手提电脑、手机、平板等。
实施例三十三:
在本说明书中的任一实施例中,对焦组件604还用于:获取成像装置600的镜头的第一视野信息以及测距装置的第二视野信息;确定第二视野信息包含第一视野信息,执行控制对焦电机602运动至对焦位置的步骤。
在该实施例中,通过判断测距装置的第二视野信息是否包含成像装置600的镜头的第一视野信息,以便成像装置600可以根据测距装置来测定成像对象的距离值,进而确定成像对象的物距,实现成像装置600的快速对焦。
可选地,第一视野信息也可以包含第二视野信息,此时,测距装置只能对第一视野信息中所包含的第二视野信息进行对焦。
可选地,第一视野信息和第二视野信息中包含成像对象的部分轮廓或整体轮廓。
可选地,第一视野信息和第二视野信息还包括极限角度等,其中,对焦组件604可以通过控制成像装置600的镜头中镜片的相对位置和/或测距装置的控制参数对第一视野信息和第二视野信息进行调整。
实施例三十四:
在本说明书中的任一实施例中,测距装置606与成像装置600的镜头设置在同一个云台上或测距装置606与成像装置600的镜头设置在不同的云台上。
在该实施例中,测距装置606与成像装置600的镜头设置在同一个云台上或测距装置606与成像装置600的镜头设置在不同的云台上,以符合实际设置需求,如降低成像装置600的体积。
可选地,测距装置606设置在成像装置600的镜头所在的云台上,进一步地,在成像装置600的镜头的一侧,以减少在成像对象的物距计算过程中由于测距装置606与成像装置600的镜头设置在不同的云台上所产生的计算量,进而降低计算时间。
可选地,测距装置606和成像装置600的镜头分别设置在不同的云台上,以便对测距装置606和成像装置600的镜头所在的空间进行设计,以 满足实际场景的安装需要,如根据安装需要将成像装置600的镜头设置在飞行器的翼下,而测距装置606设置在飞行器的头部位置。
实施例三十五:
在本说明书中的任一实施例中,对焦组件604还用于:确定物距的变化值大于指定阈值,启动连续自动对焦模式进行对焦。
在该实施例中,通过对物距进行数据统计,当判定物距的变化值大于指定阈值,如依次获取得到的多个物距之间的数值差大于指定阈值,此时成像装置600启用连续自动对焦模式,以实现对成像对象的连续对焦,为启用连续自动对焦模式提供的判定条件,进而提高了用户的使用体验。
实施例三十六:
在本申请第四方面的实施例中,提出了一种可移动物体,包括:上述任一项的成像装置。
其中,可移动物体包括但不限于无人飞行器、无人车或者移动机器人等。
可选地,移动机器人包括但不局限于扫地机器人、保姆机器人和喷涂机器人,还可以包括基于视觉抓取的机器人。
可选地,可移动物体还包括:机身和动力装置,其中,动力装置能够驱动可移动物体的机身进行移动或相对转动,以带动设置在机身上的成像装置移动,通过搭载上述任一项的成像装置,可移动物体在执行拍照、摄像等任务时,可以实现快速对焦,进而完成拍照和摄像任务,以确保拍照和摄像所得到的图像清晰。
可选地,可移动物体包括可移动物体本体和对其进行控制的遥控装置,其中,成像装置中的对焦组件和对焦电机设置在可移动物体本体上,测距装置可以设置在可移动物体本体上,或者固定设置在相对于大地固定设置。
可选地,成像装置的测距装置设置在可移动物体本体上,成像装置中的对焦组件和对焦电机固定设置在相对于大地固定设置。
可选地,可移动物体还包括用于对其进行控制的遥控装置,成像装置的测距装置设置在遥控装置上,成像装置中的对焦组件和对焦电机设置在可移动物体本体上。
可选地,可移动物体本体和对其进行控制的遥控装置通过有线或无线进行数据交互。
可选地,可移动物体本体和对其进行控制的遥控装置通过服务器进行交互。
实施例三十七:
在本申请第五方面的实施例中,提出了一种计算机可读存储介质,其上存储有计算机程序,计算机程序被处理器执行时实现如上述任一项的成像装置的对焦方法的步骤。
其中,计算机可读存储介质包括但不限于磁盘存储器、CD-ROM、光学存储器等。
在本说明书的描述中,术语“第一”、“第二”仅用于描述的目的,而不能理解为指示或暗示相对重要性,除非另有明确的规定和限定;术语“连接”、“安装”、“固定”等均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (39)

