WO2020060118A1 - 위치 참조 신호를 송수신하는 방법 및 이를 위한 장치 - Google Patents

위치 참조 신호를 송수신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2020060118A1
WO2020060118A1 PCT/KR2019/011917 KR2019011917W WO2020060118A1 WO 2020060118 A1 WO2020060118 A1 WO 2020060118A1 KR 2019011917 W KR2019011917 W KR 2019011917W WO 2020060118 A1 WO2020060118 A1 WO 2020060118A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
prs
rstd
cell
cell group
Prior art date
Application number
PCT/KR2019/011917
Other languages
English (en)
French (fr)
Inventor
김영섭
김기준
차현수
고현수
윤석현
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2020060118A1 publication Critical patent/WO2020060118A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path

Definitions

  • the present invention relates to a method for transmitting and receiving a location reference signal and an apparatus therefor, and more particularly, to a method for generating and transmitting a sequence of the location reference signal, and an apparatus for the same. will be.
  • next generation 5G system which is an improved wireless broadband communication than the existing LTE system
  • NewRAT communication scenarios are classified into Enhanced Mobile BroadBand (eMBB) / Ultra-reliability and low-latency communication (URLLC) / Massive Machine-Type Communications (mMTC).
  • eMBB Enhanced Mobile BroadBand
  • URLLC Ultra-reliability and low-latency communication
  • mMTC Massive Machine-Type Communications
  • eMBB is a next-generation mobile communication scenario having characteristics such as High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate, and URLLC is a next-generation mobile communication scenario having characteristics such as Ultra Reliable, Ultra Low Latency, Ultra High Availability, etc.
  • mMTC is a next-generation mobile communication scenario with low cost, low energy, short packet, and massive connectivity characteristics. (e.g., IoT).
  • the present invention is to provide a method and apparatus for transmitting and receiving a location reference signal.
  • RSTD Reference Signal Timing Difference
  • the cell-independent information may include cyclic shift values for each of the plurality of cells, actual time shift values for each of the plurality of cells, or DFT (for each of the plurality of cells). Discrete Fourier Transform) sequences.
  • the first PRS sequence may be obtained based on the cell group identifier and cell independent information for the reference cell.
  • the predicted RSTD (Expected RSTD) information, predicted RSTD uncertainty information, predicted RSTD correction information, and predicted RSTD error correction information are received from the location server, and the predicted RSTD (Expected RSTD) information, the predicted RSTD The method may further include acquiring at least one PRS search window for the plurality of cells based on error (Expected RSTD uncertainty) information, the expected RSTD correction information, and the expected RSTD error correction information.
  • the second PRS sequences may be detected in the at least one PRS search window.
  • the expected RSTD (Expected RSTD) information, the expected RSTD error (Expected RSTD uncertainty) information is included in cell group common information, the expected RSTD correction information and the expected RSTD error correction information are included in the cell independent information You can.
  • each of the at least one PRS search window may not overlap.
  • the second PRS sequence related to a narrow bandwidth may be configured as a part of the second PRS sequence related to a wide bandwidth.
  • the second PRS sequence related to a wide bandwidth may be configured in a form in which the second PRS sequence related to a narrow bandwidth is repeated.
  • the terminal may communicate with at least one of a terminal, a network, a base station, and an autonomous vehicle other than the terminal.
  • an apparatus for reporting a reference signal timing difference (RSTD) value comprising: at least one processor; And at least one memory operatively connected to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform a specific operation.
  • a cell group identifier for a cell group including a plurality of cells and a cell independent information for each of the plurality of cells are received from a server, and the plurality of cells are based on a first PRS sequence associated with the cell group identifier.
  • detecting second PRS sequences transmitted from each of the cells, and reporting at least one reference signal timing difference (RSTD) information obtained based on the second PRS sequences and the cell independent information to the location server. can do.
  • a terminal for reporting a Reference Signal Timing Difference (RSTD) value comprising: at least one transceiver; At least one processor; And at least one memory operatively connected to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform a specific operation.
  • a cell group identifier for a cell group including a plurality of cells and a cell independent information for each of the plurality of cells are received from a server, and the plurality of cells are based on a first PRS sequence associated with the cell group identifier.
  • detecting second PRS sequences transmitted from each of the cells, and reporting at least one reference signal timing difference (RSTD) information obtained based on the second PRS sequences and the cell independent information to the location server. can do.
  • a base station in a method for a base station to transmit a Positioning Reference Signal (PRS), for a PRS sequence based on a cell group identifier for a cell group including the base station It may be characterized by obtaining an initialization value, generating the PRS sequence based on the initialization value and cell-independent information for the base station, and transmitting the PRS sequence to the terminal.
  • PRS Positioning Reference Signal
  • a base station for transmitting a Positioning Reference Signal comprising: at least one transceiver; At least one processor; And at least one memory operably connected to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform a specific operation.
  • PRS Positioning Reference Signal
  • the present invention it is possible to reduce the computational complexity of the location reference signal transmitted from a plurality of cells.
  • FIG. 1 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard.
  • FIG. 2 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the physical channels.
  • 3 to 5 are diagrams for explaining the structure of a radio frame and slot used in the NR system.
  • FIG. 6 shows an example in which a PRS (Positioning Reference Signal) is mapped in an LTE system.
  • PRS Positioning Reference Signal
  • 7 to 8 are diagrams for explaining the architecture of the system for measuring the position of the UE and the procedure for measuring the position of the UE.
  • LPP LTE Positioning Protocol
  • FIG. 10 is a diagram illustrating an example of a protocol layer for supporting NRPPa (NR Positioning Protocol A) PDU (Protocol Data Unit) transmission.
  • NRPPa NR Positioning Protocol A
  • PDU Protocol Data Unit
  • 11 is a view for explaining an embodiment of an OTDOA (Observed Time Difference Of Arrival) positioning method.
  • OTDOA Observed Time Difference Of Arrival
  • 12 to 15 are diagrams for explaining an example of an operation implementation of a base station, a terminal, and a location server according to an embodiment of the present invention.
  • 16 to 17 are diagrams for explaining an example of PRS sequence generation and an example of RSTD (Reference Signal Time Difference) measurement according to an embodiment of the present invention.
  • RSTD Reference Signal Time Difference
  • 18 to 19 are block diagrams illustrating examples of components of an apparatus for implementing embodiments of the present invention.
  • FIGS. 20 to 22 are views illustrating an example of an artificial intelligence (AI) system and apparatus for implementing embodiments of the present invention.
  • AI artificial intelligence
  • the present specification describes an embodiment of the present invention using an LTE system, an LTE-A system, and an NR system, as an example, the embodiment of the present invention can be applied to any communication system corresponding to the above definition.
  • the name of the base station may be used as a comprehensive term including a remote radio head (RRH), eNB, transmission point (TP), reception point (RP), relay, and the like.
  • RRH remote radio head
  • eNB transmission point
  • RP reception point
  • relay and the like.
  • the 3GPP-based communication standard includes downlink physical channels corresponding to resource elements carrying information originating from an upper layer and downlinks corresponding to resource elements used by the physical layer but not carrying information originating from an upper layer.
  • Physical signals are defined.
  • the format indicator channel (PCFICH), physical downlink control channel (PDCCH) and physical hybrid ARQ indicator channel (PHICH) are defined as downlink physical channels, and reference signals and synchronization signals Is defined as downlink physical signals.
  • a reference signal also referred to as a pilot, refers to a signal of a predetermined special waveform that the gNB and the UE know each other, for example, cell specific RS, UE- UE-specific RS (UE-RS), positioning RS (positioning RS, PRS), and channel state information RS (channel state information RS, CSI-RS) are defined as downlink reference signals.
  • UE-RS UE-UE-specific RS
  • positioning RS positioning RS
  • PRS positioning RS
  • channel state information RS channel state information RS
  • CSI-RS channel state information RS
  • the 3GPP LTE / LTE-A standard corresponds to uplink physical channels corresponding to resource elements carrying information originating from a higher layer and resource elements used by the physical layer but not carrying information originating from a higher layer. Defines uplink physical signals.
  • a physical uplink shared channel PUSCH
  • a physical uplink control channel PUCCH
  • a physical random access channel PRACH
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • PDCCH Physical Downlink Control CHannel
  • PCFICH Physical Control Format Indicator CHannel
  • PHICH Physical Hybrid automatic retransmit request Indicator CHannel
  • PDSCH Physical Downlink Shared CHannel
  • DCI Downlink Control Information
  • CFI Control Format Indicator
  • downlink ACK / NACK ACKnowlegement / Negative ACK
  • PUCCH Physical Uplink Control CHannel
  • PUSCH Physical Uplink Shared CHannel
  • PRACH Physical Random Access CHannel
  • PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH or PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH RE, respectively. It is referred to as PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH resource.
  • the expression that the user equipment transmits PUCCH / PUSCH / PRACH is uplink control information / uplink on or through PUSCH / PUCCH / PRACH, respectively.
  • the gNB transmits the PDCCH / PCFICH / PHICH / PDSCH, respectively, is the downlink data / control information on or through PDCCH / PCFICH / PHICH / PDSCH. It is used in the same sense as sending it.
  • CRS / DMRS / CSI-RS / SRS / UE-RS is assigned or configured (configured) OFDM symbol / subcarrier / RE to CRS / DMRS / CSI-RS / SRS / UE-RS symbol / carrier It is called / subcarrier / RE.
  • an OFDM symbol to which tracking RS (TRS) is assigned or configured is called a TRS symbol
  • a subcarrier to which TRS is assigned or configured is called a TRS subcarrier
  • a TRS is assigned.
  • the configured RE is called a TRS RE.
  • a subframe configured for TRS transmission is called a TRS subframe.
  • a subframe in which a broadcast signal is transmitted is called a broadcast subframe or a PBCH subframe
  • a subframe in which a synchronization signal (eg, PSS and / or SSS) is transmitted is a synchronization signal subframe or a PSS / SSS subframe. It is called.
  • the OFDM symbols / subcarriers / REs to which PSS / SSS is assigned or configured are called PSS / SSS symbols / subcarriers / RE, respectively.
  • the CRS port, the UE-RS port, the CSI-RS port, and the TRS port are antenna ports configured to transmit CRS and antenna ports configured to transmit UE-RS, respectively.
  • Antenna ports configured to transmit CRSs may be distinguished from each other by positions of REs occupied by CRSs according to CRS ports, and antenna ports configured to transmit UE-RSs are configured to UEs.
  • UE-RS may be distinguished by location of REs occupied, and antenna ports configured to transmit CSI-RSs are occupied by CSI-RS according to CSI-RS ports. It can be distinguished from each other by the location of the REs.
  • CRS / UE-RS / CSI-RS / TRS port is also used as a term for a pattern of REs occupied by CRS / UE-RS / CSI-RS / TRS within a certain resource region.
  • Machine learning refers to the field of studying the methodology to define and solve various problems in the field of artificial intelligence. do.
  • Machine learning is defined as an algorithm that improves the performance of a job through steady experience.
  • An artificial neural network is a model used in machine learning, and may refer to an overall model having a problem-solving ability, composed of artificial neurons (nodes) forming a network through a combination of synapses.
  • the artificial neural network may be defined by a connection pattern between neurons of different layers, a learning process for updating model parameters, and an activation function that generates output values.
  • the artificial neural network may include an input layer, an output layer, and optionally one or more hidden layers. Each layer contains one or more neurons, and the artificial neural network can include neurons and synapses connecting neurons. In an artificial neural network, each neuron may output a function value of an input function input through a synapse, a weight, and an active function for bias.
  • the model parameter means a parameter determined through learning, and includes weights of synaptic connections and bias of neurons.
  • the hyperparameter means a parameter that must be set before learning in a machine learning algorithm, and includes learning rate, number of iterations, mini-batch size, initialization function, and the like.
  • the purpose of training an artificial neural network can be seen as determining model parameters that minimize the loss function.
  • the loss function can be used as an index for determining an optimal model parameter in the learning process of an artificial neural network.
  • Machine learning can be classified into supervised learning, unsupervised learning, and reinforcement learning according to the learning method.
  • Supervised learning refers to a method of training an artificial neural network while a label for training data is given, and a label is a correct answer (or a result value) that the artificial neural network must infer when the training data is input to the artificial neural network.
  • Unsupervised learning may refer to a method of training an artificial neural network without a label for learning data.
  • Reinforcement learning may mean a learning method in which an agent defined in a certain environment is trained to select an action or a sequence of actions to maximize cumulative reward in each state.
  • Machine learning which is implemented as a deep neural network (DNN) that includes a plurality of hidden layers among artificial neural networks, is also referred to as deep learning (deep learning), and deep learning is a part of machine learning.
  • DNN deep neural network
  • machine learning is used to mean deep learning.
  • a robot can mean a machine that automatically handles or acts on a task given by its own capabilities.
  • a robot having a function of recognizing the environment and performing an operation by determining itself can be referred to as an intelligent robot.
  • Robots can be classified into industrial, medical, household, and military according to the purpose or field of use.
  • the robot may be provided with a driving unit including an actuator or a motor to perform various physical operations such as moving a robot joint.
  • a driving unit including an actuator or a motor to perform various physical operations such as moving a robot joint.
  • the movable robot includes a wheel, a brake, a propeller, and the like in the driving unit, so that it can travel on the ground or fly in the air through the driving unit.
  • Autonomous driving refers to the technology of driving on its own, and autonomous driving means a vehicle that operates without a user's manipulation or with a minimum manipulation of the user.
  • a technology that maintains a driving lane a technology that automatically adjusts speed such as adaptive cruise control, a technology that automatically drives along a predetermined route, and a technology that automatically sets a route when a destination is set, etc. All of this can be included.
  • the vehicle includes a vehicle having only an internal combustion engine, a hybrid vehicle having both an internal combustion engine and an electric motor, and an electric vehicle having only an electric motor, and may include a train, a motorcycle, etc. as well as a vehicle.
  • the autonomous vehicle can be viewed as a robot having an autonomous driving function.
  • Augmented reality refers to virtual reality (VR), augmented reality (AR), and mixed reality (MR).
  • VR technology provides real-world objects or backgrounds only as CG images
  • AR technology provides CG images made virtually on real objects
  • MR technology is a computer that mixes and combines virtual objects in the real world.
  • MR technology is similar to AR technology in that it shows both real and virtual objects.
  • a virtual object is used as a complement to a real object, whereas in MR technology, there is a difference in that a virtual object and a real object are used with equal characteristics.
  • HMD Head-Mount Display
  • HUD Head-Up Display
  • mobile phone tablet PC, laptop, desktop, TV, digital signage, etc. It can be called.
  • the three main requirements areas of 5G are: (1) Enhanced Mobile Broadband (eMBB) area, (2) Massive Machine Type Communication (mMTC) area, and (3) Super-reliability and Ultra-reliable and Low Latency Communications (URLLC) domain.
  • eMBB Enhanced Mobile Broadband
  • mMTC Massive Machine Type Communication
  • URLLC Ultra-reliable and Low Latency Communications
  • KPI key performance indicator
  • eMBB goes far beyond basic mobile Internet access, and covers media and entertainment applications in rich interactive work, cloud or augmented reality.
  • Data is one of the key drivers of 5G, and for the first time in the 5G era, dedicated voice services may not be seen.
  • 5G it is expected that voice will be processed as an application program simply using the data connection provided by the communication system.
  • the main causes for increased traffic volume are increased content size and increased number of applications requiring high data rates.
  • Streaming services (audio and video), interactive video and mobile internet connections will become more widely used as more devices connect to the internet. Many of these applications require always-on connectivity to push real-time information and notifications to users.
  • Cloud storage and applications are rapidly increasing in mobile communication platforms, which can be applied to both work and entertainment.
  • cloud storage is a special use case that drives the growth of uplink data transfer rate.
  • 5G is also used for remote work in the cloud, requiring much lower end-to-end delay to maintain a good user experience when a tactile interface is used.
  • Entertainment For example, cloud gaming and video streaming are another key factor in increasing demand for mobile broadband capabilities. Entertainment is essential for smartphones and tablets anywhere, including high mobility environments such as trains, cars and airplanes.
  • Another use case is augmented reality and information retrieval for entertainment.
  • augmented reality requires a very low delay and an instantaneous amount of data.
  • URLLC includes new services that will transform the industry through ultra-reliable / low-latency links, such as remote control of the main infrastructure and self-driving vehicles. Reliability and level of delay are essential for smart grid control, industrial automation, robotics, drone control and coordination.
  • 5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means to provide streams rated at hundreds of megabits per second to gigabit per second. This fast speed is required to deliver TV in 4K (6K, 8K and higher) resolutions as well as virtual and augmented reality.
  • Virtual Reality (VR) and Augmented Reality (AR) applications include almost immersive sports events. Certain application programs may require special network settings. For VR games, for example, game companies may need to integrate the core server with the network operator's edge network server to minimize latency.
  • Automotive is expected to be an important new driver for 5G, along with many use cases for mobile communications to vehicles. For example, entertainment for passengers requires simultaneous high capacity and high mobility mobile broadband. This is because future users continue to expect high-quality connections regardless of their location and speed.
  • Another example of application in the automotive field is the augmented reality dashboard. It identifies objects in the dark over what the driver sees through the front window, and superimposes and displays information telling the driver about the distance and movement of the object.
  • wireless modules will enable communication between vehicles, exchange of information between the vehicle and the supporting infrastructure and exchange of information between the vehicle and other connected devices (eg, devices carried by pedestrians).
  • the safety system helps the driver to reduce the risk of accidents by guiding alternative courses of action to make driving safer.
  • the next step will be remote control or a self-driven vehicle.
  • This requires very reliable and very fast communication between different self-driving vehicles and between the vehicle and the infrastructure.
  • self-driving vehicles will perform all driving activities, and drivers will focus only on traffic beyond which the vehicle itself cannot identify.
  • the technical requirements of self-driving vehicles require ultra-low delays and ultra-high-speed reliability to increase traffic safety to levels beyond human reach.
  • Smart cities and smart homes will be embedded in high-density wireless sensor networks.
  • the distributed network of intelligent sensors will identify the conditions for cost and energy-efficient maintenance of the city or home. Similar settings can be made for each assumption.
  • Temperature sensors, window and heating controllers, burglar alarms and consumer electronics are all connected wirelessly. Many of these sensors are typically low data rates, low power and low cost. However, for example, real-time HD video may be required in certain types of devices for surveillance.
  • the smart grid interconnects these sensors using digital information and communication technologies to collect information and act accordingly. This information can include supplier and consumer behavior, so smart grids can improve efficiency, reliability, economics, production sustainability and distribution of fuels like electricity in an automated way.
  • the smart grid can be viewed as another sensor network with low latency.
  • the health sector has many applications that can benefit from mobile communications.
  • the communication system can support telemedicine that provides clinical care from a distance. This can help reduce barriers to distance and improve access to medical services that are not continuously available in remote rural areas. It is also used to save lives in critical care and emergency situations.
  • a wireless sensor network based on mobile communication can provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
  • Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing cables with wireless links that can be reconfigured is an attractive opportunity in many industries. However, achieving this requires that the wireless connection operates with cable-like delay, reliability and capacity, and that management is simplified. Low latency and very low error probability are new requirements that need to be connected to 5G.
  • Logistics and freight tracking are important use cases for mobile communications that enable the tracking of inventory and packages from anywhere using location-based information systems.
  • Logistics and freight tracking use cases typically require low data rates, but require wide range and reliable location information.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane means a path through which data generated at the application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer using a physical channel.
  • the physical layer is connected to the upper medium access control layer through a transmission channel. Data is moved between the medium access control layer and the physical layer through the transmission channel. Data is moved between the physical layer of the transmitting side and the receiving side through a physical channel.
  • the physical channel uses time and frequency as radio resources. Specifically, the physical channel is modulated by OFDMA (Orthogonal Frequency Division Multiple Access) in the downlink, and modulated by Single Carrier Frequency Division Multiple Access (SC-FDMA) in the uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is an upper layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a function block inside the MAC.
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer performs a header compression function that reduces unnecessary control information in order to efficiently transmit IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
  • PDCP Packet Data Convergence Protocol
  • the radio resource control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for control of logical channels, transmission channels, and physical channels in connection with configuration, re-configuration, and release of radio bearers.
  • the radio bearer means a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layer of the terminal and the network exchanges RRC messages with each other. If there is an RRC connection (RRC Connected) between the terminal and the RRC layer of the network, the terminal is in the RRC connected state (Connected Mode), otherwise it is in the RRC idle state (Idle Mode).
  • the NAS (Non-Access Stratum) layer above the RRC layer performs functions such as session management and mobility management.
  • the downlink transmission channel for transmitting data from the network to the terminal includes a broadcast channel (BCH) for transmitting system information, a PCH (Paging Channel) for transmitting paging messages, and a downlink shared channel (SCH) for transmitting user traffic or control messages.
  • BCH broadcast channel
  • PCH Policy Channel
  • SCH downlink shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH, or may be transmitted through a separate downlink multicast channel (MCH).
  • an uplink transmission channel for transmitting data from a terminal to a network includes a random access channel (RACH) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RACH random access channel
  • SCH uplink shared channel
  • BCCH Broadcast Control Channel
  • PCCH Paging Control Channel
  • CCCH Common Control Channel
  • MCCH Multicast Control Channel
  • MTCH Multicast. Traffic Channel
  • FIG. 2 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using them.
  • the terminal performs an initial cell search operation such as synchronizing with the base station when the power is turned on or newly enters the cell (S201).
  • the terminal can receive a primary synchronization channel (P-SCH) and a secondary synchronization channel (Secondary Synchronization Channel; S-SCH) from the base station to synchronize with the base station and obtain information such as cell ID. have.
  • P-SCH primary synchronization channel
  • S-SCH Secondary Synchronization Channel
  • the terminal may obtain a physical broadcast channel from the base station to obtain intra-cell broadcast information.
  • the UE may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE acquires more detailed system information by receiving a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to information carried on the PDCCH. It can be done (S202).
  • a physical downlink control channel (PDCCH)
  • a physical downlink control channel (PDSCH)
  • S202 the UE acquires more detailed system information by receiving a physical downlink control channel (PDCCH) and a physical downlink control channel (PDSCH) according to information carried on the PDCCH. It can be done (S202).
  • PDCCH physical downlink control channel
  • PDSCH physical downlink control channel
  • the UE may perform a random access procedure (RACH) to the base station (steps S203 to S206).
  • RACH random access procedure
  • the UE may transmit a specific sequence as a preamble through a physical random access channel (PRACH) (S203 and S205), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S204 and S206).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE that has performed the above-described procedure is a PDCCH / PDSCH reception (S207) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
  • Control Channel (PUCCH) transmission (S208) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for the terminal, and formats are different depending on the purpose of use.
  • control information that the UE transmits to the base station through the uplink or that the UE receives from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ) And the like.
  • the UE may transmit the control information such as CQI / PMI / RI described above through PUSCH and / or PUCCH.
  • the NR system is considering using a high ultra-high frequency band, that is, a millimeter frequency band of 6 GHz or more, to transmit data while maintaining a high transmission rate to a large number of users using a wide frequency band.
  • a high ultra-high frequency band that is, a millimeter frequency band of 6 GHz or more
  • this is called NR, and in the present invention, it will be referred to as NR system in the future.
  • 3 illustrates the structure of a radio frame used in NR.
  • uplink and downlink transmission are composed of frames.
  • the radio frame has a length of 10 ms, and is defined as two 5 ms half-frames (HFs).
  • the half-frame is defined by five 1ms subframes (Subframe, SF).
  • the subframe is divided into one or more slots, and the number of slots in the subframe depends on SCS (Subcarrier Spacing).
  • Each slot includes 12 or 14 OFDM (A) symbols according to a cyclic prefix (CP). Normally, if CP is used, each slot contains 14 symbols.
  • each slot includes 12 symbols.
  • the symbol may include an OFDM symbol (or CP-OFDM symbol) and an SC-FDMA symbol (or DFT-s-OFDM symbol).
  • Table 1 illustrates that when a CP is normally used, the number of symbols for each slot, the number of slots for each frame, and the number of slots for each subframe vary according to SCS.
  • Table 2 illustrates that when an extended CP is used, the number of symbols for each slot, the number of slots for each frame, and the number of slots for each subframe vary according to the SCS.
  • OFDM (A) numerology eg, SCS, CP length, etc.
  • a numerology eg, SCS, CP length, etc.
  • a (absolute time) section of a time resource eg, SF, slot, or TTI
  • a time unit TU
  • 4 illustrates the slot structure of the NR frame.
  • a slot contains multiple symbols in the time domain. For example, in the case of a normal CP, one slot includes 7 symbols, but in the case of an extended CP, one slot includes 6 symbols.
  • the carrier wave includes a plurality of subcarriers in the frequency domain.
  • RB Resource Block
  • BWP Bandwidth Part
  • P contiguous RBs in the frequency domain, and may correspond to one numerology (eg, SCS, CP length, etc.).
  • the carrier may include up to N (eg, 5) BWPs. Data communication is performed through the activated BWP, and only one BWP can be activated for one terminal.
  • Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
  • RE resource element
  • a frame is characterized by a self-contained structure in which a DL control channel, DL or UL data, UL control channel, etc. can all be included in one slot.
  • a DL control channel hereinafter, DL control region
  • the last M symbols in the slot can be used to transmit the UL control channel (hereinafter, UL control region).
  • N and M are each an integer of 0 or more.
  • the resource region hereinafter referred to as a data region
  • the resource region (hereinafter referred to as a data region) between the DL control region and the UL control region may be used for DL data transmission or may be used for UL data transmission.
  • the following configuration may be considered. Each section was listed in chronological order.
  • the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
  • PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region.
  • DCI downlink control information
  • DL data scheduling information for example, DL data scheduling information, UL data scheduling information, and the like
  • uplink control information for example, ACK / NACK (Positive Acknowledgement / Negative Acknowledgement) information for DL data, CSI (Channel State Information) information, and SR (Scheduling Request) may be transmitted.
  • the GP provides a time gap in the process of the base station and the terminal switching from the transmission mode to the reception mode or the process from the reception mode to the transmission mode.
  • some symbols at a time point of switching from DL to UL may be set to GP.
  • Positioning may mean determining a geographical location and / or speed of a UE by measuring a radio signal.
  • Location information may be requested by a client (eg, application) associated with the UE, and reported to the client. Also, the location information may be included in the core network or may be requested by a client connected to the core network. The location information may be reported in a standard format such as cell-based or geographic coordinates, and in this case, the estimated error value for the location and speed of the UE and / or the positioning method used for positioning may be reported together. You can.
  • PRS Positioning Reference Signal
  • PRS is a reference signal used to estimate the location of the UE.
  • PRS may be transmitted only in a downlink subframe configured for PRS transmission (hereinafter, 'Positioning Subframe').
  • the OFDM (Orthogonal Frequency Division Multiplexing) symbols of the MBSFN subframe are the same CP (subframe # 0). Cyclic Prefix). If the positioning subframe in the cell is set to only MBSFM subframes, OFDM symbols set for PRS in the MBSFN subframe may have an extended CP.
  • the sequence of the PRS can be defined by Equation 1 below.
  • n s denotes a slot number in a radio frame
  • l denotes an OFDM symbol number in the slot.
  • c (i) is a pseudo-random sequence, and can be initialized according to [Equation 2] below.
  • the N CP is 1 in the general CP (Cyclic Prefix) and 0 in the extended CP.
  • FIG. 6 shows an example of a pattern in which PRS is mapped in a subframe. 6, the PRS can be transmitted through the antenna port 6.
  • 6 (a) shows an example in which the PRS is mapped in the normal CP
  • FIG. 6 (b) shows an example in which the PRS is mapped in the extended CP.
  • PRS may be transmitted in consecutive subframes grouped for position estimation.
  • the subframes grouped for position estimation are referred to as Positioning Occasion.
  • This positioning opportunity may consist of 1, 2, 4 or 6 subframes.
  • this positioning opportunity may occur periodically in a period of 160, 320, 640 or 1280 subframes.
  • a cell-specific subframe offset value for indicating a start subframe of PRS transmission may be defined, and the offset value and a period of positioning opportunities for PRS transmission are set in PRS, as shown in [Table 3] below. It can be derived by an index (Configuration Index).
  • PRS configuration Index I PRS
  • PRS periodicity subframes
  • PRS subframe offset subframes
  • 0 160
  • I PRS 160-479 320
  • I PRS -160 480-1119 640
  • I PRS -1120 2400-2404 5
  • I PRS -2400 2405-2414
  • I PRS -2405 2415-2434 20
  • I PRS -2415 2435-2474 40
  • PRS -2435 2475-2554 80 I PRS -2475 2555-4095 Reserved
  • the PRS included in each positioning opportunity is transmitted with a constant power.
  • the PRS may be transmitted with zero power at a specific positioning opportunity (Occasion), which is called PRS muting.
  • PRS muting For example, by muting the PRS transmitted from the serving cell, the UE can easily detect the PRS of the adjacent cell.
  • the PRS muting configuration for a cell may be defined by a periodic muting sequence consisting of 2, 4, 8 or 16 positioning opportunities (Occasion). That is, the periodic muting sequence may be composed of 2, 4, 8, or 16 bits depending on positioning opportunities corresponding to the PRS muting setting, and each bit may have a value of '0' or '1'. For example, PRS muting may be performed at a positioning opportunity (Occasion) with a bit value of '0'.
  • the positioning subframe is designed as a low interference subframe, and data is not transmitted in the positioning subframe. Therefore, PRS may be interfered with by PRS of other cells, but not by data transmission.
  • FIG. 7 shows an architecture in a 5G system capable of positioning for a UE connected to NG-RAN (Next Generation-Radio Access Network) or E-UTRAN.
  • NG-RAN Next Generation-Radio Access Network
  • E-UTRAN E-UTRAN
  • a core access and mobility management function receives a request for a location service related to a specific target UE from another entity such as a gateway mobile location center (GMLC), or a specific target in the AMF itself It may decide to start a location service on behalf of the UE. Then, the AMF sends a location service request to the LMF (Location Management Function). Upon receiving the location service request, the LMF may process the location service request and return a processing result including the estimated location of the UE to the AMF. Meanwhile, when the location service request is received from another entity such as GMLC other than the AMF, the AMF may deliver the processing result received from the LMF to another entity.
  • GMLC gateway mobile location center
  • ng-eNB new generation evolved-NB
  • gNB are network elements of NG-RAN that can provide measurement results for location tracking, and can measure radio signals for target UEs and deliver the results to LMF.
  • the ng-eNB can control some Transmission Points (TPs) such as remote radio heads or PRS-only TPs that support PRS-based beacon systems for E-UTRA.
  • TPs Transmission Points
  • the LMF is connected to the Enhanced Serving Mobile Location Center (E-SMLC), and the E-SMLC enables the LMF to access the E-UTRAN.
  • E-SMLC Enhanced Serving Mobile Location Center
  • OTDOA is one of the positioning methods of the E-UTRAN using the downlink measurement obtained by the target UE through a signal transmitted by the LMF from eNBs and / or PRS-only TPs in the E-UTRAN. (Observed Time Difference Of Arrival).
  • the LMF may be connected to the SLP (SUPL Location Platform).
  • the LMF can support and manage different location services for target UEs.
  • the LMF may interact with a serving ng-eNB or serving gNB for the target UE to obtain a location measurement of the UE.
  • the LMF uses the LCS (Location Service) client type, required QoS (Quality of Service), UE positioning capabilities (UE positioning capabilities), gNB positioning capability, and ng-eNB positioning capability. Determine and apply this positioning method to the serving gNB and / or serving ng-eNB.
  • the LMF may determine additional information such as location estimates for the target UE and accuracy of location estimation and speed.
  • SLP is a Secure User Plane Location (SUPL) entity responsible for positioning through a user plane.
  • SUPL Secure User Plane Location
  • the UE measures downlink signals through sources such as NG-RAN and E-UTRAN, different GNSS (Global Navigation Satellite System), TBS (Terrestrial Beacon System), WLAN access point, Bluetooth beacon and UE barometric pressure sensor. You can.
  • the UE may include an LCS application, and may access the LCS application through communication with a network to which the UE is connected or through other applications included in the UE.
  • the LCS application may include measurement and calculation functions necessary to determine the location of the UE.
  • the UE may include an independent positioning function such as Global Positioning System (GPS), and may report the location of the UE independently of NG-RAN transmission.
  • the independently obtained positioning information may be used as auxiliary information of positioning information obtained from a network.
  • GPS Global Positioning System
  • FIG. 8 shows an example of an implementation of a network for measuring the location of a UE.
  • CM-IDLE Connection Management-IDLE
  • the AMF receives a location service request
  • the AMF establishes a signaling connection with the UE and allocates a network trigger service to allocate a specific serving gNB or ng-eNB. You can ask.
  • This operation process is omitted in FIG. 8. That is, in FIG. 8, it can be assumed that the UE is in a connected mode. However, the signaling connection may be released by the NG-RAN during the positioning process for reasons such as signaling and data inactivity.
  • a 5GC entity such as GMLC may request a location service for measuring the location of the target UE with the serving AMF.
  • the serving AMF may determine that a location service is needed to measure the location of the target UE. For example, in order to measure the location of the UE for an emergency call, the serving AMF may decide to perform the location service directly.
  • the AMF sends a location service request to the LMF according to step 2, and according to step 3a, the LMF serves location procedures for obtaining location measurement data or location measurement assistance data ng-eNB, You can start with the serving gNB.
  • the LMF may request location related information related to one or more UEs to the NG-RAN, and indicate the type of required location information and related QoS.
  • the NG-RAN may transmit location-related information to the LMF in response to the request.
  • the location determination method according to the request is E-CID
  • the NG-RAN may transmit additional location related information to the LMF through one or more NRPPa messages.
  • 'location-related information' may mean all values used for location calculation, such as actual location estimation information and radio measurement or location measurement.
  • the protocol used in step 3a may be an NRPPa protocol, which will be described later.
  • the LMF may initiate location procedures for downlink positioning with the UE.
  • the LMF may transmit location assistance data to the UE or obtain location estimates or location measurements.
  • a capability transfer process may be performed.
  • the LMF may request capability information from the UE, and the UE may transmit capability information to the LMF.
  • the Capability information includes various aspects of a specific location measurement method, such as information on a location measurement method that can be supported by an LFM or UE, and various types of assistance data for A-GNSS. ), And information on common features not limited to any one location measurement method, such as the ability to handle multiple LPP transactions.
  • the UE may provide the (Capability) information to the LMF.
  • an assist data transfer process may be performed.
  • the UE may request location assistance data from the LMF, and may indicate specific location assistance data required to the LMF.
  • the LMF may transmit corresponding location assistance data to the UE, and additionally, may transmit additional assistance data to the UE through one or more additional LPP messages.
  • the location assistance data transmitted from the LMF to the UE may be transmitted through a unicast method, and in some cases, without the process of the UE requesting the assistance data from the LMF, the LMF sends the location assistance data to the UE and / or Alternatively, additional auxiliary data may be transmitted to the UE.
  • a location information transfer process may be performed in step 3b.
  • the LMF may request the UE for location-related information related to the UE, and instruct the type of required location information and related QoS. Then, the UE may transmit location-related information to the LMF in response to the request. At this time, additionally, the UE may transmit additional location-related information to the LMF through one or more LPP messages.
  • 'location-related information' may mean all values used for location calculation, such as actual location estimation information and radio measurement or location measurement, and typically, UEs from a plurality of NG-RANs and / or E-UTRANs There may be a reference signal time difference (RSTD) value measured by the UE based on downlink reference signals transmitted to the downlink reference signals. Similar to the above, the UE can transmit the location related information to the LMF even if there is no request from the LMF.
  • RSTD reference signal time difference
  • step 3b is performed in the order of a capability transfer process, a location assistance data transfer process, and a location information transfer process, but is not limited to this order.
  • step 3b is not restricted in any particular order to improve the flexibility of position measurement.
  • the UE may request location assistance data at any time to perform a location measurement request already requested by the LMF.
  • the LMF also does not satisfy the QoS required by the location information delivered by the UE, it may request location information, such as location measurements or location estimates, at any time.
  • location information such as location measurements or location estimates
  • an error message may be transmitted and received, and an abort message for stopping location measurement may be transmitted and received.
  • the protocol used in step 3b may be an LPP protocol, which will be described later.
  • step 3b may be additionally performed after step 3a is performed, but may be performed instead of step 3a.
  • the LMF may provide a location service response to the AMF.
  • the location service response may include information on whether the UE's location estimation is successful and the UE's location estimate.
  • the AMF may deliver a location service response to a 5GC entity such as GMLC, and if the procedure of FIG. 8 is initiated by step 1b, the AMF is associated with an emergency call, etc.
  • a location service response can be used.
  • LTP LTE Positioning Protocol
  • the LPP PDU may be transmitted through the NAS PDU between the MAF and the UE.
  • the LPP includes a target device (eg, UE in the control plane or SUPL Enabled Terminal (SET) in the user plane) and a location server (eg, LMF in the control plane or SLP in the user plane) ) Can be terminated.
  • the LPP message may be delivered in the form of a transparent PDU through an intermediate network interface using appropriate protocols such as NGAP over the NG-C interface, NAS-RRC over the LTE-Uu and NR-Uu interfaces.
  • the LPP protocol enables positioning for NR and LTE using various positioning methods.
  • the target device and the location server may exchange capability information with each other, exchange auxiliary data for positioning, and / or exchange location information.
  • an error information exchange and / or an instruction to stop the LPP procedure may be performed through an LPP message.
  • NRPPa can be used for information exchange between the NG-RAN node and the LMF. Specifically, NRPPa can exchange E-CID for measurement transmitted from ng-eNB to LMF, data to support OTDOA positioning method, Cell-ID and Cell location ID for NR Cell ID positioning method, and the like.
  • the AMF can route NRPPa PDUs based on the routing ID of the associated LMF through the NG-C interface, even if there is no information about the associated NRPPa transaction.
  • the procedure of the NRPPa protocol for location and data collection can be divided into two types.
  • the first type is a UE associated procedure for delivering information (eg, location measurement information, etc.) for a specific UE
  • the second type is information applicable to an NG-RAN node and related TPs ( For example, it is a non-UE associated procedure for delivering gNB / ng-eNG / TP timing information, etc.).
  • the two types of procedures may be supported independently or simultaneously.
  • Positioning methods supported by NG-RAN include GNSS, OTDOA, E-CID (enhanced cell ID), barometric sensor positioning, WLAN positioning, Bluetooth positioning and terrestrial beacon system (TBS), and Uplink Time Difference of Arrival (UTDOA). It can be.
  • the position of the UE may be measured using any one of the positioning methods, but the position of the UE may also be measured using two or more positioning methods.
  • the OTDOA positioning method uses the timing of measurement of downlink signals received by the UE from multiple TPs including eNB, ng-eNB and PRS dedicated TP.
  • the UE measures the timing of the downlink signals received using the location assistance data received from the location server. And it is possible to determine the location of the UE based on these measurement results and the geographical coordinates of neighboring TPs.
  • the UE connected to the gNB may request a measurement gap for OTDOA measurement from TP. If the UE does not recognize the SFN for at least one TP in the OTDOA auxiliary data, the UE prior to requesting a measurement gap for performing a reference signal time difference (RSTD) measurement (Measurement) OTDOA reference cell (reference cell)
  • RSTD reference signal time difference
  • An autonomous gap can be used to obtain the SFN of.
  • the RSTD may be defined based on the smallest relative time difference between the boundaries of two subframes respectively received from the reference cell and the measurement cell. That is, it may be calculated based on a relative time difference between the start time of the subframe of the reference cell closest to the start time of the subframe received from the measurement cell. Meanwhile, the reference cell may be selected by the UE.
  • TOA time of arrival
  • RSTD time of arrival
  • RSTD for two TPs may be calculated based on [Equation 3] below.
  • ⁇ x t , y t ⁇ is the (unknown) coordinates of the target UE
  • ⁇ x i , y i ⁇ is the (known) coordinates of the TP
  • ⁇ x 1 , y 1 ⁇ may be the coordinates of the reference TP (or other TP).
  • (T i -T 1 ) is a transmission time offset between two TPs, which may be referred to as “Real Time Differences” (RTDs)
  • RTDs Real Time Differences
  • n i , n 1 may indicate values related to UE TOA measurement errors.
  • the location of the UE can be measured through the geographical information of the serving ng-eNB, serving gNB and / or serving cell of the UE.
  • geographic information of a serving ng-eNB, a serving gNB, and / or a serving cell may be obtained through paging, registration, and the like.
  • the E-CID positioning method may use additional UE measurement and / or NG-RAN radio resources to improve the UE location estimate.
  • some of the same measurement methods as the measurement control system of the RRC protocol can be used, but in general, additional measurement is not performed only for the location measurement of the UE.
  • a separate measurement configuration or measurement control message may not be provided to measure the position of the UE, and the UE also does not expect an additional measurement operation for location measurement only to be requested.
  • UE may report the measurement value obtained through measurement methods that are generally measurable.
  • the serving gNB can implement the E-CID positioning method using E-UTRA measurements provided by the UE.
  • measurement elements that can be used for E-CID positioning may be as follows.
  • E-UTRA RSRP Reference Signal Received Power
  • E-UTRA RSRQ Reference Signal Received Quality
  • UE E-UTRA receive-transmission time difference Rx-Tx Time difference
  • GERAN / WLAN RSSI Reference Signal Strength Indication
  • UTRAN CPICH Common Pilot Channel
  • RSCP Receiveived Signal Code Power
  • -E-UTRAN measurement ng-eNB Rx-Tx Time difference, Timing Advance (T ADV ), Angle of Arrival (AoA)
  • T ADV can be divided into Type 1 and Type 2 as follows.
  • T ADV Type 1 (ng-eNB receive-transmit time difference) + (UE E-UTRA receive-transmit time difference)
  • T ADV Type 2 ng-eNB receive-transmit time difference
  • AoA may be used to measure the direction of the UE.
  • AoA may be defined as an estimated angle to the UE's location in a counterclockwise direction from the base station / TP. At this time, the geographical reference direction may be north.
  • the base station / TP may use an uplink signal such as Sounding Reference Signal (SRS) and / or Demodulation Reference Signal (DMRS) for AoA measurement.
  • SRS Sounding Reference Signal
  • DMRS Demodulation Reference Signal
  • the larger the array of the antenna array the higher the measurement accuracy of the AoA, and when the antenna arrays are arranged at the same interval, signals received from adjacent antenna elements may have a constant phase-rotate.
  • UTDOA is a method of determining the location of the UE by estimating the arrival time of the SRS.
  • the serving cell can be used as a reference cell, and the UE location can be estimated through a difference in arrival time from other cells (or base stations / TPs).
  • E-SMLC may indicate a serving cell of a target UE to instruct SRS transmission to a target UE.
  • E-SMLC may provide configuration such as whether SRS is periodic / aperiodic, bandwidth, and frequency / group / sequence hopping.
  • Positioning method is a method for a terminal to receive its own position through the relative distance from the base station by receiving a signal from the base station
  • LTE is described in the standard documents 36.355 and 36.455.
  • OTDOA observed time difference of arrival
  • the OTDOA method is a method of estimating a position of a terminal through an intersection of hyperbolic lines drawn by calculating a reference signal timing difference (RSTD) from a reference signal (RS) received from a plurality of base stations.
  • base stations, TPs, and cells may be used interchangeably.
  • the base station / TP described in this specification may be interpreted by substituting a cell, and conversely, the cell may be interpreted by substituting a base station / TP.
  • 'base station / TP' may mean 'base station and / or TP'.
  • the OTDOA technique is for a terminal to calculate a timing difference when signals transmitted from each cell reach the terminal, and to measure the location of the terminal using the same.
  • the terminal may measure a delay time of a signal received from each cell and report it to a serving cell or an anchor cell.
  • the serving cell or the anchor cell receiving the delay time from the terminal can measure the location of the corresponding terminal using the reported delay times.
  • a method of using a wider BW to transmit PRS can be considered to increase the positioning accuracy of the terminal.
  • the PRS may be generated as a PN sequence that is scrambled with a cell ID.
  • a PRS sequence is received from a plurality of gNBs, it is necessary to perform correlation on the PRS sequence as many as the number of gNBs.
  • the PNR sequence is generated in the NR system like the LTE system, since it is highly likely to use a small cell in the NR system, the computational complexity for correlating each PRS sequence is greatly increased. You can.
  • the UE may increase the complexity of correlation calculation of the PRS.
  • the NR system unlike the PRS in the LTE system, it may be necessary to introduce a PRS capable of lowering the complexity of correlation calculation for positioning of the NR system.
  • the computational complexity of the positioning method can be lowered.
  • FIGS. 12 to 15 are diagrams for explaining an implementation example of a base station, a terminal, and a location server according to an embodiment of the present invention.
  • the base station may receive a Positioning Information Request Message requesting to measure the location of the terminal from the location server. (S1201). Then, the base station may transmit location information, such as cell ID, SFN for PRS transmission, and bandwidth information for PRS transmission to the location server (S1203). At this time, the location information may include information such as cell group ID and cyclic shift information of each base station included in the cell group, actual time shift (Actual Time Shift) information, and Discrete Fourier Transform (DFT) sequence information. It might be. Thereafter, the base station can generate a PRS sequence and transmit it to the terminal (S1205). Meanwhile, a specific method of generating a PRS sequence by the base station may be based on embodiments of the present invention described below.
  • the terminal from the location server (Location Server) through the PLL protocol (Protocol) cell group (Cell Group) Common (Common) information and cell group Cell independent (or cell specific) information for each base station / TP included in the may be received (S1301).
  • the common information of the cell group (Cell Group) is the cell group ID (Cell Group ID) and the expected RSTD (expected RSTD) value, the expected RSTD error (expected RSTD uncertainty), etc.
  • the cell independent information may include at least one of cyclic shift information, actual time shift information, and DFT sequence information for each base station / TP included in the cell group.
  • One and the expected RSTD correction value and the expected RSTD error correction value may be included.
  • the UE may set a PRS search window for detecting PRS using information such as an expected RSTD value, an expected RSTD error (uncertainty), an expected RSTD correction value for each base station / TP, and an expected RSTD error correction value ( S1303).
  • information such as an expected RSTD value, an expected RSTD error (uncertainty), an expected RSTD correction value for each base station / TP, and an expected RSTD error correction value ( S1303).
