WO2020062363A1 - Method for fabricating semiconductor optoelectronic device - Google Patents

Method for fabricating semiconductor optoelectronic device Download PDF

Info

Publication number
WO2020062363A1
WO2020062363A1 PCT/CN2018/111050 CN2018111050W WO2020062363A1 WO 2020062363 A1 WO2020062363 A1 WO 2020062363A1 CN 2018111050 W CN2018111050 W CN 2018111050W WO 2020062363 A1 WO2020062363 A1 WO 2020062363A1
Authority
WO
WIPO (PCT)
Prior art keywords
type layer
manufacturing
optoelectronic device
region
ion implantation
Prior art date
Application number
PCT/CN2018/111050
Other languages
French (fr)
Chinese (zh)
Inventor
张晓东
林文魁
张宝顺
Original Assignee
中国科学院苏州纳米技术与纳米仿生研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院苏州纳米技术与纳米仿生研究所 filed Critical 中国科学院苏州纳米技术与纳米仿生研究所
Publication of WO2020062363A1 publication Critical patent/WO2020062363A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0095Post-treatment of devices, e.g. annealing, recrystallisation or short-circuit elimination
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Abstract

A method for fabricating a semiconductor optoelectronic device, the fabricating method comprising a step of growing and forming an optoelectronic device structure on a substrate, the optoelectronic device structure comprising an N-type layer, an active zone light-emitting layer, and a P-type layer; and further comprising: providing a mask on the optoelectronic device structure, and using the mask to perform ion implantation on any one or more among the N-type layer, the active zone light-emitting layer, and the P-type layer, thereby regulating the area and/or shape of a light-exiting region of the optoelectronic device structure. The present fabricating method may take increasing the effective usage area of a chip, lowering the damage effect to a sidewall of a material, eliminating the problem of optical crosstalk of a device, and improving the light-emitting efficiency of the device into consideration; moreover, the space between high impedance isolation regions (1, 3) may be precisely regulated in practical production by means of changing the size of a mask, thereby flexibly defining the characteristic size of a chip so as to prepare devices having a size of several microns to several hundred microns.

