WO2020027471A1 - 참조 신호를 송수신하는 방법 및 이를 위한 장치 - Google Patents

참조 신호를 송수신하는 방법 및 이를 위한 장치 Download PDF

Info

Publication number
WO2020027471A1
WO2020027471A1 PCT/KR2019/008950 KR2019008950W WO2020027471A1 WO 2020027471 A1 WO2020027471 A1 WO 2020027471A1 KR 2019008950 W KR2019008950 W KR 2019008950W WO 2020027471 A1 WO2020027471 A1 WO 2020027471A1
Authority
WO
WIPO (PCT)
Prior art keywords
pdcch
dmrs
coreset
pdsch
information
Prior art date
Application number
PCT/KR2019/008950
Other languages
English (en)
French (fr)
Inventor
황대성
이윤정
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Priority to EP19844919.1A priority Critical patent/EP3661303A4/en
Priority to JP2020502353A priority patent/JP2020532892A/ja
Priority to CN201980003832.XA priority patent/CN111034310A/zh
Publication of WO2020027471A1 publication Critical patent/WO2020027471A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/02Channels characterised by the type of signal
    • H04L5/06Channels characterised by the type of signal the signals being represented by different frequencies
    • H04L5/10Channels characterised by the type of signal the signals being represented by different frequencies with dynamo-electric generation of carriers; with mechanical filters or demodulators
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/11Allocation or use of connection identifiers