  1. 一种成像装置的对焦方法,其特征在于,所述成像装置包括对焦电机,所述成像装置的对焦方法包括:
    获取成像对象的物距;
    根据所述物距确定所述对焦电机的对焦位置;
    控制所述对焦电机运动至所述对焦位置。
  2. 根据权利要求1所述的成像装置的对焦方法,其特征在于,还包括:
    预先建立所述物距与所述对焦位置的映射关系;
    所述根据所述物距确定所述对焦电机的对焦位置的步骤,具体包括:
    根据所述物距与所述对焦位置的所述映射关系,确定所述物距对应的所述对焦位置。
  3. 根据权利要求1所述的成像装置的对焦方法,其特征在于,所述控制所述对焦电机运动至所述对焦位置的步骤之后,还包括:
    控制所述对焦电机进行合焦。
  4. 根据权利要求1所述的成像装置的对焦方法,其特征在于,在所述对焦位置是由第一位置和第二位置组成的位置区间时,所述控制所述对焦电机进行合焦的步骤,具体包括:
    在所述位置区间内控制所述对焦电机进行合焦。
  5. 根据权利要求3或4所述的成像装置的对焦方法,其特征在于,所述控制所述对焦电机进行合焦的步骤,具体包括:
    根据反差对焦模式控制所述对焦电机进行合焦。
  6. 根据权利要求1所述的成像装置的对焦方法,其特征在于,所述成像装置还包括测距装置,所述测距装置用于获取所述测距装置与成像对象的距离值,所述获取所述成像对象的物距的步骤,具体包括:
    接收所述测距装置与所述成像对象的距离值,并根据所述距离值确定所述成像对象的物距。
  7. 根据权利要求6所述的成像装置的对焦方法,其特征在于,所述成像装置的视野中包含至少一个对焦区域;
    所述确定所述物距的步骤,具体包括:
    根据所述距离值确定所述至少一个对焦区域下所述成像对象的物距。
  8. 根据权利要求6所述的成像装置的对焦方法,其特征在于,所述根据所述距离值确定所述物距的步骤,具体包括:
    确定所述测距装置与所述成像装置的镜头的位置关系;
    根据所述位置关系和所述距离值确定所述物距。
  9. 根据权利要求6所述的成像装置的对焦方法,其特征在于,成像装置的对焦方法还包括:
    获取所述成像装置的镜头的第一视野信息以及所述测距装置的第二视野信息;
    确定所述第二视野信息包含所述第一视野信息,执行所述控制所述对焦电机运动至所述对焦位置的步骤。
  10. 根据权利要求6所述的成像装置的对焦方法,其特征在于,所述测距装置包括以下中的至少一种:单目测距装置、双目测距装置、激光测距装置、应用飞行时间技术的测距装置、结构光测距装置。
  11. 根据权利要求1至4中任一项所述的成像装置的对焦方法,其特征在于,成像装置的对焦方法还包括:
    确定所述物距的变化值大于指定阈值,启动连续自动对焦模式进行对焦。
  12. 一种成像装置的对焦组件,其特征在于,所述成像装置包括对焦电机,所述对焦组件包括:
    控制器;
    存储器,用于存储计算机程序;
    所述控制器执行存储在所述存储器中的计算机程序以实现:根据物距确定所述对焦电机的对焦位置;
    控制所述对焦电机运动至所述对焦位置。
  13. 根据权利要求12所述的成像装置的对焦组件,其特征在于,所述控制器执行存储在所述存储器中的计算机程序以实现:
    预先建立所述物距与所述对焦位置的映射关系,以及根据所述物距与 所述对焦位置的所述映射关系,确定所述物距对应的所述对焦位置。
  14. 根据权利要求12所述的成像装置的对焦组件,其特征在于,所述控制器执行存储在所述存储器中的计算机程序以实现:
    在所述控制所述对焦电机运动至所述对焦位置步骤之后,控制所述对焦电机进行合焦。