  • the UE may initialize PRS based on cell group ID information and generate a PRS sequence.
  • PRS may be detected by performing correlation on PRS in a PRS search window set for each base station / TP based on the PRS sequence (S1305).
  • the UE measures RSTD by reflecting cyclic shift information, actual time shift information, DFT sequence information, etc. included in cell independent (or cell specific) information received from a location server, and measures it with a location server. Can report the RSTD (S1307). Meanwhile, a specific method for the UE to measure the RSTD may be based on embodiments of the present invention described later.
  • the location server provides cell group common information and cell independent (or cell specific) information for each base station / TP included in the cell group through the PLL protocol. It can be transmitted (S1401).
  • the common information of the cell group is the cell group ID (Cell Group ID) and the expected RSTD (expected RSTD) value, the expected RSTD error (expected RSTD uncertainty), etc.
  • the cell independent information may include at least one of cyclic shift information, actual time shift information, and DFT sequence information for each base station / TP included in the cell group.
  • One and the expected RSTD correction value and the expected RSTD error correction value may be included.
  • the location server may transmit a positioning information request message requesting the base station to measure the location of the terminal (S1403). Also, the location server may receive location information, such as cell ID, SFN for PRS transmission, and bandwidth information for PRS transmission, from the base station (S1405). At this time, the location information may include information such as cell group ID and cyclic shift information of each base station included in the cell group, actual time shift information, and DFT sequence information. Meanwhile, the operation of the location server in FIG. 14 is not limited by the order of steps. For example, steps S1403 to S1405 may be performed before steps S1401.
  • the location server may receive the RSTD measured by the terminal, and may estimate the location of the terminal through OTDOA based on the received RSTD values (S1407).
  • the location server provides cell group common information and cell independent (or cell specific) information for each base station / TP included in the cell group through the PLL protocol. It can be transmitted (S1501).
  • the common information of the cell group is the cell group ID (Cell Group ID) and the expected RSTD (expected RSTD) value, the expected RSTD error (expected RSTD uncertainty), etc.
  • the cell independent information may include at least one of cyclic shift information, actual time shift information, and DFT sequence information for each base station / TP included in the cell group.
  • One and the expected RSTD correction value and the expected RSTD error correction value may be included.
  • the location server may transmit a positioning information request message requesting the base station to measure the location of the terminal (S1505).
  • the base station may transmit location information such as cell ID, SFN for PRS transmission, and bandwidth information for PRS transmission to the location server (S1507).
  • the location information may include information such as cell group ID and cyclic shift information of each base station included in the cell group, actual time shift information, and DFT sequence information.
  • the network operation of FIG. 15 is not limited by the above-described flow. For example, steps S1505 to S1507 may be performed before steps S1501.
  • the UE may set a PRS search window for detecting PRS using information such as an expected RSTD value, an expected RSTD error (uncertainty), an expected RSTD correction value for each base station / TP, and an expected RSTD error correction value ( S1503).
  • the base station generates a PRS sequence and transmits it to the terminal (S1509), and the terminal performs correlation on the PRS in a PRS discovery window set for each base station / TP based on the PRS sequence to detect the PRS.
  • the UE measures RSTD by reflecting cyclic shift information, real time shift information, DFT sequence information, etc. included in cell independent (or cell specific) information received from a location server, and measured by the location server.
  • the RSTD can be reported (S1511), and the location server can estimate the location of the terminal through OTDOA based on the reported RSTD values.
  • the predicted RSTD value is determined based on a difference in PRS transmission time between two cells, a transmission time difference in a PRS positioning opportunity, and an expected propagation time difference, and may be positive or negative.
  • the expected RSTD error is related to a priori estimation of the location server for the terminal location.
  • a PRS Search Window may be set based on an expected RSTD value and an expected RSTD error.
  • the UE assumes that the start of the PRS opportunity group of the PRS configuration having the longest PRS opportunity group cycle of the neighboring cell is received within the PRS discovery window. You can. If the PRS is not transmitted, the UE may assume that the start of the nearest subframe of the neighbor cell for subframe X is received in the PRS search window.
  • a specific embodiment for measuring RSTD based on and a specific embodiment for generating a PRS sequence based on cell common information and cell independent (or cell specific) information in steps of transmitting PRS (S1205, S1509) by a base station Let's see.
  • a location server such as SMLC, SLP, or the like
  • a frequency domain cyclic shift version of an orthogonal sequence to measure the location of a specific terminal -shifted version) N (N ⁇ 2) can be set / defined / assigned as a PRS sequence transmitted from N base stations / TPs through the same time / frequency resource.
  • the terminal measures all of the Time of Arrival (TOA) of signals transmitted from N base stations / TPs through one cross correlation operation. can do.
  • TOA Time of Arrival
  • the accuracy of OTDOA-based positioning can increase N. That is, as the number of base stations / TPs simultaneously transmitting PRSs increases, the accuracy of the OTDOA-based positioning method may increase.
  • the UE cannot measure and report the RSTD by classifying the base station / TP, so it is necessary to allocate different PRS IDs for each base station / TP.
  • sequence initialization is performed according to the PRS ID, since independent PRS sequences are generated for each base station / TP, N cyclic-shifted orthogonal sequences using one PRS sequence are generated. It is difficult to apply a method of allocating to N base stations / TPs.
  • adjacent cells are divided into one or more cell groups, and PRS sequences transmitted through cells included in the same cell group have the same cell group ID. Based on this, sequence initialization is performed.
  • the degree / level / number of cyclic shifts for each PRS ID allocated to each cell included in the cell group may be determined and set / instructed to the UE.
  • the terminal receives / sets / instructs common information of a cell group and cell independent information (or cell specific information) for each cell included in the cell group from a location server.
  • the common information of the cell group such as cell group ID (Cell Group ID) and expected RSTD (expected RSTD) value for the PRS sequence initialization (Initialization), expected RSTD error (expected RSTD uncertainty), etc.
  • Information may be included, and the cell-independent information (or cell-specific information) includes cyclic shift information for each base station / TP, and an expected RSTD (expected RSTD) correction value and an expected RSTD uncertainty correction value.
  • the predicted RSTD (expected RSTD) value may mean an RSTD value predicted by a location server using a rough location of the terminal.
  • the UE may set a PRS search window for receiving the PRS by using the received expected RSTD (expected RSTD) value and expected RSTD error (expected RSTD uncertainty) information.
  • the predicted RSTD uncertainty value determines the size of the PRS search window, and the UE can detect PRS by performing correlation on the PRS sequence in the corresponding PRS search window.
  • the cell independent (or cell specific) information for each base station / TP included in the cell group is transmitted by including the expected RSTD correction value, the expected RSTD error correction value, and the like, and transmitted to each base station / TP included in the cell group. You can adjust the position and size of the PRS Search window for.
  • cell group (common) information of the cell group (Cell Group) and cell independent (or cell specific) information for each base station / TP included in the cell group may be signaled to the target terminal through LPP.
  • a base station / TP initializes the same PRS sequence for adjacent cells (or base stations / TPs) included in the same cell group using a cell group ID, and each cell
  • an orthogonal PRS sequence for each cell can be generated and transmitted to the UE.
  • the PRS sequence may be generated based on a ZC (Zadoff-Chu) sequence.
  • the UE may generate a PRS sequence having the same initialization value as PRS sequences transmitted from a plurality of cells (or a plurality of base stations / TPs) based on cell group ID information received through the PLL protocol.
  • the cyclic shift (cyclic shift) value applied to the PRS sequence generated by the terminal may be the same as the reference cell (Reference Cell), independent cyclic shift (Cyclic) indicated from the location server or the base station / TP for PRS sequence generation shift) value may be applied.
  • the terminal uses the expected RSTD value (expected RSTD value), expected RSTD error (expected RSTD uncertainty), expected RSTD correction value, and expected RSTD error correction value received from the location server to determine the location and range of the PRS search window. Can be set.
  • the UE may perform correlation on PRSs received in the PRS search window using the PRS sequence generated based on cell group ID information.
  • only one cyclic shift value may be applied to the SRS sequence generated by the UE.
  • PRS sequences transmitted from a plurality of base stations / TPs may have different cyclic shift values. Therefore, when the UE performs correlation based on one PRS sequence generated by itself for PRS sequences transmitted from a plurality of base stations / TPs, at a timing at which peaks for each of the PRS sequences are detected. A time delay occurs.
  • the UE performs peak detection timing for each of the PRS sequences and cyclic shift for each base station / TP included in cell independent (or cell specific) information for base stations / TPs included in the cell group indicated through LPP (Cyclic shift) Based on the information, the RSTD value to be reported to the location server can be calculated.
  • the PRS can be detected at the position of the expected RSTD, and the timing at which the peak occurs can be corrected by reflecting the time delay caused by the cyclic shift.
  • LTE requires a PRS sequence for each cell ID, but this embodiment requires only one PRS sequence for each cell group. Since the correlation is performed based on only one PRS sequence for base stations / TPs included in one cell group, the maximum than the previous The computational complexity can be reduced by double. Since this embodiment of the present invention can be applied irrespective of how many base stations / TPs are included in a cell group, it can be more useful in an environment such as a small cell.
  • an embodiment of the present invention can be applied to all kinds of sequences having orthogonal (orthogonal) sequences that are cyclic shifted in the frequency domain. Also, to maintain orthogonality of the sequences, an appropriate length of a cyclic prefix (CP) and / or a guard period (GP) may be applied.
  • CP cyclic prefix
  • GP guard period
  • cyclic shifts may be applied to PRS sequences to generate N orthogonal sequences.
  • the actual time shift value set for each base station / TP is applied and transmitted when N base stations / TPs actually transmit PRS, not a time delay when detecting due to a cyclic shift, and the base station / TP is transmitted. If the time shifted (time shifted) degree is instructed to the terminal through the LPP protocol as the predicted RSTD correction value, the terminal uses a predicted RSTD (expected RSTD) information and the predicted RSTD correction value information to open a PRS search window for each base station / TP. Can be set.
  • RSTD expected RSTD
  • PRS search windows set for each base station / TP included in the cell group may be set to not overlap, and even if base stations / TPs included in the cell group use the same PRS sequence, the set PRS search window It is possible to identify the base station / TP that transmitted the received PRS sequence.
  • the UE may receive cell-independent (or cell-specific) information for each of the base stations / TPs in the cell group and common information of the cell group from the location server.
  • the common information of a cell group may include information such as a cell group ID for PRS sequence initialization, an expected RSTD value, and an expected RSTD error (uncertainty).
  • the cell independent (or cell specific) information may include actual time shift information for each base station / TP, an expected RSTD correction value, and an expected RSTD error (uncertainty) correction value.
  • cell group (common) information of the cell group (Cell Group) and cell independent (or cell specific) information for each base station / TP included in the cell group may be signaled to the target terminal through LPP.
  • the embodiment of FIG. 17 can also be applied to a sequence that does not have an orthogonal property when cyclic shift is applied. Therefore, the embodiment of FIG. 17 can be applied to other sequences such as a PN sequence and a gold sequence, including sequence types applicable to the embodiment related to FIG. 16.
  • the embodiment of FIG. 17 is the same as the embodiment of FIG. 16 in that a PRS sequence is generated using a cell group ID. However, the PRS sequence generated according to the embodiment of FIG. 17 applies a different actual time shift for each base station / TP and transmits it to the UE, so that the cyclic shift is different for each base station / TP. ) Is different from the embodiment of FIG. 16.
  • a PRS sequence may be generated based on a cell group ID, and a PRS sequence may be transmitted by actually delaying time for each base station / TP.
  • the UE performs cell independence for each base station / TP included in the cell group and the expected RSTD (expected RSTD uncertainty) value and the expected RSTD (Cell Group Common expected RSTD) included in the common information of the cell group received from the PLL protocol (
  • a PRS search window for detecting a PRS may be set based on the expected RSTD correction value included in the cell-specific information and the predicted RSTD uncertainty correction value information.
  • the location server (Location server) By setting the time shift for each base station / TP, the PRS search windows for each of the plurality of base stations / TPs for the UE to search for PRS may not be overlapped.
  • the UE has an advantage of performing correlation based on only one PRS sequence for a plurality of base stations / TPs included in one cell group. have.
  • a common PRS sequence is generated for each cell group, and the generated PRS sequence is multiplied by a Discrete Fourier Transform (DFT) sequence for each base station / TP to perform a phase shift.
  • DFT Discrete Fourier Transform
  • base stations / TPs generate a PRS sequence with the same initialization value between neighboring base stations / TPs included in the same cell group based on cell group ID information, and for each base station / TP
  • the appropriate DFT sequence to be allocated may be multiplied by the PRS sequence generated with the initialization value and transmitted to the UE.
  • the UE may generate a PRS sequence having an initialization value such as PRS sequences transmitted from a plurality of base stations / TPs using cell group ID information received through the LPP protocol.
  • the DFT sequence applied to the PRS sequence generated by the terminal may be the same as a reference cell, or a separately received DFT sequence value may be applied.
  • the terminal is based on the expected RSTD value received from the location server, the expected RSTD error (expected RSTD uncertainty), the expected RSTD (expected RSTD) correction value, and the predicted RSTD error (expected RSTD uncertainty) based on the PRS search window ( search window).
  • the terminal uses the PRS sequence generated based on the cell group ID information in the set PRS search window to detect PRSs received from a plurality of base stations / TPs. Correlation can be performed. Since only one DFT sequence is multiplied by the PRS sequence generated by the terminal, correlation is performed on PRS sequences multiplied by different DFT sequences transmitted from a plurality of base stations / TPs. If performed, a delay may occur at a timing when peaks for PRS sequences multiplied by the different DFT sequences are detected.
  • an RSTD value to be actually reported by the UE is calculated. can do.
  • the UE can detect the PRS sequence at the expected RSTD (Expected RSTD) position and correct the timing at which the peak occurs based on the time delay due to the DFT.
  • a PRS sequence is required for each cell ID, but according to the above-described embodiment, only one PRS sequence is required for each cell group including a plurality of cells. That is, since the UE performs correlation based on only one PRS sequence for one cell group, it is the maximum compared to that of the LTE system.
  • the computational complexity can be reduced by double. In other words, regardless of the number of base stations / TPs included in a cell group, since the embodiment of the present invention can be applied, it is possible to reduce the computational complexity in an environment such as a small cell, and many PRSs. It may be more useful to increase the positioning accuracy for the terminal by receiving the sequence.
  • one OFDM symbol may be additionally used for PRS transmission.
  • a PRS sequence commonly used by all base stations / TPs included in a cell group may be mapped and transmitted to a UE.
  • the UE calculates the correlation for PRS sequences of all the base stations / TPs in a cell group using a common PRS sequence, the peak for the PRS transmitted by all the base stations / TPs in one CP (Cyclic Prefix) (Peak) is detected.
  • the UE sets a portion at which the peak is detected as a symbol boundary, and correlation with the common PRS sequence in a symbol mapped with a PRS sequence multiplied by different DFT sequences ( correlation).
  • RSTD may be detected as a relative position between a point set by the symbol boundary and a peak point generated by correlation for a PRS sequence multiplied by different DFT sequences.
  • PRS sequence detection can be performed in the frequency domain, more accurate RSTD detection is possible.
  • the above-described embodiments can support both a narrow bandwidth (narrow BW) and a wide bandwidth (wide BW).
  • a PRS sequence supporting a narrow bandwidth (narrow BW) may be part of a PRS sequence supporting a wide bandwidth (wide BW).
  • a PRS sequence supporting a wide bandwidth may be generated in a form in which the PRS sequence supporting a narrow bandwidth (narrow BW) is repeated.
  • the location server may inform the terminal of the synchronization between the base station / TP and the degree of timing deviation, etc., and the terminal may use the information when detecting PRS. For example, when the synchronization between the base stations / TPs does not coincide, an error in measuring a location of the terminal increases, a process of correcting it using phase information or the like may be performed.
  • FIG. 18 shows an embodiment of a wireless communication device according to an embodiment of the present invention.
  • the wireless communication device described in FIG. 18 may represent a terminal and / or a base station according to an embodiment of the present invention.
  • the wireless communication device of FIG. 18 is not necessarily limited to the terminal and / or base station according to the present embodiment, and may be replaced with various devices such as a vehicle communication system or device, a wearable device, a laptop, and a smart phone. You can.
  • the device is a base station, a network node, a transmitting terminal, a receiving terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, a drone (Unmanned Aerial Vehicle, UAV), AI (Artificial Intelligence) Modules, robots, Augmented Reality (AR) devices, Virtual Reality (VR) devices, MTC devices, IoT devices, medical devices, fintech devices (or financial devices), security devices, climate / environment devices, or any other 4th industrial revolution It may be a field or a device related to 5G service.
  • a drone may be a vehicle that does not ride and is flying by radio control signals.
  • the MTC device and the IoT device are devices that do not require direct human intervention or manipulation, and may be smart meters, bending machines, thermometers, smart bulbs, door locks, and various sensors.
  • a medical device is a device used for the purpose of diagnosing, treating, reducing, treating or preventing a disease, a device used for examining, replacing or modifying a structure or function, medical equipment, surgical device, ( In vitro) diagnostic devices, hearing aids, surgical devices, and the like.
  • a security device is a device installed to prevent a risk that may occur and to maintain safety, and may be a camera, CCTV, black box, or the like.
  • a fintech device is a device that can provide financial services such as mobile payment, and may be a payment device, point of sales (POS), or the like.
  • POS point of sales
  • a climate / environment device may mean a device that monitors and predicts the climate / environment.
  • the transmitting terminal and the receiving terminal are mobile phones, smart phones (smart phones), laptop computers (laptop computers), digital broadcasting terminals, personal digital assistants (PDAs), portable multimedia players (PMPs), navigation, slate PCs , Tablet PC (tablet PC), ultrabook (ultrabook), wearable device (wearable device, for example, a watch-type terminal (smartwatch), glass-type terminal (smart glass), HMD (head mounted display)), foldable ( foldable) devices.
  • the HMD is a display device in a form worn on the head, and may be used to implement VR or AR.
  • a terminal and / or a base station includes at least one processor 10, a transceiver 35, such as a digital signal processor (DSP) or a microprocessor, Power management module 5, antenna 40, battery 55, display 15, keypad 20, memory 30, subscriber identification module (SIM) card 25, speaker 45 and microphone ( 50).
  • the terminal and / or the base station may include a single antenna or multiple antennas.
  • the transceiver 35 may also be referred to as a radio frequency module (RF) module.
  • RF radio frequency module
  • the processor 10 may be configured to implement the functions, procedures and / or methods described in FIGS. 1 to 17. In at least some of the embodiments described in FIGS. 1 to 17, the processor 10 may implement one or more protocols, such as layers of a radio interface protocol (eg, functional layers).
  • layers of a radio interface protocol eg, functional layers
  • the memory 30 is connected to the processor 10 and stores information related to the operation of the processor 10.
  • the memory 30 may be located inside or outside the processor 10, and may be connected to the processor through various technologies such as wired or wireless communication.
  • the user can input various types of information (for example, instructional information such as a phone number) by pressing a button on the keypad 20 or by various techniques such as voice activation using the microphone 50.
  • the processor 10 performs appropriate functions such as receiving and / or processing user information and dialing a telephone number.
  • the processor 10 may receive and process GPS information from a GPS chip to obtain location information of terminals and / or base stations, such as vehicle navigation and map services, or perform functions related to location information.
  • the processor 10 may display various types of information and data on the display 15 for the user's reference and convenience.
  • the transceiver 35 is connected to the processor 10 to transmit and / or receive radio signals such as radio frequency (RF) signals.
  • the processor 10 may control the transceiver 35 to initiate communication and transmit wireless signals including various types of information or data such as voice communication data.
  • the transceiver 35 may include a receiver that receives a radio signal and a transmitter that transmits it.
  • the antenna 40 facilitates transmission and reception of radio signals.
  • the transceiver 35 may forward and convert the signal to a baseband frequency for processing by the processor 10.
  • the processed signal can be processed according to various techniques, such as being converted into audible or readable information, and the signal can be output through the speaker 45.
  • sensors may also be connected to the processor 10.
  • the sensor may include one or more sensing devices configured to detect various types of information including speed, acceleration, light, vibration, and the like. By receiving and processing sensor information obtained from the sensor, such as proximity, location, and image, various functions such as collision avoidance and autonomous driving can be performed.
  • various components such as a camera and a USB port may be additionally included in the terminal and / or the base station.
  • a camera may be further connected to the processor 10, and such a camera may be used for various services such as autonomous driving and vehicle safety services.
  • FIG. 18 is not limited to this, as long as it is only an embodiment of devices constituting a terminal and / or a base station.
  • some components such as keypad 20, Global Positioning System (GPS) chip, sensor, speaker 45 and / or microphone 50, may be excluded for terminal and / or base station implementation in some embodiments. It might be.
  • GPS Global Positioning System
  • the processor 10 uses common information and cells of a cell group from a location server through a PLL protocol.
  • the transceiver 35 may be controlled to receive cell independent (or cell specific) information for each base station / TP included in the group.
  • the common information of the cell group is the cell group ID (Cell Group ID) and the expected RSTD (expected RSTD) value, the expected RSTD error (expected RSTD uncertainty), etc.
  • the cell independent information may include at least one of cyclic shift information, actual time shift information, and DFT sequence information for each base station / TP included in the cell group.
  • One and the expected RSTD correction value and the expected RSTD error correction value may be included.
  • the processor 10 sets a PRS search window for detecting a PRS using information such as an expected RSTD value, an expected RSTD error (uncertainty), an expected RSTD correction value for each base station / TP, and an expected RSTD error correction value. You can. Also, the processor 10 may initialize PRS based on cell group ID information and generate a PRS sequence. In addition, the processor 10 may detect PRS by performing correlation on PRS within a PRS search window set for each base station / TP based on the PRS sequence. Thereafter, the processor 10 measures RSTD by reflecting cyclic shift information, actual time shift information, DFT sequence information, etc.
  • the transceiver 35 may be controlled to report the measured RSTD to the server. Meanwhile, a specific method in which the processor 10 measures the RSTD may be based on the above-described embodiments of the present invention.
  • the processor 10 requests to measure the position of the terminal from the location server.
  • the transceiver 35 may be controlled to receive a Positioning Information Request Message.
  • the processor 10 may control to transmit location information, such as cell ID, SFN for PRS transmission, and bandwidth information for PRS transmission, to the location server.
  • the location information may include information such as cell group ID and cyclic shift information of each base station included in the cell group, actual time shift information, and DFT sequence information.
  • the processor 10 may control to generate and transmit a PRS sequence to the terminal.
  • a specific method in which the processor 10 generates a PRS sequence may be based on the above-described embodiments of the present invention.
  • FIG 19 shows an embodiment of the location server 90 according to an embodiment of the present invention.
  • a location server as shown in FIG. 19 may be included.
  • the location server 90 may be logically or physically connected to the wireless device 70 and / or the network node 80.
  • the wireless device 70 may be a terminal
  • the network node 80 may be a base station.
  • the location server 90 may be AMF, LMF, E-SMLC, and / or SLP, but is not limited thereto, and may serve as the location server 90 to implement an embodiment of the present invention. If it is a communication device, any communication device can be utilized as the location server 90.
  • the location server 90 includes a transceiver 91 for communicating with one or more other wireless devices, network nodes and / or other elements of the network.
  • the transceiver 91 may include one or more communication interfaces. It communicates with one or more other wireless devices, network nodes and / or other elements of the network connected through the communication interface.
  • the location server 90 includes a processing chip 92.
  • the processing chip 92 may include at least one processor such as the processor 93 and at least one memory device such as the memory 94.
  • the processing chip 92 may control one or more processes to implement the methods described herein, and / or embodiments for the subject matter to be solved and solutions therefor.
  • the processing chip 92 may be configured to perform at least one or more embodiments described herein.
  • the processor 93 includes at least one processor for performing the functions of the location server 90 described herein.
  • one or more processors may control one or more transceivers 91 of FIG. 19 to transmit and receive information.
  • the processing chip 92 includes a memory 94 configured to store data, programmable software code and / or other information for performing the embodiments described herein.
  • the memory 94 when the memory 94 is executed by at least one processor such as the processor 93, the processor 93 is controlled by the processor 93 of FIG.
  • Stores software code 95 that includes instructions for performing some or all of the processes or performing the embodiments described herein.
  • the processing chip 92 includes cell group common information and cell independent (or cell specific) information for each base station / TP included in the cell group through the PLL protocol. It is possible to control the transceiver 91 to transmit.
  • the common information of the cell group is the cell group ID (Cell Group ID) and the expected RSTD (expected RSTD) value, the expected RSTD error (expected RSTD uncertainty), etc.
  • the cell independent information may include at least one of cyclic shift information, actual time shift information, and DFT sequence information for each base station / TP included in the cell group.
  • One and the expected RSTD correction value and the expected RSTD error correction value may be included.
  • the processing chip 92 may control the transceiver 91 to transmit a positioning information request message requesting the base station to measure the location of the terminal.
  • the processing chip 92 may control the transceiver 91 to receive location information, such as cell ID, SFN for PRS transmission, and bandwidth information for PRS transmission, from the base station.
  • the location information may include information such as cell group ID and cyclic shift information of each base station included in the cell group, actual time shift information, and DFT sequence information. Meanwhile, if the location information includes information such as cell group ID and cyclic shift information of each base station included in the cell group, actual time shift information, and DFT sequence information, a location request After message transmission and location information reception, cell group common information and cell independent (or cell specific) information may be transmitted to the terminal.
  • the processing chip 92 may control the transceiver 91 to receive the RSTD measured by the terminal, and may estimate the location of the terminal through OTDOA based on the received RSTD values. Meanwhile, the operation of the specific processing chip 92 may be based on the above-described embodiment.
  • FIG. 20 shows an AI device 100 capable of implementing embodiments of the present invention.
  • the AI device 100 is a TV, projector, mobile phone, smartphone, desktop computer, laptop, digital broadcasting terminal, PDA (personal digital assistants), PMP (portable multimedia player), navigation, tablet PC, wearable device, set-top box (STB) ), DMB receivers, radios, washing machines, refrigerators, desktop computers, digital signage, robots, vehicles, and the like.
  • PDA personal digital assistants
  • PMP portable multimedia player
  • STB set-top box
  • DMB receivers radios
  • washing machines refrigerators
  • desktop computers digital signage
  • robots, vehicles and the like.
  • the terminal 100 includes a communication unit 110, an input unit 120, a running processor 130, a sensing unit 140, an output unit 150, a memory 170, a processor 180, etc. It can contain.
  • the communication unit 110 may transmit and receive data to and from external devices such as other AI devices 100a to 100e or the AI server 200 using wired / wireless communication technology.
  • the communication unit 110 may transmit and receive sensor information, a user input, a learning model, a control signal, etc. with external devices.
  • the communication technology used by the communication unit 110 includes Global System for Mobile Communication (GSM), Code Division Multi Access (CDMA), Long Term Evolution (LTE), 5G, Wireless LAN (WLAN), and Wireless-Fidelity (Wi-Fi). ), Bluetooth (Radio Frequency Identification), RFID (Infrared Data Association; IrDA), ZigBee, Near Field Communication (NFC), and the like.
  • GSM Global System for Mobile Communication
  • CDMA Code Division Multi Access
  • LTE Long Term Evolution
  • 5G Fifth Generation
  • Wi-Fi Wireless-Fidelity
  • Bluetooth Radio Frequency Identification
  • RFID Infrared Data Association
  • ZigBee ZigBee
  • NFC Near Field Communication
  • the input unit 120 may acquire various types of data.
  • the input unit 120 may include a camera for inputting a video signal, a microphone for receiving an audio signal, a user input unit for receiving information from a user, and the like.
  • the camera or microphone is treated as a sensor, and the signal obtained from the camera or microphone may be referred to as sensing data or sensor information.
  • the input unit 120 may acquire training data for model training and input data to be used when obtaining an output using the training model.
  • the input unit 120 may obtain raw input data.
  • the processor 180 or the learning processor 130 may extract input features as pre-processing of the input data.
  • the learning processor 130 may train a model composed of artificial neural networks using the training data.
  • the trained artificial neural network may be referred to as a learning model.
  • the learning model can be used to infer a result value for new input data rather than learning data, and the inferred value can be used as a basis for determining to perform an action.
  • the learning processor 130 may perform AI processing together with the learning processor 240 of the AI server 200.
  • the learning processor 130 may include a memory integrated or implemented in the AI device 100.
  • the learning processor 130 may be implemented using memory 170, external memory directly coupled to the AI device 100, or memory maintained in the external device.
  • the sensing unit 140 may acquire at least one of AI device 100 internal information, AI device 100 environment information, and user information using various sensors.
  • the sensors included in the sensing unit 140 include a proximity sensor, an illuminance sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint recognition sensor, an ultrasonic sensor, an optical sensor, a microphone, and a lidar. , And radar.
  • the output unit 150 may generate output related to vision, hearing, or tactile sense.
  • the output unit 150 may include a display unit for outputting visual information, a speaker for outputting auditory information, a haptic module for outputting tactile information, and the like.
  • the memory 170 may store data supporting various functions of the AI device 100.
  • the memory 170 may store input data, learning data, learning models, learning history, etc. acquired by the input unit 120.
  • the processor 180 may determine at least one executable action of the AI device 100 based on information determined or generated using a data analysis algorithm or a machine learning algorithm. Also, the processor 180 may control components of the AI device 100 to perform a determined operation.
  • the processor 180 may request, search, receive, or utilize data of the learning processor 130 or the memory 170, and perform an operation that is predicted or determined to be preferable among the at least one executable operation. It is possible to control the components of the AI device 100 to execute.
  • the processor 180 may generate a control signal for controlling the corresponding external device, and transmit the generated control signal to the corresponding external device when it is necessary to link the external device to perform the determined operation.
  • the processor 180 may acquire intention information for a user input, and determine a user's requirement based on the obtained intention information.
  • the processor 180 uses at least one of a Speech To Text (STT) engine for converting voice input into a string or a Natural Language Processing (NLP) engine for obtaining intention information of a natural language, and a user Intention information corresponding to an input may be obtained.
  • STT Speech To Text
  • NLP Natural Language Processing
  • At this time, at least one of the STT engine or the NLP engine may be configured as an artificial neural network at least partially learned according to a machine learning algorithm. And, at least one or more of the STT engine or the NLP engine is learned by the learning processor 130, learned by the learning processor 240 of the AI server 200, or learned by distributed processing thereof May be
  • the processor 180 collects history information including the user's feedback on the operation content or operation of the AI device 100 and stores it in the memory 170 or the running processor 130, or the AI server 200, etc. Can be sent to external devices. The collected history information can be used to update the learning model.
  • the processor 180 may control at least some of the components of the AI device 100 to drive an application program stored in the memory 170. Furthermore, the processor 180 may operate by combining two or more of the components included in the AI device 100 with each other to drive the application program.
  • 21 shows an AI server 200 capable of implementing embodiments of the present invention.
  • the AI server 200 may refer to an apparatus for learning an artificial neural network using a machine learning algorithm or using a trained artificial neural network.
  • the AI server 200 may be composed of a plurality of servers to perform distributed processing, or may be defined as a 5G network.
  • the AI server 200 is included as a configuration of a part of the AI device 100, and may perform at least a part of AI processing together.
  • the AI server 200 may include a communication unit 210, a memory 230, a running processor 240 and a processor 260.
  • the communication unit 210 may transmit and receive data with an external device such as the AI device 100.
  • the memory 230 may include a model storage unit 231.
  • the model storage unit 231 may store a model (or artificial neural network, 231a) being trained or trained through the learning processor 240.
  • the learning processor 240 may train the artificial neural network 231a using learning data.
  • the learning model may be used while being mounted on the AI server 200 of the artificial neural network, or may be mounted and used on an external device such as the AI device 100.
  • the learning model can be implemented in hardware, software, or a combination of hardware and software. When part or all of the learning model is implemented in software, one or more instructions constituting the learning model may be stored in the memory 230.
  • the processor 260 may infer the result value for the new input data using the learning model, and generate a response or control command based on the inferred result value.
  • FIG 22 shows an AI system 1 according to which embodiments of the present invention can be implemented.
  • the AI system 1 includes at least one of an AI server 200, a robot 100a, an autonomous vehicle 100b, an XR device 100c, a smartphone 100d, or a home appliance 100e. It is connected to the cloud network 10.
  • the robot 100a to which AI technology is applied, the autonomous vehicle 100b, the XR device 100c, the smartphone 100d, or the home appliance 100e may be referred to as AI devices 100a to 100e.
  • the cloud network 10 may form a part of the cloud computing infrastructure or may mean a network existing in the cloud computing infrastructure.
  • the cloud network 10 may be configured using a 3G network, a 4G or a Long Term Evolution (LTE) network, or a 5G network.
  • LTE Long Term Evolution
  • each device (100a to 100e, 200) constituting the AI system 1 may be connected to each other through the cloud network (10).
  • the devices 100a to 100e and 200 may communicate with each other through a base station, but may communicate directly with each other without going through the base station.
  • the AI server 200 may include a server performing AI processing and a server performing operations on big data.
  • the AI server 200 includes at least one or more among robots 100a, autonomous vehicles 100b, XR devices 100c, smart phones 100d, or home appliances 100e, which are AI devices constituting the AI system 1. It is connected through the cloud network 10 and can assist at least some of the AI processing of the connected AI devices 100a to 100e.
  • the AI server 200 may train the artificial neural network according to the machine learning algorithm on behalf of the AI devices 100a to 100e, and may directly store the learning model or transmit it to the AI devices 100a to 100e.
  • the AI server 200 receives input data from the AI devices 100a to 100e, infers a result value to the received input data using a learning model, and issues a response or control command based on the inferred result value. It can be generated and transmitted to AI devices 100a to 100e.
  • the AI devices 100a to 100e may infer a result value with respect to input data using a direct learning model and generate a response or control command based on the inferred result value.
  • the AI devices 100a to 100e to which the above-described technology is applied will be described.
  • the AI devices 100a to 100e illustrated in FIG. 22 may be viewed as specific embodiments of the AI device 100 illustrated in FIG. 20.
  • AI technology is applied to the robot 100a, and may be implemented as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, and an unmanned flying robot.
  • the robot 100a may include a robot control module for controlling an operation, and the robot control module may mean a software module or a chip implemented with hardware.
  • the robot 100a acquires state information of the robot 100a using sensor information obtained from various types of sensors, detects (recognizes) surrounding environment and objects, generates map data, or moves and travels. You can decide on a plan, determine a response to user interaction, or determine an action.
  • the robot 100a may use sensor information acquired from at least one sensor among a lidar, a radar, and a camera in order to determine a movement route and a driving plan.
  • the robot 100a may perform the above operations using a learning model composed of at least one artificial neural network.
  • the robot 100a may recognize a surrounding environment and an object using a learning model, and may determine an operation using the recognized surrounding environment information or object information.
  • the learning model may be directly learned from the robot 100a or may be learned from an external device such as the AI server 200.
  • the robot 100a may perform an operation by generating a result using a direct learning model, but transmits sensor information to an external device such as the AI server 200 and receives the result generated accordingly. You may.
  • the robot 100a determines a moving path and a driving plan using at least one of map data, object information detected from sensor information, or object information obtained from an external device, and controls the driving unit to determine the determined moving path and driving plan. Accordingly, the robot 100a can be driven.
  • the map data may include object identification information for various objects arranged in a space in which the robot 100a moves.
  • the map data may include object identification information for fixed objects such as walls and doors and movable objects such as flower pots and desks.
  • the object identification information may include a name, type, distance, and location.
  • the robot 100a may perform an operation or travel by controlling a driving unit based on a user's control / interaction. At this time, the robot 100a may acquire intention information of an interaction according to a user's motion or voice utterance, and determine an answer based on the obtained intention information to perform an operation.
  • the autonomous vehicle 100b may be implemented with a mobile robot, a vehicle, or an unmanned aerial vehicle by applying AI technology.
  • the autonomous driving vehicle 100b may include an autonomous driving control module for controlling an autonomous driving function, and the autonomous driving control module may refer to a software module or a chip implemented with hardware.
  • the autonomous driving control module may be included therein as a component of the autonomous driving vehicle 100b, but may be configured and connected to the outside of the autonomous driving vehicle 100b with separate hardware.
  • the autonomous vehicle 100b acquires state information of the autonomous vehicle 100b using sensor information obtained from various types of sensors, detects (recognizes) surrounding objects and objects, generates map data,
  • the route and driving plan may be determined, or an operation may be determined.
  • the autonomous vehicle 100b may use sensor information obtained from at least one sensor among a lidar, a radar, and a camera, like the robot 100a, to determine a movement path and a driving plan.
  • the autonomous driving vehicle 100b may receive sensor information from external devices or recognize an environment or an object for an area where a field of view is obscured or a predetermined distance or more, or receive information recognized directly from external devices. .
  • the autonomous vehicle 100b may perform the above-described operations using a learning model composed of at least one artificial neural network.
  • the autonomous vehicle 100b may recognize a surrounding environment and an object using a learning model, and may determine a driving line using the recognized surrounding environment information or object information.
  • the learning model may be learned directly from the autonomous vehicle 100b or may be learned from an external device such as the AI server 200.
  • the autonomous vehicle 100b may perform an operation by generating a result using a direct learning model, but transmits sensor information to an external device such as the AI server 200 and receives the generated result accordingly. You can also do
  • the autonomous vehicle 100b determines a moving path and a driving plan using at least one of map data, object information detected from sensor information, or object information obtained from an external device, and controls the driving unit to determine the moving path and driving According to the plan, the autonomous vehicle 100b may be driven.
  • the map data may include object identification information for various objects arranged in a space (for example, a road) in which the autonomous vehicle 100b travels.
  • the map data may include object identification information for fixed objects such as street lights, rocks, buildings, and movable objects such as vehicles and pedestrians.
  • the object identification information may include a name, type, distance, and location.
  • the autonomous vehicle 100b may perform an operation or travel by controlling a driving unit based on a user's control / interaction. At this time, the autonomous driving vehicle 100b may acquire intention information of an interaction according to a user's motion or voice utterance, and determine an answer based on the obtained intention information to perform an operation.
  • AI technology is applied to the XR device 100c, HMD (Head-Mount Display), HUD (Head-Up Display) provided in a vehicle, television, mobile phone, smart phone, computer, wearable device, home appliance, digital signage , It can be implemented as a vehicle, a fixed robot or a mobile robot.
  • HMD Head-Mount Display
  • HUD Head-Up Display
  • the XR device 100c generates location data and property data for 3D points by analyzing 3D point cloud data or image data acquired through various sensors or from an external device, thereby providing information about surrounding space or real objects.
  • the XR object to be acquired and output can be rendered and output.
  • the XR device 100c may output an XR object including additional information about the recognized object in correspondence with the recognized object.
  • the XR device 100c may perform the above operations using a learning model composed of at least one artificial neural network.
  • the XR device 100c may recognize a real object from 3D point cloud data or image data using a learning model, and provide information corresponding to the recognized real object.
  • the learning model may be directly trained in the XR device 100c or may be learned in an external device such as the AI server 200.
  • the XR device 100c may perform an operation by generating a result using a direct learning model, but transmits sensor information to an external device such as the AI server 200 and receives the generated result accordingly. You can also do
  • the robot 100a is applied with AI technology and autonomous driving technology, and can be implemented as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, and an unmanned flying robot.
  • the robot 100a to which AI technology and autonomous driving technology are applied may mean a robot itself having an autonomous driving function or a robot 100a that interacts with the autonomous driving vehicle 100b.
  • the robot 100a having an autonomous driving function may move itself according to a given moving line without user control, or collectively refer to moving devices by determining the moving line itself.
  • the robot 100a and the autonomous vehicle 100b having an autonomous driving function may use a common sensing method to determine one or more of a moving path or a driving plan.
  • the robot 100a and the autonomous vehicle 100b having an autonomous driving function may determine one or more of a moving route or a driving plan using information sensed through a lidar, a radar, and a camera.
  • the robot 100a interacting with the autonomous vehicle 100b exists separately from the autonomous vehicle 100b, and is connected to an autonomous vehicle function inside or outside the autonomous vehicle 100b, or the autonomous vehicle 100b ) Can perform the operation associated with the user on board.
  • the robot 100a interacting with the autonomous vehicle 100b acquires sensor information on behalf of the autonomous vehicle 100b and provides it to the autonomous vehicle 100b, acquires sensor information, and obtains environment information or By generating object information and providing it to the autonomous vehicle 100b, it is possible to control or assist the autonomous vehicle driving function of the autonomous vehicle 100b.
  • the robot 100a interacting with the autonomous vehicle 100b may monitor a user on the autonomous vehicle 100b or control a function of the autonomous vehicle 100b through interaction with the user. .
  • the robot 100a may activate the autonomous driving function of the autonomous vehicle 100b or assist control of a driving unit of the autonomous vehicle 100b.
  • the function of the autonomous driving vehicle 100b controlled by the robot 100a may include not only an autonomous driving function, but also a function provided by a navigation system or an audio system provided inside the autonomous driving vehicle 100b.
  • the robot 100a interacting with the autonomous vehicle 100b may provide information or assist a function to the autonomous vehicle 100b from outside the autonomous vehicle 100b.
  • the robot 100a may provide traffic information including signal information to the autonomous vehicle 100b, such as a smart traffic light, and interact with the autonomous vehicle 100b, such as an automatic electric charger for an electric vehicle.
  • An electric charger can also be automatically connected to the charging port.
  • the robot 100a is applied with AI technology and XR technology, and can be implemented as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, and a drone.
  • the robot 100a to which XR technology is applied may mean a robot that is a target of control / interaction within an XR image.
  • the robot 100a is separated from the XR device 100c and can be interlocked with each other.
  • the robot 100a which is the object of control / interaction within the XR image, acquires sensor information from sensors including the camera, the robot 100a or the XR device 100c generates an XR image based on the sensor information. And, the XR device 100c may output the generated XR image. In addition, the robot 100a may operate based on a control signal input through the XR device 100c or a user's interaction.
  • the user can check the XR image corresponding to the viewpoint of the robot 100a remotely linked through an external device such as the XR device 100c, and adjust the autonomous driving path of the robot 100a through interaction or , You can control the operation or driving, or check the information of the surrounding objects.
  • the autonomous vehicle 100b is applied with AI technology and XR technology, and may be implemented as a mobile robot, a vehicle, or an unmanned aerial vehicle.
  • the autonomous driving vehicle 100b to which the XR technology is applied may mean an autonomous driving vehicle having a means for providing an XR image or an autonomous driving vehicle that is a target of control / interaction within an XR image.
  • the autonomous vehicle 100b which is the object of control / interaction within the XR image, is distinguished from the XR device 100c and may be interlocked with each other.
  • the autonomous vehicle 100b having a means for providing an XR image may acquire sensor information from sensors including a camera, and output an XR image generated based on the acquired sensor information.
  • the autonomous vehicle 100b may provide an XR object corresponding to a real object or an object on the screen to the occupant by outputting an XR image with a HUD.
  • the XR object when the XR object is output to the HUD, at least a portion of the XR object may be output so as to overlap with an actual object facing the occupant's gaze.
  • the XR object when the XR object is output to a display provided inside the autonomous vehicle 100b, at least a part of the XR object may be output to overlap with an object in the screen.
  • the autonomous vehicle 100b may output XR objects corresponding to objects such as lanes, other vehicles, traffic lights, traffic signs, motorcycles, pedestrians, buildings, and the like.
  • the autonomous vehicle 100b which is the object of control / interaction within an XR image, acquires sensor information from sensors including a camera
  • the autonomous vehicle 100b or the XR device 100c is based on the sensor information.
  • the XR image is generated, and the XR device 100c may output the generated XR image.
  • the autonomous vehicle 100b may operate based on a user's interaction or a control signal input through an external device such as the XR device 100c.
  • a specific operation described as being performed by a base station may be performed by an upper node in some cases. That is, it is apparent that various operations performed for communication with a terminal in a network consisting of a plurality of network nodes including a base station can be performed by a base station or other network nodes other than the base station.
  • the base station can be replaced by terms such as a fixed station, Node B, eNode B (eNB), access point, and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • one embodiment of the invention includes one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code can be stored in a memory unit and driven by a processor.
  • the memory unit is located inside or outside the processor, and can exchange data with the processor by various known means.
  • the method for transmitting and receiving a location reference signal as described above and an apparatus therefor have been mainly described in an example applied to the 5th generation NewRAT system, but can be applied to various wireless communication systems in addition to the 5th generation NewRAT system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