Description

半导体光电子器件的制作方法Manufacturing method of semiconductor optoelectronic device 技术领域Technical field
本申请特别涉及一种半导体光电子器件的制作方法,属于半导体器件制备技术领域。The present application particularly relates to a method for manufacturing a semiconductor optoelectronic device, and belongs to the technical field of semiconductor device manufacturing.
背景技术Background technique
半导体光电子器件领域中的发光二极管微缩化和矩阵化技术(Micro-LED)是指集成在同一个芯片上、点间距低至微米量级的高密度小尺寸LED阵列显示技术,即是将可单独驱动点亮的定址LED作为独立控制的红、绿和蓝色子像素,形成具有高速、高对比度和宽视角特性的显示系统。相比于LCD和OLED显示技术,Micro-LED具有材料性质稳定、解析度与色彩饱和度高、响应时间短、无影像烙印、光学系统简单、功耗低、耐用性强等优点,因此,Micro-LED势必会发展成为新一代显示技术。The light-emitting diode miniaturization and matrix technology (Micro-LED) in the field of semiconductor optoelectronic devices refers to high-density and small-size LED array display technologies integrated on the same chip with a dot pitch as low as micrometers. The lighted address LEDs are driven as independently controlled red, green and blue sub-pixels to form a display system with high speed, high contrast and wide viewing angle characteristics. Compared with LCD and OLED display technology, Micro-LED has the advantages of stable material properties, high resolution and color saturation, short response time, no image burn-in, simple optical system, low power consumption, and strong durability. Therefore, Micro-LED -LED is bound to develop into a new generation of display technology.
目前,Micro-LED主流技术路线是利用微缩制程技术将传统毫米级LED芯片微缩制备成数十微米甚至更小尺寸的微型LED芯片,然后结合巨量并行转移技术(Massively parallel transfer)或者单片阵列集成技术(Arrays monolithic integration)实现RGB全彩色图像显示。通常,微缩制程工艺中的干法刻蚀(RIE、ECR、ICP)造成的侧壁刻蚀损伤会严重制约Micro-LED的芯片性能,高能刻蚀粒子会轰击材料晶格并在材料表面形成缺陷悬挂键,同时刻蚀粒子还会注入到材料内部,所导致的侧壁损伤效应会向芯片内部延伸数μm的距离,极大降低了Micro-LED器件的可使用面积,例如:侧壁损伤效应导致5μmx5μm Micro-LED的可用面积仅约为芯片总尺寸的4%。同时,芯片侧壁损伤缺陷会在材料内部形成充当非辐射复合中心的深能级,大大增加器件非辐射复合速率,使得Micro-LED的峰值发光效率通常低于10%,这导致数十微米量级的Micro-LED目前尚不具备低功耗优势。另外,随着Micro-LED器件尺寸和相邻间距的降低,横向的光束扩展会造成相邻器件之间严重的光串扰问题,极大的影响了Micro-LED器件的色彩均匀性和解析度,导致色彩失真。At present, the mainstream technology route of Micro-LED is to use micro-fabrication process technology to micro-fabricate traditional millimeter-level LED chips into miniature LED chips of tens of micrometers or smaller, and then combine Massively parallel transfer technology or monolithic arrays. Integrated technology (Arrays, monolithic integration) realizes RGB full color image display. Generally, sidewall etching damage caused by dry etching (RIE, ECR, ICP) in the microfabrication process will severely restrict the chip performance of Micro-LEDs, and high-energy etching particles will bombard the material lattice and form defects on the material surface. The dangling bond, and at the same time, the etching particles will be injected into the material. The side wall damage effect will extend a few μm into the chip, which greatly reduces the usable area of the Micro-LED device, such as the side wall damage effect. As a result, the usable area of 5μm × 5μm Micro-LED is only about 4% of the total chip size. At the same time, chip sidewall damage defects will form deep energy levels that act as non-radiative recombination centers inside the material, greatly increasing the non-radiative recombination rate of the device, making the peak luminous efficiency of Micro-LEDs generally lower than 10%, which results in tens of microns Micro-LEDs do not yet have the advantage of low power consumption. In addition, with the reduction of the size and adjacent pitch of Micro-LED devices, the lateral beam expansion will cause serious optical crosstalk between adjacent devices, which will greatly affect the color uniformity and resolution of Micro-LED devices. Causes color distortion.
现有的Micro-LED芯片结构及其制造技术仍然不能使Micro-LED达到商用化的要求。因此,针对Micro-LED制备过程中的侧壁损伤效应以及器件光串扰问题,本申请提出一种通过离子注入实现Micro-LED的新型制备方法。The existing Micro-LED chip structure and its manufacturing technology still cannot make Micro-LED meet the requirements of commercialization. Therefore, in order to address the problem of sidewall damage and device light crosstalk during the preparation of Micro-LEDs, this application proposes a new method for manufacturing Micro-LEDs by ion implantation.
发明内容Summary of the Invention
针对Micro-LED材料侧壁损伤效应和器件光串扰的实际问题,本申请的主要目的在于提供一种半导体光电子器件的制作方法,以克服现有技术的不足。Aiming at the practical problems of the damage effect of the side wall of the Micro-LED material and the optical crosstalk of the device, the main purpose of this application is to provide a method for manufacturing a semiconductor optoelectronic device to overcome the shortcomings of the prior art.
为实现前述发明目的,本申请采用的技术方案包括:In order to achieve the foregoing invention objectives, the technical solutions used in this application include:
本申请实施例提供了一种半导体光电子器件的制作方法,包括在衬底上生长形成光电子器件结构的步骤,所述光电子器件结构包括N型层、有源区发光层及P型层;以及还包括:在所述光电子器件结构上设置掩模,并利用所述掩模对所述N型层、有源区发光层及P型层中的任一者或多种进行离子注入,从而调控所述光电子器件结构的出光区域的面积和/或形状。An embodiment of the present application provides a method for manufacturing a semiconductor optoelectronic device, including a step of growing an optoelectronic device structure on a substrate, the optoelectronic device structure including an N-type layer, an active region light-emitting layer, and a P-type layer; and The method includes: setting a mask on the optoelectronic device structure, and using the mask to perform ion implantation on any one or more of the N-type layer, the active region light-emitting layer, and the P-type layer, so as to regulate the The area and / or shape of the light emitting area of the optoelectronic device structure.
与现有技术相比,本申请提供的半导体光电子器件的制作方法,工艺简单可靠、与现有工艺技术兼容,能够兼顾到提高芯片有效使用面积、降低材料侧壁损伤效应、消除器件光串扰问题、提升器件发光效率等;在实际生产中通过改变掩膜尺寸可以精确调节高阻态隔离区域的间距,从而灵活定义芯片的特征尺寸,实现数微米至数百微米尺寸的器件制备。Compared with the prior art, the method for manufacturing a semiconductor optoelectronic device provided by this application has a simple and reliable process and is compatible with the existing process technology. It can take into account the improvement of the effective use area of the chip, the reduction of the side wall damage effect of the material, and the elimination of optical crosstalk of the device. In order to improve the luminous efficiency of the device, the pitch of the high-resistance isolation region can be precisely adjusted by changing the mask size in actual production, so as to flexibly define the characteristic size of the chip and realize device preparation with a size of several micrometers to hundreds of micrometers.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本申请实施例1中一种半导体光电子器件的制作方法中离子注入区域的分布示意图;FIG. 1 is a schematic diagram of a distribution of ion implantation regions in a method for manufacturing a semiconductor optoelectronic device in Embodiment 1 of the present application; FIG.
