WO2020062235A1 - 充电装置的测试板、测试系统和测试方法 - Google Patents

充电装置的测试板、测试系统和测试方法 Download PDF

Info

Publication number
WO2020062235A1
WO2020062235A1 PCT/CN2018/109078 CN2018109078W WO2020062235A1 WO 2020062235 A1 WO2020062235 A1 WO 2020062235A1 CN 2018109078 W CN2018109078 W CN 2018109078W WO 2020062235 A1 WO2020062235 A1 WO 2020062235A1
Authority
WO
WIPO (PCT)
Prior art keywords
charging device
test
instruction
test board
module
Prior art date
Application number
PCT/CN2018/109078
Other languages
English (en)
French (fr)
Inventor
田晨
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to PCT/CN2018/109078 priority Critical patent/WO2020062235A1/zh
Priority to JP2020504332A priority patent/JP7191083B2/ja
Priority to CN201880023338.5A priority patent/CN110520743B/zh
Priority to EP18934820.4A priority patent/EP3722820B1/en
Priority to KR1020207002651A priority patent/KR102346821B1/ko
Priority to US16/626,262 priority patent/US11549995B2/en
Publication of WO2020062235A1 publication Critical patent/WO2020062235A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/025General constructional details concerning dedicated user interfaces, e.g. GUI, or dedicated keyboards
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/385Arrangements for measuring battery or accumulator variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/40Testing power supplies
    • G01R31/42AC power supplies
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/00032Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by data exchange
    • H02J7/00034Charger exchanging data with an electronic device, i.e. telephone, whose internal battery is under charge
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0047Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with monitoring or indicating devices or circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/425Structural combination with electronic components, e.g. electronic circuits integrated to the outside of the casing
    • H01M2010/4278Systems for data transfer from batteries, e.g. transfer of battery parameters to a controller, data transferred between battery controller and main controller
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J2207/00Indexing scheme relating to details of circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J2207/30Charge provided using DC bus or data bus of a computer