본 발명은 무선 통신 시스템에서, 단말이 RSTD (Reference Signal Timing Difference) 값을 보고하는 방법을 개시한다. 특히, 상기 방법은, 위치 서버로부터 복수의 셀들을 포함하는 셀 그룹(Cell Group)을 위한 셀 그룹 식별자 및 상기 복수의 셀들 각각을 위한 셀 독립 정보들을 수신하고, 상기 셀 그룹 식별자와 관련된 제 1 PRS 시퀀스를 기반으로 상기 복수의 셀들 각각으로부터 전송된 제 2 PRS 시퀀스들을 검출하고, 상기 제 2 PRS 시퀀스들 및 상기 셀 독립 정보들을 기반으로 획득된 적어도 하나의 RSTD (Reference Signal Timing Difference) 정보를 상기 위치 서버로 보고하는 것을 특징으로 할 수 있다.

Description

위치 참조 신호를 송수신하는 방법 및 이를 위한 장치
본 발명은 위치 참조 신호를 송수신하는 방법 및 이를 위한 장치에 관한 것으로서, 더욱 상세하게는, 위치 참조 신호의 시퀀스를 생성하여, 상기 생성된 위치 참조 신호의 시퀀스를 송수신하는 방법 및 이를 위한 장치에 관한 것이다.
시대의 흐름에 따라 더욱 많은 통신 기기들이 더욱 큰 통신 트래픽을 요구하게 되면서, 기존 LTE 시스템보다 향상된 무선 광대역 통신인 차세대 5G 시스템이 요구되고 있다. NewRAT이라고 명칭되는, 이러한 차세대 5G 시스템에서는 Enhanced Mobile BroadBand (eMBB)/ Ultra-reliability and low-latency communication (URLLC)/Massive Machine-Type Communications (mMTC) 등으로 통신 시나리오가 구분된다.
여기서, eMBB는 High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate 등의 특성을 갖는 차세대 이동통신 시나리오이고, URLLC는 Ultra Reliable, Ultra Low Latency, Ultra High Availability 등의 특성을 갖는 차세대 이동통신 시나리오이며 (e.g., V2X, Emergency Service, Remote Control), mMTC는 Low Cost, Low Energy, Short Packet, Massive Connectivity 특성을 갖는 차세대 이동통신 시나리오이다. (e.g., IoT).
본 발명은 위치 참조 신호를 송수신하는 방법 및 이를 위한 장치를 제공하고자 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시 예에 따른 무선 통신 시스템에서, 단말이 RSTD (Reference Signal Timing Difference) 값을 보고하는 방법에 있어서, 위치 서버로부터 복수의 셀들을 포함하는 셀 그룹(Cell Group)을 위한 셀 그룹 식별자 및 상기 복수의 셀들 각각을 위한 셀 독립 정보들을 수신하고, 상기 셀 그룹 식별자와 관련된 제 1 PRS 시퀀스를 기반으로 상기 복수의 셀들 각각으로부터 전송된 제 2 PRS 시퀀스들을 검출하고, 상기 제 2 PRS 시퀀스들 및 상기 셀 독립 정보들을 기반으로 획득된 적어도 하나의 RSTD (Reference Signal Timing Difference) 정보를 상기 위치 서버로 보고하는 것을 특징으로 할 수 있다.
이 때, 상기 셀 독립 정보는, 상기 복수의 셀들 각각을 위한 순환 시프트(Cyclic Shift) 값들, 상기 복수의 셀들 각각을 위한 실제 시간 시프트(Actual Time Shift) 값들 또는 상기 복수의 셀들 각각을 위한 DFT (Discrete Fourier Transform) 시퀀스들을 포함할 수 있다.
또한, 상기 제 1 PRS 시퀀스는, 상기 셀 그룹 식별자 및 참조 셀을 위한 셀 독립 정보를 기반으로 획득될 수 있다.
또한, 상기 위치 서버로부터 예상 RSTD (Expected RSTD) 정보, 예상 RSTD 오차 (Expected RSTD uncertainty) 정보, 예상 RSTD 보정 정보 및 예상 RSTD 오차 보정 정보를 수신하고, 상기 예상 RSTD (Expected RSTD) 정보, 상기 예상 RSTD 오차 (Expected RSTD uncertainty) 정보, 상기 예상 RSTD 보정 정보 및 상기 예상 RSTD 오차 보정 정보를 기반으로 상기 복수의 셀들을 위한 적어도 하나의 PRS 탐색 윈도우를 획득하는 것을 더 포함할 수 있다.
또한, 상기 적어도 하나의 PRS 탐색 윈도우 내에서 상기 제 2 PRS 시퀀스들이 검출될 수 있다.
또한, 상기 예상 RSTD (Expected RSTD) 정보, 상기 예상 RSTD 오차 (Expected RSTD uncertainty) 정보는 셀 그룹 공통 정보에 포함되고, 상기 예상 RSTD 보정 정보 및 상기 예상 RSTD 오차 보정 정보는 상기 셀 독립 정보들에 포함될 수 있다.
또한, 상기 적어도 하나의 PRS 탐색 윈도우 각각은, 중첩되지 않을 수 있다.
또한, 좁은 대역폭 (narrow Bandwidth)에 관련된 제 2 PRS 시퀀스는, 넓은 대역폭 (wide Bandwidth)에 관련된 제 2 PRS 시퀀스의 일부분으로 구성될 수 있다.
또한, 넓은 대역폭 (wide Bandwidth)에 관련된 제 2 PRS 시퀀스는 좁은 대역폭 (narrow Bandwidth)에 관련된 제 2 PRS 시퀀스가 반복된 형태로 구성될 수 있다.
또한, 상기 단말은, 상기 단말 이외의 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능할 수 있다.
본 발명에 따른 무선 통신 시스템에서, RSTD (Reference Signal Timing Difference) 값을 보고하기 위한 장치에 있어서, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, 위치 서버로부터 복수의 셀들을 포함하는 셀 그룹(Cell Group)을 위한 셀 그룹 식별자 및 상기 복수의 셀들 각각을 위한 셀 독립 정보들을 수신하고, 상기 셀 그룹 식별자와 관련된 제 1 PRS 시퀀스를 기반으로 상기 복수의 셀들 각각으로부터 전송된 제 2 PRS 시퀀스들을 검출하고, 상기 제 2 PRS 시퀀스들 및 상기 셀 독립 정보들을 기반으로 획득된 적어도 하나의 RSTD (Reference Signal Timing Difference) 정보를 상기 위치 서버로 보고하는 것을 특징으로 할 수 있다.
본 발명에 따른 무선 통신 시스템에서, RSTD (Reference Signal Timing Difference) 값을 보고하기 위한 단말에 있어서, 적어도 하나의 트랜시버; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, 위치 서버로부터 복수의 셀들을 포함하는 셀 그룹(Cell Group)을 위한 셀 그룹 식별자 및 상기 복수의 셀들 각각을 위한 셀 독립 정보들을 수신하고, 상기 셀 그룹 식별자와 관련된 제 1 PRS 시퀀스를 기반으로 상기 복수의 셀들 각각으로부터 전송된 제 2 PRS 시퀀스들을 검출하고, 상기 제 2 PRS 시퀀스들 및 상기 셀 독립 정보들을 기반으로 획득된 적어도 하나의 RSTD (Reference Signal Timing Difference) 정보를 상기 위치 서버로 보고하는 것을 특징으로 할 수 있다.
본 발명의 실시 예에 따른 무선 통신 시스템에서, 기지국이 PRS (Positioning Reference Signal)을 전송하는 방법에 있어서, 상기 기지국이 포함된 셀 그룹(Cell Group)을 위한 셀 그룹 식별자를 기반으로 PRS 시퀀스를 위한 초기화 값을 획득하고, 상기 초기화 값 및 상기 기지국을 위한 셀 독립 정보를 기반으로 상기 PRS 시퀀스를 생성하고, 상기 PRS 시퀀스를 단말로 전송하는 것을 특징으로 할 수 있다.
본 발명에 따른 무선 통신 시스템에서, PRS (Positioning Reference Signal)을 전송하기 위한 기지국에 있어서, 적어도 하나의 트랜시버; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, 상기 기지국이 포함된 셀 그룹(Cell Group)을 위한 셀 그룹 식별자를 기반으로 PRS 시퀀스를 위한 초기화 값을 획득하고, 상기 초기화 값 및 상기 기지국을 위한 셀 독립 정보를 기반으로 상기 PRS 시퀀스를 생성하고, 상기 PRS 시퀀스를 단말로 전송하는 것을 특징으로 할 수 있다.
본 발명에 따르면, 복수의 셀들에서 전송되는 위치 참조 신호에 대한 연산 복잡도를 감소시킬 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면.
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면.
도 3 내지 도 5은 NR 시스템에서 사용되는 무선 프레임 및 슬롯의 구조를 설명하기 위한 도면이다.
도 6은 LTE 시스템에서 PRS (Positioning Reference Signal)이 맵핑되는 예시를 나타낸다.
도 7 내지 도 8은 UE의 위치를 측정하기 위한 시스템의 아키텍쳐 및 UE의 위치를 측정하는 절차를 설명하기 위한 도면이다.
도 9는 LPP (LTE Positioning Protocol) 메시지 전송을 지원하기 위한 프로토콜 레이어의 예시를 나타낸 도면이다.
도 10은 NRPPa (NR Positioning Protocol A) PDU (Protocol Data Unit) 전송을 지원하기 위한 프로토콜 레이어의 예시를 나타낸 도면이다.
도 11은 OTDOA (Observed Time Difference Of Arrival) 측위 방법의 실시 예를 설명하기 위한 도면이다.
도 12 내지 도 15는 본 발명의 실시 예에 따른 기지국, 단말 및 위치 서버의 동작 구현 예를 설명하기 위한 도면이다.
도 16 내지 도 17은 본 발명의 실시 예에 따른 PRS 시퀀스 생성 예시 및 RSTD (Reference Signal Time Difference) 측정 예시를 설명하기 위한 도면이다.
도 18 내지 도 19는 본 발명의 실시 예들을 구현하기 위한 장치의 구성요소의 예시를 나타내는 블록도이다.
도 20 내지 도 22는 본 발명의 실시 예들을 구현하기 위한 AI (Artificial Intelligence) 시스템 및 장치의 예시를 나타내는 도면이다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템, LTE-A 시스템 및 NR 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다.
또한, 본 명세서는 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있다.
3GPP 기반 통신 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 하향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 하향링크 물리 신호들을 정의된다. 예를 들어, 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH), 물리 브로드캐스트 채널(physical broadcast channel, PBCH), 물리 멀티캐스트 채널(physical multicast channel, PMCH), 물리 제어 포맷 지시자 채널(physical control format indicator channel, PCFICH), 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 물리 하이브리드 ARQ 지시자 채널(physical hybrid ARQ indicator channel, PHICH)들이 하향링크 물리 채널들로서 정의되어 있으며, 참조 신호와 동기 신호가 하향링크 물리 신호들로서 정의되어 있다. 파일럿(pilot)이라고도 지칭되는 참조 신호(reference signal, RS)는 gNB와 UE가 서로 알고 있는 기정의된 특별한 파형의 신호를 의미하는데, 예를 들어, 셀 특정적 RS(cell specific RS), UE-특정적 RS(UE-specific RS, UE-RS), 포지셔닝 RS(positioning RS, PRS) 및 채널 상태 정보 RS(channel state information RS, CSI-RS)가 하향링크 참조 신호로서 정의된다. 3GPP LTE/LTE-A 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 상향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 상향링크 물리 신호들을 정의하고 있다. 예를 들어, 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH), 물리 상향링크 제어 채널(physical uplink control channel, PUCCH), 물리 임의 접속 채널(physical random access channel, PRACH)가 상향링크 물리 채널로서 정의되며, 상향링크 제어/데이터 신호를 위한 복조 참조 신호(demodulation reference signal, DMRS)와 상향링크 채널 측정에 사용되는 사운딩 참조 신호(sounding reference signal, SRS)가 정의된다.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 자원이라고 칭한다. 이하에서 사용자기기가 PUCCH/PUSCH/PRACH를 전송한다는 표현은, 각각, PUSCH/PUCCH/PRACH 상에서 혹은 통해서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, gNB가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 혹은 통해서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.
이하에서는 CRS/DMRS/CSI-RS/SRS/UE-RS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 CRS/DMRS/CSI-RS/SRS/UE-RS 심볼/반송파/부반송파/RE라고 칭한다. 예를 들어, 트랙킹 RS(tracking RS, TRS)가 할당된 혹은 설정(Configuration)된 OFDM 심볼은 TRS 심볼이라고 칭하며, TRS가 할당된 혹은 설정(Configuration)된 부반송파는 TRS 부반송파라 칭하며, TRS가 할당된 혹은 설정(Configuration)된 RE 는 TRS RE라고 칭한다. 또한, TRS 전송을 위해 설정(Configuration)된(configured) 서브프레임을 TRS 서브프레임이라 칭한다. 또한 브로드캐스트 신호가 전송되는 서브프레임을 브로드캐스트 서브프레임 혹은 PBCH 서브프레임이라 칭하며, 동기 신호(예를 들어, PSS 및/또는 SSS)가 전송되는 서브프레임을 동기 신호 서브프레임 혹은 PSS/SSS 서브프레임이라고 칭한다. PSS/SSS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 각각 PSS/SSS 심볼/부반송파/RE라 칭한다.
본 발명에서 CRS 포트, UE-RS 포트, CSI-RS 포트, TRS 포트라 함은 각각 CRS를 전송하도록 설정(Configuration)된(configured) 안테나 포트, UE-RS를 전송하도록 설정(Configuration)된 안테나 포트, CSI-RS를 전송하도록 설정(Configuration)된 안테나 포트, TRS를 전송하도록 설정(Configuration)된 안테나 포트를 의미한다. CRS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CRS 포트들에 따라 CRS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, UE-RS들을 전송하도록 설정(Configuration)된(configured) 안테나 포트들은 UE-RS 포트들에 따라 UE-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, CSI-RS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CSI-RS 포트들에 따라 CSI-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있다. 따라서 CRS/UE-RS/CSI-RS/TRS 포트라는 용어가 일정 자원 영역 내에서 CRS/UE-RS/CSI-RS/TRS가 점유하는 RE들의 패턴을 의미하는 용어로서 사용되기도 한다.
<인공 지능(AI: Artificial Intelligence)>
인공 지능은 인공적인 지능 또는 이를 만들 수 있는 방법론을 연구하는 분야를 의미하며, 머신 러닝(기계 학습, Machine Learning)은 인공 지능 분야에서 다루는 다양한 문제를 정의하고 그것을 해결하는 방법론을 연구하는 분야를 의미한다. 머신 러닝은 어떠한 작업에 대하여 꾸준한 경험을 통해 그 작업에 대한 성능을 높이는 알고리즘으로 정의하기도 한다.
인공 신경망(ANN: Artificial Neural Network)은 머신 러닝에서 사용되는 모델로써, 시냅스의 결합으로 네트워크를 형성한 인공 뉴런(노드)들로 구성되는, 문제 해결 능력을 가지는 모델 전반을 의미할 수 있다. 인공 신경망은 다른 레이어의 뉴런들 사이의 연결 패턴, 모델 파라미터를 갱신하는 학습 과정, 출력값을 생성하는 활성화 함수(Activation Function)에 의해 정의될 수 있다.
인공 신경망은 입력층(Input Layer), 출력층(Output Layer), 그리고 선택적으로 하나 이상의 은닉층(Hidden Layer)를 포함할 수 있다. 각 층은 하나 이상의 뉴런을 포함하고, 인공 신경망은 뉴런과 뉴런을 연결하는 시냅스를 포함할 수 있다. 인공 신경망에서 각 뉴런은 시냅스를 통해 입력되는 입력 신호들, 가중치, 편향에 대한 활성 함수의 함숫값을 출력할 수 있다.
모델 파라미터는 학습을 통해 결정되는 파라미터를 의미하며, 시냅스 연결의 가중치와 뉴런의 편향 등이 포함된다. 그리고, 하이퍼파라미터는 머신 러닝 알고리즘에서 학습 전에 설정되어야 하는 파라미터를 의미하며, 학습률(Learning Rate), 반복 횟수, 미니 배치 크기, 초기화 함수 등이 포함된다.
인공 신경망의 학습의 목적은 손실 함수를 최소화하는 모델 파라미터를 결정하는 것으로 볼 수 있다. 손실 함수는 인공 신경망의 학습 과정에서 최적의 모델 파라미터를 결정하기 위한 지표로 이용될 수 있다.
머신 러닝은 학습 방식에 따라 지도 학습(Supervised Learning), 비지도 학습(Unsupervised Learning), 강화 학습(Reinforcement Learning)으로 분류할 수 있다.
지도 학습은 학습 데이터에 대한 레이블(label)이 주어진 상태에서 인공 신경망을 학습시키는 방법을 의미하며, 레이블이란 학습 데이터가 인공 신경망에 입력되는 경우 인공 신경망이 추론해 내야 하는 정답(또는 결과 값)을 의미할 수 있다. 비지도 학습은 학습 데이터에 대한 레이블이 주어지지 않는 상태에서 인공 신경망을 학습시키는 방법을 의미할 수 있다. 강화 학습은 어떤 환경 안에서 정의된 에이전트가 각 상태에서 누적 보상을 최대화하는 행동 혹은 행동 순서를 선택하도록 학습시키는 학습 방법을 의미할 수 있다.
인공 신경망 중에서 복수의 은닉층을 포함하는 심층 신경망(DNN: Deep Neural Network)으로 구현되는 머신 러닝을 딥 러닝(심층 학습, Deep Learning)이라 부르기도 하며, 딥 러닝은 머신 러닝의 일부이다. 이하에서, 머신 러닝은 딥 러닝을 포함하는 의미로 사용된다.
<로봇(Robot)>
로봇은 스스로 보유한 능력에 의해 주어진 일을 자동으로 처리하거나 작동하는 기계를 의미할 수 있다. 특히, 환경을 인식하고 스스로 판단하여 동작을 수행하는 기능을 갖는 로봇을 지능형 로봇이라 칭할 수 있다.
로봇은 사용 목적이나 분야에 따라 산업용, 의료용, 가정용, 군사용 등으로 분류할 수 있다.
로봇은 액츄에이터 또는 모터를 포함하는 구동부를 구비하여 로봇 관절을 움직이는 등의 다양한 물리적 동작을 수행할 수 있다. 또한, 이동 가능한 로봇은 구동부에 휠, 브레이크, 프로펠러 등이 포함되어, 구동부를 통해 지상에서 주행하거나 공중에서 비행할 수 있다.
<자율 주행(Self-Driving, Autonomous-Driving)>
자율 주행은 스스로 주행하는 기술을 의미하며, 자율 주행 차량은 사용자의 조작 없이 또는 사용자의 최소한의 조작으로 주행하는 차량(Vehicle)을 의미한다.
예컨대, 자율 주행에는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등이 모두 포함될 수 있다.
차량은 내연 기관만을 구비하는 차량, 내연 기관과 전기 모터를 함께 구비하는 하이브리드 차량, 그리고 전기 모터만을 구비하는 전기 차량을 모두 포괄하며, 자동차뿐만 아니라 기차, 오토바이 등을 포함할 수 있다.
이때, 자율 주행 차량은 자율 주행 기능을 가진 로봇으로 볼 수 있다.
<확장 현실( XR : eXtended Reality)>
확장 현실은 가상 현실(VR: Virtual Reality), 증강 현실(AR: Augmented Reality), 혼합 현실(MR: Mixed Reality)을 총칭한다. VR 기술은 현실 세계의 객체나 배경 등을 CG 영상으로만 제공하고, AR 기술은 실제 사물 영상 위에 가상으로 만들어진 CG 영상을 함께 제공하며, MR 기술은 현실 세계에 가상 객체들을 섞고 결합시켜서 제공하는 컴퓨터 그래픽 기술이다.
MR 기술은 현실 객체와 가상 객체를 함께 보여준다는 점에서 AR 기술과 유사하다. 그러나, AR 기술에서는 가상 객체가 현실 객체를 보완하는 형태로 사용되는 반면, MR 기술에서는 가상 객체와 현실 객체가 동등한 성격으로 사용된다는 점에서 차이점이 있다.
XR 기술은 HMD(Head-Mount Display), HUD(Head-Up Display), 휴대폰, 태블릿 PC, 랩탑, 데스크탑, TV, 디지털 사이니지 등에 적용될 수 있고, XR 기술이 적용된 장치를 XR 장치(XR Device)라 칭할 수 있다.
이제, NR 시스템을 포함한 5G 통신에 대해서 살펴보도록 한다.
5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다.
일부 사용 예(Use Case)는 최적화를 위해 다수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 가능한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.
다음으로, NR 시스템을 포함한 5G 통신 시스템에서의 다수의 사용 예들에 대해 보다 구체적으로 살펴본다.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실과 증강 현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강 현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 송신되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 송신되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 송신 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 송신채널(Trans포트 Channel)을 통해 연결되어 있다. 상기 송신채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 송신을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 송신하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 송신채널 및 물리채널들의 제어를 담당한다. 무선 베어러는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
네트워크에서 단말로 데이터를 송신하는 하향 송신채널은 시스템 정보를 송신하는 BCH(Broadcast Channel), 페이징 메시지를 송신하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 송신하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 송신될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 송신될 수도 있다. 한편, 단말에서 네트워크로 데이터를 송신하는 상향 송신채널로는 초기 제어 메시지를 송신하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 송신하는 상향 SCH(Shared Channel)가 있다. 송신채널의 상위에 있으며, 송신채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S201). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S202).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S203 내지 단계 S206). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S203 및 S205), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S204 및 S206). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S207) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 송신(S208)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.
한편, NR 시스템은 넓은 주파수 대역을 이용하여 다수의 사용자에게 높은 전송율을 유지하면서 데이터 전송을 하기 위해 높은 초고주파 대역, 즉, 6GHz 이상의 밀리미터 주파수 대역을 이용하는 방안을 고려하고 있다. 3GPP에서는 이를 NR이라는 이름으로 사용하고 있으며, 본 발명에서는 앞으로 NR 시스템으로 칭한다.
도 3은 NR에서 사용되는 무선 프레임의 구조를 예시한다.
NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의된다. 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 정의된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함한다. 보통 CP가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함한다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함한다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, DFT-s-OFDM 심볼)을 포함할 수 있다.
표 1은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
* N slot symb: 슬롯 내 심볼의 개수
* N frame,u slot: 프레임 내 슬롯의 개수
* N subframe,u slot: 서브프레임 내 슬롯의 개수
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
60KHz (u=2) 12 40 4
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴모놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. 도 4는 NR 프레임의 슬롯 구조를 예시한다. 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (P)RB로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 5는 자기-완비(self-contained) 슬롯의 구조를 예시한다. NR 시스템에서 프레임은 하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 특징으로 한다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터 전송을 위해 사용되거나, UL 데이터 전송을 위해 사용될 수 있다. 일 예로, 다음의 구성을 고려할 수 있다. 각 구간은 시간 순서대로 나열되었다.
1. DL only 구성
2. UL only 구성
3. Mixed UL-DL 구성
- DL 영역 + GP(Guard Period) + UL 제어 영역
- DL 제어 영역 + GP + UL 영역
* DL 영역: (i) DL 데이터 영역, (ii) DL 제어 영역 + DL 데이터 영역
* UL 영역: (i) UL 데이터 영역, (ii) UL 데이터 영역 + UL 제어 영역
DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다. PDCCH에서는 DCI(Downlink Control Information), 예를 들어 DL 데이터 스케줄링 정보, UL 데이터 스케줄링 정보 등이 전송될 수 있다. PUCCH에서는 UCI(Uplink Control Information), 예를 들어 DL 데이터에 대한 ACK/NACK(Positive Acknowledgement/Negative Acknowledgement) 정보, CSI(Channel State Information) 정보, SR(Scheduling Request) 등이 전송될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
< LTE 시스템에서의 PRS (Positioning Reference Signal)>
측위(Positioning)는 무선 신호를 측정하여 UE의 지리적 위치 및/또는 속도를 결정하는 것을 의미할 수 있다. 위치 정보는 UE와 관련된 클라이언트(예를 들어, 어플리케이션)에 의해 요청되어, 상기 클라이언트에 보고될 수 있다. 또한, 상기 위치 정보는 코어 네트워크(Core Network) 내에 포함되거나, 상기 코어 네트워크와 접속된 클라이언트에 의해 요청될 수도 있다. 상기 위치 정보는 셀 기반 또는 지리적 좌표와 같은 표준 형식(standard format)으로 보고될 수 있으며, 이 때, 상기 UE의 위치 및 속도에 대한 추정 오류치 및/또는 측위에 사용된 측위 방법을 함께 보고 할 수 있다.
이러한 측위를 위하여, PRS (Positioning Reference Signal)을 사용할 수 있다. PRS는 UE의 위치 추정을 위해 사용되는 참조신호이다. 예를 들어, LTE 시스템에서는, PRS는 PRS 전송을 위해 설정(Configuring)된 하향링크 서브프레임(이하, '포지셔닝 서브프레임 (Positioning Subframe)')에서만 전송될 수 있다. 또한, 만약, MBSFN (Multimedia broadcast single frequency network) 서브프레임과 non-MBSFN 서브프레임이 모두 포지셔닝 서브프레임으로 설정되면, MBSFN 서브프레임의 OFDM (Orthogonal Frequency Division Multiplexing) 심볼들은 서브프레임 #0과 동일한 CP (Cyclic Prefix)를 가져야 한다. 만약, 셀 내에서 포지셔닝 서브프레임이 MBSFM 서브프레임들만으로 설정된 경우, 상기 MBSFN 서브프레임 내에서 PRS를 위해 설정된 OFDM 심볼들은 확장 CP를 가질 수 있다.
이러한 PRS의 시퀀스는 아래의 [수학식 1]에 의해 정의될 수 있다.
[수학식 1]
Figure PCTKR2019011917-appb-img-000001
여기서, n s는 무선 프레임 내에서의 슬롯 넘버를 의미하고, l은 상기 슬롯 내에서의 OFDM 심볼 넘버를 의미한다.
Figure PCTKR2019011917-appb-img-000002
은 하향링크 대역폭 설정 중 가장 큰 값으로서,
Figure PCTKR2019011917-appb-img-000003
의 정수배로 표현된다.
Figure PCTKR2019011917-appb-img-000004
는 주파수 도메인에서 RB (Resource Block)의 크기이며, 예를 들어, 12개의 부반송파로 구성될 수 있다.
c(i)는 Pseudo-Random 시퀀스로서, 아래의 [수학식 2]에 따라 초기화될 수 있다.
[수학식 2]
Figure PCTKR2019011917-appb-img-000005
상위 계층에서 별도의 설정이 없는 한,
Figure PCTKR2019011917-appb-img-000006
Figure PCTKR2019011917-appb-img-000007
과 동일하며, N CP는 일반 CP(Cyclic Prefix)에서 1, 확장 CP에서 0이다.
도 6은 PRS가 서브프레임 내에서 맵핑되는 패턴에 대한 예시를 나타낸다. 도 6에서 보는 바와 같이, PRS는 안테나 포트 6을 통해서 전송될 수 있다. 도 6(a)는 일반 CP에서 PRS가 맵핑되는 예시를 나타내고, 도 6(b)는 확장 CP에서 PRS가 맵핑되는 예시를 나타낸다.