图2是本申请实施例1中一种半导体光电子器件的制作方法步骤二中形成的器件结构示意图FIG. 2 is a schematic diagram of a device structure formed in step 2 of a method for manufacturing a semiconductor optoelectronic device in Embodiment 1 of the present application
图3是本申请实施例1中一种半导体光电子器件的制作方法步骤四中形成的器件结构示意图3 is a schematic diagram of a device structure formed in step 4 of a method for manufacturing a semiconductor optoelectronic device in Embodiment 1 of the present application
图4是本申请实施例1中一种半导体光电子器件的制作方法步骤五中形成的器件结构示意图4 is a schematic diagram of a device structure formed in step 5 of a method for manufacturing a semiconductor optoelectronic device in Embodiment 1 of the present application
图5是本申请实施例1中制作形成的半导体光电子器件的结构示意图;5 is a schematic structural diagram of a semiconductor optoelectronic device manufactured and formed in Embodiment 1 of the present application;
图6是本申请实施例2中一种半导体光电子器件的制作方法中离子注入区域的分布示意图;6 is a schematic diagram showing a distribution of ion implantation regions in a method for manufacturing a semiconductor optoelectronic device in Embodiment 2 of the present application;
图7是本申请实施例2中制作形成的半导体光电子器件的结构示意图;7 is a schematic structural diagram of a semiconductor optoelectronic device fabricated and formed in Embodiment 2 of the present application;
图8是本申请实施例3中一种半导体光电子器件的制作方法中离子注入区域的分布示意图;8 is a schematic diagram of a distribution of ion implantation regions in a method for manufacturing a semiconductor optoelectronic device in Embodiment 3 of the present application;
图9是本申请实施例3中制作形成的半导体光电子器件的结构示意图;FIG. 9 is a schematic structural diagram of a semiconductor optoelectronic device manufactured and formed in Embodiment 3 of the present application; FIG.
图10是本申请实施例4中一种半导体光电子器件的制作方法中离子注入区域的分布示意图;10 is a schematic diagram showing a distribution of ion implantation regions in a method for manufacturing a semiconductor optoelectronic device in Embodiment 4 of the present application;
图11是本申请实施例4中一种半导体光电子器件的制作方法中离子注入区域的分布示意图;11 is a schematic diagram showing a distribution of ion implantation regions in a method for manufacturing a semiconductor optoelectronic device in Embodiment 4 of the present application;
图12是本申请实施例4中制作形成的半导体光电子器件的结构示意图。FIG. 12 is a schematic structural diagram of a semiconductor optoelectronic device manufactured and formed in Embodiment 4 of the present application.
具体实施方式detailed description
鉴于现有技术中的不足,本案发明人经长期研究和大量实践,得以提出本申请的技术方案。如下将对该技术方案、其实施过程及原理等作进一步的解释说明。In view of the shortcomings in the prior art, the inventor of the present case was able to propose the technical solution of the present application through long-term research and a lot of practice. The technical scheme, its implementation process and principle will be further explained as follows.
本申请实施例提供了一种半导体光电子器件的制作方法,包括在衬底上生长形成光电子器件结构的步骤,所述光电子器件结构包括N型层、有源区发光层及P型层;以及还包括:在所述光电子器件结构上设置掩模,并利用所述掩模对所述N型层、有源区发光层及P型层中的任一者或多种进行离子注入,从而调控所述光电子器件结构的出光区域的面积和/或形状。An embodiment of the present application provides a method for manufacturing a semiconductor optoelectronic device, including a step of growing an optoelectronic device structure on a substrate, the optoelectronic device structure including an N-type layer, an active region light-emitting layer, and a P-type layer; and The method includes: setting a mask on the optoelectronic device structure, and using the mask to perform ion implantation on any one or more of the N-type layer, the active region light-emitting layer, and the P-type layer, so as to regulate the The area and / or shape of the light emitting area of the optoelectronic device structure.
进一步的,所述的制作方法包括:在所述离子注入过程中,至少通过独立调节注入离子的能量和/或剂量以控制离子注入区域的深度和宽度。Further, the manufacturing method includes: during the ion implantation, at least independently adjusting the energy and / or dose of the implanted ions to control the depth and width of the ion implantation region.
进一步的,所述的制作方法包括:在所述离子注入过程中,使所述光电子器件结构上与注入离子接触的部分或全部区域形成高阻态的注入隔离区域,所述注入隔离区域合围形成所述的出光区域。Further, the manufacturing method includes: during the ion implantation, forming a part or all of the region of the optoelectronic device structure that is in contact with the implanted ions to form a high-resistance implantation isolation region, and the implantation isolation region surrounds and forms The light emitting area.
在一些较为具体的实施方案中,所述注入隔离区域包括第一隔离注入区域和第二注入隔离区域,所述第一注入隔离区域连续贯穿所述P型层及有源区发光层并到达N型层,所述第二注入隔离区域连续贯穿所述P型层、有源区发光层及N型层。In some more specific embodiments, the implantation isolation region includes a first isolation implantation region and a second implantation isolation region, and the first implantation isolation region continuously penetrates the P-type layer and the active region light-emitting layer and reaches N The second implant isolation region continuously runs through the P-type layer, the active region light-emitting layer, and the N-type layer.
进一步的,所述的制作方法包括:在所述离子注入过程中,使所述光电子器件结构上与注入离子接触区域的部分或全部区域形成注入掺杂区域,所述注入掺杂区域连续贯穿所述P型层及有源区发光层并到达N型层,从而形成N型导电台面。Further, the manufacturing method includes: during the ion implantation, forming part or all of the region of the optoelectronic device structure in contact with the implanted ion to form an implanted doped region, and the implanted doped region continuously runs through the The P-type layer and the active region light-emitting layer reach the N-type layer, thereby forming an N-type conductive mesa.
进一步的,形成注入掺杂区域的注入离子包括硅离子,但不限于此。Further, the implanted ions forming the implanted doped region include silicon ions, but are not limited thereto.
在一些较为具体的实施方案中,所述注入隔离区域包括第三隔离注入区域,所述第三注入隔离区域连续贯穿所述P型层、有源区发光层、N型层以及衬底。In some more specific implementations, the implantation isolation region includes a third isolation implantation region, and the third implantation isolation region continuously runs through the P-type layer, the active region light-emitting layer, the N-type layer, and the substrate.
进一步的,所述的制作方法还包括:在所述注入隔离区域内进行二次离子注入或者在相邻半导体光电子器件的两个注入隔离区域之间进行离子注入形成离子注入阻隔层。Further, the manufacturing method further includes: performing secondary ion implantation in the implantation isolation region or performing ion implantation between two implantation isolation regions of adjacent semiconductor optoelectronic devices to form an ion implantation barrier layer.