  15. 根据权利要求12所述的成像装置的对焦组件,其特征在于,在所述对焦位置是由第一位置和第二位置组成的位置区间时,所述控制器执行存储在所述存储器中的计算机程序以实现:
    在所述位置区间内控制所述对焦电机进行合焦。
  16. 根据权利要求14或15所述的成像装置的对焦组件,其特征在于,所述控制器执行存储在所述存储器中的计算机程序以实现:
    根据反差对焦模式控制所述对焦电机进行合焦。
  17. 根据权利要求12所述的成像装置的对焦组件,其特征在于,所述成像装置还包括测距装置,所述测距装置用于获取所述测距装置与成像对象的距离值,所述控制器执行存储在所述存储器中的计算机程序以实现:
    接收所述测距装置与成像对象的距离值,并根据所述距离值确定所述成像对象的物距。
  18. 根据权利要求17所述的成像装置的对焦组件,其特征在于,所述成像装置的视野中包含至少一个对焦区域,所述控制器执行存储在所述存储器中的计算机程序以实现:
    根据所述距离值确定所述至少一个对焦区域下所述成像对象的物距。
  19. 根据权利要求17所述的成像装置的对焦组件,其特征在于,所述控制器执行存储在所述存储器中的计算机程序以实现:
    确定所述测距装置与所述成像装置的镜头的位置关系;
    根据所述位置关系和所述距离值确定所述物距。
  20. 根据权利要求17所述的成像装置的对焦组件,其特征在于,所述控制器执行存储在所述存储器中的计算机程序以实现:
    获取所述成像装置的镜头的第一视野信息以及所述测距装置的第二视野信息;
    确定所述第二视野信息包含所述第一视野信息,执行所述控制所述对焦电机运动至所述对焦位置的步骤。
  21. 根据权利要求17所述的成像装置的对焦组件,其特征在于,所述测距装置包括以下中的至少一种:单目测距装置、双目测距装置、激光测距装置、应用飞行时间技术的测距装置、结构光测距装置。
  22. 根据权利要求12至15中任一项所述的成像装置的对焦组件,其特征在于,所述控制器执行存储在所述存储器中的计算机程序以实现:
    确定所述物距的变化值大于指定阈值,启动连续自动对焦模式进行对焦。
  23. 一种成像装置,其特征在于,所述成像装置包括对焦电机以及与所述对焦电机相连接的对焦组件,
    所述对焦组件用于:根据物距确定所述对焦电机的对焦位置,以及控制所述对焦电机运动至所述对焦位置。
  24. 根据权利要求23所述的成像装置,其特征在于,所述对焦组件具体用于:
    预先建立所述物距与所述对焦位置的映射关系,以及根据所述物距与所述对焦位置的所述映射关系,确定所述物距对应的所述对焦位置。
  25. 根据权利要求23所述的成像装置,其特征在于,所述对焦组件还用于:
    控制所述对焦电机进行合焦。
  26. 根据权利要求23所述的成像装置,其特征在于,在所述对焦位置是由第一位置和第二位置组成的位置区间时,所述对焦组件具体用于:
    在所述位置区间内控制所述对焦电机进行合焦。
  27. 根据权利要求25或26所述的成像装置,其特征在于,所述对焦组件具体用于:
    根据反差对焦模式控制所述对焦电机进行合焦。
  28. 根据权利要求23所述的成像装置,其特征在于,所述成像装置还包括测距装置,所述测距装置用于获取所述测距装置与成像对象的距离值,所述对焦组件还用于:
    接收所述测距装置与所述成像对象的距离值,并根据所述距离值确定所述成像对象的物距。
  29. 根据权利要求28所述的成像装置,其特征在于,所述测距装置为双目测距装置,所述双目测距装置用于获取其自身与成像对象的距离值,并将所述距离值发送至所述对焦组件;
    所述对焦组件还用于:
