WO2020062145A1 - Procédé de lixiviation sous pression d'oxygène pour concentré de sulfure de cuivre et procédé de fusion de cuivre - Google Patents

Procédé de lixiviation sous pression d'oxygène pour concentré de sulfure de cuivre et procédé de fusion de cuivre Download PDF

Info

Publication number
WO2020062145A1
WO2020062145A1 PCT/CN2018/108652 CN2018108652W WO2020062145A1 WO 2020062145 A1 WO2020062145 A1 WO 2020062145A1 CN 2018108652 W CN2018108652 W CN 2018108652W WO 2020062145 A1 WO2020062145 A1 WO 2020062145A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
oxygen pressure
pressure leaching
leaching
oxygen
Prior art date
Application number
PCT/CN2018/108652
Other languages
English (en)
Chinese (zh)
Inventor
仝一喆
刘自亮
王恒辉
尹泽辉
罗虹霖
冯泽平
杨建平
刘刚
左小红
邓孟俐
谢冰
施耘
张克
陈龙义
吉红
何醒民
鹏苏格·巴图奥奇
阿拉腾苏和·道尔吉贡土布
巴彦巴策仁·恩赫宝鲁德
齐涛
孟凡成
陈德胜
王丽娜
于宏东
林裕安
刘野平
张登凯
徐克华
何磊
Original Assignee
长沙有色冶金设计研究院有限公司
蒙古国欧绅工程有限责任公司
中国科学院过程工程研究所
深圳市中金岭南有色金属股份有限公司丹霞冶炼厂
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 长沙有色冶金设计研究院有限公司, 蒙古国欧绅工程有限责任公司, 中国科学院过程工程研究所, 深圳市中金岭南有色金属股份有限公司丹霞冶炼厂 filed Critical 长沙有色冶金设计研究院有限公司
Priority to PCT/CN2018/108652 priority Critical patent/WO2020062145A1/fr
Priority to CN201880058273.8A priority patent/CN111225988B/zh
Publication of WO2020062145A1 publication Critical patent/WO2020062145A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B15/00Obtaining copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/04Extraction of metal compounds from ores or concentrates by wet processes by leaching
    • C22B3/06Extraction of metal compounds from ores or concentrates by wet processes by leaching in inorganic acid solutions, e.g. with acids generated in situ; in inorganic salt solutions other than ammonium salt solutions
    • C22B3/08Sulfuric acid, other sulfurated acids or salts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to an oxygen pressure leaching method of copper sulfide concentrate and a copper smelting method, and belongs to the technical field of non-ferrous metal wet smelting.
  • copper sulfide concentrate is basically smelted by fire. First, copper in the copper sulfide concentrate is smelted into crude copper, and then the crude copper is electrolyzed to obtain cathode copper. The sulfur-containing flue gas is sent to produce acid to produce sulfuric acid. And low-grade copper sulfide ore uses hydrometallurgy, that is, leaching-extraction-electrodeposition process to produce electrodeposited copper, because the raw material contains low sulfur and does not produce sulfuric acid. In some areas where copper sulfide concentrates are produced, due to the weak industrial base in the surroundings, sulfuric acid cannot be transported, stored, and sold, and the method of smelting copper sulfide concentrates by fire cannot be implemented.
  • the present invention is based on the operability of industrial production, and provides an oxygen pressure leaching method of copper sulfide concentrate to control the iron and sulfuric acid content in the leaching solution while ensuring a high leaching rate of copper. Make it meet the requirements of subsequent electrowinning; in addition, the invention also provides a copper smelting method.
  • the oxygen pressure leaching method of copper sulfide concentrate includes the following steps:
  • the first dispersant, the first alum agent, the second stage supernatant and the slurry obtained in S1 are added to an autoclave to obtain a first acid concentration (that is, the concentration of H 2 SO 4 ) of 50 to 70 g / L.
  • a slurry is passed into the autoclave, and oxygen is leached at a temperature of 135 to 145 ° C and a pressure of 1.3 to 1.5 MPa. After the reaction is completed, the temperature and pressure are reduced, and the solid-liquid separation is obtained.
  • the first dispersant is added in an amount of 3 to 5 kg / t-concentrate (that is, after 3 to 5 kg of the first dispersant is added to the corresponding pulp after grinding into a pulp per ton of copper sulfide concentrate), the first
  • the addition amount of the alum agent is 25-30 kg / t-concentrate, preferably, the addition amount of the first dispersant is 3.5-4.5 kg / t-concentrate, and the addition amount of the first alum agent is 26-28 kg / t-concentrate;
  • the concentration of H 2 SO 4 in a section of the supernatant is 25 to 35 g / L
  • the concentration of Cu 2+ is 90 to 100 g / L
  • the concentration of Fe 3+ is 8 to 14 g / L;
  • the concentration of H 2 SO 4 in the waste electricity effluent is 160 to 180 g / L, preferably 165 to 175 g / L; generally, the amount of the second dispersant is 5 to 7 kg / t-concentrate, and the second The amount of alum added is 30-35kg / t-concentrate; preferably, the amount of second dispersant is 5.5-6.5kg / t-concentrate and the amount of second alum is 32-34kg / t -Concentrate;
  • a neutralizing agent is added to a section of the supernatant, and reacted to obtain a neutralizing slurry having a pH value of 2.5-3.5, and then solid-liquid separation is performed to obtain a neutralizing supernatant and a neutralizing residue.
  • the concentration of Cu 2+ in the neutralization supernatant is 90 to 100 g / L
  • the concentration of Fe 3+ is less than or equal to 2 g / L
  • the pH value is 2.5 to 3.5, which can satisfy the composition of the new electrolyte solution in the copper electrodeposition process.
  • two stages of countercurrent oxygen pressure leaching are used, one stage is at intermediate temperature and medium pressure to drop acid, and the second stage is high temperature and high pressure leaching of copper.
  • the second stage supernatant is returned to a stage of oxygen pressure leaching to provide acid for a stage of oxygen pressure leaching reaction and participate in a stage of oxygen.
  • the acid is consumed in the reaction system.
  • the copper leached in the second stage of oxygen pressure leaching is accumulated in the leaching solution and enters the first stage of the supernatant.
  • the temperature and pressure used in the first stage of oxygen pressure leaching are relatively low, and the iron leaching rate is low.