Definitions

  • the present application relates to the field of charging technology, and in particular, to a test board, a test system, and a test method for a charging device.
  • an abnormality is usually manually produced, and an abnormal state is artificially judged, and a charging device such as an adapter is tested.
  • a charging device such as an adapter
  • the related technology has the problem that manual testing is required, which is tedious, time-consuming and laborious, and it takes a long time to complete the full set of tests.
  • the application provides a test system and method for a charging device, which can implement automatic testing, is simple to operate, and saves time and effort.
  • the test board of the charging device includes a connection circuit, and the connection circuit connects the charging device and the load module respectively, so that the charging device forms a test loop with the load module through the connection circuit.
  • a first communication module the first communication module communicates with a host computer; a second communication module, the second communication module communicates with the charging device; a control module, the control module communicates with the first The module is connected to a second communication module, and the control module receives the instruction information sent by the host computer through the first communication module, and generates a corresponding test instruction according to the instruction information, so that the test board or the charging The device executes the test instruction.
  • the charging device forms a test loop with the load module through the connection circuit
  • the control module communicates with the upper computer through the first communication module, and communicates with the charging device through the second communication module
  • the control module receives the instruction information sent by the upper computer through the first communication module, and generates corresponding test instructions according to the instruction information, so that the test board or the charging device executes the test instructions, thereby enabling automatic testing, simple operation, saving time and effort, and shortening Time consuming for the full test.
  • control module is further configured to obtain status information of the charging device, and according to the status information of the charging device Determining a test result of the test instruction, and sending the test result to the host computer.
  • the control module is further configured to obtain status information of the charging device, and send the status information to the host computer. State information of the charging device, so that the host computer determines a test result of the test instruction according to the state information of the charging device.
  • control module when the control module executes the test instruction, it simulates an abnormal state indicated by the test instruction, and collects operating state information of the charging device, wherein the operating state information is used To indicate whether the charging device enters a protection state.
  • the control device when the charging device executes the test instruction, sends the test instruction to the charging device through the second communication module, and collects an output of the charging device Status information, wherein the output status information is used to indicate an output status of the charging device when the charging device is running according to the test instruction.
  • the connection circuit includes a first power line and a second power line, wherein one end of the first power line is connected to the positive electrode of the load module, and the other end of the first power line Connect the positive power line of the charging device; one end of the second power line is connected to the negative electrode of the load module, and the other end of the second power line is connected to the negative power line of the charging device.
  • connection circuit further includes a switch tube connected in series on the first power line or the second power line, and a control pole of the switch tube and the control module Connected, the control module is turned on or off through a control switch to control the test circuit of the charging device to the load module to be turned on or off.
  • connection circuit further includes a sampling resistor, the sampling resistor is connected in series on the first power line or the second power line, and both ends of the sampling resistor are also connected to the control The modules are connected.
  • the load module includes an electronic load, wherein the control module is connected to an external power source, so that the external power source provides power to the control module.
  • the load module is a program-controlled power supply, wherein the program-controlled power supply also supplies power to the control module.
  • the second communication module communicates with the charging device through a first communication line, and the first communication line, the first power supply line, and the second power supply line are disposed on the same In the cable.
  • a test system provided by an embodiment of the second aspect of the present application includes: a load module; the test board of the embodiment of the first aspect; and a charging device, where the charging device communicates with the test board through the test board.
  • the load module forms a test loop, and the charging device also communicates with the test board; a host computer, the host computer communicates with the test board.
  • a method for testing a charging device provided by an embodiment of the third aspect of the present application is applied to a test board.
  • the charging device forms a test loop with a load module through the test board, and the test board passes the first
  • the communication module communicates with the upper computer, and also communicates with the charging device through the second communication module, wherein the method includes: receiving instruction information sent by the upper computer; generating a corresponding test instruction according to the instruction information, and Causing the test board or the charging device to execute the test instruction.
  • the charging device forms a test loop with the load module through the connection circuit
  • the test board communicates with the host computer, and also communicates with the charging device.
  • the test board receives the instruction information sent by the host computer, and Generate corresponding test instructions according to the instruction information to enable the test board or charging device to execute the test instructions, thereby enabling automatic testing, simple operation, saving time and effort, and shortening the time-consuming time of the full set of tests.
  • the method further includes: obtaining status information of the charging device; and determining the test instruction according to the status information of the charging device. Test result; sending the test result to the host computer.
  • the method further includes: acquiring status information of the charging device; and sending the status information of the charging device to the host computer. To enable the host computer to determine a test result of the test instruction according to the state information of the charging device.
  • the method when the control module executes the test instruction, the method further includes: simulating an abnormal state indicated by the test instruction, and collecting operating state information of the charging device, wherein: The running state information is used to indicate whether the charging device enters a protection state.
  • the method when the charging device executes the test instruction, the method further includes: sending the test instruction to the charging device, and collecting output state information of the charging device, wherein, The output state information is used to indicate an output state of the charging device when it is running according to the test instruction.
  • FIG. 1 is a schematic block diagram of a test board of a charging device according to an embodiment of the present application
  • FIG. 2 is a schematic block diagram of a test board of a charging device according to an embodiment of the present application
  • FIG. 3 is a schematic block diagram of a test board of a charging device according to another embodiment of the present application.
  • FIG. 4 is a schematic block diagram of a test board of a charging device according to another embodiment of the present application.
  • FIG. 5 is a schematic block diagram of a test system for a charging device according to an embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a test method for a charging device according to an embodiment of the present application.
  • test board, test system, and test method of the charging device are described below with reference to the accompanying drawings.
  • the test board, test system, and test method of the charging device are used to test the charging device.
  • the charging device may be used to charge the electronic device.
  • the electronic device may refer to a terminal, and the "terminal" may include, but is not limited to, a smart phone, a computer, a personal digital assistant (PDA), a wearable device, a Bluetooth headset, a gaming device, a camera device, and the like.
  • the charging device may be a device having a function of charging a terminal, such as an adapter, a mobile power source (power bank), or a car charger.
  • the charging device can be a VOOC adapter, and the charging circuit of the VOOC adapter can be directly connected to the battery of the electronic device through the charging interface.
  • the charging device in order to ensure the safety and reliability of the charging device, the charging device is usually provided with a safety protection mechanism, for example, protection against overvoltage, overcurrent and overtemperature, protection against abnormal path impedance, and protection against abnormality of the switch. Therefore, during the actual use, the charging device has some abnormal state, and the charging device enters a protection state.
  • a safety protection mechanism for example, protection against overvoltage, overcurrent and overtemperature, protection against abnormal path impedance, and protection against abnormality of the switch. Therefore, during the actual use, the charging device has some abnormal state, and the charging device enters a protection state.
  • test system of the charging device simulates the state of the electronic device through the test board, communicates with the charging device in real time, intentionally creates an abnormal state, and monitors the state of the charging device in real time to determine whether the charging device enters during an abnormality. Corresponding protection status to verify the effectiveness of each protection function.
  • test board of the charging device is described in detail below with reference to FIGS. 1-4.
  • the test board 100 of the charging device includes a connection circuit 10, a first communication module 20, a second communication module 30, and a control module 40.
  • connection circuit 10 connects the charging device 200 and the load module 300 respectively, so that the charging device 200 forms a test loop with the load module 300 through the connection circuit 10. That is, the current output from the charging device 200 flows to the load module 300 through the connection circuit 10 of the test board 20, and the current direction is shown by the arrow direction in FIG.
  • the first communication module 20 communicates with the host computer 400; the second communication module 30 communicates with the charging device 200, and the control module 40 is connected with the first communication module 20 and the second communication module 30. That is, the control module 40 can receive the information sent by the upper computer 400 through the first communication module 20 and can also send the information to the upper computer 400. Similarly, the control module 40 can receive the information sent by the charging device 200 through the second communication module 30. Information may also be transmitted to the charging device 200.
  • the load module 10 may be a load without a battery
  • the test board 20 cooperates with the load module 10 to simulate the state of the electronic device.
  • the test board 20 simulates the state of the battery during fast charging of the electronic device.
  • the status of the battery includes battery current, battery voltage, etc.
  • the test board 20 reports the simulated battery status to the charging device 30, and the charging device 30 can simulate the charging process according to the battery status reported by the test board 20.
  • control module 40 may receive the instruction information sent by the upper computer 400 through the first communication module 20 and generate a corresponding test instruction according to the instruction information, so that the test board 100 or the charging device 200 tests the instruction.
  • the host computer 400 may send instruction information to the test board 100, where the instruction information is used to indicate a current test type, for example, the current test type may include an overvoltage test, an overtemperature test, a path impedance test, and the like.
  • the control module 40 may receive the instruction information sent by the upper computer 400 through the first communication module 20, determine the current test type according to the instruction information, and generate a corresponding test instruction according to the current test type. Then, the execution subject of the generated test instruction is determined. For example, when the execution subject of the test instruction is the charging device 200, the control module 40 may send a test instruction to the charging device 200 through the second communication module 30, and the charging device 200 executes the test.
  • Instructions to enable the charging device to implement a test of a corresponding test type may directly execute the test instruction to enable the charging device to implement a test of a corresponding test type.
  • the host computer 400 can send multiple command information in accordance with a set test sequence, and each time the test board 100 receives the command information, it can The instruction information generates a corresponding test instruction for testing according to the corresponding test.
  • the host computer 400 may send the next instruction information automatically or according to an instruction input by the user. As a result, a full set of tests can be automatically realized, saving time and effort, and shortening the time consuming of the full set of tests.
  • control module 40 is further configured to obtain status information of the charging device 200 and determine a test result of the test result according to the status information of the charging device 200. And sending the test result to the upper computer 400.
  • control module 40 is further configured to obtain the status information of the charging device 200 and send the status information of the charging device 200 to the host computer 400 so that The host computer 400 determines a test result according to the state information of the charging device 200.
  • the status information of the charging device 200 may include an operation status signal such as a protection status and the like and output status information such as an output voltage, an output current, and the like.
  • the control module 40 executes the test instruction, the abnormal state indicated by the test instruction is simulated, and the operating state information of the charging device 200 is collected, where the operating state information is used to indicate whether the charging device 40 enters a protection state.
  • the host computer 400 can send instruction information to the test board 100, and the instruction information can indicate the test type.