进一步的,形成注入隔离区域和离子注入阻隔层的注入离子包括氢离子、氦离子、氮离子、氟离子中的任意一种,但不限于此。Further, the implanted ions forming the implantation isolation region and the ion implantation barrier include any one of hydrogen ions, helium ions, nitrogen ions, and fluoride ions, but are not limited thereto.
进一步的,所述出光区域的面积被控制为微米量级。Further, the area of the light emitting region is controlled to be on the order of micrometers.
进一步的,所述掩模的材质包括光刻胶、二氧化硅、氮化硅、金属中的任意一种,但不限于此。Further, the material of the mask includes any one of photoresist, silicon dioxide, silicon nitride, and metal, but is not limited thereto.
进一步的,所述的制作方法还包括制作与所述光电子器件结构的P型层、N型层配合的电极的步骤。Further, the manufacturing method further includes a step of manufacturing an electrode matched with the P-type layer and the N-type layer of the optoelectronic device structure.
进一步的,所述光电子器件结构包括缓冲层、高阻层、N型层、有源区发光层和P型层。Further, the optoelectronic device structure includes a buffer layer, a high-resistance layer, an N-type layer, an active area light-emitting layer, and a P-type layer.
进一步的,所述衬底的材质包括蓝宝石、氮化镓、碳化硅和硅中的任意一种,但不限于此。Further, the material of the substrate includes any one of sapphire, gallium nitride, silicon carbide, and silicon, but is not limited thereto.
进一步的,所述半导体光电子器件包括Micro-LED、VCSEL、SLD、LED器件中的任意一种,但不限于此。Further, the semiconductor optoelectronic device includes any one of Micro-LED, VCSEL, SLD, and LED device, but is not limited thereto.
进一步的,所述半导体光电子器件的结构包括正装结构、倒装结构和垂直结构中的任意一种,但不限于此。Further, the structure of the semiconductor optoelectronic device includes any one of a front-mounted structure, a flip-chip structure, and a vertical structure, but is not limited thereto.
如下将结合附图以及具体实施例对该技术方案、其实施过程及原理等作进一步的解释说明。The technical solution, its implementation process and principle will be further explained with reference to the drawings and specific embodiments as follows.
本申请实施例提供的半导体光电子器件的制作方法通过金属有机物化学气相沉积法在不同衬底材料上外延生长LED结构,并采用离子注入的方法取代传统干法刻蚀工艺,同时,通过独立调节不同注入离子的能量和剂量精确控制离子注入区域的深度,实现半导体光电子器件的离子注入隔离和注入掺杂。The method for manufacturing a semiconductor optoelectronic device provided in the embodiment of the present application epitaxially grows an LED structure on different substrate materials through a metal organic chemical vapor deposition method, and uses an ion implantation method to replace the traditional dry etching process, and simultaneously independently adjusts different The energy and dose of the implanted ions precisely control the depth of the ion implantation region, and realize the ion implantation isolation and implantation doping of semiconductor optoelectronic devices.
本申请实施例提供的半导体光电子器件的制作方法采用离子注入隔离和掺杂工艺取代传统制程中的台面隔离、N导电台面等刻蚀工艺,离子注入具有的大面积掺杂均匀性、高度方向性、低横向效应等特性避免了对芯片造成刻蚀损伤,从而显著增加芯片的有效使用面积,并提高芯片峰值发光效率,同时,进一步采用离子注入阻隔层避免相邻器件之间的光串扰。The manufacturing method of the semiconductor optoelectronic device provided by the embodiment of the present application uses an ion implantation isolation and doping process to replace the etching processes such as mesa isolation and N conductive mesa in the traditional process. The ion implantation has large area doping uniformity and high directivity. The characteristics such as low lateral effect can avoid etch damage to the chip, thereby significantly increasing the effective use area of the chip and improving the peak luminous efficiency of the chip. At the same time, an ion implantation barrier layer is used to avoid light crosstalk between adjacent devices.
本申请实施例通过氢(或氦、氮、氟)离子注入形成高阻态隔离区域,并根据LED外延结构的实际厚度调整高阻态隔离区域的深度,可以将其用于器件之间的相互隔离,同时还可用于P型层、有源区发光层与N型导电台面之间的隔离。In the embodiment of the present application, a high-resistance isolation region is formed by hydrogen (or helium, nitrogen, fluorine) ion implantation, and the depth of the high-resistance isolation region is adjusted according to the actual thickness of the LED epitaxial structure, which can be used for mutual interaction between devices. Isolation can also be used for isolation between P-type layer, active area light-emitting layer and N-type conductive mesa.
本申请实施例提供的半导体光电子器件的制作方法中的离子注入工艺还可以挑选合适的离子源进行N型或P型掺杂,本申请中通过硅离子注入形成高电导区域(即注入掺杂区域),并根据LED外延结构的实际厚度调整高电导区域的深度,形成N型导电台面。The ion implantation process in the method for manufacturing a semiconductor optoelectronic device provided in the embodiment of the present application may also select a suitable ion source for N-type or P-type doping. In this application, a high-conductivity region (that is, an implanted doped region) is formed by silicon ion implantation. ), And the depth of the high-conductivity region is adjusted according to the actual thickness of the LED epitaxial structure to form an N-type conductive mesa.
由于离子注入工艺温度低,可以选择光刻胶、介质(二氧化硅、氮化硅等)或金属(例如铝等)作为离子注入的掩膜,这为半导体光电子器件制备中的自对准掩蔽技术提供了极大的灵活性,因此在实际生产中通过改变掩膜尺寸可以精确调节高阻态隔离区域的间距,从而灵活定义芯片的特征尺寸,实现数微米至数百微米尺寸的器件制备。Due to the low temperature of the ion implantation process, a photoresist, a dielectric (silicon dioxide, silicon nitride, etc.) or a metal (such as aluminum) can be selected as a mask for ion implantation, which is a self-aligned mask in the preparation of semiconductor optoelectronic devices. The technology provides great flexibility, so the pitch of high-resistance isolation regions can be precisely adjusted by changing the mask size in actual production, so as to flexibly define the feature size of the chip and achieve device fabrication of sizes from several microns to hundreds of microns.
本申请实施例采用离子注入阻隔层避免相邻半导体光电子器件之间的光串扰,离子注入阻隔层可通过对注入隔离层进行共同离子注入实现,也可以在相邻器件注入隔离层之间的区域通过离子注入实现,离子注入阻隔层能有效避免横向的光束扩展,从而消除相邻器件之间的光串扰问题并极大提升半导体光电子器件的色彩均匀性和解析度。In the embodiment of the present application, an ion implantation barrier layer is used to avoid optical crosstalk between adjacent semiconductor optoelectronic devices. The ion implantation barrier layer can be implemented by performing common ion implantation on the implantation isolation layer, and can also be implanted in the area between the isolation layers of adjacent devices. By ion implantation, the ion implantation barrier layer can effectively avoid lateral beam expansion, thereby eliminating the problem of optical crosstalk between adjacent devices and greatly improving the color uniformity and resolution of semiconductor optoelectronic devices.
进一步地,本申请实施例通过调整注入离子的类型以及注入的先后次序,适合于基于不同衬底的正装结构、倒装结构和垂直结构的高性能芯片制备,非常有利于半导体光电子器件的产业化制备。Further, the embodiments of the present application are suitable for the preparation of high-performance chips based on the front structure, the flip structure, and the vertical structure of different substrates by adjusting the type of implanted ions and the order of implantation, which is very beneficial to the industrialization of semiconductor optoelectronic devices. preparation.