  • alum agents are added to suppress the leaching of iron. In this way, it can not only ensure the high leaching rate of copper, but also effectively control the iron and sulfuric acid content in the leaching solution.
  • the required acid is mainly provided by the waste electricity effusion.
  • the solid content of the pulp is 60-70 wt%, preferably 63-68 wt%.
  • the ore is pulverized by a sand mill.
  • the agitating disc of the sand mill can fully contact the grinding medium with the material.
  • the grinding medium is 0.8 to 1 mm zirconium beads, and the specific surface area is large, which can sufficiently grind the material. fine.
  • the ore particles having a particle size of less than 15 ⁇ m in the pulp account for more than 90% by weight of the total minerals, and preferably, more than 90% by weight of the total minerals. Ensure certain particle size conditions, improve reaction efficiency, and further increase the leaching rate.
  • minerals can be understood as copper sulfide concentrates.
  • neutralizing slag is added, minerals can be understood as a mixture of neutralizing slag and copper sulfide concentrates.
  • reaction time for a period of oxygen pressure leaching is 1.5-2.5h, preferably 1.8-2.3h.
  • the oxygen partial pressure in the autoclave is 0.9-1.1 MPa, and preferably 0.95-1.05 MPa.
  • reaction time of the two-stage oxygen pressure leaching is 2.5-3.5 h, preferably 2.8-3.3 h.
  • the oxygen partial pressure in the autoclave is 0.8-1.0 MPa, and preferably 0.85-0.95 MPa.
  • the reaction time Through reasonable control of the reaction time, the high completion of the leaching reaction can be ensured, and the leaching time can be shortened, thereby avoiding time wastage.
  • the control of the oxygen partial pressure Through the control of the oxygen partial pressure, the requirements for the reaction conditions of the oxygen pressure leaching reaction can be guaranteed, and the oxygen pressure leaching reaction can be performed efficiently.
  • the neutralizing agent is limestone and / or copper roasting sand.
  • the neutralizing agent is copper roasting sand.
  • the neutralization slag obtained by the neutralization reaction is sent to S1 for grinding and pulping, and further
  • the mass ratio of neutralization slag and copper sulfide concentrate can be set as required.
  • the neutralization slag and copper sulfide concentrate can be mixed at any ratio.
  • the copper content is 18-25 wt%
  • the iron content is 25-35% by weight
  • the sulfur content is 4-6 wt%
  • the remaining components are gangue.
  • the neutralizing agent is limestone, and the underflow generated can be neutralized slag by pressure filtration, and can be processed by storage and the like.
  • the waste electricity accumulation liquid is a copper electricity accumulation waste liquid, wherein the Cu 2+ concentration is not higher than 40 g / L, and the Fe 3+ concentration is not higher than 2 g / L.
  • both the dispersant and the alum agent can be selected from the dispersants and alum agents commonly used in the non-ferrous metal wet smelting and leaching process.
  • the dispersant may be a lignin sulfonate
  • the alum agent may be It is an ammonium salt or a base.
  • the solid-liquid separation process can be performed by a thickener.
  • the concentration of oxygen introduced into the autoclave is not less than 99%.
  • the oxygen pressure leaching method of the present invention can be applied to leaching treatment of copper sulfide concentrates of different grades.
  • the present invention also provides a copper smelting method.
  • the copper sulfide concentrate is subjected to leaching treatment according to the oxygen pressure leaching method described above to obtain a neutralized supernatant; and then, the neutralized supernatant is used. It is used to collect electric liquid, and to obtain electrolytic copper and copper electrolytic waste liquid.
  • control current density is 160 to 180 A / m 2
  • cycle of the electric product is 7 days.
  • A is selected from Na + , K + , NH 4 + ; reactions (1), (2), (3), and (4) mainly occur during the oxygen pressure leaching process.
  • Two-stage countercurrent oxygen pressure leaching can increase the leaching rate of copper.
  • the total leaching rate of copper in two-stage oxygen pressure leaching can reach more than 90%, and the supernatant of one stage is low in acid and iron, and the neutralizing dose used is small. , Less slag, less copper loss. For the copper that has not been leached in the second-stage leaching slag, flotation can be sent to recover copper and sulfur.
  • the smelting waste electricity effluent can be effectively used, which can reduce production costs and realize the reuse of resources.
  • FIG. 1 is a flowchart of a copper smelting method according to the present invention.
  • the section of supernatant contained Cu 90.78g / L, Fe10.81g / L, and H 2 SO 4 28g / L.
  • the generated one-stage underflow was sent to a two-stage autoclave. Waste electric effusion, 0.6g of dispersant, and 3g of alum were added.
  • the liquid-solid ratio was controlled to 4: 1, oxygen was passed in, the temperature was controlled to 165 ° C, and the pressure was 1.4MPa.
  • a two-stage oxygen pressure leaching was performed, and the reaction was performed for 2.5 hours to produce 70 g of two-stage leaching slag (containing Cu3.1wt%, Fe33.7wt%), the total copper leaching rate of two stages was 90.49%, and the total iron leaching rate was 13.34%.
  • the section of the supernatant contained 92.34 g / L of Cu, 13.84 g / L of Fe, and 30 g / L of H 2 SO 4 .
  • the generated one-stage underflow was sent to a two-stage autoclave, and waste electric effusion, 0.7g of dispersant and 3.5g of alum were added, the liquid-solid ratio was controlled to 4: 1, oxygen was passed in, the temperature was controlled at 170 ° C, and the pressure was 1.5MPa With a reaction time of 3 h, two-stage oxygen pressure leaching was performed to produce 68 g of two-stage leaching slag (containing Cu2.6wt%, Fe33.1wt%), the total copper leaching rate of two stages was 92.25%, and the total iron leaching rate was 17.31%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