한편, LTE 시스템에서, PRS는 위치 추정을 위해 그룹핑된 연속된 서브프레임들에서 전송될 수 있는데, 이 때, 위치 추정을 위해 그룹핑된 서브프레임들을 포지셔닝 기회(Positioning Occasion)이라고 한다. 이러한 포지셔닝 기회는 1, 2, 4 또는 6 서브프레임들로 구성될 수 있다. 또한, 이러한 포지셔닝 기회는 160, 320, 640 또는 1280 서브프레임 주기로 주기적으로 발생할 수 있다. 또한, PRS 전송의 시작 서브프레임을 지시하기 위한 셀 특정 서브프레임 오프셋 값이 정의될 수 있으며, 상기 오프셋 값과 PRS 전송을 위한 포지셔닝 기회의 주기는 아래의 [표 3]에서 보는 바와 같이, PRS 설정 인덱스(Configuration Index)에 의해 유도될 수 있다.
PRS configuration Index (I PRS) PRS periodicity (subframes) PRS subframe offset (subframes)
0 - 159 160 I PRS
160 - 479 320 I PRS-160
480 - 1119 640 I PRS-480
1120 - 2399 1280 I PRS-1120
2400 - 2404 5 I PRS-2400
2405 - 2414 10 I PRS-2405
2415 - 2434 20 I PRS-2415
2435 - 2474 40 I PRS-2435
2475 - 2554 80 I PRS-2475
2555-4095 Reserved
한편, 각각의 포지셔닝 기회(Occasion)에 포함된 PRS는 일정한 전력으로 전송된다. 이 때, 특정 포지셔닝 기회(Occasion)에서는 제로 파워로 PRS가 전송될 수 있는데, 이를 PRS 뮤팅(muting)이라고 한다. 예를 들어, 서빙 셀에서 전송되는 PRS를 뮤팅(muting)함으로써, 단말이 인접 셀의 PRS를 용이하게 검출할 수 있다.
셀에 대한 PRS 뮤팅 설정(Configuration)은 2, 4, 8 또는 16 개의 포지셔닝 기회(Occasion)로 구성되는 주기적 뮤팅 시퀀스에 의해 정의될 수 있다. 즉, 주기적 뮤팅 시퀀스는 PRS 뮤팅 설정에 대응하는 포지셔닝 기회들에 따라 2, 4, 8 또는 16비트로 구성될 수 있으며, 각각의 비트는 '0' 또는 '1'의 값을 가질 수 있다. 예를 들어, 비트 값이 '0'인 포지셔닝 기회(Occasion)에서 PRS 뮤팅이 수행될 수 있다.
한편, 포지셔닝 서브프레임은 저 간섭 서브프레임(low interference subframe)으로 설계되어, 상기 포지셔닝 서브프레임에서는 데이터가 전송되지 않는다. 그러므로, PRS는 다른 셀의 PRS에 의해서 간섭 받을 수는 있지만, 데이터 전송에 의해서는 간섭 받지 않는다.
< NR 시스템에서의 UE 포지셔닝 아키텍처 ( UE Positioning Architecture)>
도 7은 NG-RAN (Next Generation-Radio Access Network) 또는 E-UTRAN에 접속되는 UE에 대한 측위가 가능한 5G 시스템에서의 아키텍처를 나타낸다.
도 7을 참조하면, AMF (Core Access and Mobility Management Function)은 특정 타겟 UE와 관련된 위치 서비스에 대한 요청을 GMLC (Gateway Mobile Location Center)와 같은 다른 엔티티(entity)로부터 수신하거나, AMF 자체에서 특정 타겟 UE를 대신하여 위치 서비스를 시작하기로 결정할 수 있다. 그러면, AMF는 LMF (Location Management Function) 에게 위치 서비스 요청을 전송한다. 상기 위치 서비스 요청을 수신한 LMF는 상기 위치 서비스 요청을 처리하여 UE의 추정된 위치 등을 포함하는 처리 결과를 AMF에 반환할 수 있다. 한편, 위치 서비스 요청이 AMF이 이외에 GMLC와 같은 다른 엔티티로부터 수신된 경우에 AMF는 LMF로부터 수신한 처리 결과를 다른 엔티티로 전달할 수 있다.
ng-eNB (new generation evolved-NB) 및 gNB는 위치 추엊을 위한 측정 결과를 제공할 수 있는 NG-RAN의 네트워크 요소이며, 타겟 UE에 대한 무선 신호를 측정하고 그 결과값을 LMF에 전달할 수 있다. 또한, ng-eNB는 원격 무선 헤드 (remote radio heads)와 같은 몇몇 TP (Transmission Point)들 또는 E-UTRA를 위한 PRS 기반 비콘 시스템을 지원하는 PRS 전용 TP들을 제어할 수 있다.
LMF는 E-SMLC (Enhanced Serving Mobile Location Centre)와 연결되고, E-SMLC는 LMF가 E-UTRAN에 접속 가능하게 할 수 있다. 예를 들어, E-SMLC는 LMF가 eNB 및/또는 E-UTRAN 내의 PRS 전용 TP들로부터 전송된 신호를 통해 타겟 UE가 획득한 하향링크 측정을 이용하여 E-UTRAN의 측위 방법들 중 하나인 OTDOA (Observed Time Difference Of Arrival)을 지원하도록 할 수 있다.
한편, LMF는 SLP (SUPL Location Platform)에 연결될 수 있다. LMF는 타겟 UE들에 대한 서로 상이한 위치 결정 서비스들을 지원하고 관리할 수 있다. LMF는 UE의 위치 측정을 획득하기 위하여, 타겟 UE를 위한 서빙 ng-eNB 또는 서빙 gNB와 상호 작용할 수 있다. 타겟 UE의 측위를 위하여, LMF는 LCS(Location Service) 클라이언트 유형, 요구되는 QoS (Quality of Service), UE 측위 능력(UE positioning capabilities), gNB 측위 능력 및 ng-eNB 측위 능력 등에 기반하여 측위 방법을 결정하고, 이러한 측위 방법을 서빙 gNB 및/또는 서빙 ng-eNB에게 적용할 수 있다. 그리고, LMF는 타겟 UE에 대한 위치 추정치와 위치 추정 및 속도의 정확도와 같은 추가 정보를 결정할 수 있다. SLP는 사용자 평면(user plane)을 통해 측위를 담당하는 SUPL (Secure User Plane Location) 엔티티이다.
UE는 NG-RAN 및 E-UTRAN, 서로 상이한 GNSS (Global Navigation Satellite System), TBS (Terrestrial Beacon System), WLAN 접속 포인트, 블루투스 비콘 및 UE 기압 센서등과 같은 소스 등을 통해 하향링크 신호를 측정할 수 있다. UE는 LCS 어플리케이션을 포함할 수도 있고, UE가 접속된 네트워크와의 통신 또는 UE에 포함된 다른 어플리케이션을 통해 LCS 어플리케이션에 접속할 수 있다. LCS 어플리케이션은 UE의 위치를 결정하는 데 필요한 측정 및 계산 기능을 포함할 수 있다. 예를 들어, UE는 GPS (Global Positioning System) 과 같은 독립적인 측위 기능을 포함할 수 있고, NG-RAN 전송과는 독립적으로 UE의 위치를 보고할 수 있다. 이러한 독립적으로 획득한 측위 정보는 네트워크로부터 획득한 측위 정보의 보조 정보로서 활용될 수도 있다.
< UE의 위치 측정을 위한 동작>
도 8 은 UE의 위치를 측정하기 위한 네트워크의 구현 예를 나타낸다. UE가 CM-IDLE (Connection Management - IDLE)상태에 있을 때, AMF가 위치 서비스 요청을 수신하면, AMF는 UE와의 시그널링 연결을 수립하고, 특정 서빙 gNB 또는 ng-eNB를 할당하기 위해 네트워크 트리거 서비스를 요청할 수 있다. 이러한 동작 과정은 도 8에서는 생략되어 있다. 즉, 도 8에서는 UE가 연결 모드(connected mode)에 있는 것으로 가정할 수 있다. 하지만, 시그널링 및 데이터 비활성 등의 이유로 NG-RAN에 의해 시그널링 연결이 측위 과정이 진행되는 도중에 해제될 수도 있다.
도 8을 참조하여 구체적으로 UE의 위치를 측정하기 위한 네트워크의 동작 과정을 살펴보면, 단계 1a에서, GMLC와 같은 5GC 엔티티는 서빙 AMF로 타겟 UE의 위치를 측정하기 위한 위치 서비스를 요청할 수 있다. 다만, GMLC가 위치 서비스를 요청하지 않더라도, 단계 1b에 따라, 서빙 AMF가 타겟 UE의 위치를 측정하기 위한 위치 서비스가 필요하다고 결정할 수도 있다. 예를 들어, 긴급 호출(emergency call)을 위한 UE의 위치를 측정하기 위하여, 서빙 AMF가 직접 위치 서비스를 수행할 것을 결정할 수도 있다.
그 후, AMF는 단계 2에 따라, LMF로 위치 서비스 요청을 전송하고, 단계 3a에 따라, LMF는 위치 측정 데이터 또는 위치 측정 보조 데이터를 획득하기 위한 위치 절차(location procedures)를 서빙 ng-eNB, 서빙 gNB와 함께 시작할 수 있다. 예를 들어, LMF가 NG-RAN에 하나 이상의 UE와 관련된 위치 관련 정보를 요청하고, 필요한 위치 정보의 유형 및 관련 QoS를 지시할 수 있다. 그러면, NG-RAN은 요청에 응답하여, LMF에 위치 관련 정보를 LMF에 전송할 수 있다. 이 때, 상기 요청에 의한 위치 결정 방법이 E-CID인 경우, NG-RAN은 추가적인 위치 관련 정보를 LMF에 하나 이상의 NRPPa 메시지를 통해 전송할 수 있다. 여기서, '위치 관련 정보'란, 실제 위치 추정 정보 및 무선 측정 또는 위치 측정 등과 같이 위치 계산에 사용되는 모든 값들을 의미할 수 있다. 또한, 단계 3a에서 사용되는 프로토콜(Protocol)은 NRPPa 프로토콜일 수 있으며, 이에 대해서는 후술하도록 한다.
추가적으로, 단계 3b에 따라, LMF는 UE와 함께 하향링크 측위를 위한 위치 절차(location procedures) 시작할 수 있다. 예를 들어, LMF는 UE에게 위치 보조 데이터를 전송하거나, 위치 추정치 또는 위치 측정치를 획득할 수 있다. 예를 들어, 단계 3b에서 성능 정보 교환(Capability Transfer) 과정을 수행할 수 있다. 구체적으로 LMF는 UE에게 성능(Capability) 정보를 요청하고, UE는 LMF에게 성능(Capability) 정보를 전송할 수 있다. 이 때, 성능(Capability) 정보란, LFM 또는 UE가 지원할 수 있는 위치 측정 방법에 대한 정보, A-GNSS를 위한 보조 데이터(Assistance data)의 다양한 타입과 같이 특정 위치 측정 방법에 대한 다양한 측면(aspects)들에 대한 정보 및 다중 LPP 트랜젝션들을 핸들링(handle)할 수 있는 능력 등과 같이 어느 하나의 위치 측정 방법에 국한되지 않는 공통 특징에 대한 정보 등을 포함할 수 있다. 한편, 경우에 따라서 LMF가 UE에게 성능(Capability) 정보를 요청하지 않더라도, UE가 LMF에게 성능(Capability) 정보를 제공할 수 있다.
또 다른 예로, 단계 3b에서 위치 보조 데이터 교환(Assistance data transfer) 과정을 수행할 수 있다. 구체적으로, UE는 LMF에게 위치 보조 데이터(assistance data)를 요청할 수 있고, 필요로 하는 특정 위치 보조 데이터(assistance data)를 LMF에 지시할 수 있다. 그러면, LMF는 이에 대응하는 위치 보조 데이터(assistance data)를 UE에게 전달할 수 있고, 추가적으로, 하나 이상의 추가 LPP 메시지들을 통해 추가 보조 데이터(Additional assistance data)를 UE에게 전송할 수 있다. 한편, LMF에서 UE로 전송되는 위치 보조 데이터는 유니캐스트(unicast) 방식을 통해 전송될 수 있고, 경우에 따라, UE가 LMF에 보조 데이터를 요청하는 과정 없이, LMF가 UE에게 위치 보조 데이터 및/또는 추가 보조 데이터를 UE에게 전송할 수 있다.
또 다른 예로, 단계 3b에서 위치 정보 교환(Location Information Transfer) 과정을 수행할 수 있다. 구체적으로, LMF가 UE에게 해당 UE와 관련된 위치 관련 정보를 요청하고, 필요한 위치 정보의 유형 및 관련 QoS를 지시할 수 있다. 그러면, UE는 요청에 응답하여, LMF에 위치 관련 정보를 LMF에 전송할 수 있다. 이 때, 추가적으로 UE는 추가 위치 관련 정보를 LMF에 하나 이상의 LPP 메시지들을 통해 전송할 수 있다. 여기서, '위치 관련 정보'란, 실제 위치 추정 정보 및 무선 측정 또는 위치 측정 등과 같이 위치 계산에 사용되는 모든 값들을 의미할 수 있으며, 대표적으로는 복수의 NG-RAN 및/또는 E-UTRAN로부터 UE로 전송되는 하향링크 참조 신호(Downlink Reference Signal)들을 기반으로 UE가 측정하는RSTD(Reference Signal Time Difference) 값이 있을 수 있다. 상술한 바와 유사하게 UE 는 LMF로부터 요청이 없더라도 상기 위치 관련 정보를 LMF에 전송할 수 있다.
한편, 상술한 단계 3b에서 이루어지는 과정들은 단독으로 수행될 수도 있지만, 연속적으로 수행될 수 있다. 일반적으로, 성능 정보 교환(Capability Transfer) 과정, 위치 보조 데이터 교환(Assistance data transfer) 과정, 위치 정보 교환(Location Information Transfer) 과정 순서로 단계 3b가 수행되지만, 이러한 순서에 국한되지 않는다. 다시 말해, 단계 3b는 위치 측정의 유연성을 향상시키기 위해 특정 순서에 구애 받지 않는다. 예를 들어, UE는 LMF가 이미 요청한 위치 측정 요청을 수행하기 위해 언제든지 위치 보조 데이터를 요청할 수 있다. 또한, LMF도 UE가 전달해준 위치 정보가 요구하는 QoS를 만족하지 못하는 경우, 언제든지 위치 측정치 또는 위치 추정치 등의 위치 정보를 요청할 수 있다. 이와 유사하게 UE가 위치 추정을 위한 측정을 수행하지 않은 경우에는 언제든지 LMF로 성능(Capability) 정보를 전송할 수 있다.
또한, 단계 3b에서 LMF와 UE 간에 교환하는 정보 또는 요청에 Error가 발생한 경우, Error 메시지가 송수신될 수 있으며, 위치 측정을 중단하기 위한 중단(Abort)메시지가 송수신될 수도 있다.
한편, 단계 3b 에서 사용되는 프로토콜(Protocol)은 LPP 프로토콜일 수 있으며, 이에 대해서는 후술하도록 한다.
한편, 단계 3b는 단계 3a가 수행된 이후 추가적으로 수행될 수도 있으나, 단계 3a에 대신하여 수행될 수도 있다.
단계 4에서 LMF는 AMF에 위치 서비스 응답을 제공할 수 있다. 또한, 위치 서비스 응답에는 UE의 위치추정이 성공했는지 여부에 대한 정보 및 UE의 위치 추정치가 포함될 수 있다. 그 후, 단계 1a에 의해 도 8의 절차가 개시되었다면, AMF는 GMLC와 같은 5GC 엔티티에 위치 서비스 응답을 전달할 수 있으며, 단계 1b에 의해 도 8의 절차가 개시되었다면, AMF는 긴급 호출 등에 관련된 위치 서비스 제공을 위하여, 위치 서비스 응답을 이용할 수 있다.
<위치 측정을 위한 프로토콜>
(1) LTE Positioning Protocol (LPP)
도 9는 LMF와 UE 간의 LPP 메시지 전송을 지원하기 위해 사용되는 프로토콜 레이어의 예시를 나타낸다. LPP PDU는 MAF와 UE 간의 NAS PDU를 통해 전송될 수 있다. 도 9를 참조하면, LPP는 타겟 장치(예들 들어, 제어 평면에서의 UE 또는 사용자 평면에서의 SET(SUPL Enabled Terminal))와 위치 서버(예를 들어, 제어 평면에서의 LMF 또는 사용자 평면에서의 SLP) 사이를 연결(terminated)할 수 있다. LPP 메시지는 NG-C 인터페이스를 통한 NGAP, LTE-Uu 및 NR-Uu 인터페이스를 통한 NAS/RRC 등의 적절한 프로토콜을 사용하여 중간 네트워크 인터페이스를 통해 트랜스패런트 (Transparent) PDU 형태로 전달될 수 있다. LPP 프로토콜은 다양항 측위 방법을 사용하여 NR 및 LTE를 위한 측위가 가능하도록 한다.
예를 들어, LPP 프로토콜을 통하여 타겟 장치 및 위치 서버는 상호 간의 성능(capability) 정보 교환, 측위를 위한 보조 데이터 교환 및/또는 위치 정보를 교환할 수 있다. 또한, LPP 메시지를 통해 에러 정보 교환 및/또는 LPP 절차의 중단 지시 등을 수행할 수도 있다.
(2) NR Positioning Protocol A (NRPPa)
도 10은 LMF와 NG-RAN 노드 간의 NRPPa PDU 전송을 지원하는데 사용되는 프로토콜 레이어의 예시를 나타낸다. NRPPa는 NG-RAN 노드와 LMF 간의 정보 교환에 사용될 수 있다. 구체적으로 NRPPa는 ng-eNB에서 LMF로 전송되는 측정을 위한 E-CID, OTDOA 측위 방법을 지원하기 위한 데이터, NR Cell ID 측위 방법을 위한 Cell-ID 및 Cell 위치 ID 등을 교환할 수 있다. AMF는 연관된 NRPPa 트랜잭션(transaction)에 대한 정보가 없더라도, NG-C 인터페이스를 통해 연관된 LMF의 라우팅 ID를 기반으로 NRPPa PDU들을 라우팅할 수 있다.
위치 및 데이터 수집을 위한 NRPPa 프로토콜의 절차는 2가지 유형으로 구분될 수 있다. 첫번째 유형은, 특정 UE에 대한 정보 (예를 들어, 위치 측정 정보 등)를 전달하기 위한 UE 관련 절차(UE associated procedure)이고, 두번째 유형은, NG-RAN 노드 및 관련된 TP들에 적용 가능한 정보 (예를 들어, gNB/ng-eNG/TP 타이밍 정보 등)을 전달하기 위한 비 UE 관련 절차 (non UE associated procedure)이다. 상기 2가지 유형의 절차는 독립적으로 지원될 수도 있고, 동시에 지원될 수도 있다.
<측위 방법(Positioning Measurement Method)>
NG-RAN에서 지원하는 측위 방법들에는 GNSS, OTDOA, E-CID (enhanced cell ID), 기압 센서 측위, WLAN 측위, 블루투스 측위 및 TBS (terrestrial beacon system), UTDOA (Uplink Time Difference of Arrival) 등이 있을 수 있다. 상기 측위 방법들 중, 어느 하나의 측위 방법을 이용하여 UE의 위치를 측정할 수도 있지만, 둘 이상의 측위 방법을 이용하여 UE의 위치를 측정할 수도 있다.
(1) OTDOA (Observed Time Difference Of Arrival)
도 11은 OTDOA 측위 방법을 설명하기 위한 도면이다. OTDOA 측위 방법은 UE가 eNB, ng-eNB 및 PRS 전용 TP를 포함하는 다수의 TP들로부터 수신된 하향링크 신호들의 측정 타이밍을 이용한다. UE는 위치 서버로부터 수신된 위치 보조 데이터를 이용하여 수신된 하향링크 신호들의 타이밍을 측정한다. 그리고 이러한 측정 결과 및 이웃 TP들의 지리적 좌표들을 기반으로 UE의 위치를 결정할 수 있다.
gNB에 연결된 UE는 TP로부터 OTDOA 측정을 위한 측정 갭(gap)을 요청할 수 있다. 만약, UE가 OTDOA 보조 데이터 내의 적어도 하나의 TP를 위한 SFN을 인지하지 못하면, UE는 RSTD (Reference Signal Time Difference) 측정(Measurement)을 수행하기 위한 측정 갭을 요청하기 전에 OTDOA 참조 셀(reference cell)의 SFN을 획득하기 위해 자율적인 갭(autonomous gap)을 사용할 수 있다.
여기서, RSTD는 참조 셀과 측정 셀로부터 각각 수신된 2개의 서브프레임들의 경계 간의 가장 작은 상대적인 시간 차를 기반으로 정의될 수 있다. 즉, 측정 셀로부터 수신된 서브 프레임의 시작 시간에 가장 가까운 참조 셀의 서브프레임의 시작 시간 간의 상대적인 시간 차이를 기반으로 계산될 수 있다. 한편, 참조 셀은 UE에 의해 선택될 수 있다.
정확한 OTDOA 측정을 위해서는 지리적으로 분산된 3개 이상의 TP들 또는 기지국들로부터 수신된 신호의 TOA(time of arrival)을 측정하는 것이 필요하다. 예를 들어, TP 1, TP 2 및 TP 3 각각에 대한 TOA를 측정하고, 3개의 TOA를 기반으로 TP 1-TP 2에 대한 RSTD, TP 2-TP 3에 대한 RSTD 및 TP 3-TP 1에 대한 RSTD를 계산하여, 이를 기반으로 기하학적 쌍곡선을 결정하고, 이러한 쌍곡선이 교차하는 지점을 UE의 위치로 추청할 수 있다. 이 때, 각 TOA 측정에 대한 정확도 및/또는 불확실성이 생길 수 있는 바, 추정된 UE의 위치는 측정 불확실성에 따른 특정 범위로 알려질 수도 있다.
예를 들어, 두 TP에 대한 RSTD는 아래의 [수학식 3]을 기반으로 산출될 수 있다.
[수학식 3]
Figure PCTKR2019011917-appb-img-000008
여기서, c는 빛의 속도이고, {x t, y t}는 타겟 UE의 (알려지지 않은) 좌표이고, {x i, y i}는 (알려진) TP의 좌표이며, {x 1, y 1}은 참조 TP (또는 다른 TP)의 좌표일 수 있다. 여기서, (T i-T 1)은 두 TP 간의 전송 시간 오프셋으로서, "Real Time Differences" (RTDs)로 명칭될 수 있으며, n i, n 1은 UE TOA 측정 에러에 관한 값을 나타낼 수 있다.
(2) E-CID (Enhanced Cell ID)
셀 ID (CID) 측위 방법에서, UE의 위치는 UE의 서빙 ng-eNB, 서빙 gNB 및/또는 서빙 셀의 지리적 정보를 통해 측정될 수 있다. 예를 들어, 서빙 ng-eNB, 서빙 gNB 및/또는 서빙 셀의 지리적 정보는 페이징(paging), 등록(registration) 등을 통해 획득될 수 있다.
한편, E-CID 측위 방법은 CID 측위 방법에 더하여 UE 위치 추정치를 향상 시키기 위한 추가적인 UE 측정 및/또는 NG-RAN 무선 자원 등을 이용할 수 있다. E-CID 측위 방법에서, RRC 프로토콜의 측정 제어 시스템과 동일한 측정 방법들 중 일부를 사용할 수 있지만, 일반적으로 UE의 위치 측정만을 위하여 추가적인 측정을 하지 않는다. 다시 말해, UE의 위치를 측정하기 위하여 별도의 측정 설정 (measurement configuration) 또는 측정 제어 메시지(measurement control message)는 제공되지 않을 수 있으며, UE 또한 위치 측정만을 위한 추가적인 측정 동작이 요청될 것을 기대하지 않고, UE가 일반적으로 측정 가능한 측정 방법들을 통해 획득된 측정 값을 보고할 수 있다.
예를 들어, 서빙 gNB는 UE로부터 제공되는 E-UTRA 측정치를 사용하여 E-CID 측위 방법을 구현할 수 있다.
E-CID 측위를 위해 사용할 수 있는 측정 요소의 예를 들면 다음과 같을 수 있다.
- UE 측정: E-UTRA RSRP (Reference Signal Received Power), E-UTRA RSRQ (Reference Signal Received Quality), UE E-UTRA 수신-송신 시간차 (Rx-Tx Time difference), GERAN/WLAN RSSI (Reference Signal Strength Indication), UTRAN CPICH (Common Pilot Channel) RSCP (Received Signal Code Power), UTRAN CPICH Ec/Io
- E-UTRAN 측정: ng-eNB 수신-송신 시간차 (Rx-Tx Time difference), 타이밍 어드밴스 (Timing Advance; T ADV), Angle of Arrival (AoA)
여기서, T ADV는 아래와 같이 Type 1과 Type 2로 구분될 수 있다.
T ADV Type 1 = (ng-eNB 수신-송신 시간차)+(UE E-UTRA 수신-송시 시간차)
T ADV Type 2 = ng-eNB 수신-송신 시간차
한편, AoA는 UE의 방향을 측정하는데 사용될 수 있다. AoA는 기지국/TP로부터 반 시계 방향으로 UE의 위치에 대한 추정 각도로 정의될 수 있다. 이 때, 지리적 기준 방향은 북쪽일 수 있다. 기지국/TP는 AoA 측정을 위해 SRS (Sounding Reference Signal) 및/또는 DMRS (Demodulation Reference Signal)과 같은 상향링크 신호를 이용할 수 있다. 또한, 안테나 어레이의 배열이 클수록 AoA의 측정 정확도가 높아지며, 동일한 간격으로 안테나 어레이들이 배열된 경우, 인접한 안테나 소자들에서 수신된 신호들은 일정한 위상 변화(Phase-Rotate)를 가질 수 있다.
(3) UTDOA (Uplink Time Difference of Arrival)
UTDOA는 SRS의 도달 시간을 추정하여 UE의 위치를 결정하는 방법이다. 추정된 SRS 도달 시간을 산출할 때, 서빙 셀이 참조 셀로 사용하여, 다른 셀 (혹은 기지국/TP)와의 도달 시간 차이를 통해 UE의 위치를 추정할 수 있다. UTDOA를 구현하기 위해 E-SMLC는 타겟 UE에게 SRS 전송을 지시하기 위해, 타겟 UE의 서빙 셀을 지시할 수 있다. 또한, E-SMLC는 SRS의 주기적/비주기적 여부, 대역폭 및 주파수/그룹/시퀀스 호핑 등과 같은 설정(Configuration)을 제공할 수 있다.
본 발명에서는 NR (New RAT)을 지원하는 시스템에서 하향링크 측위 방법(Downlink Positioning method)을 지원하기 위해 사용할 수 있는 저 복잡도의 Positioning reference sequence (PRS)를 설계하는 방안에 대해 설명하도록 한다.
측위 방법(Positioning method)이란, 단말이 자신의 위치를 기지국의 신호를 수신하여 기지국과의 상대적 거리를 통해 자신의 위치를 획득하는 방법으로, LTE에서는 표준 문서 36.355 및 36.455를 통해 기술하고 있다. LTE에서는 측위 방법(Positioning)으로 OTDOA (Observed time difference of arrival) 방법을 이용할 수 있다. OTDOA 방법은 다수의 기지국으로부터 수신한 참조 신호(Reference Signal; RS)로부터 RSTD (Reference signal timing difference)를 산출하여 그려지는 쌍곡선의 교점을 통해 단말의 위치를 추정하는 방법이다.
한편, 본 발명에서 기지국, TP 및 셀은 서로 혼용해서 사용될 수 있다. 다시 말해, 본 명세서에서 기재된 기지국/TP는 셀(Cell)로 대체하여 해석될 수 있으며, 반대로 셀을 기지국/TP로 대체하여 해석될 수도 있다. 여기서, '기지국/TP'는 '기지국 및/또는 TP'를 의미할 수 있다.
구체적으로, 도 11을 참조하여 OTDOA에 대해서 살펴보도록 한다.
OTDOA 기법은 단말이 각 셀로부터 전송된 신호들이 상기 단말에 도달한 타이밍 차이를 산출하고, 이를 이용하여 단말의 위치를 측정하는 것이다. 상기 단말은 각 셀들로부터 수신한 신호의 지연 시간을 측정하여 이를 서빙 셀(serving cell) 또는 앵커 셀(anchor cell)로 보고할 수 있다. 또한, 상기 단말로부터 지연 시간을 수신한 서빙 셀 또는 앵커 셀은 보고된 지연 시간들을 이용하여 해당 단말의 위치를 측정할 수 있다.
NR에서는 단말의 측위 정확성을 높이기 위하여, PRS를 전송하기 위하여 더 넓은 BW를 사용하는 방안을 고려해볼 수 있다. 또한, 단말이 더 많은 셀들로부터 PRS를 수신하여 RSTD를 계산하거나, 더 복잡한 연산을 사용한 측위를 수행함으로써 측위 정확성을 높일 수는 방법 등도 고려해볼 수 있다.
한편, LTE 시스템에서 PRS는 셀(Cell) ID로 스크램블링(Scrambling) 되는 PN 시퀀스로 생성될 수 있다. 하지만, 이러한 PRS 시퀀스를 복수의 gNB들로부터 수신하면, gNB들의 개수만큼 PRS 시퀀스에 대한 코릴레이션(correlation)을 수행해야 한다. 하지만, NR 시스템에서 LTE 시스템과 같이 PRS 시퀀스를 생성하면, NR 시스템에서는 스몰 셀(Small Cell)을 활용할 가능성이 높기 때문에, 각각의 PRS 시퀀스를 코릴레이션(Correlation)하기 위한 연산 복잡도가 매우 크게 증가할 수 있다.
특히, 측위(Positioning)의 정확성을 높이기 위하여, 기존보다 더 넓은 대역폭이 PRS를 위해 할당될 수 있다. 이러한 경우, 단말이 최대한 많은 인접 셀(Cell)들에 대한 RSTD를 계산하기 위하여, PRS의 코릴레이션(Correlation) 연산 복잡도가 더욱 크게 증가할 수 있다.
따라서, NR 시스템에서는 LTE 시스템에서의 PRS와 다르게, NR 시스템의 측위(Positioning)를 위한 코릴레이션(Correlation) 연산의 복잡도를 낮출 수 있는 PRS를 도입해야 할 수 있다.
그러므로, 본 발명에서는 NR 시스템의 측위 방법(Positioning method)을 지원하면서도, 코릴레이션(Correlation) 연산의 복잡도를 낮출 수 있는 PRS를 설계하는 방안에 대하여 설명하도록 한다.
다시 말해, 본 발명에서는 LTE 시스템에서 셀(Cell) ID로 스크램블링하여 생성되는 PN 시퀀스를 PRS를 위해 활용할 때 생길 수 있는 복잡도 증가 문제를 해결하기 위하여 측위 방법(Positioning method)의 연산 복잡도를 낮출 수 있는 PRS 시퀀스 설계 방법을 기술하고자 한다.
도 12 내지 도 15는 본 발명의 실시 예에 따른 기지국, 단말 및 위치 서버의 구현 예를 설명하기 위한 도면이다.
먼저, 도 12를 통해 본 발명의 실시 예에 따른 기지국의 동작 구현 예를 살펴보면, 기지국은 위치 서버로부터 단말의 위치를 측정할 것을 요청하는 측위 정보 요청 메시지(Positioning Information Request Message)를 수신할 수 있다(S1201). 그리고, 기지국은 셀 ID, PRS 전송을 위한 SFN, PRS 전송을 위한 대역폭 정보 등과 같은 측위 정보를 위치 서버로 전송할 수 있다(S1203). 이 때, 측위 정보에는 셀 그룹 ID 및 셀 그룹에 포함된 각 기지국의 순환 시프트(Cyclic Shift) 정보, 실제 시간 시프트(Actual Time Shift) 정보, DFT (Discrete Fourier Transform) 시퀀스 정보 등과 같은 정보를 포함할 수도 있다. 그 후, 기지국은 PRS 시퀀스를 생성하여 단말에 전송할 수 있다(S1205). 한편, 기지국이 PRS 시퀀스를 생성하는 구체적인 방법은 후술하는 본 발명의 실시 예들에 기반할 수 있다.
도 13을 통해 본 발명의 실시 예에 따른 단말의 동작 구현 예를 살펴보면, 단말은 위치 서버(Location Server)로부터 PLL 프로토콜(Protocol)을 통하여 셀 그룹(Cell Group)의 공통(Common) 정보와 셀 그룹에 포함된 각각의 기지국/TP에 대한 셀 독립(또는 셀 특정) 정보를 수신할 수 있다(S1301). 이 때, 셀 그룹(Cell Group)의 공통(Common) 정보로는 PRS 초기화(Initialization)를 위한 셀 그룹 ID(Cell Group ID)와 예상 RSTD(expected RSTD) 값, 예상 RSTD 오차(expected RSTD uncertainty) 등과 같은 정보가 포함될 수 있고, 셀 독립 정보(또는 셀 특정 정보)는 셀 그룹에 포함된 각 기지국/TP 별 순환 시프트(Cyclic shift) 정보, 실제 시간 시프트(Actual time shift) 정보 및 DFT 시퀀스 정보 중 적어도 하나와 그에 따른 예상 RSTD 보정값 및 예상 RSTD 오차 보정값 등이 포함 될 수 있다.
단말은 예상 RSTD 값, 예상 RSTD 오차(uncertainty), 기지국/TP 별 예상 RSTD 보정값 및 예상 RSTD 오차 보정값 등의 정보들을 이용하여 PRS를 검출하기 위한 PRS 탐색 윈도우(Search window)를 설정할 수 있다(S1303).
또한, 단말은 셀 그룹(Cell Group) ID 정보를 기반으로 PRS를 초기화(Initialization)하고, PRS 시퀀스를 생성할 수 있다. 또한, PRS 시퀀스를 기반으로 기지국/TP 별로 설정된 PRS 탐색 윈도우 내에서 PRS에 대한 코릴레이션(Correlation)을 수행하여 PRS를 검출할 수 있다(S1305). 그 후, 단말은 위치 서버(Location server)로부터 수신된 셀 독립(또는 셀 특정) 정보에 포함된 순환 시프트 정보, 실제 시간 시프트 정보, DFT 시퀀스 정보 등을 반영하여 RSTD를 측정하고, 위치 서버로 측정된 RSTD를 보고할 수 있다(S1307). 한편, 단말이 RSTD를 측정하는 구체적인 방법은 후술하는 본 발명의 실시 예들에 기반할 수 있다.
도 14는 본 발명의 실시 예에 따른 위치 서버의 동작 구현 예를 나타낸다. 도 14를 참조하면, 위치 서버는 PLL 프로토콜(Protocol)을 통하여 셀 그룹(Cell Group)의 공통(Common) 정보와 셀 그룹에 포함된 각각의 기지국/TP에 대한 셀 독립(또는 셀 특정) 정보를 전송할 수 있다(S1401). 이 때, 셀 그룹(Cell Group)의 공통(Common) 정보로는 PRS 초기화(Initialization)를 위한 셀 그룹 ID(Cell Group ID)와 예상 RSTD(expected RSTD) 값, 예상 RSTD 오차(expected RSTD uncertainty) 등과 같은 정보가 포함될 수 있고, 셀 독립 정보(또는 셀 특정 정보)는 셀 그룹에 포함된 각 기지국/TP 별 순환 시프트(Cyclic shift) 정보, 실제 시간 시프트(Actual time shift) 정보 및 DFT 시퀀스 정보 중 적어도 하나와 그에 따른 예상 RSTD 보정값 및 예상 RSTD 오차 보정값 등이 포함 될 수 있다.