如下基于一种半导体光电子器件的制作方法,给出如下三个实施例。Based on a method for manufacturing a semiconductor optoelectronic device, the following three examples are given.
生产设备、材料:Production equipment and materials:
1、行星盘式2英寸11片,金属有机物化学气相淀积(MOCVD)制备系统,用于制备Micro-LED、发光二极管、超辐射发光二极管、垂直腔面发生激光器等半导体光电子器件;1. Planetary disc type 2 inch 11 pieces, metal organic chemical vapor deposition (MOCVD) preparation system, used to prepare semiconductor optoelectronic devices such as Micro-LED, light emitting diode, super-radiation light emitting diode, vertical cavity surface laser;
2、等离子增强化学气相沉积(PECVD)、低压化学气相淀积(LPCVD)以及磁控溅射用于制备离子注入工艺所需要的掩膜材料;2. Plasma-enhanced chemical vapor deposition (PECVD), low-pressure chemical vapor deposition (LPCVD), and magnetron sputtering are used to prepare mask materials for the ion implantation process;
3、离子注入机用于进行氢、氦、氮、氟、硅等元素的离子注入。3. The ion implanter is used for ion implantation of hydrogen, helium, nitrogen, fluorine, silicon and other elements.
实施例1:Micro-LED正装结构Example 1: Micro-LED front mounting structure
请参阅参照图1-5,一种基于离子注入的Micro-LED芯片正装结构具体制备工艺步骤如下:Please refer to FIGS. 1-5. The specific manufacturing process steps of a micro-LED chip front-loaded structure based on ion implantation are as follows:
步骤一:在蓝宝石衬底材料上利用MOCVD(金属有机物化学气相淀积)依次外延生长缓冲成核层、N型层、有源区发光层和P型层,形成LED结构;Step 1: using MOCVD (metal organic chemical vapor deposition) on the sapphire substrate material to sequentially epitaxially grow a buffer nucleation layer, an N-type layer, an active region light-emitting layer, and a P-type layer to form an LED structure;
步骤二:利用光刻胶(或二氧化硅、氮化硅、金属铝等)掩膜定义离子注入区域,通过氢(或氦、氮、氟)离子注入形成高阻态的注入隔离区域1,调整注入离子的能量和剂量以精确控制离子注入深度,使注入隔离区域1贯通P型层、有源区发光层,达到进入N型层;Step 2: Use a photoresist (or silicon dioxide, silicon nitride, metal aluminum, etc.) mask to define the ion implantation area, and form a high-resistance implantation isolation area 1 by hydrogen (or helium, nitrogen, fluorine) ion implantation. Adjusting the energy and dose of implanted ions to precisely control the depth of ion implantation, so that the implanted isolation region 1 penetrates the P-type layer and the active region light-emitting layer to reach the N-type layer;
步骤三:进一步对离子注入隔离区域1进行二次离子注入,形成器件的离子注入阻隔层;Step 3: Further performing a second ion implantation on the ion implantation isolation region 1 to form an ion implantation barrier layer of the device;
步骤四:利用光刻胶(或二氧化硅、氮化硅、金属铝等)掩膜定义离子注入区域,通过Si离子注入形成注入掺杂区域2,调整注入离子的能量和剂量以精确控制离子注入深度,使注入掺杂区域2贯通P型层、有源区发光层,达到进入N型层,形成N型导电台面;Step 4: Use the photoresist (or silicon dioxide, silicon nitride, metal aluminum, etc.) mask to define the ion implantation area, and form the implanted doped area 2 by Si ion implantation. Adjust the energy and dose of the implanted ions to precisely control the ions. Implantation depth, so that the implanted doped region 2 penetrates the P-type layer and the active region light-emitting layer to reach the N-type layer to form an N-type conductive mesa;
步骤五:利用光刻胶(或二氧化硅、氮化硅、金属铝等)掩膜定义离子注入区域,通过氢(或氦、氮、氟)离子注入形成高阻态的注入隔离区域3,调整注入离子的能量和剂量以精确控制离子注入深度,使注入隔离区域3深度达到进入蓝宝石衬底,形成对LED器件的隔离;Step 5: Use a photoresist (or silicon dioxide, silicon nitride, metal aluminum, etc.) mask to define the ion implantation area, and form a high-resistance implantation isolation area 3 by hydrogen (or helium, nitrogen, fluorine) ion implantation. Adjust the energy and dose of the implanted ions to precisely control the depth of the ion implantation, so that the depth of the implanted isolation region 3 reaches the sapphire substrate to form the isolation of the LED device;
步骤六:进一步对离子注入隔离区域3进行二次离子注入,形成器件的离子注入阻隔层;Step 6: Further performing a second ion implantation on the ion implantation isolation region 3 to form an ion implantation barrier layer of the device;
步骤七:通过电子束蒸发工艺分别形成N、P电极金属,进行快速热退火形成欧姆接触,完成Micro-LED器件制备。Step 7: N- and P-electrode metals are respectively formed by an electron beam evaporation process, and rapid thermal annealing is performed to form ohmic contacts to complete the preparation of the Micro-LED device.
实施例2:Micro-LED正装结构Example 2: Micro-LED front mounting structure
请参照图6-7,一种基于离子注入的Micro-LED芯片正装结构具体制备工艺步骤如下:Please refer to FIGS. 6-7. The specific manufacturing process steps of a micro-LED chip front-mounted structure based on ion implantation are as follows:
步骤一:在蓝宝石衬底上利用MOCVD(金属有机物化学气相淀积)依次外延生长缓冲成核层、高阻层、N型层、有源区发光层和P型层,形成LED结构;Step 1: Using MOCVD (metal organic chemical vapor deposition) on the sapphire substrate to sequentially epitaxially grow a buffer nucleation layer, a high-resistance layer, an N-type layer, an active area light-emitting layer, and a P-type layer to form an LED structure;
步骤二:利用光刻胶(或二氧化硅、氮化硅、金属铝等)掩膜定义离子注入区域,通过氢(或氦、氮、氟)离子注入形成高阻态的注入隔离区域4,调整注入离子的能量和剂量以精确控制离子注入深度,使注入隔离区域4贯通P型层、有源区发光层,达到进入N型层;Step 2: Use a photoresist (or silicon dioxide, silicon nitride, metal aluminum, etc.) mask to define the ion implantation region, and form a high-resistance implantation isolation region 4 by hydrogen (or helium, nitrogen, fluorine) ion implantation. Adjusting the energy and dose of implanted ions to precisely control the depth of ion implantation, so that the implanted isolation region 4 penetrates the P-type layer and the active region light-emitting layer to reach the N-type layer;
步骤三:进一步对离子注入隔离区域4进行二次离子注入,形成LED器件的离子注入阻隔层;Step three: performing a second ion implantation on the ion implantation isolation region 4 to form an ion implantation barrier layer for the LED device;
步骤四:利用光刻胶(或二氧化硅、氮化硅、金属铝等)掩膜定义离子注入区域,通过Si离子注入形成注入掺杂区域5,调整注入离子的能量和剂量以精确控制离子注入深度,使注入掺杂区域5贯通P型层、有源区发光层,达到进入N型层,形成N型导电台面;Step 4: Use the photoresist (or silicon dioxide, silicon nitride, metal aluminum, etc.) mask to define the ion implantation area, and form the implanted doped area 5 by Si ion implantation. Adjust the energy and dose of the implanted ions to precisely control the ions. Implantation depth, so that the implanted doped region 5 penetrates the P-type layer and the active region light-emitting layer to reach the N-type layer to form an N-type conductive mesa;
步骤五:利用光刻胶(或二氧化硅、氮化硅、金属铝等)掩膜定义离子注入区域,通过氢(或氦、氮、氟)离子注入形成高阻态的离子注入隔离区域7,调整注入离子的能量和剂量以精确控制离子注入深度,使注入隔离区域6深度达到进入高阻层,形成对LED器件的隔离;Step 5: Use a photoresist (or silicon dioxide, silicon nitride, metal aluminum, etc.) mask to define the ion implantation area, and form a high-resistance ion implantation isolation area by hydrogen (or helium, nitrogen, fluorine) ion implantation. 7 , Adjust the energy and dose of the implanted ions to precisely control the depth of ion implantation, so that the depth of the implanted isolation region 6 reaches the high-resistance layer to form the isolation of the LED device;