  • the control module 40 of the test board 100 receives the instruction information through the second communication module 30, it can generate according to the received instruction information. Corresponding test instructions. Then, the control module 40 can execute the test instructions to simulate the abnormal state indicated by the test instructions. Since the charging device 200 forms a test loop with the load module 300 through the connection circuit 10, the charging device 200 can detect the abnormality. State, and enters the protection state when the protection function in this abnormal state is normal.
  • the test board 100 receives the running state information of the charging device 200 through the second communication module 30, that is, information about whether the charging device 200 enters a protection state.
  • the test board 100 can determine whether the charging device 200 enters the protection state or send the operation status information to the host computer 400 according to the operation state information, and let the host computer 400 determine whether the charging device 200 enters the protection state. If the charging device enters the protection state, it is confirmed that the charging device has the abnormal protection function or the abnormal protection function is valid. If the charging device does not enter the protection state, it is confirmed that the charging device does not have the abnormal protection function or the abnormal protection function is invalid.
  • the control module 40 may simulate an abnormal state of the path impedance according to the test instruction, that is, the control module 40 may
  • the charging device 200 sends the test battery voltage VBAT.
  • the charging device 200 can receive the test battery voltage VBAT reported by the test board 100, and calculate the path impedance of the charging device 200 to the load module 300 based on the test battery voltage VBAT, and according to the charging device 200 to the load module.
  • the path impedance of 300 controls the operating state of the charging device 200 (including but not limited to a normal working state, a protection state, etc.). That is, when the path impedance is greater than the preset impedance, the charging device 200 enters a protection state, and when the path impedance is greater than or equal to the preset impedance, the charging device 200 is in a normal working state.
  • the test board 100 obtains the running status of the charging device 200 through the second communication module 30, and judges whether the charging device 200 enters a protection state or sends the running status information to the upper computer 400 according to the running status information, so that the upper computer 400 determines Whether the charging device 200 enters a protection state. If the charging device enters the protection state, the test board 100 or the host computer 400 confirms that the charging device has the path impedance protection function or the path impedance protection function is effective. If the charging device does not enter the protection state, the test board 100 or the host computer 400 confirms that the charging device is It has the path impedance protection function or the path impedance protection function is invalid.
  • the charging device 200 can calculate the path impedance from the charging device 200 to the load module 300 according to the charging voltage of the charging device 200, the test battery voltage VBAT reported by the test board 100, and the charging current of the charging device 200. That is, the charging device 30 can calculate the path impedance of the charging device 30 to the load module 10 according to the following formula:
  • R is the path impedance of the charging device 30 to the load module 10
  • VBUS is the charging voltage of the charging device 30
  • VBAT is the test battery voltage reported by the test board 20
  • I is the charging current of the charging device 30.
  • control module 40 may sample the voltage on the test board and calculate the test battery voltage VBAT according to the voltage V-ADC on the test board, the analog impedance increase value ⁇ R, and the charging current I of the charging device 30.
  • the analog impedance increase value ⁇ R is greater than or equal to the preset impedance. That is, the control module 40 can calculate the test battery voltage according to the following formula:
  • VBAT is the test battery voltage
  • V-ADC is the voltage on the test board 20
  • ⁇ R is the analog impedance increase value
  • I is the charging current of the charging device 30.
  • the control device 40 sends the test instruction to the charging device 200 through the second communication module 30 and collects output status information of the charging device 200, where the output status information is used to instruct the charging device 200 Output status when run according to test instructions.
  • the host computer 400 can send instruction information to the test board 100, and the instruction information can indicate the test type.
  • the control module 40 of the test board 100 receives the instruction information through the second communication module 30, it can generate according to the received instruction information. The corresponding test instruction, and then the control module 40 can send the test instruction to the charging device 200 through the second communication module 30, and the charging device 200 can execute the test instruction and enter a certain test state.
  • the test board 100 can receive the output status information of the charging device 200 through the second communication module 30, such as the output voltage and output current of the charging device 200.
  • the test board 100 can determine whether the output status information of the charging device 200 meets the test requirements or send the output status information to the host computer 400 according to the output status information, and let the host computer 400 determine whether the output status information of the charging device 200 meets the test requirements.
  • the control module 40 may send a test instruction to the charging device 200, the charging device 200 may enter a certain test scenario according to the test instruction, and the test board 100 may pass the second
  • the communication module 30 acquires an output state of the charging device 200 such as voltage and current.
  • the test board 100 can determine whether the charging device 200 meets the power consumption test requirement according to the output status information or send the output status information to the upper computer 400 to let the upper computer 400 determine whether the power consumption test requirement is satisfied.
  • test board 200 The specific structure of the test board 200 is described below.
  • connection circuit 10 may include a first power line 101 and a second power line 102.
  • the charging device 200 may have a power line, and the charging device 200 may output power to the outside through the power line, such as charging a battery of an electronic device, or transmitting power to the load module 300.
  • the power line of the charging device 200 may include a positive power line 301a and a negative power line 301b.
  • One end of the first power line 101 is connected to the positive electrode of the load module 300, the other end of the first power line 101 is connected to the positive power line 301a of the charging device 200; one end of the second power line 102 is connected to the negative electrode of the load module 300, and the second The other end of the power line 102 is connected to the negative power line 301 b of the charging device 200.
  • the positive power line 301a may also be connected to the positive output terminal + of the charging circuit 303 of the charging device 200, and the negative power line 301b may also be connected to the negative output terminal-of the charging circuit 303 of the charging device 200.
  • the current flows from the positive output terminal + of the charging circuit 303 of the charging device 200, flows into the positive electrode of the load module 300 through the positive power line 301a and the first power line 101, and then flows out from the positive electrode of the load module 300, and then flows through the first
  • the two power lines 102 and the negative power line 301b flow back to the negative output terminal-of the charging circuit 303 of the charging device 200.
  • the positive power line 301a and the negative power line 301b may be connected to a positive electrode and a negative electrode of the battery, respectively, to charge the battery of the electronic device.
  • connection circuit 10 further includes a switching tube 103.
  • the switching tube 103 is connected in series on the first power line 101 or the second power line 102.
  • the control module 40 is connected to the control pole of the switch tube 103.
  • the switch 103 is turned on or off to control the test circuit of the charging device 200 to the load module 300 to be turned on or off.
  • the switching tube 103 when the switching tube 103 is turned on, the test circuit of the charging device 200 to the load module 100 is opened, and the charging device 200 outputs electric energy to the load module 300.
  • the switching tube 103 is turned off, the test of the charging device 200 to the load module 300 is performed. The circuit is open, and the charging device 200 stops outputting power to the load module 300.
  • the control module 40 is connected to the control electrode of the switch tube 103. When the charging device 200 is tested, the switch tube 103 can be turned on under the control of the control module 40.
  • the switching tube 40 may be a MOS tube or a triode.
  • the control module 40 may be an MCU (Micro-controller Unit).
  • the drain of the MOS tube can be set close to the charging device 200, and the source stage of the MOS tube can be set away from the charging device 200.
  • connection circuit 40 may further include a sampling resistor R1.
  • the sampling resistor R1 is connected in series on the first power line 101 or the second power line 102. Both ends of the sampling resistor R1 are also connected to the control module 40. That is, the control module 40 can sample the current on the first power line 101 or the second power line 102 through the sampling resistor R1. The control module 40 can use this current as the current of the test circuit and perform the charging on the charging device 200 according to the current.
  • the switch 103 can also be controlled when the current is greater than a preset current, thereby achieving overcurrent protection.
  • the load module 300 may be an electronic load or a program power source.
  • the electronic load can be in a constant current mode or a constant voltage mode.
  • the program-controlled power supply can supply power while acting as a load.
  • the control module 40 may be connected to an external power source 50 so that the external power source 50 supplies power to the control module 40.
  • the load module 300 is a program power supply
  • the program-controlled power supply also supplies power to the control module 40.
  • the power supply of the test board 100 can be supplied externally or by using a program-controlled power supply as the load module 300, thereby preventing the charging module 200 from entering a protection state and turning off the power output after the control module 40 is powered off.
  • the second communication module 30 may communicate with the charging device 200 through the first communication line 105, the first communication line 105, the first power supply line 101, and the second power supply line. 102 may be arranged in the same cable.
  • the cable can be a USB cable or a Type-c cable, thereby facilitating the connection between the charging device and the test board.
  • the first communication module 20 may communicate with the host computer 400 through a communication cable, and the communication cable may be a serial communication cable, that is, the host computer 400 and a test Serial communication is possible between the boards 100.
  • the charging device forms a test loop with the load module through the connection circuit
  • the control module communicates with the upper computer through the first communication module, and communicates with the charging device through the second communication module.
  • the control module receives the instruction information sent by the host computer through the first communication module, and generates corresponding test instructions according to the instruction information, so that the test board or the charging device executes the test instructions, thereby enabling automatic testing, simple operation, and time saving Save effort and shorten the time consuming of a full set of tests.
  • this application also proposes a test system.
  • FIG. 5 is a schematic block diagram of a test system according to an embodiment of the present application.
  • the test system includes: a load module 300, the test board 100 of the foregoing embodiment, a charging device 200, and a host computer 400.
  • the charging device 200 forms a test loop with the load module 300 through the test board 100, and the charging device 200 also communicates with the test board 100; the host computer 400 communicates with the test board 100.
  • the present application also proposes a testing method of the charging device.
  • FIG. 6 is a schematic flowchart of a test method for a charging device according to an embodiment of the present application.
  • the test method is applied to a test board.
  • the charging device forms a test loop with the load module through the test board.
  • the test board communicates with the upper computer through the first communication module and also communicates with the charging device through the second communication module.
  • the method for testing the charging device according to the embodiment of the present application includes:
  • S2 Generate a corresponding test instruction according to the instruction information, so that the test board or the charging device executes the test instruction.
  • the method further includes: obtaining state information of the charging device; determining a test result of the test instruction according to the state information of the charging device; and sending the test result to the host computer.
  • the method further includes: acquiring the status information of the charging device; and sending the status information of the charging device to the upper computer, so that the upper computer determines the status information of the charging device.
  • the test result of the test instruction is a test result of the test instruction.
  • the method when the control module executes the test instruction, the method further includes: simulating an abnormal state indicated by the test instruction and collecting operating state information of the charging device, wherein the operating state information is used to indicate whether the charging device enters Protection status.
  • the method when the charging device executes the test instruction, the method further includes: sending the test instruction to the charging device and collecting output status information of the charging device, wherein the output status information is used to instruct the charging device to operate according to the test instruction. Output status at the time.
  • the charging device forms a test loop with a load module through a connection circuit
  • the test board communicates with the host computer, and also communicates with the charging device.
  • the test board receives the command sent by the host computer Information, and generate corresponding test instructions according to the instruction information, so that the test board or charging device executes the test instructions, thereby enabling automatic testing, simple operation, saving time and effort, and shortening the time-consuming time of the full set of tests.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • the foregoing storage media include: U disk, mobile hard disk, read-only memory (ROM, Read-Only Memory), random access memory (RAM, Random Access Memory), magnetic disks or optical disks and other media that can store program codes .