위치 서버는 기지국에게 단말의 위치를 측정할 것을 요청하는 측위 정보 요청 메시지(Positioning Information Request Message)를 전송할 수 있다(S1403). 또한, 위치 서버는 셀 ID, PRS 전송을 위한 SFN, PRS 전송을 위한 대역폭 정보 등과 같은 측위 정보를 기지국으로부터 수신할 수 있다(S1405). 이 때, 측위 정보에는 셀 그룹 ID 및 셀 그룹에 포함된 각 기지국의 순환 시프트(Cyclic Shift) 정보, 실제 시간 시프트(Actual Time Shift) 정보, DFT 시퀀스 정보 등과 같은 정보를 포함할 수도 있다. 한편, 도 14의 위치 서버의 동작은 단계의 순서에 의해 제한되지 않는다. 예를 들어, S1403~S1405 단계가 S1401단계 보다 먼저 수행될 수도 있다.
위치 서버는 단말이 측정한 RSTD를 수신할 수 있고, 수신한 RSTD 값들을 기반으로 OTDOA를 통해 단말의 위치를 추정할 수 있다(S1407).
도 15를 통해 본 발명의 실시 예에 따른 네트워크의 동작 구현 예를 설명하도록 한다.
도 15를 참조하면, 위치 서버는 PLL 프로토콜(Protocol)을 통하여 셀 그룹(Cell Group)의 공통(Common) 정보와 셀 그룹에 포함된 각각의 기지국/TP에 대한 셀 독립(또는 셀 특정) 정보를 전송할 수 있다(S1501). 이 때, 셀 그룹(Cell Group)의 공통(Common) 정보로는 PRS 초기화(Initialization)를 위한 셀 그룹 ID(Cell Group ID)와 예상 RSTD(expected RSTD) 값, 예상 RSTD 오차(expected RSTD uncertainty) 등과 같은 정보가 포함될 수 있고, 셀 독립 정보(또는 셀 특정 정보)는 셀 그룹에 포함된 각 기지국/TP 별 순환 시프트(Cyclic shift) 정보, 실제 시간 시프트(Actual time shift) 정보 및 DFT 시퀀스 정보 중 적어도 하나와 그에 따른 예상 RSTD 보정값 및 예상 RSTD 오차 보정값 등이 포함 될 수 있다.
위치 서버는 기지국에게 단말의 위치를 측정할 것을 요청하는 측위 정보 요청 메시지(Positioning Information Request Message)를 전송할 수 있다(S1505). 상기 측위 정보 요청 메시지를 수신한 기지국은 셀 ID, PRS 전송을 위한 SFN, PRS 전송을 위한 대역폭 정보 등과 같은 측위 정보를 위치 서버에게 전송할 수 있다 (S1507). 이 때, 측위 정보에는 셀 그룹 ID 및 셀 그룹에 포함된 각 기지국의 순환 시프트(Cyclic Shift) 정보, 실제 시간 시프트(Actual Time Shift) 정보, DFT 시퀀스 정보 등과 같은 정보를 포함할 수도 있다. 한편, 도 15의 네트워크 동작은 상술한 흐름에 의해 제한되지 않는다. 예를 들어, S1505~S1507 단계가 S1501단계 보다 먼저 수행될 수도 있다.
단말은 예상 RSTD 값, 예상 RSTD 오차(uncertainty), 기지국/TP 별 예상 RSTD 보정값 및 예상 RSTD 오차 보정값 등의 정보들을 이용하여 PRS를 검출하기 위한 PRS 탐색 윈도우(Search window)를 설정할 수 있다(S1503). 그 후, 기지국은 PRS 시퀀스를 생성하여 단말에게 전송하며(S1509), 단말은 PRS 시퀀스를 기반으로 기지국/TP 별로 설정된 PRS 탐색 윈도우 내에서 PRS에 대한 코릴레이션(Correlation)을 수행하여 PRS를 검출할 수 있다. 또한, 단말은 위치 서버(Location server)로부터 수신된 셀 독립(또는 셀 특정) 정보에 포함된 순환 시프트 정보, 실제 시간 시프트 정보, DFT 시퀀스 정보 등을 반영하여 RSTD를 측정하고, 위치 서버로 측정된 RSTD를 보고할 수 있고(S1511), 위치 서버는 상기 보고된 RSTD 값들을 기반으로 OTDOA를 통해 단말의 위치를 추정할 수 있다.
한편, 예상 RSTD 값은 2개의 셀 간의 PRS 전송 시간 차이, PRS 포지셔닝 기회(Occasion)의 전송 시간 차이 및 예상되는 전파 시간 차이 등을 기반으로 결정되며, 양수일 수도 있고, 음수일 수도 있다.
예상 RSTD 오차는 단말 위치에 대한 위치 서버의 선험적 추정(priori estimation)과 관련된다. 예상 RSTD 값과 예상 RSTD 오차를 기반으로 PRS 탐색 윈도우 (PRS Search Window)를 설정할 수 있다. 또한, PRS가 전송되는 경우, 단말은 이웃 셀의 가장 긴 PRS 기회 (Occasion) 그룹 주기를 가지는 PRS 설정(Configuration)의 PRS 기회(Occasion) 그룹의 시작이 상기 PRS 탐색 윈도우 내에서 수신되는 것으로 가정할 수 있다. 만약, PRS가 전송되지 않는다면, 단말은 서브프레임 X에 대한 이웃 셀의 가장 가까운 서브프레임의 시작이 PRS 탐색 윈도우 내에서 수신되는 것으로 가정할 수 있다.
이제, 단말이 RSTD를 측정하고 위치 서버(Location Server)로 측정된 RSTD를 보고하는 단계 (S1307, S1509~S1511)에서, 단말이 위치 서버로부터 수신한 셀 공통 정보 및 셀 독립(또는 셀 특정) 정보를 기반으로 RSTD를 측정하기 위한 구체적인 실시 예 및 기지국이 PRS를 전송하는 단계(S1205, S1509)에서 셀 공통 정보 및 셀 독립(또는 셀 특정) 정보를 기반으로 PRS 시퀀스를 생성하는 구체적인 실시 예를 살펴보도록 한다.
본 발명의 실시 예에 따른 PRS 시퀀스 설계(Design)에서 SMLC, SLP 등과 같은 위치 서버(Location server)는 특정 단말의 위치를 측정하기 위하여 직교 시퀀스(Orthogonal sequence)의 주파수 도메인 순환 시프트 버전(frequency domain cyclic-shifted version) N(N≥2)개를 N개의 기지국/TP들에서 동일 시간/주파수 자원을 통해 전송하는 PRS 시퀀스로 설정/정의/할당할 수 있다.
이러한 경우, N개의 기지국/TP들에서 동시에 PRS들을 전송하고, 단말이 수신한 PRS들에 대하여 크로스 코릴레이션(cross correlation)을 수행하면, N개의 기지국/TP들에서 전송된 PRS들의 첫번째 피크(first peak)가 시간 지연(time-delayed)된 형태로 나타나기 때문에, 단말이 한 번의 크로스 코릴레이션(cross correlation) 연산을 통하여 N개의 기지국/TP들에서 전송되는 신호들의 TOA(Time of Arrival)를 모두 측정 할 수 있다. OTDOA 기반 측위 방법(positioning)의 정확성(accuracy)은 N이 증가할 수 있다. 즉, PRS들을 동시에 전송하는 기지국/TP들의 수가 증가할 수록 OTDOA 기반 측위 방법의 정확성이 증가할 수 있다. 그런데, 상술한 방식은 N이 증가하더라도 크로스 코릴레이션(cross correlation) 연산의 횟수가 증가하지 않으므로, 연산 복잡도(computational complexity) 측면에서 얻을 수 있는 성능 이득이 클 수 있다. 다시 말해, PRS들을 동시에 전송하는 기지국/TP들의 수가 증가하더라도, 크로스 코릴레이션을 통한 연산 횟수가 증가하지 않아 연산 복잡도가 증가하지 않는 이점이 있다.
한편, 기지국/TP 별로 동일한 PRS ID를 사용하면 단말이 기지국/TP를 구분하여 RSTD를 측정 및 보고할 수 없기 때문에, 기지국/TP 별로 서로 다른 PRS ID를 할당해야 한다. 그러나, PRS ID에 따라서 시퀀스 초기화(sequence initialization)를 수행하면 각 기지국/TP마다 독립적인 PRS 시퀀스가 생성되기 때문에 하나의 PRS 시퀀스를 이용하여 순환 시프트된 직교 시퀀스(cyclic-shifted orthogonal sequence) N개를 N개의 기지국/TP에 할당하는 방법을 적용하기 어렵다.
그러므로, 본 발명의 실시 예에서는 인접한 셀(Cell)들을 하나 이상의 셀 그룹(Cell Group)으로 구분하고, 동일한 셀 그룹에 포함된 셀들을 통해 전송되는 PRS 시퀀스들은 동일한 셀 그룹 ID (Cell Group ID)를 기반으로 시퀀스 초기화(Sequence Initialization)를 수행하도록 한다. 또한, 셀 그룹(Cell Group) 내에서는 셀 그룹에 포함된 각 셀에 할당된 PRS ID 별로 순환 시프트(Cyclic shift)의 정도/레벨/수치를 결정하고, 이를 단말에게 설정/지시할 수 있다.
다시 말해, 단말은 위치 서버(Location Server)로부터 셀 그룹(Cell Group)의 공통(Common) 정보와 셀 그룹에 포함된 각각의 셀에 대한 셀 독립 정보(또는 셀 특정 정보)를 설정/지시 받는다.
예를 들어, 셀 그룹(Cell Group)의 공통 정보로는 PRS 시퀀스 초기화(Initialization)를 위한 셀 그룹 ID (Cell Group ID)와 예상 RSTD(expected RSTD) 값, 예상 RSTD 오차(expected RSTD uncertainty) 등과 같은 정보가 포함될 수 있고, 셀 독립 정보(또는 셀 특정 정보)는 각 기지국/TP 별 순환 시프트(Cyclic shift) 정보와 그에 따른 예상 RSTD (expected RSTD) 보정 값, 예상 RSTD 오차 (expected RSTD uncertainty) 보정 값 등이 포함될 수 있다. 예상 RSTD (expected RSTD) 값은 위치 서버(Location server)가 단말의 개략적인(rough) 위치를 이용하여 예측한 RSTD값을 의미할 수 있다.
단말은 수신된 예상 RSTD(expected RSTD) 값과 예상 RSTD 오차(expected RSTD uncertainty) 정보를 이용하여 PRS 를 수신하기 위한 PRS 탐색 윈도우를 설정할 수 있다. 예상 RSTD 오차(expected RSTD uncertainty) 값이 PRS 탐색 윈도우의 크기를 결정하고, 단말은 해당 PRS 탐색 윈도우에서 PRS 시퀀스에 대한 코릴레이션(correlation)을 수행하여 PRS를 검출할 수 있다.
한편, 셀 그룹에 포함된 각각의 기지국/TP에 대한 셀 독립 (또는 셀 특정) 정보에 예상 RSTD 보정값, 예상 RSTD 오차 보정값 등을 포함시켜 전송하여, 셀 그룹에 포함된 각각의 기지국/TP에 대한 PRS 탐색 윈도우(Search window)의 위치와 크기를 조정할 수 있다. 이 때, 셀 그룹(Cell Group)의 공통(Common) 정보 및 셀 그룹에 포함된 각각의 기지국/TP에 대한 셀 독립(또는 셀 특정) 정보는 LPP를 통해 타겟 단말에게 시그널링될 수 있다.
도 16을 참조하면, 기지국/TP는 셀 그룹 ID(Cell Group ID)를 이용하여 동일한 셀 그룹에 포함된 서로 인접한 셀들(또는 기지국/TP)에 대하여 동일한 PRS 시퀀스를 초기화(initialization) 하고, 각 셀 별 (또는 각 기지국/TP 별)로 서로 다른 순환 시프트 값을 적용하여 각 셀 별(또는 각 기지국/TP 별)로 직교하는 PRS 시퀀스를 생성하여 단말에게 전송할 수 있다. 이 때, PRS 시퀀스는 ZC (Zadoff-Chu) 시퀀스를 기반으로 생성될 수 있다.
한편, 단말은 PLL 프로토콜을 통해 수신한 셀 그룹 ID 정보를 기반으로 복수의 셀들(또는 복수의 기지국/TP들)로부터 전송되는 PRS 시퀀스들과 같은 초기화 값을 가지는 PRS 시퀀스를 생성할 수 있다. 이 때, 단말이 생성한 PRS 시퀀스에 적용된 순환 시프트(cyclic shift) 값은 참조 셀(Reference Cell)과 같을 수도 있고, PRS 시퀀스 생성을 위해 위치 서버 또는 기지국/TP로부터 지시된 독립적인 순환 시프트(Cyclic shift)값이 적용될 수도 있다.
단말은 위치 서버(Location server)로부터 수신한 예상 RSTD 값 (expected RSTD값), 예상 RSTD 오차(expected RSTD uncertainty), 예상 RSTD 보정 값 및 예상 RSTD 오차 보정 값을 이용하여 PRS 탐색 윈도우의 위치와 범위를 설정할 수 있다. 그리고, 단말은 셀 그룹 ID (Cell Group ID) 정보를 기반으로 생성한 PRS 시퀀스를 이용하여 PRS 탐색 윈도우 내에서 수신된 PRS들에 대해 코릴레이션(correlation)을 수행할 수 있다.
여기서, 단말이 생성한 SRS 시퀀스는 하나의 순환 시프트(Cyclic shift) 값만이 적용될 수 있다. 반면, 복수의 기지국/TP들로부터 전송된 PRS 시퀀스들은 서로 다른 순환 시프트(cyclic shift) 값을 가질 수 있다. 그러므로, 단말이 복수의 기지국/TP들로부터 전송된 PRS 시퀀스들에 대해 자신이 생성한 하나의 PRS 시퀀스를 기반으로 코릴레이션을 수행하면, PRS 시퀀스들 각각에 대한 피크 (peak) 가 검출되는 타이밍에 시간 지연(delay)이 발생한다.
따라서, 단말은 PRS 시퀀스들 각각에 대한 피크 검출 타이밍 및 LPP를 통해 지시된 셀 그룹 내에 포함된 기지국/TP들에 대한 셀 독립(또는 셀 특정) 정보에 포함된 각 기지국/TP 별 순환 시프트(Cyclic shift) 정보를 기반으로 실제로 위치 서버로 보고할 RSTD 값을 산출할 수 있다. 예를 들어, 예상 RSTD의 위치에서 PRS를 검출하고, 순환 시프트(Cyclic shift)에 의한 시간 지연을 반영하여 피크(Peak)가 발생하는 타이밍(Timing)을 보정할 수 있다.
본 실시 예의 장점은 LTE는 셀 ID(Cell ID) 별로 PRS 시퀀스가 필요하지만, 본 실시 예는 셀 그룹 (Cell Group) 별로 하나의 PRS 시퀀스만 필요하다는 것이다. 하나의 셀 그룹(Cell Group) 내에 포함된 기지국/TP들에 대하여 하나의 PRS 시퀀스만을 기반으로 코릴레이션(correlation)을 수행하기 때문에, 기존보다 최대
Figure PCTKR2019011917-appb-img-000009
배로 연산 복잡도를 감소시킬 수 있다. 이러한 본 발명의 실시 예는 셀 그룹(Cell Group) 내에 몇 개의 기지국/TP들이 포함되는지 여부와 관계 없이 적용할 수 있기 때문에, 스몰 셀(Small Cell)과 같은 환경에서 더욱 유용하게 사용할 수 있다.
또한, 본 발명의 실시 예는 주파수 도메인에서 순환 시프트(cyclic shifted) 된 시퀀스가 직교(Orthogonal)한 성질을 가지는 모든 종류의 시퀀스에 적용될 수 있다. 또한, 시퀀스들의 직교성(Orthogonality)을 유지하기 위하여 적절한 길이의 CP (Cyclic prefix) 및/또는 GP (Guard period)를 적용할 수 있다.
한편, 도 16과 관련된 실시 예에서는 PRS 시퀀스에 순환 시프트(Cyclic shift)를 적용하여 N개의 직교 시퀀스(Orthogonal Sequence)를 생성할 수 있었다.
하지만, 주파수 도메인 순환 시프트(frequency domain Cyclic shift) 대신에 실제 시간 시프트(Actual Time shift)를 적용하는 방법도 생각할 수 있다. 다시 말해, 순환 시프트(Cyclic shift)로 인해 발생하는 검출 시 시간 지연이 아닌 실제로 N개의 기지국/TP들이 PRS를 전송 할 때 각 기지국/TP 별로 설정된 실제 시간 시프트 값을 적용하여 전송하고, 기지국/TP 별로 시간 시프트(Time shift) 된 정도를 예상 RSTD 보정값으로 LPP 프로토콜을 통해 단말에게 지시하면, 단말은 예상 RSTD(expected RSTD) 정보 및 예상 RSTD 보정값 정보를 이용하여 기지국/TP 별 PRS 탐색 윈도우를 설정할 수 있다. 이러한 경우, 셀 그룹 내에 포함된 기지국/TP 별로 설정되는 PRS 탐색 윈도우들은 중첩(overlap)되지 않게 설정될 수 있고, 셀 그룹 내에 포함된 기지국/TP들이 동일한 PRS 시퀀스를 사용하더라도, 설정된 PRS 탐색 윈도우를 통해 수신된 PRS 시퀀스를 전송한 기지국/TP를 식별할 수 있다.
한편, 상술한 것과 같이 실제 시간 시프트(Actual Time Shift) 값을 기반으로 RSTD를 측정하기 위해서, 인접한 기지국/TP들 또는 인접한 셀들을 셀 그룹(Cell Group)으로 그룹핑하고, 상기 셀 그룹의 셀 그룹 ID를 기반으로 PRS 시퀀스의 초기화(Initialization)를 수행할 수 있다. 이 때, 단말은 위치 서버(Location Server)로부터 셀 그룹의 공통 정보와 셀 그룹 내의 기지국/TP들 각각에 대한 셀 독립(또는 셀 특정) 정보를 수신할 수 있다. 예를 들어, 셀 그룹의 공통 정보는 PRS 시퀀스 초기화(Initialization)를 위한 셀 그룹 ID와 예상 RSTD 값, 예상 RSTD 오차(uncertainty) 등과 같은 정보가 포함될 수 있다. 또한, 셀 독립(또는 셀 특정) 정보는 각 기지국/TP 별 실제 시간 시프트(Actual time shift) 정보와 그에 따른 예상 RSTD 보정 값, 예상 RSTD 오차(uncertainty) 보정 값 등이 포함 될 수 있다. 이 때, 셀 그룹(Cell Group)의 공통(Common) 정보 및 셀 그룹에 포함된 각각의 기지국/TP에 대한 셀 독립(또는 셀 특정) 정보는 LPP를 통해 타겟 단말에게 시그널링될 수 있다.
도 17을 통해 이를 좀 더 구체적으로 살펴보도록 한다.
도 17의 실시 예는 순환 시프트(Cyclic shift)를 적용하였을 때 직교(Orthogonal)한 성질을 가지지 않는 시퀀스(Sequence)에도 적용할 수 있다. 그러므로, 도 16과 관련된 실시 예에 적용 가능한 시퀀스 유형(sequence type) 들을 포함하여, PN 시퀀스와 골드 시퀀스 같은 다른 시퀀스들에도 도 17의 실시 예를 적용할 수 있다.
도 17의 실시 예는 셀 그룹 ID를 이용하여 PRS 시퀀스를 생성한다는 점에서 도 16의 실시 예와 동일하다. 하지만, 도 17의 실시 예에 따라 생성한 PRS 시퀀스에는 각각의 기지국/TP 별로 다른 실제 시간 시프트(Actual Time shift)를 적용하여 단말에게 전송한다는 점에서 각각의 기지국/TP 별로 다른 순환 시프트(cyclic shift)를 적용하는 도 16의 실시 예와 상이한 점이 있다.
다시 말해, 도 17의 실시 예에서는 셀 그룹 ID를 기반으로 PRS 시퀀스를 생성하고, 각각의 기지국/TP 별로 실제로 시간을 지연시켜 PRS 시퀀스를 전송할 수 있다. 단말은 PLL 프로토콜로부터 수신한 셀 그룹의 공통 정보에 포함된 예상 RSTD (Cell Group Common expected RSTD)와 예상 RSTD 오차(expected RSTD uncertainty) 값 및 셀 그룹에 포함된 각각의 기지국/TP를 위한 셀 독립(또는 셀 특정) 정보에 포함된 예상 RSTD 보정 값과 예상 RSTD 오차 (expected RSTD uncertainty) 보정 값 정보를 기반으로 PRS를 검출하기 위한 PRS 탐색 윈도우(Search Window)를 설정할 수 있다.
한편, 복수의 기지국/TP들의 PRS 탐색 윈도우가 서로 중복되게 설정되면, 중복되는 영역에서 수신된 PRS 시퀀스가 어느 기지국/TP에서 전송된 PRS 시퀀스인지를 구분할 수 없기 때문에, 위치 서버(Location server)에서 기지국/TP 별 시간 시프트(time shift) 정도를 설정하여서 단말이 PRS를 탐색(Search) 하기 위한 복수의 기지국/TP들 각각을 위한 PRS 탐색 윈도우들이 중첩(Overlap)되지 않게 할 수 있다.
LTE 시스템에서는 셀 ID 마다 PRS 시퀀스가 필요하지만, 상술한 도 17의 실시 예에 따르면, 셀 그룹 별로 하나의 PRS 시퀀스만 필요하다. 따라서, 도 17의 실시 예에 따르면, 단말은 하나의 셀 그룹(Cell Group)에 포함된 복수의 기지국/TP들에 대하여 하나의 PRS 시퀀스만을 기반으로 코릴레이션(correlation)을 수행할 수 있는 장점이 있다.
따라서, 셀 그룹(Cell Group) 내에서 몇 개의 기지국/TP들이 포함되는지 여부와 관계 없이 도 17의 실시 예의 적용이 가능하기 때문에, 스몰 셀(Small Cell)과 같은 환경에서 연산 복잡도를 줄이면서, 많은 PRS 시퀀스를 수신하여 단말에 대한 측위 정확성을 높이는데 더욱 유용할 수 있다. 한편, 도 17의 실시 예의 경우에도 도 16의 실시 예와 마찬가지로 적절한 길이의 CP (Cyclic prefix) 및 적절한 길이의 GP (Guard period) 중 적어도 하나를 PRS 시퀀스를 위해 적용할 수 있다.
한편, 도 16 내지 도 17의 실시 예들과는 다르게, 셀 그룹 별로 공통된 하나의 PRS 시퀀스를 생성하고, 생성된 PRS 시퀀스에 각 기지국/TP 별 DFT(Discrete Fourier Transform) 시퀀스를 곱하여 위상 시프트(Phase shift)를 적용하는 방법도 있을 수 있다. 다시 말해, 기지국/TP들은 셀 그룹 ID (Cell Group ID) 정보를 기반으로 동일한 셀 그룹에 포함된 서로 인접한 기지국/TP들 간에 동일한 초기화 값(initialization value)으로 PRS 시퀀스를 생성하고, 기지국/TP 별로 할당되는 적절한 DFT 시퀀스를 상기 초기화 값으로 생성된 PRS 시퀀스에 곱하여 단말에게 전송할 수 있다.
이 때, 단말은 LPP 프로토콜을 통해 수신한 셀 그룹 ID 정보를 이용하여 복수의 기지국/TP들로부터 전송되는 PRS 시퀀스들과 같은 초기화 값(initialization value)을 가지는 PRS 시퀀스를 생성할 수 있다. 이 때, 단말이 생성한 PRS 시퀀스에 적용된 DFT 시퀀스는 참조 셀(Reference Cell)과 같을 수도 있고, 별도로 수신된 DFT 시퀀스 값을 적용할 수도 있다. 단말은 위치 서버(Location server)로부터 수신한 예상 RSTD 값, 예상 RSTD 오차(expected RSTD uncertainty), 예상 RSTD(expected RSTD) 보정 값, 예상 RSTD 오차(expected RSTD uncertainty) 보정 값을 기반으로 PRS 탐색 윈도우(search window)의 위치와 범위를 설정할 수 있다.
단말은 설정된 PRS 탐색 윈도우(search window) 내에서 셀 그룹 ID (Cell Group ID) 정보를 기반으로 생성한 하나의 PRS 시퀀스(Sequence)를 이용하여 복수의 기지국/TP들로부터 수신한 PRS들에 대해 코릴레이션(correlation)을 수행할 수 있다. 단말이 생성한 PRS 시퀀스(Sequence)에는 하나의 DFT 시퀀스(sequence)만이 곱해져 있기 때문에, 복수의 기지국/TP들로부터 전송된 서로 다른 DFT 시퀀스들이 곱해진 PRS 시퀀스(sequence)들에 대하여 코릴레이션을 수행하면, 상기 서로 다른 DFT 시퀀스들이 곱해진 PRS 시퀀스들에 대한 피크(peak)가 검출되는 타이밍에 딜레이(delay)가 발생할 수 있다.
LPP를 통해 수신된 셀 그룹의 복수의 기지국/TP 각각을 위한 셀 독립(또는 셀 특정) 정보에 포함된 각 기지국/TP 별 DFT 시퀀스 정보에 기반하여 단말이 실제로 보고(Reporting)할 RSTD 값을 산출할 수 있다. 다시 말해, 단말은 예상 RSTD (Expected RSTD) 위치에서 PRS 시퀀스를 검출하고 DFT로 인한 시간 지연을 기반으로 피크(Peak)가 발생하는 타이밍을 보정할 수 있다.
LTE 시스템의 경우, 셀 ID 마다 PRS 시퀀스가 필요하지만, 상술한 실시 예에 따르면, 복수의 셀이 포함된 셀 그룹(Cell Group) 별로 하나의 PRS 시퀀스만 필요하다. 즉, 하나의 셀 그룹(Cell Group)에 대하여 단말은 하나의 PRS 시퀀스만을 기반으로 코릴레이션(correlation)을 수행하기 때문에, LTE 시스템의 경우보다 최대
Figure PCTKR2019011917-appb-img-000010
배로 연산 복잡도(Complexity)를 줄일 수 있다. 다시 말해, 셀 그룹(Cell Group)내에 포함된 기지국/TP의 개수에 관계 없이 본 발명에 따른 실시 예의 적용이 가능하기 때문에, 스몰 셀(Small Cell)과 같은 환경에서 연산 복잡도를 줄이면서, 많은 PRS 시퀀스를 수신하여 단말에 대한 측위 정확성을 높이는데 더욱 유용할 수 있다.
한편, PRS 전송을 위해 1개의 OFDM 심볼을 추가적으로 사용할 수 있다. 추가로 사용되는 OFDM 심볼에는 셀 그룹에 포함된 모든 기지국/TP들이 공통으로 사용하는 PRS 시퀀스를 맵핑하여 단말에게 전송할 수 있다. 단말이 공통의 PRS 시퀀스를 이용하여 셀 그룹 내의 모든 기지국/TP들의 PRS 시퀀스들에 대한 코릴레이션(Correlation)을 산출하면 하나의 CP (Cyclic Prefix) 내에서 모든 기지국/TP들이 전송한 PRS에 대한 피크(Peak)가 검출된다. 그리고 단말은 상기 피크(peak)가 검출되는 부분을 심볼 경계(Symbol Boundary)로 설정하고, 서로 다른 DFT 시퀀스(sequence)가 곱해진 PRS 시퀀스가 맵핑된 심볼에서 상기 공통의 PRS 시퀀스와의 코릴레이션(correlation)을 수행할 수 있다. 이 때, 상기 심볼 경계로 설정된 위치와 서로 다른 DFT 시퀀스가 곱해진 PRS 시퀀스에 대한 코릴레이션(correlation)에 의해 발생한 피크(peak) 지점 간의 상대 위치로 RSTD를 검출할 수 있다. 이러한 경우, 주파수 도메인(Frequency domain)에서 PRS 시퀀스 검출을 수행할 수 있으므로, 보다 정확한 RSTD 검출이 가능하다.
한편, 상술한 실시 예들은 좁은 대역폭(narrow BW)과 넓은 대역폭(wide BW)을 모두 지원할 수 있다. 예를 들어, 좁은 대역폭(narrow BW)을 지원하는 PRS 시퀀스는, 넓은 대역폭(wide BW)을 지원하는 PRS 시퀀스의 일부분일 수 있다.
또한, 넓은 대역폭(wide BW)을 지원하는 PRS 시퀀스는 좁은 대역폭(narrow BW)을 지원하는 PRS 시퀀스가 반복되는 형태로 생성될 수도 있다. 또한, 기지국/TP 간의 동기 여부 및 타이밍의 어긋난 정도 등을 위치 서버가 단말에게 알려줄 수 있고, 단말은 PRS 검출 시 상기 정보를 이용할 수 있다. 예를 들어, 기지국/TP 간의 동기가 일치하지 않아서 단말의 위치 측정에 에러(error)가 커지는 경우, 위상(Phase) 정보 등을 이용하여 이를 보정하는 과정을 수행할 수 있다.
도 18은 본 발명의 실시 예에 따른 무선 통신 장치의 일 실시 예를 도시한다.
도 18에서 설명하는 무선 통신 장치는 본 발명의 실시 예에 따른 단말 및/또는 기지국을 나타낼 수 있다. 그러나, 도 18의 무선 통신 장치는, 본 실시 예에 따른 단말 및/또는 기지국에 반드시 한정되는 것은 아니며, 차량 통신 시스템 또는 장치, 웨어러블(wearable) 장치, 랩톱, 스마트 폰 등과 같은 다양한 장치로 대체될 수 있다. 좀 더 구체적으로, 상기 장치는 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, 차량, 자율주행 기능을 탑재한 차량, 드론(Unmanned Aerial Vehicle, UAV), AI(Artificial Intelligence) 모듈, 로봇, AR(Augmented Reality) 장치, VR(Virtual Reality) 장치, MTC 장치, IoT 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치 또는 그 이외 4차 산업 혁명 분야 또는 5G 서비스와 관련된 장치 등일 수 있다. 예를 들어, 드론은 사람이 타지 않고 무선 컨트롤 신호에 의해 비행하는 비행체일 수 있다. 예를 들어, MTC 장치 및 IoT 장치는 사람의 직접적인 개입이나 또는 조작이 필요하지 않는 장치로서, 스마트 미터, 벤딩 머신, 온도계, 스마트 전구, 도어락, 각종 센서 등일 수 있다. 예를 들어, 의료 장치는 질병을 진단, 치료, 경감, 처치 또는 예방할 목적으로 사용되는 장치, 구조 또는 기능을 검사, 대체 또는 변형할 목적으로 사용되는 장치로서, 진료용 장비, 수술용 장치, (체외) 진단용 장치, 보청기, 시술용 장치 등일 수 있다. 예를 들어, 보안 장치는 발생할 우려가 있는 위험을 방지하고, 안전을 유지하기 위하여 설치한 장치로서, 카메라, CCTV, 블랙박스 등일 수 있다. 예를 들어, 핀테크 장치는 모바일 결제 등 금융 서비스를 제공할 수 있는 장치로서, 결제 장치, POS(Point of Sales) 등일 수 있다. 예를 들어, 기후/환경 장치는 기후/환경을 모니터링, 예측하는 장치를 의미할 수 있다.
또한, 전송 단말 및 수신 단말은 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털 방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)), 폴더블(foldable) 디바이스 등을 포함할 수 있다. 예를 들어, HMD는 머리에 착용하는 형태의 디스플레이 장치로서, VR 또는 AR을 구현하기 위해 사용될 수 있다. 
도 18을 참조하면, 본 발명의 실시 예에 따른 단말 및/또는 기지국은 디지털 신호 프로세서(Digital Signal Processor; DSP) 또는 마이크로 프로세서와 같은 적어도 하나의 프로세서(10), 트랜시버(Transceiver)(35), 전력 관리 모듈(5), 안테나(40), 배터리(55), 디스플레이(15), 키패드(20), 메모리(30), 가입자 식별 모듈(SIM)카드 (25), 스피커(45) 및 마이크로폰(50)등을 포함할 수 있다. 또한, 상기 단말 및/또는 기지국은 단일 안테나 또는 다중 안테나를 포함할 수 있다. 한편, 상기 트랜시버(Transceiver)(35)는 RF 모듈(Radio Frequency Module)로도 명칭될 수 있다.
프로세서(10)는 도 1 내지 17에 설명된 기능, 절차 및/또는 방법을 구현하도록 구성될 수 있다. 도 1 내지 도 17에서 설명한 실시 예들 중 적어도 일부에 있어서, 프로세서(10)는 무선 인터페이스 프로토콜의 계층들 (예를 들어, 기능 계층들(functional layers))과 같은 하나 이상의 프로토콜들을 구현할 수 있다.
메모리(30)는 프로세서(10)에 연결되어 프로세서(10)의 동작과 관련된 정보를 저장한다. 메모리(30)는 프로세서(10)의 내부 또는 외부에 위치 할 수 있으며, 유선 또는 무선 통신과 같은 다양한 기술을 통해 프로세서에 연결될 수 있다.
사용자는 키패드(20)의 버튼을 누름으로써 또는 마이크로폰(50)을 이용한 음성 활성화와 같은 다양한 기술에 의한 다양한 유형의 정보 (예를 들어, 전화 번호와 같은 지시 정보)를 입력 할 수 있다. 프로세서(10) 는 사용자의 정보를 수신 및/또는 처리하고 전화 번호를 다이얼하는 것과 같은 적절한 기능을 수행한다.
또한, 상기 적절한 기능들을 수행하기 위해 SIM 카드(25) 또는 메모리 (30)로부터 데이터(예를 들어, 조작 데이터)를 검색할 수도 있다. 또한, 프로세서 (10)는 GPS 칩으로부터 GPS 정보를 수신 및 처리하여 차량 네비게이션, 지도 서비스 등과 같은 단말 및/또는 기지국의 위치 정보를 획득하거나 위치 정보와 관련된 기능을 수행 할 수 있다. 또한, 프로세서(10)는 사용자의 참조 및 편의를 위해 이러한 다양한 유형의 정보 및 데이터를 디스플레이(15) 상에 표시할 수 있다.
트랜시버(Transceiver)(35)는 프로세서(10)에 연결되어 RF (Radio Frequency) 신호와 같은 무선 신호를 송신 및/또는 수신한다. 이 때, 프로세서(10)는 통신을 개시하고 음성 통신 데이터와 같은 다양한 유형의 정보 또는 데이터를 포함하는 무선 신호를 송신하도록 트랜시버(Transceiver)(35)를 제어 할 수 있다. 트랜시버(Transceiver) (35)는 무선 신호를 수신하는 수신기 및 송신하는 송신기를 포함할 수 있다. 안테나(40)는 무선 신호의 송신 및 수신을 용이하게 한다. 일부 실시 예에서, 무선 신호를 수신되면, 트랜시버(Transceiver)(35)는 프로세서(10)에 의한 처리를 위해 기저 대역 주파수로 신호를 포워딩하고 변환할 수 있다. 처리된 신호는 가청 또는 판독 가능한 정보로 변환되는 등, 다양한 기술에 따라 처리 될 수 있으며, 이러한 신호는 스피커 (45)를 통해 출력될 수 있다.
일부 실시 예에서, 센서 또한 프로세서(10)에 연결될 수 있다. 센서는 속도, 가속도, 광, 진동 등을 포함하는 다양한 유형의 정보를 검출하도록 구성된 하나 이상의 감지 장치를 포함 할 수 있다. 근접, 위치, 이미지 등과 같이 센서로부터 얻어진 센서 정보를 프로세서(10)가 수신하여 처리함으로써, 충돌 회피, 자율 주행 등의 각종 기능을 수행 할 수 있다.
한편, 카메라, USB 포트 등과 같은 다양한 구성 요소가 단말 및/또는 기지국에 추가로 포함될 수 있다. 예를 들어, 카메라가 프로세서(10)에 추가로 연결될 수 있으며, 이러한 카메라는 자율 주행, 차량 안전 서비스 등과 같은 다양한 서비스에 사용될 수 있다.
이와 같이, 도 18은 단말 및/또는 기지국을 구성하는 장치들의 일 실시 예에 불과하면, 이에 한정되는 것은 아니다. 예를 들어, 키패드(20), GPS (Global Positioning System) 칩, 센서, 스피커(45) 및/또는 마이크로폰(50)과 같은 일부 구성 요소는 일부 실시 예들에서 단말 및/또는 기지국 구현을 위해 제외될 수도 있다.
구체적으로, 본 발명의 실시 예들을 구현하기 위해, 도 18에서 표현된 무선 통신 장치가 본 발명의 실시 예에 따른 단말인 경우의 동작을 살펴보도록 한다. 상기 무선 통신 장치가 본 발명의 실시 예에 따른 단말인 경우, 상기 프로세서(10)는 위치 서버(Location Server)로부터 PLL 프로토콜(Protocol)을 통하여 셀 그룹(Cell Group)의 공통(Common) 정보와 셀 그룹에 포함된 각각의 기지국/TP에 대한 셀 독립(또는 셀 특정) 정보를 수신하도록 트랜시버(35)를 제어할 수 있다. 이 때, 셀 그룹(Cell Group)의 공통(Common) 정보로는 PRS 초기화(Initialization)를 위한 셀 그룹 ID(Cell Group ID)와 예상 RSTD(expected RSTD) 값, 예상 RSTD 오차(expected RSTD uncertainty) 등과 같은 정보가 포함될 수 있고, 셀 독립 정보(또는 셀 특정 정보)는 셀 그룹에 포함된 각 기지국/TP 별 순환 시프트(Cyclic shift) 정보, 실제 시간 시프트(Actual time shift) 정보 및 DFT 시퀀스 정보 중 적어도 하나와 그에 따른 예상 RSTD 보정값 및 예상 RSTD 오차 보정값 등이 포함 될 수 있다.