L'invention concerne un procédé de lixiviation sous pression d'oxygène pour un concentré de sulfure de cuivre et un procédé de fusion de cuivre. Le procédé de lixiviation sous pression d'oxygène comprend : premièrement, l'ajout d'eau au concentré de sulfure de cuivre et le broyage de celui-ci en pâte ; l'ajout d'un premier dispersant, d'un premier agent de précipitation de vanadium, de deux sections de liquide surnageant, et de la pâte dans un autoclave pour réaliser une section de lixiviation sous pression d'oxygène afin d'obtenir une section de sous-flux et une section de liquide surnageant ; puis l'ajout de la section de sous-flux, du liquide déposé par électrolyse usagé, d'un second dispersant et d'un second agent de précipitation de vanadium dans l'autoclave pour réaliser deux sections de lixiviation sous pression d'oxygène en vue d'obtenir deux sections de liquide surnageant et deux sections de résidus de lixiviation ; et l'ajout d'un agent neutralisant à la section de liquide surnageant pour obtenir le liquide surnageant neutre et le tirage neutre, et l'utilisation d'un cuivre du liquide surnageant neutre déposé par électrolyse. Le procédé contrôle la teneur en fer et en acide sulfurique dans la solution de lixiviation tout en garantissant la vitesse de lixiviation élevée du cuivre.
PCT/CN2018/108652 2018-09-29 2018-09-29 Procédé de lixiviation sous pression d'oxygène pour concentré de sulfure de cuivre et procédé de fusion de cuivre WO2020062145A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2018/108652 WO2020062145A1 (fr) 2018-09-29 2018-09-29 Procédé de lixiviation sous pression d'oxygène pour concentré de sulfure de cuivre et procédé de fusion de cuivre
CN201880058273.8A CN111225988B (zh) 2018-09-29 2018-09-29 硫化铜精矿的氧压浸出方法及铜冶炼方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/108652 WO2020062145A1 (fr) 2018-09-29 2018-09-29 Procédé de lixiviation sous pression d'oxygène pour concentré de sulfure de cuivre et procédé de fusion de cuivre