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Human Computer Interaction (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Electronic Circuits (AREA)

Abstract

本申请提出一种充电装置的测试板、测试系统和测试方法,测试板包括:连接电路,所述连接电路分别连接充电装置和负载模块,以使所述充电装置通过所述连接电路与所述负载模块形成测试回路;第一通信模块,所述第一通信模块与上位机进行通信;第二通信模块,所述第二通信模块与所述充电装置进行通信;控制模块,所述控制模块与所述第一通信模块和第二通信模块相连,所述控制模块通过所述第一通信模块接收所述上位机发送指令信息,并根据所述指令信息生成相应的测试指令,以使所述测试板或所述充电装置执行所述测试指令,从而,能够实现自动测试,操作简单,省时省力,缩短全套测试的耗时时间。

Description

充电装置的测试板、测试系统和测试方法 技术领域
本申请涉及充电技术领域,尤其涉及一种充电装置的测试板、测试系统和测试方法。
背景技术
相关技术中,通常通过手动制造异常,人为判断异常状态,对充电装置例如适配器进行测试。但是,相关技术存在的问题是,需要手动测试,比较繁琐,费时费力,完成全套测试耗时久。
发明内容
本申请提供一种充电装置的测试系统和方法,能够实现自动测试,操作简单,省时省力。
本申请第一方面实施例提出的充电装置的测试板,包括连接电路,所述连接电路分别连接充电装置和负载模块,以使所述充电装置通过所述连接电路与所述负载模块形成测试回路;第一通信模块,所述第一通信模块与上位机进行通信;第二通信模块,所述第二通信模块与所述充电装置进行通信;控制模块,所述控制模块与所述第一通信模块和第二通信模块相连,所述控制模块通过所述第一通信模块接收所述上位机发送指令信息,并根据所述指令信息生成相应的测试指令,以使所述测试板或所述充电装置执行所述测试指令。
根据本申请实施例提出的充电装置的测试板,充电装置通过连接电路与负载模块形成测试回路,控制模块通过第一通信模块与上位机进行通信,并通过第二通信模块与充电装置进行通信,控制模块通过第一通信模块接收上位机发送指令信息,并根据指令信息生成相应的测试指令,以使测试板或充电装置执行测试指令,从而,能够实现自动测试,操作简单,省时省力,缩短全套测试 的耗时时间。
根据本申请的一个实施例,在所述测试板或所述充电装置执行所述测试指令之后,所述控制模块还用于获取所述充电装置的状态信息,并根据所述充电装置的状态信息确定所述测试指令的测试结果,以及向所述上位机发送所述测试结果。
根据本申请的一个实施例,在所述测试板或所述充电装置执行所述测试指令之后,所述控制模块还用于获取所述充电装置的状态信息,并向所述上位机发送所述充电装置的状态信息,以使所述上位机根据所述充电装置的状态信息确定所述测试指令的测试结果。
根据本申请的一个实施例,当所述控制模块执行所述测试指令时,模拟所述测试指令所指示的异常状态,并采集所述充电装置的运行状态信息,其中,所述运行状态信息用于指示所述充电装置是否进入保护状态。
根据本申请的一个实施例,当所述充电装置执行所述测试指令时,所述控制装置通过所述第二通信模块向所述充电装置发送所述测试指令,并采集所述充电装置的输出状态信息,其中,所述输出状态信息用于指示所述充电装置根据所述测试指令运行时的输出状态。
根据本申请的一个实施例,所述连接电路包括第一电源线和第二电源线,其中,所述第一电源线的一端连接所述负载模块的正极,所述第一电源线的另一端连接所述充电装置的正电源线;所述第二电源线的一端连接所述负载模块的负极,所述第二电源线的另一端连接所述充电装置的负电源线。
根据本申请的一个实施例,所述连接电路还包括开关管,所述开关管串联在所述第一电源线或所述第二电源线上,所述开关管的控制极与所述控制模块相连,所述控制模块通过控制开关管导通或关断以控制所述充电装置到所述负载模块的测试回路导通或关断。
根据本申请的一个实施例,所述连接电路还包括采样电阻,所述采样电阻串联在所述第一电源线或所述第二电源线上,所述采样电阻的两端还与所述控 制模块相连。
根据本申请的一个实施例,所述负载模块包括电子负载,其中,所述控制模块与外部电源相连,以使所述外部电源为所述控制模块供电。
根据本申请的一个实施例,所述负载模块为程控电源,其中,所述程控电源还为所述控制模块供电。
根据本申请的一个实施例,所述第二通信模块通过第一通信线与所述充电装置进行通信,所述第一通信线、所述第一电源线和所述第二电源线设置于同一线缆中。
为达到上述目的,本申请第二方面实施例提出的一种测试系统,包括:负载模块;第一方面实施例的所述测试板;充电装置,所述充电装置通过所述测试板与所述负载模块形成测试回路,所述充电装置还与所述测试板进行通信;上位机,所述上位机与所述测试板进行通信。
根据本申请实施例提出的充电装置的测试系统,能够实现自动测试,操作简单,省时省力,缩短全套测的耗时时间。
为达到上述目的,本申请第三方面实施例提出的一种充电装置的测试方法,应用于测试板,所述充电装置通过所述测试板与负载模块形成测试回路,所述测试板通过第一通信模块与上位机进行通信,还通过第二通信模块与所述充电装置进行通信,其中,所述方法包括:接收所述上位机发送指令信息;根据所述指令信息生成相应的测试指令,以使所述测试板或所述充电装置执行所述测试指令。
根据本申请实施例提出的充电装置的测试方法,充电装置通过连接电路与负载模块形成测试回路,测试板与上位机进行通信,还与充电装置进行通信,测试板接收上位机发送指令信息,并根据指令信息生成相应的测试指令,以使测试板或充电装置执行测试指令,从而,能够实现自动测试,操作简单,省时省力,缩短全套测试的耗时时间。
根据本申请的一个实施例,在所述测试板或所述充电装置执行所述测试指 令之后,还包括:获取所述充电装置的状态信息;根据所述充电装置的状态信息确定所述测试指令的测试结果;向所述上位机发送所述测试结果。
根据本申请的一个实施例,在所述测试板或所述充电装置执行所述测试指令之后,还包括:获取所述充电装置的状态信息;向所述上位机发送所述充电装置的状态信息,以使所述上位机根据所述充电装置的状态信息确定所述测试指令的测试结果。
根据本申请的一个实施例,当所述控制模块执行所述测试指令时,所述方法还包括:模拟所述测试指令所指示的异常状态,并采集所述充电装置的运行状态信息,其中,所述运行状态信息用于指示所述充电装置是否进入保护状态。
根据本申请的一个实施例,当所述充电装置执行所述测试指令时,所述方法还包括:向所述充电装置发送所述测试指令,并采集所述充电装置的输出状态信息,其中,所述输出状态信息用于指示所述充电装置根据所述测试指令运行时的输出状态。
本申请附加的方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请实施例的充电装置的测试板的方框示意图;
图2为本申请一个实施例的充电装置的测试板的方框示意图;
图3为本申请另一个实施例的充电装置的测试板的方框示意图;
图4为本申请又一个实施例的充电装置的测试板的方框示意图;
图5为本申请实施例的充电装置的测试系统的方框示意图;以及
图6为本申请实施例的充电装置的测试方法的流程示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
下面参考附图描述本申请实施例的充电装置的测试板、测试系统和测试方法,该充电装置的测试板、测试系统和测试方法用于对充电装置进行测试。