步骤六:进一步对离子注入隔离区域6进行二次离子注入,形成器件的离子注入阻隔层;Step 6: Further performing a second ion implantation on the ion implantation isolation region 6 to form an ion implantation barrier layer of the device;
步骤七:通过电子束蒸发工艺分别形成N、P电极金属,进行快速热退火形成欧姆接触,完成Micro-LED器件制备。Step 7: N- and P-electrode metals are respectively formed by an electron beam evaporation process, and rapid thermal annealing is performed to form ohmic contacts to complete the preparation of the Micro-LED device.
实施例3:Micro-LED垂直结构Example 3: Micro-LED vertical structure
请参照图8-9,基于离子注入的Micro-LED芯片垂直结构具体制备工艺步骤如下:Please refer to FIGS. 8-9. The specific manufacturing process steps of the vertical structure of the micro-LED chip based on ion implantation are as follows:
步骤一:在GaN或SiC衬底上利用MOCVD(金属有机物化学气相淀积)依次外延生长N型层、有源区发光层和P型层,形成LED结构;Step 1: Using MOCVD (metal organic chemical vapor deposition) on the GaN or SiC substrate to sequentially epitaxially grow an N-type layer, an active region light-emitting layer, and a P-type layer to form an LED structure;
步骤二:利用光刻胶掩膜定义离子注入区域,通过氢(或氦、氮、氟)离子注入形成高阻态的离子注入隔离区域7,调整注入离子的能量和剂量以精确控制离子注入深度,使注入隔离区域7深度完全贯穿GaN或SiC衬底,形成对LED器件的隔离;Step 2: Use the photoresist mask to define the ion implantation area, and form a high-resistance ion implantation isolation area 7 by hydrogen (or helium, nitrogen, fluorine) ion implantation, adjust the energy and dose of the implanted ions to precisely control the depth of ion implantation , So that the depth of the injection isolation region 7 completely penetrates the GaN or SiC substrate to form the isolation of the LED device;
步骤三:进一步对离子注入隔离区域7进行二次离子注入,形成器件的离子注入阻隔层;Step 3: performing a second ion implantation on the ion implantation isolation region 7 to form an ion implantation barrier layer of the device;
步骤四:通过电子束蒸发工艺分别形成N、P电极金属,进行快速热退火形成欧姆接触,完成Micro-LED器件制备。Step 4: N- and P-electrode metals are respectively formed by an electron beam evaporation process, and rapid thermal annealing is performed to form ohmic contacts to complete the preparation of the Micro-LED device.
实施例4:Micro-LED倒装结构Example 4: Micro-LED flip-chip structure
请参照图10-12,一种基于离子注入的Micro-LED芯片倒装结构具体制备工艺步骤如下:Please refer to FIG. 10-12, the specific manufacturing process steps of a flip-chip structure of a micro-LED chip based on ion implantation are as follows:
步骤一:在蓝宝石衬底上利用MOCVD(金属有机物化学气相淀积)依次外延生长N型层、有源区发光层和P型层,形成LED结构,然后通过剥离技术去除蓝宝石衬底并减薄N型层;Step 1: Using MOCVD (metal organic chemical vapor deposition) on the sapphire substrate to sequentially epitaxially grow an N-type layer, an active region light-emitting layer, and a P-type layer to form an LED structure, and then remove the sapphire substrate and thin it by a lift-off technique. N-type layer
步骤二:利用光刻胶掩膜定义离子注入区域,通过氢(或氦、氮、氟)离子注入形成高阻态的离子注入隔离区域8,调整注入离子的能量和剂量以精确控制离子注入深度,使注入隔离区域8深度完全贯穿N型层,形成对LED器件的隔离;Step 2: Use the photoresist mask to define the ion implantation area, and form a high-resistance ion implantation isolation area 8 by hydrogen (or helium, nitrogen, fluorine) ion implantation. Adjust the energy and dose of the implanted ions to precisely control the ion implantation depth , So that the depth of the injection isolation region 8 completely penetrates the N-type layer to form the isolation of the LED device;
步骤三:进一步对离子注入隔离区域8进行二次离子注入,形成器件的离子注入阻隔层;Step 3: performing a second ion implantation on the ion implantation isolation region 8 to form an ion implantation barrier layer of the device;
步骤四:通过电子束蒸发工艺分别形成N、P电极金属,进行快速热退火形成欧姆接触,完成Micro-LED器件制备。Step 4: N- and P-electrode metals are respectively formed by an electron beam evaporation process, and rapid thermal annealing is performed to form ohmic contacts to complete the preparation of the Micro-LED device.
由实施例1-4可见,利用离子注入的方法可以完全避免传统的台面隔离、N台面形成过程中的刻蚀工艺对芯片造成侧壁刻蚀损伤,从而显著增加芯片的有效使用面积,并提高芯片的峰值发光效率,同时,利用离子注入方法形成的阻隔层可以有效吸收横向的光传播,有效消除了半导体光电子器件的光串扰问题。It can be seen from Examples 1-4 that the ion implantation method can completely avoid the traditional etching of the mesa and the etching process during the formation of the N mesa to cause side wall etching damage to the chip, thereby significantly increasing the effective area of the chip and improving The chip's peak luminous efficiency, and at the same time, the barrier layer formed by the ion implantation method can effectively absorb lateral light propagation, effectively eliminating the optical crosstalk problem of semiconductor optoelectronic devices.
本申请实施例采用的离子注入隔离、掺杂及阻隔工艺,不只限应用于Micro-LED,也可以应用于III族氮化物其它发光器件,比如发光二级管,超辐射发光二极管,垂直腔面发生激光器等。进一步地,本申请通过调整注入离子的类型以及注入次序,适合于基于不同衬底的正装结构、倒装结构和垂直结构的高性能芯片制备,有利于半导体光电子器件的产业化制备。The ion implantation isolation, doping and blocking processes used in the embodiments of the present application are not limited to Micro-LEDs, but can also be applied to other III-nitride light-emitting devices, such as light-emitting diodes, super-radiation light-emitting diodes, and vertical cavity surfaces. Lasers, etc. Further, by adjusting the type of implanted ions and the order of implantation, the present application is suitable for the production of high-performance chips based on the front structure, the flip structure, and the vertical structure of different substrates, and is beneficial to the industrial production of semiconductor optoelectronic devices.
本申请的工艺简单可靠、与现有工艺技术兼容,能够兼具提高芯片有效使用面积、降低材料侧壁损伤效应、消除器件光串扰问题、提升器件发光效率等优点。The process of this application is simple and reliable, compatible with the existing process technology, and can have the advantages of increasing the effective use area of the chip, reducing the damage effect of the material sidewall, eliminating the problem of optical crosstalk of the device, and improving the light emitting efficiency of the device.
应当理解,上述实施例仅为说明本申请的技术构思及特点,其目的在于让熟悉此项技术的人士能够了解本申请的内容并据以实施,并不能以此限制本申请的保护范围。凡根据本申请精神实质所作的等效变化或修饰,都应涵盖在本申请的保护范围之内。It should be understood that the above-mentioned embodiments are only for describing the technical concept and features of the present application, and the purpose thereof is to enable persons familiar with the technology to understand and implement the content of the present application, and shall not limit the protection scope of the present application. Any equivalent changes or modifications made according to the spirit of this application shall be covered by the protection scope of this application.