Publications (1)

Publication Number Publication Date
WO2020062145A1 true WO2020062145A1 (fr) 2020-04-02

Family

ID=69952811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108652 WO2020062145A1 (fr) 2018-09-29 2018-09-29 Procédé de lixiviation sous pression d'oxygène pour concentré de sulfure de cuivre et procédé de fusion de cuivre

Country Status (2)

Country Link
CN (1) CN111225988B (fr)
WO (1) WO2020062145A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116040772A (zh) * 2023-03-27 2023-05-02 长春黄金研究院有限公司 高铜酸性水治理产渣无害化的处理方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113215399B (zh) * 2021-05-06 2022-04-05 长沙有色冶金设计研究院有限公司 一种硫化镍精矿的氧压浸出方法
CN113215398B (zh) * 2021-05-06 2022-03-29 长沙有色冶金设计研究院有限公司 一种硫化镍精矿的氧压浸出方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2363969A1 (fr) * 2001-11-26 2003-05-26 Walter Curlook Procede de recuperation de metaux precieux residuels dans des scories de fonderie et de convertisseur
CN101643857A (zh) * 2009-08-25 2010-02-10 西部矿业股份有限公司 一种复杂铜铅锌银多金属硫化矿综合回收方法
CN101775502A (zh) * 2010-02-04 2010-07-14 云南澜沧铅矿有限公司 湿法炼锌流程提取铜工艺
CN107099669A (zh) * 2017-04-21 2017-08-29 昆明冶金研究院 一种含铜渣中高效清洁除砷的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU749257B2 (en) * 1998-07-24 2002-06-20 Intec Hellyer Metals Pty Ltd Processing copper sulphide ores
FI120315B (fi) * 2007-11-27 2009-09-15 Outotec Oyj Menetelmä pyriittisen, kultaa, kuparia ja arseenia sisältävän rikasteen käsittelemiseksi
CN101225476B (zh) * 2008-02-22 2010-10-13 昆明理工大学 从铅冰铜中回收铜的工艺
CN100554452C (zh) * 2008-07-17 2009-10-28 北京矿冶研究总院 一种含铜硫化矿湿法提取铜的方法
CN101440434A (zh) * 2008-12-17 2009-05-27 昆明金湖冶金有限公司 一种高钙镁硫化铜湿法提取铜的工艺