在本申请的实施例中,充电装置可用于给电子设备进行充电。电子设备可以是指终端,该“终端”可包括,但不限于智能手机、电脑、个人数字助理(personal digital assistant,PDA)、可穿戴设备、蓝牙耳机、游戏设备、摄像设备等。充电装置可以是,适配器、移动电源(充电宝)或车载充电器等具有给终端充电的功能的设备。以适配器为例,充电装置可以VOOC适配器,VOOC适配器的充电电路可通过充电接口直接连接至电子设备的电池。
可理解,为了保证充电装置的安全可靠,充电装置通常设置有安全保护机制,例如,过压过流过温的保护、通路阻抗异常的保护、开关管异常的保护等。由此,在实际使用过程中,充电装置出现某种异常状态,充电装置进入保护状态。
为此,本申请实施例的充电装置的测试系统,通过测试板模拟电子设备的状态,与充电装置实时通信,故意制造异常状态,并实时监控充电装置的状态,判断充电装置是否在异常时进入相应的保护状态,从而验证各个保护功能的有效性。
下面结合图1-4详细描述本申请实施例的充电装置的测试板。
如图1所示,本申请实施例的充电装置的测试板100包括:连接电路10、第一通信模块20、第二通信模块30和控制模块40。
其中,连接电路10分别连接充电装置200和负载模块300,以使充电装置200通过连接电路10与负载模块300形成测试回路。即充电装置200输出的电 流经测试板20的连接电路10流向负载模块300,电流方向如图1中箭头方向所示。
第一通信模块20与上位机400进行通信;第二通信模块30与充电装置200进行通信,控制模块40与第一通信模块20和第二通信模块30相连。也就是说,控制模块40可通过第一通信模块20接收上位机400发送的信息也可向上位机400发送信息,同理,控制模块40可通过第二通信模块30接收充电装置200发送的信息也可向充电装置200发送信息。
需要说明的是,负载模块10可为无电池的负载,而测试板20与负载模块10配合可模拟电子设备的状态,例如,通过测试板20模拟电子设备的快充电过程中电池的状态,电池的状态包括电池电流、电池电压等,然后,测试板20再将模拟的电池状态上报给充电装置30,充电装置30可根据测试板20上报的电池状态模拟充电过程。
在测试过程中,控制模块40可通过第一通信模块20接收上位机400发送指令信息,并根据指令信息生成相应的测试指令,以使测试板100或充电装置200测试指令。
作为一个示例,上位机400可向测试板100发送指令信息,该指令信息用于指示当前测试类型,例如当前测试类型可包括过压测试、过温测试、通路阻抗测试等。控制模块40可通过第一通信模块20接收上位机400发送指令信息,并根据指令信息确定当前测试类型,并根据当前测试类型生成相应的测试指令。然后,确定所生成的测试指令的执行主体,例如,该测试指令的执行主体为充电装置200时,控制模块40可通过第二通信模块30向充电装置200发送测试指令,充电装置200执行该测试指令,以使充电装置实现相应测试类型的测试,又如,该测试指令的执行主体为测试板100时,控制模块40可直接执行该测试指令,以使充电装置实现相应测试类型的测试。
由此,能够实现自动测试,操作简单,省时省力,缩短全套测试的耗时时间。
可理解,当需要对充电装置200进行多项测试时,上位机400可按照设定好的测试时序顺序发送多个指令信息,测试板100每次接收到指令信息后,均可根据接收到的指令信息生成相应的测试指令,以根据相应的测试进行测试。并且,在当前测试完成后,上位机400可自动或根据用户输入的指令发送下一个指令信息。由此,能够自动实现全套测试,省时省力,缩短全套测试的耗时时间。
在本申请一些实施例中,在测试板100或充电装置100执行测试指令之后,控制模块40还用于获取充电装置200的状态信息,并根据充电装置200的状态信息确定测试结果的测试结果,以及向上位机400发送测试结果。
在本申请一些实施例中,在测试板100或充电装置200执行测试指令之后,控制模块40还用于获取充电装置200的状态信息,并向上位机400发送充电装置200的状态信息,以使上位机400根据充电装置200的状态信息确定测试结果。
作为一个示例,充电装置200的状态信息可包括运行状态信号例如保护状态等和输出状态信息例如输出电压、输出电流等。
具体地,当控制模块40执行测试指令时,模拟测试指令所指示的异常状态,并采集充电装置200的运行状态信息,其中,运行状态信息用于指示充电装置40是否进入保护状态。
可理解,上位机400可以给测试板100发送指令信息,指令信息可以指示测试类型,测试板100的控制模块40在通过第二通信模块30接收到指令信息之后,可以根据接收到的指令信息生成相应的测试指令,然后,控制模块40可执行该测试指令,模拟该测试指令所指示的异常状态,由于充电装置200通过连接电路10与负载模块300形成测试回路,充电装置200可检测到该异常状态,在该异常状态的保护功能正常时进入保护状态。
接下来,测试板100通过第二通信模块30接收充电装置200的运行状态信息,即充电装置200是否进入保护状态的信息。测试板100可自行根据运行状 态信息判断充电装置200是否进入保护状态或者将运行状态信息发送给上位机400,让上位机400判断充电装置200是否进入保护状态。如果充电装置进入保护状态,则确认充电装置具有该异常保护功能或者该异常保护功能有效,如果充电装置未进入保护状态,则确认充电装置不具有该异常保护功能或者该异常保护功能失效。
作为一个示例,以充电装置200到负载模块300的通路阻抗的保护功能测试为例,当进行通路阻抗保护功能测试时,控制模块40可根据测试指令模拟通路阻抗异常状态,即控制模块40可向充电装置200发送测试电池电压VBAT,充电装置200可接收测试板100上报的测试电池电压VBAT,并根据测试电池电压VBAT计算充电装置200到负载模块300的通路阻抗,以及根据充电装置200到负载模块300的通路阻抗控制充电装置200的运行状态(包括但不限于正常工作状态、保护状态等)。即在通路阻抗大于预设阻抗时,充电装置200进入保护状态,在通路阻抗大于等于预设阻抗时,充电装置200处于正常工作状态。
此时,测试板100通过第二通信模块30获取充电装置200的运行状态,并自行根据运行状态信息判断充电装置200是否进入保护状态或者将运行状态信息发送给上位机400,让上位机400判断充电装置200是否进入保护状态。如果充电装置进入保护状态,测试板100或上位机400则确认充电装置具有通路阻抗保护功能或者通路阻抗保护功能有效,如果充电装置未进入保护状态,测试板100或上位机400则确认充电装置不具有通路阻抗保护功能或者通路阻抗保护功能失效。
需要说明的是,充电装置200可根据充电装置200的充电电压、测试板100上报的测试电池电压VBAT和充电装置200的充电电流计算充电装置200到负载模块300的通路阻抗。即,充电装置30可根据以下公式计算充电装置30到负载模块10的通路阻抗:
R=(VBUS-VBAT)/I
其中,R为充电装置30到负载模块10的通路阻抗,VBUS为充电装置30 的充电电压,VBAT为测试板20上报的测试电池电压,I为充电装置30的充电电流。
并且,控制模块40可可采样测试板上的电压,并根据测试板上的电压V-ADC、模拟阻抗增加值△R、充电装置30的充电电流I计算测试电池电压VBAT。其中,模拟阻抗增加值△R大于或等于预设阻抗。即,控制模块40可根据以下公式计算测试电池电压:
VBAT=V-ADC-△R*I
其中,VBAT为测试电池电压,V-ADC为测试板20上的电压,△R为模拟阻抗增加值,I为充电装置30的充电电流。
具体地,当充电装置200执行测试指令时,控制装置40通过第二通信模块30向充电装置200发送测试指令,并采集充电装置200的输出状态信息,其中,输出状态信息用于指示充电装置200根据测试指令运行时的输出状态。