Claims (16)

  1. 一种半导体光电子器件的制作方法,包括在衬底上生长形成光电子器件结构的步骤,所述光电子器件结构包括N型层、有源区发光层及P型层;其特征在于还包括:在所述光电子器件结构上设置掩模,并利用所述掩模对所述N型层、有源区发光层及P型层中的任一者或多种进行离子注入,从而调控所述光电子器件结构的出光区域的面积和/或形状。A method for manufacturing a semiconductor optoelectronic device includes the steps of growing an optoelectronic device structure on a substrate. The optoelectronic device structure includes an N-type layer, an active region light-emitting layer, and a P-type layer. A mask is provided on the optoelectronic device structure, and any one or more of the N-type layer, the active region light-emitting layer, and the P-type layer are ion-implanted by using the mask, thereby regulating the optoelectronic device structure The area and / or shape of the light emitting area.
  2. 根据权利要求1所述的制作方法,其特征在于包括:在所述离子注入过程中,至少通过独立调节注入离子的能量和/或剂量以控制离子注入区域的深度和宽度。The manufacturing method according to claim 1, further comprising: during the ion implantation, at least independently adjusting the energy and / or dose of the implanted ions to control the depth and width of the ion implantation region.
  3. 根据权利要求1所述的制作方法,其特征在于包括:在所述离子注入过程中,使所述光电子器件结构上与注入离子接触的部分或全部区域形成高阻态注入隔离区域,所述注入隔离区域合围形成所述的出光区域。The manufacturing method according to claim 1, comprising: during the ion implantation, forming a part or all of the region of the optoelectronic device structure in contact with the implanted ions into a high-resistance implantation isolation region, and the implantation The isolation area is enclosed to form the light emitting area.
  4. 根据权利要求3所述的制作方法,其特征在于:所述注入隔离区域包括第一隔离注入区域和第二注入隔离区域,所述第一注入隔离区域连续贯穿所述P型层及有源区发光层并到达N型层,所述第二注入隔离区域连续贯穿所述P型层、有源区发光层及N型层。The manufacturing method according to claim 3, wherein the implant isolation region includes a first isolation implant region and a second implant isolation region, and the first implant isolation region continuously penetrates the P-type layer and the active region. The light-emitting layer reaches the N-type layer, and the second injection isolation region continuously runs through the P-type layer, the active region light-emitting layer, and the N-type layer.
  5. 根据权利要求4所述的制作方法,其特征在于包括:在所述离子注入过程中,使所述光电子器件结构上与注入离子接触区域的部分或全部区域形成注入掺杂区域,所述注入掺杂区域连续贯穿所述P型层及有源区发光层并到达N型层,从而形成N型导电台面。The manufacturing method according to claim 4, comprising: during the ion implantation, forming part or all of the region of the optoelectronic device structure in contact with the implanted ions into an implanted doped region, the implanted doped region The impurity region continuously penetrates the P-type layer and the active region light-emitting layer and reaches the N-type layer, thereby forming an N-type conductive mesa.
  6. 根据权利要求5所述的制作方法,其特征在于:形成注入掺杂区域的注入离子包括硅离子。The method according to claim 5, wherein the implanted ions forming the implanted doped region include silicon ions.
  7. 根据权利要求3所述的制作方法,其特征在于:所述注入隔离区域包括第三隔离注入区域,所述第三注入隔离区域连续贯穿所述P型层、有源区发光层、N型层以及衬底。The manufacturing method according to claim 3, wherein the implantation isolation region includes a third isolation implantation region, and the third implantation isolation region continuously penetrates the P-type layer, the active region light-emitting layer, and the N-type layer. As well as the substrate.
  8. 根据权利要求3所述的制作方法,其特征在于还包括:在所述注入隔离区域内进行二次离子注入或者在相邻半导体光电子器件的两个注入隔离区域之间进行离子注入形成离子注入阻隔层。The manufacturing method according to claim 3, further comprising: performing secondary ion implantation in the implantation isolation region or performing ion implantation between two implantation isolation regions of adjacent semiconductor optoelectronic devices to form an ion implantation barrier. Floor.
  9. 根据权利要求8所述的制作方法,其特征在于:形成注入隔离区域和离子注入阻隔层的注入离子包括氢离子、氦离子、氮离子、氟离子中的任意一种。The manufacturing method according to claim 8, wherein the implanted ions forming the implantation isolation region and the ion implantation barrier layer include any one of hydrogen ions, helium ions, nitrogen ions, and fluoride ions.
  10. 根据权利要求1所述的制作方法,其特征在于:所述出光区域的面积被控制为微米量级。The manufacturing method according to claim 1, wherein an area of the light emitting region is controlled to be on the order of micrometers.
  11. 根据权利要求1所述的制作方法,其特征在于:所述掩模的材质包括光刻胶、二氧化硅、氮化硅、金属中的任意一种。The manufacturing method according to claim 1, wherein the material of the mask comprises any one of photoresist, silicon dioxide, silicon nitride, and metal.
  12. 根据权利要求1所述的制作方法,其特征在于还包括制作与所述光电子器件结构的P型层、N型层配合的电极的步骤。The manufacturing method according to claim 1, further comprising a step of manufacturing an electrode matched with a P-type layer and an N-type layer of the optoelectronic device structure.
  13. 根据权利要求1所述的制作方法,其特征在于:所述光电子器件结构包括缓冲层、高阻层、N型层、有源区发光层和P型层。The manufacturing method according to claim 1, wherein the optoelectronic device structure comprises a buffer layer, a high-resistance layer, an N-type layer, an active area light-emitting layer, and a P-type layer.
  14. 根据权利要求1所述的制作方法,其特征在于:所述衬底的材质包括蓝宝石、氮化镓、碳化硅和硅中的任意一种。The manufacturing method according to claim 1, wherein the material of the substrate comprises any one of sapphire, gallium nitride, silicon carbide, and silicon.
  15. 根据权利要求1所述的制作方法,其特征在于:所述半导体光电子器件包括Micro-LED、VCSEL、SLD、LED器件中的任意一种。The manufacturing method according to claim 1, wherein the semiconductor optoelectronic device comprises any one of Micro-LED, VCSEL, SLD, and LED device.
  16. 根据权利要求1所述的制作方法,其特征在于:所述半导体光电子器件的结构包括正装结构、倒装结构和垂直结构中的任意一种。The manufacturing method according to claim 1, wherein the structure of the semiconductor optoelectronic device includes any one of a front-mounted structure, a flip-chip structure, and a vertical structure.
PCT/CN2018/111050 2018-09-26 2018-10-19 Method for fabricating semiconductor optoelectronic device WO2020062363A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811127157.5A CN110957399B (en) 2018-09-26 2018-09-26 Method for producing semiconductor photoelectronic device
CN201811127157.5 2018-09-26