프로세서(10)는 예상 RSTD 값, 예상 RSTD 오차(uncertainty), 기지국/TP 별 예상 RSTD 보정값 및 예상 RSTD 오차 보정값 등의 정보들을 이용하여 PRS를 검출하기 위한 PRS 탐색 윈도우(Search window)를 설정할 수 있다. 또한, 프로세서(10)는 셀 그룹(Cell Group) ID 정보를 기반으로 PRS를 초기화(Initialization)하고, PRS 시퀀스를 생성할 수 있다. 또한, 프로세서(10)는 PRS 시퀀스를 기반으로 기지국/TP 별로 설정된 PRS 탐색 윈도우 내에서 PRS에 대한 코릴레이션(Correlation)을 수행하여 PRS를 검출할 수 있다. 그 후, 프로세서(10)는 위치 서버(Location server)로부터 수신된 셀 독립(또는 셀 특정) 정보에 포함된 순환 시프트 정보, 실제 시간 시프트 정보, DFT 시퀀스 정보 등을 반영하여 RSTD를 측정하고, 위치 서버로 측정된 RSTD를 보고하도록 트랜시버(35)를 제어할 수 있다. 한편, 프로세서(10)가 RSTD를 측정하는 구체적인 방법은 상술한 본 발명의 실시 예들에 기반할 수 있다.
한편, 본 발명의 실시 예들을 구현하기 위해, 도 18에서 표현된 무선 통신 장치가 본 발명의 실시 예에 따른 기지국인 경우, 상기 프로세서 (10)는 위치 서버로부터 단말의 위치를 측정할 것을 요청하는 측위 정보 요청 메시지(Positioning Information Request Message)를 수신하도록 트랜시버(35)를 제어할 수 있다. 그리고, 프로세서(10)는 셀 ID, PRS 전송을 위한 SFN, PRS 전송을 위한 대역폭 정보 등과 같은 측위 정보를 위치 서버로 전송하도록 제어할 수 있다. 이 때, 측위 정보에는 셀 그룹 ID 및 셀 그룹에 포함된 각 기지국의 순환 시프트(Cyclic Shift) 정보, 실제 시간 시프트(Actual Time Shift) 정보, DFT 시퀀스 정보 등과 같은 정보를 포함할 수도 있다. 그 후, 프로세서(10)는 PRS 시퀀스를 생성하여 단말에 전송하도록 제어할 수 있다. 한편, 프로세서(10)가 PRS 시퀀스를 생성하는 구체적인 방법은 상술한 본 발명의 실시 예들에 기반할 수 있다.
도 19는 본 발명의 실시 예에 따른 위치 서버(90)의 일 실시 예를 도시한다.
한편, 본 발명에 따른 실시 예들을 수행하기 위하여, 도 19와 같은 위치 서버(Location Server, 90)가 포함될 수 있다. 여기서, 위치 서버(Location Server, 90)는 무선 장치(70) 및/또는 네트워크 노드(80)와 논리적 또는 물리적으로 연결될 수 있다. 여기서, 예를 들어, 무선 장치(70)는 단말일 수 있으며, 네트워크 노드(80)는 기지국일 수 있다.
한편, 상기 위치 서버(90)는 AMF, LMF, E-SMLC 및/또는 SLP일 수 있으나, 이에 한정되지 않으며, 본 발명의 실시 예를 구현하기 위해 상기 위치 서버(90)의 역할을 할 수 있는 통신 장치라면, 어떠한 통신 장치도 상기 위치 서버(90)로 활용될 수 있다.
구체적으로 상기 위치 서버(90)에 대해 살펴보면, 상기 위치 서버(90)는 하나 이상의 다른 무선 장치, 네트워크 노드 및/또는 네트워크의 다른 요소와 통신하기 위한 트랜시버(Transceiver)(91)를 포함한다. 이 때, 트랜시버(91)는 하나 이상의 통신 인터페이스를 포함 할 수 있다. 상기 통신 인터페이스를 통해 연결된 하나 이상의 다른 무선 장치, 네트워크 노드 및/또는 네트워크의 다른 요소와 통신을 수행한다.
또한, 위치 서버(90)는 프로세싱 칩(92)을 포함한다. 프로세싱 칩(92)은 프로세서 (93)와 같은 적어도 하나의 프로세서 및 메모리 (94)와 같은 적어도 하나의 메모리 장치를 포함 할 수 있다.
프로세싱 칩(92)은 본 명세서에서 설명된 방법들, 및/또는 본 명세서에서 해결하고자 하는 과제 및 그에 대한 해결책을 위한 실시 예들을 구현하기 위하여, 하나 이상의 프로세스를 제어할 수 있다. 다시 말해, 상기 프로세싱 칩(92)은 본 명세서에 기재된 적어도 하나 이상의 실시 예들이 수행되도록 구성 될 수 있다. 즉, 프로세서(93)는 본 명세서에서 설명된 위치 서버(90)의 기능을 수행하기 위한 적어도 하나의 프로세서를 포함한다. 예를 들어, 하나 이상의 프로세서는 도 19의 하나 이상의 트랜시버(91)를 제어하여, 정보를 송수신할 수 있다.
또한, 프로세싱 칩(92)은 데이터, 프로그래밍 가능한 소프트웨어 코드 및/또는 본 명세서에 설명된 실시 예들을 수행하기 위한 다른 정보를 저장하도록 구성된 메모리 (94)를 포함한다.
다시 말해 본 명세서에 따른 실시 예에서, 메모리 (94)는 프로세서 (93)와 같은 적어도 하나의 프로세서에 의해 실행(executed)될 때, 프로세서 (93)로 하여금 도 19의 프로세서 (93)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하게 하거나, 본 명세서에 설명된 실시 예들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드(95)를 저장한다.
구체적으로, 상기 프로세싱 칩(92)은 PLL 프로토콜(Protocol)을 통하여 셀 그룹(Cell Group)의 공통(Common) 정보와 셀 그룹에 포함된 각각의 기지국/TP에 대한 셀 독립(또는 셀 특정) 정보를 전송하도록 트랜시버(91)를 제어할 수 있다. 이 때, 셀 그룹(Cell Group)의 공통(Common) 정보로는 PRS 초기화(Initialization)를 위한 셀 그룹 ID(Cell Group ID)와 예상 RSTD(expected RSTD) 값, 예상 RSTD 오차(expected RSTD uncertainty) 등과 같은 정보가 포함될 수 있고, 셀 독립 정보(또는 셀 특정 정보)는 셀 그룹에 포함된 각 기지국/TP 별 순환 시프트(Cyclic shift) 정보, 실제 시간 시프트(Actual time shift) 정보 및 DFT 시퀀스 정보 중 적어도 하나와 그에 따른 예상 RSTD 보정값 및 예상 RSTD 오차 보정값 등이 포함 될 수 있다.
프로세싱 칩(92)은 기지국에게 단말의 위치를 측정할 것을 요청하는 측위 정보 요청 메시지(Positioning Information Request Message)를 전송하도록 트랜시버(91)를 제어할 수 있다. 또한, 프로세싱 칩(92)은 셀 ID, PRS 전송을 위한 SFN, PRS 전송을 위한 대역폭 정보 등과 같은 측위 정보를 기지국으로부터 수신하도록 트랜시버(91)를 제어할 수 있다.
이 때, 측위 정보에는 셀 그룹 ID 및 셀 그룹에 포함된 각 기지국의 순환 시프트(Cyclic Shift) 정보, 실제 시간 시프트(Actual Time Shift) 정보, DFT 시퀀스 정보 등과 같은 정보를 포함할 수도 있다. 한편, 만약, 측위 정보에 셀 그룹 ID 및 셀 그룹에 포함된 각 기지국의 순환 시프트(Cyclic Shift) 정보, 실제 시간 시프트(Actual Time Shift) 정보, DFT 시퀀스 정보 등과 같은 정보를 포함하는 경우, 측위 요청 메시지 전송 및 측위 정보 수신 이후, 단말에게 셀 그룹 공통 정보 및 셀 독립(또는 셀 특정) 정보가 전송될 수 있다. 프로세싱 칩(92)은 단말이 측정한 RSTD를 수신하도록 트랜시버(91)를 제어할 수 있고, 수신한 RSTD 값들을 기반으로 OTDOA를 통해 단말의 위치를 추정할 수 있다. 한편, 구체적인 프로세싱 칩(92)의 동작은 상술한 실시 예를 기반으로 할 수 있다.
도 20은 본 발명의 실시 예들을 구현할 수 있는 AI 장치(100)를 나타낸다.
AI 장치(100)는 TV, 프로젝터, 휴대폰, 스마트폰, 데스크탑 컴퓨터, 노트북, 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 태블릿 PC, 웨어러블 장치, 셋톱박스(STB), DMB 수신기, 라디오, 세탁기, 냉장고, 데스크탑 컴퓨터, 디지털 사이니지, 로봇, 차량 등과 같은, 고정형 기기 또는 이동 가능한 기기 등으로 구현될 수 있다.
도 20을 참조하면, 단말기(100)는 통신부(110), 입력부(120), 러닝 프로세서(130), 센싱부(140), 출력부(150), 메모리(170) 및 프로세서(180) 등을 포함할 수 있다.
통신부(110)는 유무선 통신 기술을 이용하여 다른 AI 장치(100a 내지 100e)나 AI 서버(200) 등의 외부 장치들과 데이터를 송수신할 수 있다. 예컨대, 통신부(110)는 외부 장치들과 센서 정보, 사용자 입력, 학습 모델, 제어 신호 등을 송수신할 수 있다.
이때, 통신부(110)가 이용하는 통신 기술에는 GSM(Global System for Mobile communication), CDMA(Code Division Multi Access), LTE(Long Term Evolution), 5G, WLAN(Wireless LAN), Wi-Fi(Wireless-Fidelity), 블루투스(Bluetooth쪠), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), ZigBee, NFC(Near Field Communication) 등이 있다.
입력부(120)는 다양한 종류의 데이터를 획득할 수 있다.
이때, 입력부(120)는 영상 신호 입력을 위한 카메라, 오디오 신호를 수신하기 위한 마이크로폰, 사용자로부터 정보를 입력 받기 위한 사용자 입력부 등을 포함할 수 있다. 여기서, 카메라나 마이크로폰을 센서로 취급하여, 카메라나 마이크로폰으로부터 획득한 신호를 센싱 데이터 또는 센서 정보라고 할 수도 있다.
입력부(120)는 모델 학습을 위한 학습 데이터 및 학습 모델을 이용하여 출력을 획득할 때 사용될 입력 데이터 등을 획득할 수 있다. 입력부(120)는 가공되지 않은 입력 데이터를 획득할 수도 있으며, 이 경우 프로세서(180) 또는 러닝 프로세서(130)는 입력 데이터에 대하여 전처리로써 입력 특징점(input feature)을 추출할 수 있다.
러닝 프로세서(130)는 학습 데이터를 이용하여 인공 신경망으로 구성된 모델을 학습시킬 수 있다. 여기서, 학습된 인공 신경망을 학습 모델이라 칭할 수 있다. 학습 모델은 학습 데이터가 아닌 새로운 입력 데이터에 대하여 결과 값을 추론해 내는데 사용될 수 있고, 추론된 값은 어떠한 동작을 수행하기 위한 판단의 기초로 이용될 수 있다.
이때, 러닝 프로세서(130)는 AI 서버(200)의 러닝 프로세서(240)과 함께 AI 프로세싱을 수행할 수 있다.
이때, 러닝 프로세서(130)는 AI 장치(100)에 통합되거나 구현된 메모리를 포함할 수 있다. 또는, 러닝 프로세서(130)는 메모리(170), AI 장치(100)에 직접 결합된 외부 메모리 또는 외부 장치에서 유지되는 메모리를 사용하여 구현될 수도 있다.
센싱부(140)는 다양한 센서들을 이용하여 AI 장치(100) 내부 정보, AI 장치(100)의 주변 환경 정보 및 사용자 정보 중 적어도 하나를 획득할 수 있다.
이때, 센싱부(140)에 포함되는 센서에는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰, 라이다, 레이더 등이 있다.
출력부(150)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시킬 수 있다.
이때, 출력부(150)에는 시각 정보를 출력하는 디스플레이부, 청각 정보를 출력하는 스피커, 촉각 정보를 출력하는 햅틱 모듈 등이 포함될 수 있다.
메모리(170)는 AI 장치(100)의 다양한 기능을 지원하는 데이터를 저장할 수 있다. 예컨대, 메모리(170)는 입력부(120)에서 획득한 입력 데이터, 학습 데이터, 학습 모델, 학습 히스토리 등을 저장할 수 있다.
프로세서(180)는 데이터 분석 알고리즘 또는 머신 러닝 알고리즘을 사용하여 결정되거나 생성된 정보에 기초하여, AI 장치(100)의 적어도 하나의 실행 가능한 동작을 결정할 수 있다. 그리고, 프로세서(180)는 AI 장치(100)의 구성 요소들을 제어하여 결정된 동작을 수행할 수 있다.
이를 위해, 프로세서(180)는 러닝 프로세서(130) 또는 메모리(170)의 데이터를 요청, 검색, 수신 또는 활용할 수 있고, 상기 적어도 하나의 실행 가능한 동작 중 예측되는 동작이나, 바람직한 것으로 판단되는 동작을 실행하도록 AI 장치(100)의 구성 요소들을 제어할 수 있다.
이때, 프로세서(180)는 결정된 동작을 수행하기 위하여 외부 장치의 연계가 필요한 경우, 해당 외부 장치를 제어하기 위한 제어 신호를 생성하고, 생성한 제어 신호를 해당 외부 장치에 전송할 수 있다.
프로세서(180)는 사용자 입력에 대하여 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 사용자의 요구 사항을 결정할 수 있다.
이때, 프로세서(180)는 음성 입력을 문자열로 변환하기 위한 STT(Speech To Text) 엔진 또는 자연어의 의도 정보를 획득하기 위한 자연어 처리(NLP: Natural Language Processing) 엔진 중에서 적어도 하나 이상을 이용하여, 사용자 입력에 상응하는 의도 정보를 획득할 수 있다.
이때, STT 엔진 또는 NLP 엔진 중에서 적어도 하나 이상은 적어도 일부가 머신 러닝 알고리즘에 따라 학습된 인공 신경망으로 구성될 수 있다. 그리고, STT 엔진 또는 NLP 엔진 중에서 적어도 하나 이상은 러닝 프로세서(130)에 의해 학습된 것이나, AI 서버(200)의 러닝 프로세서(240)에 의해 학습된 것이거나, 또는 이들의 분산 처리에 의해 학습된 것일 수 있다.
프로세서(180)는 AI 장치(100)의 동작 내용이나 동작에 대한 사용자의 피드백 등을 포함하는 이력 정보를 수집하여 메모리(170) 또는 러닝 프로세서(130)에 저장하거나, AI 서버(200) 등의 외부 장치에 전송할 수 있다. 수집된 이력 정보는 학습 모델을 갱신하는데 이용될 수 있다.
프로세서(180)는 메모리(170)에 저장된 응용 프로그램을 구동하기 위하여, AI 장치(100)의 구성 요소들 중 적어도 일부를 제어할 수 있다. 나아가, 프로세서(180)는 상기 응용 프로그램의 구동을 위하여, AI 장치(100)에 포함된 구성 요소들 중 둘 이상을 서로 조합하여 동작시킬 수 있다.
도 21은 본 발명의 실시 예들을 구현할 수 있는 AI 서버(200)를 나타낸다.
도 21을 참조하면, AI 서버(200)는 머신 러닝 알고리즘을 이용하여 인공 신경망을 학습시키거나 학습된 인공 신경망을 이용하는 장치를 의미할 수 있다. 여기서, AI 서버(200)는 복수의 서버들로 구성되어 분산 처리를 수행할 수도 있고, 5G 네트워크로 정의될 수 있다. 이때, AI 서버(200)는 AI 장치(100)의 일부의 구성으로 포함되어, AI 프로세싱 중 적어도 일부를 함께 수행할 수도 있다.
AI 서버(200)는 통신부(210), 메모리(230), 러닝 프로세서(240) 및 프로세서(260) 등을 포함할 수 있다.
통신부(210)는 AI 장치(100) 등의 외부 장치와 데이터를 송수신할 수 있다.
메모리(230)는 모델 저장부(231)를 포함할 수 있다. 모델 저장부(231)는 러닝 프로세서(240)을 통하여 학습 중인 또는 학습된 모델(또는 인공 신경망, 231a)을 저장할 수 있다.
러닝 프로세서(240)는 학습 데이터를 이용하여 인공 신경망(231a)을 학습시킬 수 있다. 학습 모델은 인공 신경망의 AI 서버(200)에 탑재된 상태에서 이용되거나, AI 장치(100) 등의 외부 장치에 탑재되어 이용될 수도 있다.
학습 모델은 하드웨어, 소프트웨어 또는 하드웨어와 소프트웨어의 조합으로 구현될 수 있다. 학습 모델의 일부 또는 전부가 소프트웨어로 구현되는 경우 학습 모델을 구성하는 하나 이상의 명령어(instruction)는 메모리(230)에 저장될 수 있다.
프로세서(260)는 학습 모델을 이용하여 새로운 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성할 수 있다.
도 22는 본 발명의 실시 예들을 구현할 수 있는 따른 AI 시스템(1)을 나타낸다.
도 22를 참조하면, AI 시스템(1)은 AI 서버(200), 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 중에서 적어도 하나 이상이 클라우드 네트워크(10)와 연결된다. 여기서, AI 기술이 적용된 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 등을 AI 장치(100a 내지 100e)라 칭할 수 있다.
클라우드 네트워크(10)는 클라우드 컴퓨팅 인프라의 일부를 구성하거나 클라우드 컴퓨팅 인프라 안에 존재하는 네트워크를 의미할 수 있다. 여기서, 클라우드 네트워크(10)는 3G 네트워크, 4G 또는 LTE(Long Term Evolution) 네트워크 또는 5G 네트워크 등을 이용하여 구성될 수 있다.
즉, AI 시스템(1)을 구성하는 각 장치들(100a 내지 100e, 200)은 클라우드 네트워크(10)를 통해 서로 연결될 수 있다. 특히, 각 장치들(100a 내지 100e, 200)은 기지국을 통해서 서로 통신할 수도 있지만, 기지국을 통하지 않고 직접 서로 통신할 수도 있다.
AI 서버(200)는 AI 프로세싱을 수행하는 서버와 빅 데이터에 대한 연산을 수행하는 서버를 포함할 수 있다.
AI 서버(200)는 AI 시스템(1)을 구성하는 AI 장치들인 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 중에서 적어도 하나 이상과 클라우드 네트워크(10)을 통하여 연결되고, 연결된 AI 장치들(100a 내지 100e)의 AI 프로세싱을 적어도 일부를 도울 수 있다.
이때, AI 서버(200)는 AI 장치(100a 내지 100e)를 대신하여 머신 러닝 알고리즘에 따라 인공 신경망을 학습시킬 수 있고, 학습 모델을 직접 저장하거나 AI 장치(100a 내지 100e)에 전송할 수 있다.
이때, AI 서버(200)는 AI 장치(100a 내지 100e)로부터 입력 데이터를 수신하고, 학습 모델을 이용하여 수신한 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성하여 AI 장치(100a 내지 100e)로 전송할 수 있다.
또는, AI 장치(100a 내지 100e)는 직접 학습 모델을 이용하여 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성할 수도 있다.
이하에서는, 상술한 기술이 적용되는 AI 장치(100a 내지 100e)의 다양한 실시 예들을 설명한다. 여기서, 도 22에 도시된 AI 장치(100a 내지 100e)는 도 20에 도시된 AI 장치(100)의 구체적인 실시 예로 볼 수 있다.
<AI+로봇>
로봇(100a)은 AI 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇 등으로 구현될 수 있다.
로봇(100a)은 동작을 제어하기 위한 로봇 제어 모듈을 포함할 수 있고, 로봇 제어 모듈은 소프트웨어 모듈 또는 이를 하드웨어로 구현한 칩을 의미할 수 있다.
로봇(100a)은 다양한 종류의 센서들로부터 획득한 센서 정보를 이용하여 로봇(100a)의 상태 정보를 획득하거나, 주변 환경 및 객체를 검출(인식)하거나, 맵 데이터를 생성하거나, 이동 경로 및 주행 계획을 결정하거나, 사용자 상호작용에 대한 응답을 결정하거나, 동작을 결정할 수 있다.
여기서, 로봇(100a)은 이동 경로 및 주행 계획을 결정하기 위하여, 라이다, 레이더, 카메라 중에서 적어도 하나 이상의 센서에서 획득한 센서 정보를 이용할 수 있다.
로봇(100a)은 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, 로봇(100a)은 학습 모델을 이용하여 주변 환경 및 객체를 인식할 수 있고, 인식된 주변 환경 정보 또는 객체 정보를 이용하여 동작을 결정할 수 있다. 여기서, 학습 모델은 로봇(100a)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, 로봇(100a)은 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
로봇(100a)은 맵 데이터, 센서 정보로부터 검출한 객체 정보 또는 외부 장치로부터 획득한 객체 정보 중에서 적어도 하나 이상을 이용하여 이동 경로와 주행 계획을 결정하고, 구동부를 제어하여 결정된 이동 경로와 주행 계획에 따라 로봇(100a)을 주행시킬 수 있다.
맵 데이터에는 로봇(100a)이 이동하는 공간에 배치된 다양한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 예컨대, 맵 데이터에는 벽, 문 등의 고정 객체들과 화분, 책상 등의 이동 가능한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 그리고, 객체 식별 정보에는 명칭, 종류, 거리, 위치 등이 포함될 수 있다.
또한, 로봇(100a)은 사용자의 제어/상호작용에 기초하여 구동부를 제어함으로써, 동작을 수행하거나 주행할 수 있다. 이때, 로봇(100a)은 사용자의 동작이나 음성 발화에 따른 상호작용의 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 응답을 결정하여 동작을 수행할 수 있다.
<AI+자율주행>
자율 주행 차량(100b)은 AI 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
자율 주행 차량(100b)은 자율 주행 기능을 제어하기 위한 자율 주행 제어 모듈을 포함할 수 있고, 자율 주행 제어 모듈은 소프트웨어 모듈 또는 이를 하드웨어로 구현한 칩을 의미할 수 있다. 자율 주행 제어 모듈은 자율 주행 차량(100b)의 구성으로써 내부에 포함될 수도 있지만, 자율 주행 차량(100b)의 외부에 별도의 하드웨어로 구성되어 연결될 수도 있다.
자율 주행 차량(100b)은 다양한 종류의 센서들로부터 획득한 센서 정보를 이용하여 자율 주행 차량(100b)의 상태 정보를 획득하거나, 주변 환경 및 객체를 검출(인식)하거나, 맵 데이터를 생성하거나, 이동 경로 및 주행 계획을 결정하거나, 동작을 결정할 수 있다.
여기서, 자율 주행 차량(100b)은 이동 경로 및 주행 계획을 결정하기 위하여, 로봇(100a)과 마찬가지로, 라이다, 레이더, 카메라 중에서 적어도 하나 이상의 센서에서 획득한 센서 정보를 이용할 수 있다.
특히, 자율 주행 차량(100b)은 시야가 가려지는 영역이나 일정 거리 이상의 영역에 대한 환경이나 객체는 외부 장치들로부터 센서 정보를 수신하여 인식하거나, 외부 장치들로부터 직접 인식된 정보를 수신할 수 있다.
자율 주행 차량(100b)은 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, 자율 주행 차량(100b)은 학습 모델을 이용하여 주변 환경 및 객체를 인식할 수 있고, 인식된 주변 환경 정보 또는 객체 정보를 이용하여 주행 동선을 결정할 수 있다. 여기서, 학습 모델은 자율 주행 차량(100b)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, 자율 주행 차량(100b)은 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
자율 주행 차량(100b)은 맵 데이터, 센서 정보로부터 검출한 객체 정보 또는 외부 장치로부터 획득한 객체 정보 중에서 적어도 하나 이상을 이용하여 이동 경로와 주행 계획을 결정하고, 구동부를 제어하여 결정된 이동 경로와 주행 계획에 따라 자율 주행 차량(100b)을 주행시킬 수 있다.
맵 데이터에는 자율 주행 차량(100b)이 주행하는 공간(예컨대, 도로)에 배치된 다양한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 예컨대, 맵 데이터에는 가로등, 바위, 건물 등의 고정 객체들과 차량, 보행자 등의 이동 가능한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 그리고, 객체 식별 정보에는 명칭, 종류, 거리, 위치 등이 포함될 수 있다.
또한, 자율 주행 차량(100b)은 사용자의 제어/상호작용에 기초하여 구동부를 제어함으로써, 동작을 수행하거나 주행할 수 있다. 이때, 자율 주행 차량(100b)은 사용자의 동작이나 음성 발화에 따른 상호작용의 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 응답을 결정하여 동작을 수행할 수 있다.
<AI+XR>
XR 장치(100c)는 AI 기술이 적용되어, HMD(Head-Mount Display), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 휴대폰, 스마트 폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지, 차량, 고정형 로봇이나 이동형 로봇 등으로 구현될 수 있다.
XR 장치(100c)는 다양한 센서들을 통해 또는 외부 장치로부터 획득한 3차원 포인트 클라우드 데이터 또는 이미지 데이터를 분석하여 3차원 포인트들에 대한 위치 데이터 및 속성 데이터를 생성함으로써 주변 공간 또는 현실 객체에 대한 정보를 획득하고, 출력할 XR 객체를 렌더링하여 출력할 수 있다. 예컨대, XR 장치(100c)는 인식된 물체에 대한 추가 정보를 포함하는 XR 객체를 해당 인식된 물체에 대응시켜 출력할 수 있다.
XR 장치(100c)는 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, XR 장치(100c)는 학습 모델을 이용하여 3차원 포인트 클라우드 데이터 또는 이미지 데이터에서 현실 객체를 인식할 수 있고, 인식한 현실 객체에 상응하는 정보를 제공할 수 있다. 여기서, 학습 모델은 XR 장치(100c)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, XR 장치(100c)는 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
<AI+로봇+자율주행>
로봇(100a)은 AI 기술 및 자율 주행 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇 등으로 구현될 수 있다.
AI 기술과 자율 주행 기술이 적용된 로봇(100a)은 자율 주행 기능을 가진 로봇 자체나, 자율 주행 차량(100b)과 상호작용하는 로봇(100a) 등을 의미할 수 있다.
자율 주행 기능을 가진 로봇(100a)은 사용자의 제어 없이도 주어진 동선에 따라 스스로 움직이거나, 동선을 스스로 결정하여 움직이는 장치들을 통칭할 수 있다.
자율 주행 기능을 가진 로봇(100a) 및 자율 주행 차량(100b)은 이동 경로 또는 주행 계획 중 하나 이상을 결정하기 위해 공통적인 센싱 방법을 사용할 수 있다. 예를 들어, 자율 주행 기능을 가진 로봇(100a) 및 자율 주행 차량(100b)은 라이다, 레이더, 카메라를 통해 센싱된 정보를 이용하여, 이동 경로 또는 주행 계획 중 하나 이상을 결정할 수 있다.
자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)과 별개로 존재하면서, 자율 주행 차량(100b)의 내부 또는 외부에서 자율 주행 기능에 연계되거나, 자율 주행 차량(100b)에 탑승한 사용자와 연계된 동작을 수행할 수 있다.
이때, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)을 대신하여 센서 정보를 획득하여 자율 주행 차량(100b)에 제공하거나, 센서 정보를 획득하고 주변 환경 정보 또는 객체 정보를 생성하여 자율 주행 차량(100b)에 제공함으로써, 자율 주행 차량(100b)의 자율 주행 기능을 제어하거나 보조할 수 있다.
또는, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)에 탑승한 사용자를 모니터링하거나 사용자와의 상호작용을 통해 자율 주행 차량(100b)의 기능을 제어할 수 있다. 예컨대, 로봇(100a)은 운전자가 졸음 상태인 경우로 판단되는 경우, 자율 주행 차량(100b)의 자율 주행 기능을 활성화하거나 자율 주행 차량(100b)의 구동부의 제어를 보조할 수 있다. 여기서, 로봇(100a)이 제어하는 자율 주행 차량(100b)의 기능에는 단순히 자율 주행 기능뿐만 아니라, 자율 주행 차량(100b)의 내부에 구비된 네비게이션 시스템이나 오디오 시스템에서 제공하는 기능도 포함될 수 있다.
또는, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)의 외부에서 자율 주행 차량(100b)에 정보를 제공하거나 기능을 보조할 수 있다. 예컨대, 로봇(100a)은 스마트 신호등과 같이 자율 주행 차량(100b)에 신호 정보 등을 포함하는 교통 정보를 제공할 수도 있고, 전기 차량의 자동 전기 충전기와 같이 자율 주행 차량(100b)과 상호작용하여 충전구에 전기 충전기를 자동으로 연결할 수도 있다.
<AI+로봇+XR>
로봇(100a)은 AI 기술 및 XR 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇, 드론 등으로 구현될 수 있다.
XR 기술이 적용된 로봇(100a)은 XR 영상 내에서의 제어/상호작용의 대상이 되는 로봇을 의미할 수 있다. 이 경우, 로봇(100a)은 XR 장치(100c)와 구분되며 서로 연동될 수 있다.
XR 영상 내에서의 제어/상호작용의 대상이 되는 로봇(100a)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하면, 로봇(100a) 또는 XR 장치(100c)는 센서 정보에 기초한 XR 영상을 생성하고, XR 장치(100c)는 생성된 XR 영상을 출력할 수 있다. 그리고, 이러한 로봇(100a)은 XR 장치(100c)를 통해 입력되는 제어 신호 또는 사용자의 상호작용에 기초하여 동작할 수 있다.
예컨대, 사용자는 XR 장치(100c) 등의 외부 장치를 통해 원격으로 연동된 로봇(100a)의 시점에 상응하는 XR 영상을 확인할 수 있고, 상호작용을 통하여 로봇(100a)의 자율 주행 경로를 조정하거나, 동작 또는 주행을 제어하거나, 주변 객체의 정보를 확인할 수 있다.
<AI+자율주행+XR>
자율 주행 차량(100b)은 AI 기술 및 XR 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
XR 기술이 적용된 자율 주행 차량(100b)은 XR 영상을 제공하는 수단을 구비한 자율 주행 차량이나, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량 등을 의미할 수 있다. 특히, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(100b)은 XR 장치(100c)와 구분되며 서로 연동될 수 있다.
XR 영상을 제공하는 수단을 구비한 자율 주행 차량(100b)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하고, 획득한 센서 정보에 기초하여 생성된 XR 영상을 출력할 수 있다. 예컨대, 자율 주행 차량(100b)은 HUD를 구비하여 XR 영상을 출력함으로써, 탑승자에게 현실 객체 또는 화면 속의 객체에 대응되는 XR 객체를 제공할 수 있다.
이때, XR 객체가 HUD에 출력되는 경우에는 XR 객체의 적어도 일부가 탑승자의 시선이 향하는 실제 객체에 오버랩되도록 출력될 수 있다. 반면, XR 객체가 자율 주행 차량(100b)의 내부에 구비되는 디스플레이에 출력되는 경우에는 XR 객체의 적어도 일부가 화면 속의 객체에 오버랩되도록 출력될 수 있다. 예컨대, 자율 주행 차량(100b)은 차로, 타 차량, 신호등, 교통 표지판, 이륜차, 보행자, 건물 등과 같은 객체와 대응되는 XR 객체들을 출력할 수 있다.
XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(100b)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하면, 자율 주행 차량(100b) 또는 XR 장치(100c)는 센서 정보에 기초한 XR 영상을 생성하고, XR 장치(100c)는 생성된 XR 영상을 출력할 수 있다. 그리고, 이러한 자율 주행 차량(100b)은 XR 장치(100c) 등의 외부 장치를 통해 입력되는 제어 신호 또는 사용자의 상호작용에 기초하여 동작할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 위치 참조 신호를 송수신하는 방법 및 이를 위한 장치는 5세대 NewRAT 시스템에 적용되는 예를 중심으로 설명하였으나, 5세대 NewRAT 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (14)