    获取所述双目测距装置与所述成像装置的镜头的位置关系,根据所述位置关系和所述距离值确定所述物距。
  30. 根据权利要求28所述的成像装置,其特征在于,所述测距装置为激光测距装置,所述激光测距装置用于获取其自身与成像对象的距离值,并将所述距离值发送至所述对焦组件;
    所述对焦组件还用于:
    获取所述激光测距装置与所述成像装置的镜头的位置关系,根据所述位置关系和所述距离值确定所述物距。
  31. 根据权利要求28所述的成像装置,其特征在于,所述测距装置为应用飞行时间技术的测距装置,所述应用飞行时间技术的测距装置用于获取其自身与成像对象的距离值,并将所述距离值发送至所述对焦组件;
    所述对焦组件还用于:
    获取所述应用飞行时间技术的测距装置与所述成像装置的镜头的位置关系,根据所述位置关系和所述距离值确定所述物距。
  32. 根据权利要求28所述的成像装置,其特征在于,所述测距装置为结构光测距装置,所述结构光测距装置用于获取其自身与成像对象的距离值,并将所述距离值发送至所述对焦组件;
    所述对焦组件还用于:
    获取所述结构光测距装置与所述成像装置的镜头的位置关系,根据所述位置关系和所述距离值确定所述物距。
  33. 根据权利要求32所述的成像装置,其特征在于,所述对焦组件还用于:
    确定所述结构光测距装置与所述成像装置的镜头设置在不同的云台上 且所述结构光测距装置的覆盖区域不满足设定区域范围,驱动所述结构光测距装置所对在的云台转动。
  34. 根据权利要求28至32中任一项所述的成像装置,其特征在于,所述成像装置的镜头的视野中包含至少一个对焦区域,所述对焦组件还用于:根据所述距离值确定所述至少一个对焦区域的物距。
  35. 根据权利要求28所述的成像装置,其特征在于,所述对焦组件还用于:
    获取所述成像装置的镜头的第一视野信息以及所述测距装置的第二视野信息;
    确定所述第二视野信息包含所述第一视野信息,执行所述控制所述对焦电机运动至所述对焦位置的步骤。
  36. 根据权利要求28所述的成像装置,其特征在于,所述测距装置与所述成像装置的镜头设置在同一个云台上或所述测距装置与所述成像装置的镜头设置在不同的云台上。
  37. 根据权利要求23至26中任一项所述的成像装置,其特征在于,所述对焦组件还用于:
    确定所述物距的变化值大于指定阈值,启动连续自动对焦模式进行对焦。
  38. 一种可移动物体,其特征在于,所述可移动物体包括:
    权利要求23至37中任一项所述的成像装置。
  39. 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现权利要求1至11中任一项所述的成像装置的对焦方法的步骤。
PCT/CN2019/103759 2019-08-30 2019-08-30 成像装置的对焦方法、组件、成像装置和可移动物体 WO2021035704A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2019/103759 WO2021035704A1 (zh) 2019-08-30 2019-08-30 成像装置的对焦方法、组件、成像装置和可移动物体
CN201980030107.1A CN112136310A (zh) 2019-08-30 2019-08-30 成像装置的对焦方法、组件、成像装置和可移动物体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/103759 WO2021035704A1 (zh) 2019-08-30 2019-08-30 成像装置的对焦方法、组件、成像装置和可移动物体