可理解,上位机400可以给测试板100发送指令信息,指令信息可以指示测试类型,测试板100的控制模块40在通过第二通信模块30接收到指令信息之后,可以根据接收到的指令信息生成相应的测试指令,然后,控制模块40可通过第二通信模块30向充电装置200发送该测试指令,充电装置200可执行该测试指令,进入某种测试状态。
接下来,测试板100可通过第二通信模块30接收充电装置200的输出状态信息,例如充电装置200的输出电压、输出电流等。测试板100可自行根据输出状态信息判断充电装置200的输出状态信息是否满足测试要求或者将输出状态信息发送给上位机400,让上位机400判断充电装置200的输出状态信息是否满足测试要求。
作为一个示例,以功耗测试为例,当进行功耗测试时,控制模块40可向充电装置200发送测试指令,充电装置200可根据测试指令进入某种测试场景,测试板100可通过第二通信模块30获取充电装置200的输出状态例如电压电流等。测试板100可自行根据输出状态信息判断充电装置200是否满足功耗测试 要求或者将输出状态信息发送给上位机400,让上位机400判断是否满足功耗测试要求。
下面描述测试板200的具体结构。
如图2-4所示,连接电路10可包括第一电源线101和第二电源线102。
并且,充电装置200可具有电源线,充电装置200可通过电源线向外部输出电能,例如为电子设备的电池充电,或者向负载模块300传输电能。具体地,充电装置200的电源线可包括正电源线301a和负电源线301b。其中,第一电源线101的一端连接负载模块300的正极,第一电源线101的另一端连接充电装置200的正电源线301a;第二电源线102的一端连接负载模块300的负极,第二电源线102的另一端连接充电装置200的负电源线301b。
正电源线301a还可与充电装置200的充电电路303的正输出端+相连,负电源线301b还可与充电装置200的充电电路303的负输出端-相连。
可理解,电流从充电装置200的充电电路303的正输出端+流出,依次经正电源线301a和第一电源线101流入负载模块300的正极,再由负载模块300的正极流出,依次经第二电源线102和负电源线301b流回充电装置200的充电电路303的负输出端-。
作为一个示例,在充电装置200与电子设备相连时,正电源线301a和负电源线301b可分别连接至电池的正极和负极,以为电子设备的电池进行充电。
根据图4所示,连接电路10还包括开关管103,开关管103串联在第一电源线101或第二电源线102上,控制模块40与开关管103的控制极相连,控制模块40通过控制开关管103导通或关断以控制充电装置200到负载模块300的测试回路导通或关断。
可理解,当开关管103导通时,充电装置200到负载模块100的测试回路开通,充电装置200输出电能到负载模块300;当开关管103关断时,充电装置200到负载模块300的测试回路断路,充电装置200停止输出电能到负载模块300。
控制模块40与开关管103的控制极相连,在对充电装置200进行测试时,开关管103可在控制模块40的控制下导通。开关管40可为MOS管或三极管。控制模块40可为MCU(Micro-controller Unit,微控制单元)。
具体地,以MOS管为例,如MOS管放在第一电源线101上,MOS管的漏极可靠近充电装置200设置,而MOS管的源级可远离充电装置200设置。
根据图4所示,连接电路40还可包括采样电阻R1,采样电阻R1串联在第一电源线101或第二电源线102上,采样电阻R1的两端还与控制模块40相连。也就是说,控制模块40可通过采样电阻R1采样第一电源线101或第二电源线102上的电流,控制模块40可将该电流作为测试回路的电流,并根据该电流对充电装置200进行控制,也可在电流大于预设电流时控制开关管103,从而实现过流保护。
在本申请的一些实施例中,负载模块300可为电子负载或程序电源。其中,电子负载可处于恒流模式或恒压模式。程控电源可在作为负载的同时向外供电。
具体地,当负载模块300为电子负载时,控制模块40可与外部电源50相连,以使外部电源50为控制模块40供电。当负载模块300为程序电源时,程控电源还为控制模块40供电。
也就是说,测试板100的供电可以外部供电或者使用作为负载模块300的程控电源供电,从而防止充电装置200进入保护状态后,关闭电源输出后,控制模块40掉电。
在本申请的一个实施例中,如图4所示,第二通信模块30可通过第一通信线105与充电装置200进行通信,第一通信线105、第一电源线101和第二电源线102可设置于同一线缆中。该线缆可为USB线缆或Type-c线缆,从而,便于实现充电装置与测试板之间的连接。
在本申请的一个实施例中,如图4所示,第一通信模块20可通过通信线缆与上位机400进行通信,该通信线缆可为串行通信线缆,即上位机400与测试板100之间可进行串行通信。
综上,根据本申请实施例提出的充电装置的测试板,充电装置通过连接电路与负载模块形成测试回路,控制模块通过第一通信模块与上位机进行通信,并通过第二通信模块与充电装置进行通信,控制模块通过第一通信模块接收上位机发送指令信息,并根据指令信息生成相应的测试指令,以使测试板或充电装置执行测试指令,从而,能够实现自动测试,操作简单,省时省力,缩短全套测试的耗时时间。
基于上述实施例,本申请还提出了一种测试系统。
图5是根据本申请实施例的测试系统的方框示意图。如图5所示,测试系统包括:负载模块300、前述实施例的测试板100、充电装置200和上位机400。
其中,充电装置200通过测试板100与负载模块300形成测试回路,充电装置200还与测试板100进行通信;上位机400与测试板100进行通信。
根据本申请实施例提出的充电装置的测试系统,能够实现自动测试,操作简单,省时省力,缩短全套测的耗时时间。
与前述实施例的充电装置的测试板相对应,本申请还提出一种充电装置的测试方法。
图6为本申请实施例提供的一种充电装置的测试方法的流程示意图。该测试方法应用于测试板,充电装置通过测试板与负载模块形成测试回路,测试板通过第一通信模块与上位机进行通信,还通过第二通信模块与充电装置进行通信。如图6所示,本申请实施例的充电装置的测试方法包括:
S1:接收上位机发送指令信息;
S2:根据指令信息生成相应的测试指令,以使测试板或充电装置执行测试指令。
根据本申请的一个实施例,在测试板或充电装置执行测试指令之后,还包括:获取充电装置的状态信息;根据充电装置的状态信息确定测试指令的测试结果;向上位机发送测试结果。
根据本申请的一个实施例,在测试板或充电装置执行测试指令之后,还包 括:获取充电装置的状态信息;向上位机发送充电装置的状态信息,以使上位机根据充电装置的状态信息确定测试指令的测试结果。
根据本申请的一个实施例,当控制模块执行测试指令时,方法还包括:模拟测试指令所指示的异常状态,并采集充电装置的运行状态信息,其中,运行状态信息用于指示充电装置是否进入保护状态。
根据本申请的一个实施例,当充电装置执行测试指令时,方法还包括:向充电装置发送测试指令,并采集充电装置的输出状态信息,其中,输出状态信息用于指示充电装置根据测试指令运行时的输出状态。
需要说明的是,前述对充电装置的测试板实施例的解释说明也适用于该实施例的充电装置的测试方法,此处不再赘述。
综上,根据本申请实施例提出的充电装置的测试方法,充电装置通过连接电路与负载模块形成测试回路,测试板与上位机进行通信,还与充电装置进行通信,测试板接收上位机发送指令信息,并根据指令信息生成相应的测试指令,以使测试板或充电装置执行测试指令,从而,能够实现自动测试,操作简单,省时省力,缩短全套测试的耗时时间。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另 外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (17)