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2363969A1 (fr) * 2001-11-26 2003-05-26 Walter Curlook Procede de recuperation de metaux precieux residuels dans des scories de fonderie et de convertisseur
CN101643857A (zh) * 2009-08-25 2010-02-10 西部矿业股份有限公司 一种复杂铜铅锌银多金属硫化矿综合回收方法
CN101775502A (zh) * 2010-02-04 2010-07-14 云南澜沧铅矿有限公司 湿法炼锌流程提取铜工艺
CN107099669A (zh) * 2017-04-21 2017-08-29 昆明冶金研究院 一种含铜渣中高效清洁除砷的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116040772A (zh) * 2023-03-27 2023-05-02 长春黄金研究院有限公司 高铜酸性水治理产渣无害化的处理方法
CN116040772B (zh) * 2023-03-27 2023-08-15 长春黄金研究院有限公司 高铜酸性水治理产渣无害化的处理方法

Also Published As

Publication number Publication date
CN111225988B (zh) 2022-04-29
CN111225988A (zh) 2020-06-02

Similar Documents

Publication Publication Date Title
CN109234522B (zh) 一种钴硫精矿综合回收处理方法
CN103526024B (zh) 一种清洁环保的高铟高铁锌精矿综合回收新工艺
CN102994747B (zh) 一种从高铅铜锍中回收金属铜的工艺
CN101974685B (zh) 用矿浆树脂吸附技术从红土矿中提取镍钴工艺
WO2020062145A1 (fr) Procédé de lixiviation sous pression d'oxygène pour concentré de sulfure de cuivre et procédé de fusion de cuivre
CN107630146A (zh) 镍回收方法
CN113215399B (zh) 一种硫化镍精矿的氧压浸出方法
CN104480325A (zh) 含钴原料中提取钴的方法
CN112080636A (zh) 一种利用红土镍矿生产电池级硫酸镍盐的方法
CN104894363A (zh) 利用低品位铌精矿制备铌铁合金与稀土硫酸复盐的方法
CN113416843A (zh) 一种硫化镍精矿的超细磨-氧压浸出工艺
CN105177307A (zh) 一种低冰镍磨浮分离回收铜镍钴的方法
CN113846214B (zh) 一种湿法炼锌生产中含锌物料的处理方法
CN111235404A (zh) 一种铜萃余液生产氢氧化钴的除杂方法
CN114908257A (zh) 一种生产高品质硫酸镍液的方法
CN101139656A (zh) 一种红土镍矿浸出方法
CN105110300A (zh) 一种含硫化锰的复合锰矿提取锰及硫的方法
CN105399132B (zh) 一种用黄铜炉渣和含锌烟道灰制备碱式氯化铜及碱式氯化锌的工艺
CN103993170A (zh) 从铜铅锌砷锑混合精矿中回收金属的方法
CN104947145B (zh) 一种高铅铜锍氧压浸出电积工艺平衡酸的方法
CN102021332A (zh) 一种从氧化镍矿回收镍钴铁镁的工艺
CN114672663A (zh) 一种湿法炼锌方法
CN107619925B (zh) 一种高效富集硫化锌精矿中铜、铟的工艺
CN112662892B (zh) 一种酸浸液的掺杂高压镍铁分离方法
CN114990351B (zh) 一种锌精矿与铜白烟尘协同处理的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934803

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18934803

Country of ref document: EP

Kind code of ref document: A1