Publications (1)

Publication Number Publication Date
WO2021035704A1 true WO2021035704A1 (zh) 2021-03-04

Family

ID=73849170

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103759 WO2021035704A1 (zh) 2019-08-30 2019-08-30 成像装置的对焦方法、组件、成像装置和可移动物体

Country Status (2)

Country Link
CN (1) CN112136310A (zh)
WO (1) WO2021035704A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023072030A1 (zh) * 2021-11-01 2023-05-04 中兴通讯股份有限公司 镜头自动对焦方法及装置、电子设备和计算机可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022213339A1 (zh) * 2021-04-09 2022-10-13 深圳市大疆创新科技有限公司 对焦方法、拍摄设备、拍摄系统以及可读存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422673A (en) * 1992-06-10 1995-06-06 Sony Corporation Video camera with automatic focus control
CN104469169A (zh) * 2014-12-29 2015-03-25 信利光电股份有限公司 相位测距摄像模组及其自动对焦方法
CN104469168A (zh) * 2014-12-29 2015-03-25 信利光电股份有限公司 摄像模组及其自动对焦方法
CN105100617A (zh) * 2015-07-28 2015-11-25 深圳市万普拉斯科技有限公司 成像设备的对焦控制方法和成像装置
CN105629630A (zh) * 2016-02-29 2016-06-01 广东欧珀移动通信有限公司 控制方法、控制装置及电子装置
CN105657279A (zh) * 2016-02-29 2016-06-08 广东欧珀移动通信有限公司 控制方法、控制装置及电子装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4544282B2 (ja) * 2007-09-14 2010-09-15 ソニー株式会社 データ処理装置、およびデータ処理方法、並びにプログラム
JP2010097211A (ja) * 2008-09-17 2010-04-30 Ricoh Co Ltd 撮像装置および撮影位置設定方法
CN107370936B (zh) * 2016-05-12 2020-09-25 青岛海信宽带多媒体技术有限公司 变焦方法及变焦装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5422673A (en) * 1992-06-10 1995-06-06 Sony Corporation Video camera with automatic focus control
CN104469169A (zh) * 2014-12-29 2015-03-25 信利光电股份有限公司 相位测距摄像模组及其自动对焦方法
CN104469168A (zh) * 2014-12-29 2015-03-25 信利光电股份有限公司 摄像模组及其自动对焦方法
CN105100617A (zh) * 2015-07-28 2015-11-25 深圳市万普拉斯科技有限公司 成像设备的对焦控制方法和成像装置
CN105629630A (zh) * 2016-02-29 2016-06-01 广东欧珀移动通信有限公司 控制方法、控制装置及电子装置
CN105657279A (zh) * 2016-02-29 2016-06-08 广东欧珀移动通信有限公司 控制方法、控制装置及电子装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023072030A1 (zh) * 2021-11-01 2023-05-04 中兴通讯股份有限公司 镜头自动对焦方法及装置、电子设备和计算机可读存储介质

Also Published As

Publication number Publication date
CN112136310A (zh) 2020-12-25

Similar Documents

Publication Publication Date Title
WO2019114617A1 (zh) 快速抓拍的方法、装置及系统
US10572143B2 (en) Imaging system and imaging control method with pan/tilt control
TWI643017B (zh) 多鏡頭系統、其工作方法及可攜式電子裝置
WO2017181511A1 (zh) 终端设备和无人驾驶飞行器的控制系统
US9479703B2 (en) Automatic object viewing methods and apparatus
CN110754080B (zh) 图像获取方法、成像装置及拍摄系统
CN109120883B (zh) 基于远近景的视频监控方法、装置及计算机可读存储介质
WO2020042581A1 (zh) 一种图像获取设备的对焦方法及装置
US7365790B2 (en) Autofocus system for an image capturing apparatus
JP2023509137A (ja) パノラマ3次元画像をキャプチャ及び生成するシステム及び方法
WO2020062505A1 (zh) 相机和无人机
WO2021035704A1 (zh) 成像装置的对焦方法、组件、成像装置和可移动物体
CN105635555A (zh) 摄像头聚焦控制方法、摄像设备和可穿戴式智能终端
GB2482290A (en) Autofocus method using tilted focal plane
WO2017117749A1 (zh) 基于多种测距方式的跟焦系统、方法及拍摄系统
CN112637479B (zh) 控制设备、摄像设备、控制方法和存储介质
CN110784653A (zh) 基于飞行时间的动态对焦方法及其摄像装置
WO2020233682A1 (zh) 一种自主环绕拍摄方法、装置以及无人机
CN102016710B (zh) 摄像装置和用于控制摄像装置的方法
KR20220023237A (ko) 이동 물체를 고속으로 추적하고 예측하여 고품질의 영상을 지속적으로 제공하는 카메라의 고속 줌과 포커싱을 위한 장치 및 이를 이용한 카메라의 고속 줌과 포커싱 방법
WO2021184239A1 (zh) 曝光方法、装置、拍摄设备、可移动平台和存储介质
WO2022151473A1 (zh) 拍摄控制方法、拍摄控制装置及云台组件
CN107462967B (zh) 一种激光测距的定焦方法和系统
WO2022193081A1 (zh) 无人机的控制方法、装置及无人机
JP2021534679A (ja) 画像取得装置の制御方法及び装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943321

Country of ref document: EP

Kind code of ref document: A1