  1. 무선 통신 시스템에서, 단말이 RSTD (Reference Signal Timing Difference) 값을 보고하는 방법에 있어서,
    위치 서버로부터 복수의 셀들을 포함하는 셀 그룹(Cell Group)을 위한 셀 그룹 식별자 및 상기 복수의 셀들 각각을 위한 셀 독립 정보들을 수신하고,
    상기 셀 그룹 식별자와 관련된 제 1 PRS 시퀀스를 기반으로 상기 복수의 셀들 각각으로부터 전송된 제 2 PRS 시퀀스들을 검출하고,
    상기 제 2 PRS 시퀀스들 및 상기 셀 독립 정보들을 기반으로 획득된 적어도 하나의 RSTD (Reference Signal Timing Difference) 정보를 상기 위치 서버로 보고하는 것을 특징으로 하는,
    RSTD 보고 방법.
  2. 제 1 항에 있어서,
    상기 셀 독립 정보는, 상기 복수의 셀들 각각을 위한 순환 시프트(Cyclic Shift) 값들, 상기 복수의 셀들 각각을 위한 실제 시간 시프트(Actual Time Shift) 값들 또는 상기 복수의 셀들 각각을 위한 DFT (Discrete Fourier Transform) 시퀀스들을 포함하는,
    RSTD 보고 방법.
  3. 제 1 항에 있어서,
    상기 제 1 PRS 시퀀스는, 상기 셀 그룹 식별자 및 참조 셀을 위한 셀 독립 정보를 기반으로 획득되는,
    RSTD 보고 방법.
  4. 제 1 항에 있어서,
    상기 위치 서버로부터 예상 RSTD (Expected RSTD) 정보, 예상 RSTD 오차 (Expected RSTD uncertainty) 정보, 예상 RSTD 보정 정보 및 예상 RSTD 오차 보정 정보를 수신하고,
    상기 예상 RSTD (Expected RSTD) 정보, 상기 예상 RSTD 오차 (Expected RSTD uncertainty) 정보, 상기 예상 RSTD 보정 정보 및 상기 예상 RSTD 오차 보정 정보를 기반으로 상기 복수의 셀들을 위한 적어도 하나의 PRS 탐색 윈도우를 획득하는 것을 더 포함하는,
    RSTD 보고 방법.
  5. 제 4 항에 있어서,
    상기 적어도 하나의 PRS 탐색 윈도우 내에서 상기 제 2 PRS 시퀀스들이 검출되는,
    RSTD 보고 방법.
  6. 제 4 항에 있어서,
    상기 예상 RSTD (Expected RSTD) 정보, 상기 예상 RSTD 오차 (Expected RSTD uncertainty) 정보는 셀 그룹 공통 정보에 포함되고,
    상기 예상 RSTD 보정 정보 및 상기 예상 RSTD 오차 보정 정보는 상기 셀 독립 정보들에 포함되는,
    RSTD 보고 방법.
  7. 제 4 항에 있어서,
    상기 적어도 하나의 PRS 탐색 윈도우 각각은, 중첩되지 않는,
    RSTD 보고 방법.
  8. 제 1 항에 있어서,
    좁은 대역폭 (narrow Bandwidth)에 관련된 제 2 PRS 시퀀스는, 넓은 대역폭 (wide Bandwidth)에 관련된 제 2 PRS 시퀀스의 일부분으로 구성되는,
    RSTD 보고 방법.
  9. 제 1 항에 있어서,
    넓은 대역폭 (wide Bandwidth)에 관련된 제 2 PRS 시퀀스는 좁은 대역폭 (narrow Bandwidth)에 관련된 제 2 PRS 시퀀스가 반복된 형태로 구성되는,
    RSTD 보고 방법.
  10. 제 1 항에 있어서,
    상기 단말은, 상기 단말 이외의 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능한,
    RSTD 보고 방법.
  11. 무선 통신 시스템에서, RSTD (Reference Signal Timing Difference) 값을 보고하기 위한 장치에 있어서,
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,
    상기 특정 동작은,
    위치 서버로부터 복수의 셀들을 포함하는 셀 그룹(Cell Group)을 위한 셀 그룹 식별자 및 상기 복수의 셀들 각각을 위한 셀 독립 정보들을 수신하고,
    상기 셀 그룹 식별자와 관련된 제 1 PRS 시퀀스를 기반으로 상기 복수의 셀들 각각으로부터 전송된 제 2 PRS 시퀀스들을 검출하고,
    상기 제 2 PRS 시퀀스들 및 상기 셀 독립 정보들을 기반으로 획득된 적어도 하나의 RSTD (Reference Signal Timing Difference) 정보를 상기 위치 서버로 보고하는 것을 특징으로 하는,
    장치.
  12. 무선 통신 시스템에서, RSTD (Reference Signal Timing Difference) 값을 보고하기 위한 단말에 있어서,
    적어도 하나의 트랜시버;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,
    상기 특정 동작은,
    위치 서버로부터 복수의 셀들을 포함하는 셀 그룹(Cell Group)을 위한 셀 그룹 식별자 및 상기 복수의 셀들 각각을 위한 셀 독립 정보들을 수신하고,
    상기 셀 그룹 식별자와 관련된 제 1 PRS 시퀀스를 기반으로 상기 복수의 셀들 각각으로부터 전송된 제 2 PRS 시퀀스들을 검출하고,
    상기 제 2 PRS 시퀀스들 및 상기 셀 독립 정보들을 기반으로 획득된 적어도 하나의 RSTD (Reference Signal Timing Difference) 정보를 상기 위치 서버로 보고하는 것을 특징으로 하는,
    단말.
  13. 무선 통신 시스템에서, 기지국이 PRS (Positioning Reference Signal)을 전송하는 방법에 있어서,
    상기 기지국이 포함된 셀 그룹(Cell Group)을 위한 셀 그룹 식별자를 기반으로 PRS 시퀀스를 위한 초기화 값을 획득하고,
    상기 초기화 값 및 상기 기지국을 위한 셀 독립 정보를 기반으로 상기 PRS 시퀀스를 생성하고,
    상기 PRS 시퀀스를 단말로 전송하는 것을 특징으로 하는,
    PRS 전송 방법.
  14. 무선 통신 시스템에서, PRS (Positioning Reference Signal)을 전송하기 위한 기지국에 있어서,
    적어도 하나의 트랜시버;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,
    상기 특정 동작은,
    상기 기지국이 포함된 셀 그룹(Cell Group)을 위한 셀 그룹 식별자를 기반으로 PRS 시퀀스를 위한 초기화 값을 획득하고,
    상기 초기화 값 및 상기 기지국을 위한 셀 독립 정보를 기반으로 상기 PRS 시퀀스를 생성하고,
    상기 PRS 시퀀스를 단말로 전송하는 것을 특징으로 하는,
    기지국.
PCT/KR2019/011917 2018-09-21 2019-09-16 위치 참조 신호를 송수신하는 방법 및 이를 위한 장치 WO2020060118A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0114218 2018-09-21
KR20180114218 2018-09-21
KR10-2019-0012510 2019-01-31
KR20190012510 2019-01-31