  1. 一种充电装置的测试板,其特征在于,包括:
    连接电路,所述连接电路分别连接充电装置和负载模块,以使所述充电装置通过所述连接电路与所述负载模块形成测试回路;
    第一通信模块,所述第一通信模块与上位机进行通信;
    第二通信模块,所述第二通信模块与所述充电装置进行通信;
    控制模块,所述控制模块与所述第一通信模块和第二通信模块相连,所述控制模块通过所述第一通信模块接收所述上位机发送指令信息,并根据所述指令信息生成相应的测试指令,以使所述测试板或所述充电装置执行所述测试指令。
  2. 根据权利要求1所述的充电装置的测试板,其特征在于,在所述测试板或所述充电装置执行所述测试指令之后,所述控制模块还用于获取所述充电装置的状态信息,并根据所述充电装置的状态信息确定所述测试指令的测试结果,以及向所述上位机发送所述测试结果。
  3. 根据权利要求1所述的充电装置的测试板,其特征在于,在所述测试板或所述充电装置执行所述测试指令之后,所述控制模块还用于获取所述充电装置的状态信息,并向所述上位机发送所述充电装置的状态信息,以使所述上位机根据所述充电装置的状态信息确定所述测试指令的测试结果。
  4. 根据权利要求1-3中任一项所述的充电装置的测试板,其特征在于,当所述控制模块执行所述测试指令时,模拟所述测试指令所指示的异常状态,并采集所述充电装置的运行状态信息,其中,所述运行状态信息用于指示所述充电装置是否进入保护状态。
  5. 根据权利要求1-3中任一项所述的充电装置的测试板,其特征在于,当所述充电装置执行所述测试指令时,所述控制装置通过所述第二通信模块向所述充电装置发送所述测试指令,并采集所述充电装置的输出状态信息,其中, 所述输出状态信息用于指示所述充电装置根据所述测试指令运行时的输出状态。
  6. 根据权利要求1所述的充电装置的测试板,其特征在于,所述连接电路包括第一电源线和第二电源线,其中,
    所述第一电源线的一端连接所述负载模块的正极,所述第一电源线的另一端连接所述充电装置的正电源线;
    所述第二电源线的一端连接所述负载模块的负极,所述第二电源线的另一端连接所述充电装置的负电源线。
  7. 根据权利要求6所述的充电装置的测试板,其特征在于,所述连接电路还包括开关管,所述开关管串联在所述第一电源线或所述第二电源线上,所述开关管的控制极与所述控制模块相连,所述控制模块通过控制开关管导通或关断以控制所述充电装置到所述负载模块的测试回路导通或关断。
  8. 根据权利要求6所述的充电装置的测试板,其特征在于,所述连接电路还包括采样电阻,所述采样电阻串联在所述第一电源线或所述第二电源线上,所述采样电阻的两端还与所述控制模块相连。
  9. 根据权利要求1所述的充电装置的测试板,其特征在于,所述负载模块包括电子负载,其中,
    所述控制模块与外部电源相连,以使所述外部电源为所述控制模块供电。
  10. 根据权利要求9所述的充电装置的测试板,其特征在于,所述负载模块为程控电源,其中,所述程控电源还为所述控制模块供电。
  11. 根据权利要求6所述的充电装置的测试板,其特征在于,所述第二通信模块通过第一通信线与所述充电装置进行通信,所述第一通信线、所述第一电源线和所述第二电源线设置于同一线缆中。
  12. 一种测试系统,其特征在于,包括:
    负载模块;
    如权利要求1-11中任一项所述的测试板;
    充电装置,所述充电装置通过所述测试板与所述负载模块形成测试回路,所述充电装置还与所述测试板进行通信;
    上位机,所述上位机与所述测试板进行通信。
  13. 一种充电装置的测试方法,应用于测试板,其特征在于,所述充电装置通过所述测试板与负载模块形成测试回路,所述测试板通过第一通信模块与上位机进行通信,还通过第二通信模块与所述充电装置进行通信,其中,所述方法包括:
    接收所述上位机发送指令信息;
    根据所述指令信息生成相应的测试指令,以使所述测试板或所述充电装置执行所述测试指令。
  14. 根据权利要求13所述的充电装置的测试方法,其特征在于,在所述测试板或所述充电装置执行所述测试指令之后,还包括:
    获取所述充电装置的状态信息;
    根据所述充电装置的状态信息确定所述测试指令的测试结果;
    向所述上位机发送所述测试结果。
  15. 根据权利要求13所述的充电装置的测试方法,其特征在于,在所述测试板或所述充电装置执行所述测试指令之后,还包括:
    获取所述充电装置的状态信息;
    向所述上位机发送所述充电装置的状态信息,以使所述上位机根据所述充电装置的状态信息确定所述测试指令的测试结果。
  16. 根据权利要求13-15中任一项所述的充电装置的测试方法,其特征在于,当所述控制模块执行所述测试指令时,所述方法还包括:
    模拟所述测试指令所指示的异常状态,并采集所述充电装置的运行状态信息,其中,所述运行状态信息用于指示所述充电装置是否进入保护状态。
  17. 根据权利要求13-15中任一项所述的充电装置的测试方法,其特征在于,当所述充电装置执行所述测试指令时,所述方法还包括:
    向所述充电装置发送所述测试指令,并采集所述充电装置的输出状态信息,其中,所述输出状态信息用于指示所述充电装置根据所述测试指令运行时的输出状态。
PCT/CN2018/109078 2018-09-30 2018-09-30 充电装置的测试板、测试系统和测试方法 WO2020062235A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/CN2018/109078 WO2020062235A1 (zh) 2018-09-30 2018-09-30 充电装置的测试板、测试系统和测试方法
JP2020504332A JP7191083B2 (ja) 2018-09-30 2018-09-30 充電装置のテストボード、テストシステム及びテスト方法
CN201880023338.5A CN110520743B (zh) 2018-09-30 2018-09-30 充电装置的测试板、测试系统和测试方法
EP18934820.4A EP3722820B1 (en) 2018-09-30 2018-09-30 Test board, test system and test method for charging device
KR1020207002651A KR102346821B1 (ko) 2018-09-30 2018-09-30 충전 장치의 테스트 보드, 테스트 시스템 및 테스트 방법
US16/626,262 US11549995B2 (en) 2018-09-30 2018-09-30 Test board, test system and test method for charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/109078 WO2020062235A1 (zh) 2018-09-30 2018-09-30 充电装置的测试板、测试系统和测试方法