Publications (1)

Publication Number Publication Date
WO2020062363A1 true WO2020062363A1 (en) 2020-04-02

Family

ID=69950972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111050 WO2020062363A1 (en) 2018-09-26 2018-10-19 Method for fabricating semiconductor optoelectronic device

Country Status (2)

Country Link
CN (1) CN110957399B (en)
WO (1) WO2020062363A1 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210320234A1 (en) * 2020-04-09 2021-10-14 Raysolve Optoelectronics (Suzhou) Company Limited Light emitting diode structure and method for manufacturing the same
CN112864290B (en) * 2020-04-09 2022-04-22 镭昱光电科技(苏州)有限公司 Miniature LED display and manufacturing method thereof
US20210351226A1 (en) 2020-05-05 2021-11-11 Raysolve Optoelectronics (Suzhou) Company Limited Full color light emitting diode structure and method for manufacturing the same
CN114388675B (en) * 2021-12-21 2024-04-16 南昌大学 GaN-based miniature LED chip and preparation method thereof
WO2023142141A1 (en) * 2022-01-31 2023-08-03 Jade Bird Display (Shanghai) Company Micro led, micro led array panel and manufacuturing method thereof
WO2023142140A1 (en) * 2022-01-31 2023-08-03 Jade Bird Display (Shanghai) Company Micro led, micro led array panel and manufacuturing method thereof
WO2023142145A1 (en) * 2022-01-31 2023-08-03 Jade Bird Display (Shanghai) Company Micro led structure and micro display panel
WO2023142142A1 (en) * 2022-01-31 2023-08-03 Jade Bird Display (Shanghai) Company Micro led, micro led array panel and manufacuturing method thereof
WO2023142148A1 (en) * 2022-01-31 2023-08-03 Jade Bird Display (Shanghai) Company Micro led structure and micro display panel
WO2023142147A1 (en) * 2022-01-31 2023-08-03 Jade Bird Display (Shanghai) Company Micro led structure and micro display panel
TWI819497B (en) * 2022-02-17 2023-10-21 錼創顯示科技股份有限公司 Micro light emitting diode and micro light emitting diode display panel

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453386A (en) * 1994-05-09 1995-09-26 Motorola, Inc. Method of fabrication of implanted LED array
US20110275173A1 (en) * 2010-05-04 2011-11-10 Varian Semiconductor Equipment Associates, Inc. Isolation by implantation in led array manufacturing
CN103178178A (en) * 2013-04-08 2013-06-26 合肥彩虹蓝光科技有限公司 Structure for improving electron mobility of GaN-based light-emitting diode and production method of structure
CN104409585A (en) * 2014-11-28 2015-03-11 杭州士兰明芯科技有限公司 Vertical LED structure and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005052357A1 (en) * 2005-09-01 2007-03-15 Osram Opto Semiconductors Gmbh Method for the lateral dicing of a semiconductor wafer and optoelectronic component
JP6228098B2 (en) * 2014-10-20 2017-11-08 シャープ株式会社 Chemical / physical phenomenon detection device and manufacturing method thereof
CN107221582A (en) * 2017-05-17 2017-09-29 厦门科锐捷半导体科技有限公司 A kind of light emitting diode and preparation method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5453386A (en) * 1994-05-09 1995-09-26 Motorola, Inc. Method of fabrication of implanted LED array
US20110275173A1 (en) * 2010-05-04 2011-11-10 Varian Semiconductor Equipment Associates, Inc. Isolation by implantation in led array manufacturing
CN103178178A (en) * 2013-04-08 2013-06-26 合肥彩虹蓝光科技有限公司 Structure for improving electron mobility of GaN-based light-emitting diode and production method of structure
CN104409585A (en) * 2014-11-28 2015-03-11 杭州士兰明芯科技有限公司 Vertical LED structure and manufacturing method thereof

Also Published As

Publication number Publication date
CN110957399B (en) 2021-04-30
CN110957399A (en) 2020-04-03

Similar Documents

Publication Publication Date Title
WO2020062363A1 (en) Method for fabricating semiconductor optoelectronic device
CN113224212B (en) Multicolor-stacked step-type backlight Micro-LED display device and preparation method thereof
JP2012243815A (en) Semiconductor light-emitting device, wafer, and method of manufacturing nitride semiconductor crystal layer
JP2014036231A (en) Semiconductor element manufacturing method
KR20130025716A (en) Nano rod light emitting device
TW202213760A (en) Monolithic led array and a precursor thereto
US7989826B2 (en) Semiconductor light emitting device
KR20130025856A (en) Nano rod light emitting device
TWI829038B (en) Voltage-controllable monolithic native rgb arrays
JP2002222991A (en) Semiconductor light emitting element
CN107086257B (en) A kind of epitaxial wafer of gallium nitride based light emitting diode and preparation method thereof
CN210092086U (en) Semiconductor light emitting device
TW202143505A (en) Light emitting diode precursor
WO2022141233A1 (en) Semiconductor light-emitting element and manufacturing method therefor
CN114220891A (en) Epitaxial wafer of semiconductor device and manufacturing method and application thereof
TW202123488A (en) Led precursor incorporating strain relaxing structure
CN110957204A (en) Method for manufacturing III-nitride optoelectronic device
Liu et al. P‐9.2: GaN HEMT‐LED Homogeneous Integration for Micro‐LED Mass Transferring
TW201528547A (en) Nitride semiconductor light-emitting element and manufacturing method thereof
US20240145626A1 (en) Semiconductor structures
KR20130094451A (en) Nitride semiconductor light emitting device and method for fabricating the same
CN114203867B (en) Electric field regulation type luminous triode device and preparation method thereof
KR20190005698A (en) Light emitting transistor and light emitting structure
US20230369828A1 (en) Nanocrystal array, laser device, and display device
WO2016002801A1 (en) Semiconductor layered structure and semiconductor element

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18935734

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18935734

Country of ref document: EP

Kind code of ref document: A1