Publications (1)

Publication Number Publication Date
WO2020060118A1 true WO2020060118A1 (ko) 2020-03-26

Family

ID=69887583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/011917 WO2020060118A1 (ko) 2018-09-21 2019-09-16 위치 참조 신호를 송수신하는 방법 및 이를 위한 장치

Country Status (1)

Country Link
WO (1) WO2020060118A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022194143A1 (zh) * 2021-03-17 2022-09-22 维沃移动通信有限公司 定位方法、装置、通信设备
WO2023093453A1 (zh) * 2021-11-23 2023-06-01 中兴通讯股份有限公司 终端位置的测量方法、终端、基站、电子设备和存储介质

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101191215B1 (ko) * 2010-07-16 2012-10-15 엘지전자 주식회사 무선 통신 시스템에서 위치 결정 방법 및 장치
KR20170042627A (ko) * 2014-08-07 2017-04-19 엘지전자 주식회사 디스커버리 신호 수신 방법 및 사용자기기와, 디스커버리 신호 전송 방법 및 기지국
WO2018025794A1 (ja) * 2016-08-04 2018-02-08 シャープ株式会社 基地局装置、ロケーションサーバーおよび通信方法
US20180270784A1 (en) * 2015-08-25 2018-09-20 Lg Electronics Inc. Method for receiving or transmitting reference signal for location determination in wireless communication system and device for same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101191215B1 (ko) * 2010-07-16 2012-10-15 엘지전자 주식회사 무선 통신 시스템에서 위치 결정 방법 및 장치
KR20170042627A (ko) * 2014-08-07 2017-04-19 엘지전자 주식회사 디스커버리 신호 수신 방법 및 사용자기기와, 디스커버리 신호 전송 방법 및 기지국
US20180270784A1 (en) * 2015-08-25 2018-09-20 Lg Electronics Inc. Method for receiving or transmitting reference signal for location determination in wireless communication system and device for same
WO2018025794A1 (ja) * 2016-08-04 2018-02-08 シャープ株式会社 基地局装置、ロケーションサーバーおよび通信方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ROHDE & SCHWARZ: "Correction to nrs-CRS-PowerOffset-13 for NB-IOT OTDOA tests", R5-184112. 3GPP TSG RAN WG5 MEETING #80, 6 August 2018 (2018-08-06), Gothenburg, Sweden, XP051585983 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022194143A1 (zh) * 2021-03-17 2022-09-22 维沃移动通信有限公司 定位方法、装置、通信设备
WO2023093453A1 (zh) * 2021-11-23 2023-06-01 中兴通讯股份有限公司 终端位置的测量方法、终端、基站、电子设备和存储介质

Similar Documents

Publication Publication Date Title
WO2020145739A1 (ko) 무선 통신 시스템에서 측위 정보를 획득하는 방법 및 이를 위한 장치
WO2020060119A1 (ko) 무선 통신 시스템에서 단말의 위치를 측정하기 위한 방법 및 이를 위한 장치
WO2020145700A1 (ko) 측위 정보를 송수신하는 방법 및 이를 위한 장치
WO2021040495A1 (ko) 무선통신시스템에서 사용자기기의 방법
WO2021040494A1 (ko) 무선통신시스템에서 사용자기기의 방법
WO2020091545A1 (ko) 측위 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2021040501A1 (ko) 무선통신시스템에서 사용자기기의 측위 방법
WO2020050646A1 (ko) 측위 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2020101266A1 (ko) 측위를 위한 상향링크 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2021045565A1 (ko) 무선통신시스템에서 단말의 위치를 측정하는 방법 및 장치
WO2021040489A1 (ko) 무선통신시스템에서 단말의 위치를 측정하는 방법 및 장치
WO2020027473A1 (ko) 무선 통신 시스템에서, 하향링크 데이터 채널을 송수신하는 방법 및 이를 위한 장치
WO2021045575A1 (ko) 무선통신시스템에서 단말의 위치를 측정하는 방법 및 장치
WO2020246818A1 (ko) 무선통신시스템에서 사이드링크 신호를 송신하는 방법
WO2020067764A1 (ko) 참조 신호 측정 관련 정보를 보고하는 방법 및 이를 위한 장치
WO2020091547A1 (ko) 단말 간 무선 통신에서 동기 신호를 송수신하는 방법 및 이를 위한 장치
WO2019245234A1 (ko) 무선 통신 시스템에서 위치 결정을 위한 측정 결과 보고 방법 및 그 장치
WO2020166797A1 (ko) 측위를 위한 상향링크 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2020027471A1 (ko) 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2021112649A1 (en) Method and apparatus for positioning using backscatter tag
WO2020022748A1 (ko) 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
WO2020032507A1 (ko) 비면허 대역에서 무선 링크 모니터링을 위한 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2020091500A1 (ko) 단말 간 무선 통신에서 동기 신호를 송수신하는 방법 및 이를 위한 장치
WO2020067806A1 (ko) 반송파 집성 시스템에서 단말의 동작 방법 및 상기 방법을 이용하는 장치
WO2020067669A1 (ko) Aod 정보를 송수신하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862864

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862864

Country of ref document: EP

Kind code of ref document: A1