Publications (1)

Publication Number Publication Date
WO2020062235A1 true WO2020062235A1 (zh) 2020-04-02

Family

ID=68622269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/109078 WO2020062235A1 (zh) 2018-09-30 2018-09-30 充电装置的测试板、测试系统和测试方法

Country Status (6)

Country Link
US (1) US11549995B2 (zh)
EP (1) EP3722820B1 (zh)
JP (1) JP7191083B2 (zh)
KR (1) KR102346821B1 (zh)
CN (1) CN110520743B (zh)
WO (1) WO2020062235A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112964945A (zh) * 2021-02-01 2021-06-15 深圳市豪恩声学股份有限公司 一种充电盒的测试方法、装置、终端和存储介质
CN113917310A (zh) * 2021-08-26 2022-01-11 深圳市菲尼基科技有限公司 一种一体保护板测试系统

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112014674A (zh) * 2020-09-02 2020-12-01 西安易朴通讯技术有限公司 产品板快充口测试方法、产品板、测试板以及测试系统
CN113156244B (zh) * 2021-04-12 2022-07-12 Oppo广东移动通信有限公司 充电装置的测试方法、装置、电子设备及存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033760A (zh) * 2012-12-15 2013-04-10 安徽工程大学 一种电池充放电测试仪
CN104020422A (zh) * 2014-06-24 2014-09-03 上海大学 一种ups蓄电池检测装置
CN105527525A (zh) * 2016-01-26 2016-04-27 江苏才易电子科技有限公司 一种可兼容快速充电器的智能测试板及其测试方法
CN205404694U (zh) * 2016-01-05 2016-07-27 东莞市冠佳电子设备有限公司 快速充电器测试系统

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100383548C (zh) * 2003-05-07 2008-04-23 明基电通股份有限公司 电源特性测试仪
CN101865958A (zh) 2009-04-14 2010-10-20 鸿富锦精密工业(深圳)有限公司 电源适配器测试系统及方法
WO2011031801A2 (en) 2009-09-08 2011-03-17 Aerovironment, Inc. Electric vehicle simulator and analyzer (evsa) for electric vehicle supply equipment
CN102013722A (zh) 2010-07-14 2011-04-13 陈赖容 铅酸蓄电池的充电优化管理器
JP5553422B2 (ja) * 2011-10-04 2014-07-16 日東工業株式会社 車両用充電装置の携帯型検査装置
JP5806914B2 (ja) 2011-11-17 2015-11-10 株式会社東光高岳 充電器検定装置および移動体模擬装置
WO2013128987A1 (ja) 2012-03-01 2013-09-06 三菱電機株式会社 充電器の検査装置および方法
US20130346025A1 (en) * 2012-06-22 2013-12-26 Green Charge Networks Llc Electric vehicle charging protocol selection and testing
CN103257286B (zh) * 2013-03-26 2016-08-31 国家电网公司 一种电动汽车充电设施自动测试方法及系统
JP6391700B2 (ja) * 2014-01-28 2018-09-19 グァンドン オッポ モバイル テレコミュニケーションズ コーポレーション リミテッド 電源アダプター、端末及び充電回路のインピーダンス異常の処理方法
US9448576B2 (en) * 2014-02-17 2016-09-20 Commscope Technologies Llc Programmable power supplies for cellular base stations and related methods of reducing power loss in cellular systems
JP2016158364A (ja) * 2015-02-24 2016-09-01 三洋電機株式会社 電源システム
CN106471697A (zh) * 2015-12-16 2017-03-01 广东欧珀移动通信有限公司 控制充电的方法、装置、电源适配器和移动终端
CN207352137U (zh) 2017-09-15 2018-05-11 东莞市拓克硕自动化有限公司 一种适配器电源自动测试系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103033760A (zh) * 2012-12-15 2013-04-10 安徽工程大学 一种电池充放电测试仪
CN104020422A (zh) * 2014-06-24 2014-09-03 上海大学 一种ups蓄电池检测装置
CN205404694U (zh) * 2016-01-05 2016-07-27 东莞市冠佳电子设备有限公司 快速充电器测试系统
CN105527525A (zh) * 2016-01-26 2016-04-27 江苏才易电子科技有限公司 一种可兼容快速充电器的智能测试板及其测试方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112964945A (zh) * 2021-02-01 2021-06-15 深圳市豪恩声学股份有限公司 一种充电盒的测试方法、装置、终端和存储介质
CN113917310A (zh) * 2021-08-26 2022-01-11 深圳市菲尼基科技有限公司 一种一体保护板测试系统
CN113917310B (zh) * 2021-08-26 2024-02-09 深圳市菲尼基科技有限公司 一种一体保护板测试系统

Also Published As

Publication number Publication date
EP3722820A1 (en) 2020-10-14
US20210333332A1 (en) 2021-10-28
JP7191083B2 (ja) 2022-12-16
JP2021502042A (ja) 2021-01-21
KR102346821B1 (ko) 2022-01-03
EP3722820A4 (en) 2021-01-06
EP3722820B1 (en) 2023-08-23
KR20200038244A (ko) 2020-04-10
US11549995B2 (en) 2023-01-10
CN110520743A (zh) 2019-11-29
CN110520743B (zh) 2022-09-27

Similar Documents

Publication Publication Date Title
WO2020062235A1 (zh) 充电装置的测试板、测试系统和测试方法
CN106569118A (zh) 一种芯片短路失效检测系统及方法
WO2012000378A1 (zh) 测试电路的生成方法、装置和电源测试系统
CN106597143B (zh) 一种测试设备以及测试方法
KR102554814B1 (ko) 전기자동차 충전기의 시험 시스템 및 휴대용 시험장치
CN104535867A (zh) 一种电动汽车电池管理系统的功能检验装置
CN108595299A (zh) 终端设备的测试系统
WO2020062239A1 (zh) 充电装置的测试系统和方法
CN112948186B (zh) 检测装置和接口信号的检测方法
US20060132097A1 (en) Smart battery simulator
KR20140115617A (ko) Bmu를 테스트하는 배터리 시뮬레이션 장치 및 배터리 시뮬레이션 방법
JP6036229B2 (ja) バッテリ制御装置、バッテリ制御方法及びプログラム
CN100399668C (zh) 智能电池模拟装置
CN220019703U (zh) 电子设备的接口电路以及充电测试系统
CN109687389A (zh) 电路保护方法及装置
WO2018053723A1 (zh) 电源适配器、移动终端及充电系统
CN116298850B (zh) 一种测试装置及测试方法
TW542915B (en) Automatic battery inspection method and its apparatus
CN217689303U (zh) 一种免插拔的便携式继电器板测试装置
US20230056613A1 (en) Simulation test system and simulation test method
US20060132098A1 (en) Smart battery simulating system
CN113312877B (zh) 一种基于集成电路的移动电源保护板设计方法
CN218647070U (zh) 一种耳机充电仓测试装置
CN115343560A (zh) 一种配电网继电保护的测试装置
WO2018072496A1 (zh) 检测电路

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020504332

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934820

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018934820

Country of ref document: EP

Effective date: 20200708

NENP Non-entry into the national phase

Ref country code: DE