Definitions

  • the present invention relates to a method for transmitting and receiving a reference signal and an apparatus therefor, and more particularly, to a DMRS based on a reference point used for mapping a demodulation reference signal (DMRS) for a downlink data channel. It relates to a method for transmitting and receiving and an apparatus therefor.
  • DMRS demodulation reference signal
  • next generation 5G system which is an improved wireless broadband communication than the existing LTE system, is required.
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliability and low-latency communication
  • mMTC massive machine-type communications
  • eMBB is a next generation mobile communication scenario having characteristics such as High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate, and URLLC is a next generation mobile communication scenario having characteristics such as Ultra Reliable, Ultra Low Latency, Ultra High Availability, etc.
  • mMTC is a next generation mobile communication scenario with low cost, low energy, short packet, and massive connectivity. (e.g., IoT).
  • the present invention provides a method for transmitting and receiving a reference signal and an apparatus therefor.
  • a physical downlink control channel (PDCCH) is received through a control resource set (CORESET # 0) and the PDCCH Receiving a Physical Downlink Shared Channel (PDSCH) scheduled based on a DMRS and a DMRS for the PDSCH, and when the PDCCH is addressed with a System Information-Radio Network Temporary Identifier (SI-RNTI),
  • SI-RNTI System Information-Radio Network Temporary Identifier
  • the reference point for the DMRS may be the subcarrier # 0 of the RB having the lowest number among resource blocks (RBs) included in the CORESET # 0.
  • the CORESET # 0 may be set based on the PBCH included in the Synchronization Signal / Physical Broadcast Channel (SS / PBCH) block.
  • the PDCCH may be received through a search space # 0 of the CORESET # 0.
  • the search space # 0 may be a common search space set based on a PBCH included in a Synchronization Signal / Physical Broadcast Channel (SS / PBCH) block.
  • SS / PBCH Synchronization Signal / Physical Broadcast Channel
  • the terminal may be capable of communicating with at least one of a terminal, a network, a base station, and an autonomous vehicle other than the terminal.
  • an apparatus for receiving a Demodulation Reference Signal comprising: at least one processor; And at least one memory operatively coupled to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform a particular operation.
  • DMRS Demodulation Reference Signal
  • Physical Downlink Control Channel is received through Control Resource Set (CORESET) # 0, PDSCH (Physical Downlink Shared Channel) scheduled based on the PDCCH and DMRS for the PDSCH, characterized in that the PDCCH When is addressed to the System Information-Radio Network Temporary Identifier (SI-RNTI), the reference point for the DMRS is the lowest number of the RB (Resource Block) included in the CORESET # 0 It may be subcarrier # 0 of the RB.
  • SI-RNTI System Information-Radio Network Temporary Identifier
  • the CORESET # 0 may be set based on a PBCH included in a Synchronization Signal / Physical Broadcast Channel (SS / PBCH) block.
  • SS / PBCH Synchronization Signal / Physical Broadcast Channel
  • the PDCCH may be received through a search space # 0 of the CORESET # 0.
  • the search space # 0 may be a common search space set based on a PBCH included in a Synchronization Signal / Physical Broadcast Channel (SS / PBCH) block.
  • SS / PBCH Synchronization Signal / Physical Broadcast Channel
  • the device may be capable of communicating with at least one of a terminal, a network, a base station, and an autonomous vehicle other than the device.
  • a terminal for receiving a Demodulation Reference Signal comprising: at least one transceiver; At least one processor; And at least one memory operatively coupled to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform a particular operation.
  • a physical downlink shared channel (PDSCH) that receives a physical downlink control channel (PDCCH) through a control resource set (CORESET) # 0 through at least one transceiver and is scheduled based on the PDCCH through the at least one transceiver.
  • PDSCH physical downlink shared channel
  • PDCCH physical downlink control channel
  • CORESET control resource set
  • a reference point for the DMRS is included in the CORESET # 0.
  • RBs it may be subcarrier # 0 of the RB having the lowest number.
  • a physical downlink control channel (PDCCH) is transmitted through control resource set (CORESET) # 0, and the PDCCH Physical Downlink Shared Channel (PDSCH) scheduled based on the transmission and DMRS for the PDSCH, characterized in that, when the PDCCH is addressed as a System Information-Radio Network Temporary Identifier (SI-RNTI), the The reference point for the DMRS may be the subcarrier # 0 of the RB having the lowest number among resource blocks (RBs) included in the CORESET # 0.
  • SI-RNTI System Information-Radio Network Temporary Identifier
  • a base station for transmitting a DMRS comprising: at least one transceiver; At least one processor; And at least one memory operatively coupled to the at least one processor and storing instructions that, when executed, cause the at least one processor to perform a particular operation.
  • a physical downlink shared channel (PDSCH) is transmitted through at least one transceiver through a downlink control channel (PDCCH) through a control resource set (CORESET # 0) and scheduled based on the PDCCH through the at least one transceiver.
  • PDSCH physical downlink shared channel
  • PDCCH downlink control channel
  • CORESET # 0 control resource set
  • a reference point for the DMRS is included in the CORESET # 0.
  • RBs it may be subcarrier # 0 of the RB having the lowest number.
  • the reference signal can be mapped without ambiguity even if the information on the common resource block grid is not exactly known.
  • FIG. 1 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard.
  • FIG. 2 is a view for explaining a physical channel used in the 3GPP system and a general signal transmission method using the same.
  • 3 to 5 are diagrams for explaining the structure of a radio frame and slot used in the NR system.
  • 6 to 8 are diagrams for explaining a downlink control channel (PDCCH) in the NR system.
  • PDCCH downlink control channel
  • 9 to 11 are diagrams for explaining an operation implementation example of a terminal, a base station and a network according to the present invention.
  • FIG. 12 is a block diagram illustrating components of a wireless device for implementing the present invention.
  • FIGS. 13 to 15 are diagrams illustrating examples of an artificial intelligence (AI) system and apparatus for implementing embodiments of the present invention.
  • AI artificial intelligence
  • the present specification describes an embodiment of the present invention using an LTE system, an LTE-A system, and an NR system, the embodiment of the present invention as an example may be applied to any communication system corresponding to the above definition.
  • the specification of the base station may be used as a generic term including a remote radio head (RRH), an eNB, a transmission point (TP), a reception point (RP), a relay, and the like.
  • RRH remote radio head
  • TP transmission point
  • RP reception point
  • relay and the like.
  • the 3GPP based communication standard provides downlink physical channels corresponding to resource elements carrying information originating from an upper layer and downlink corresponding to resource elements used by the physical layer but not carrying information originating from an upper layer.
  • Physical signals are defined.
  • a physical downlink shared channel (PDSCH), a physical broadcast channel (PBCH), a physical multicast channel (PMCH), a physical control format indicator channel (physical control) format indicator channel (PCFICH), physical downlink control channel (PDCCH) and physical hybrid ARQ indicator channel (PHICH) are defined as downlink physical channels, reference signal and synchronization signal Is defined as downlink physical signals.
  • a reference signal also referred to as a pilot, refers to a signal of a predefined special waveform that the gNB and the UE know from each other.
  • a cell specific RS, UE- UE-specific RS (UE-RS), positioning RS (PRS) and channel state information RS (CSI-RS) are defined as the downlink reference signal.
  • the 3GPP LTE / LTE-A standard corresponds to uplink physical channels corresponding to resource elements carrying information originating from a higher layer and resource elements used by the physical layer but not carrying information originating from an upper layer. Uplink physical signals are defined.
  • PUSCH physical uplink shared channel
  • PUCCH physical uplink control channel
  • PRACH physical random access channel
  • DMRS demodulation reference signal
  • SRS sounding reference signal
  • Physical Downlink Control CHannel / Physical Control Format Indicator CHannel (PCFICH) / PHICH (Physical Hybrid automatic retransmit request Indicator CHannel) / PDSCH (Physical Downlink Shared CHannel) are respectively DCI (Downlink Control Information) / CFI ( Control Format Indicator) / Downlink ACK / NACK (ACKnowlegement / Negative ACK) / Downlink Means a set of time-frequency resources or a set of resource elements, and also includes PUCCH (Physical Uplink Control CHannel) / PUSCH (Physical) Uplink Shared CHannel / PACH (Physical Random Access CHannel) means a set of time-frequency resources or a set of resource elements that carry Uplink Control Information (UCI) / Uplink Data / Random Access signals, respectively.
  • UCI Uplink Control Information
  • UCI Uplink Data / Random Access signals
  • PDCCH / PCFICH / PHICH / PDSCH / PUCCH / PUSCH / PRACH resources are referred to below.
  • the gNB transmits PDCCH / PCFICH / PHICH / PDSCH is used for downlink data / control information on or through PDCCH / PCFICH / PHICH / PDSCH, respectively. It is used in the same sense as sending it.
  • an OFDM symbol / subcarrier / RE to which CRS / DMRS / CSI-RS / SRS / UE-RS is assigned or configured is configured as CRS / DMRS / CSI-RS / SRS / UE-RS symbol / carrier. It is called / subcarrier / RE.
  • an OFDM symbol assigned or configured with a tracking RS (TRS) is referred to as a TRS symbol
  • a subcarrier assigned or configured with a TRS is called a TRS subcarrier and is assigned a TRS.
  • the configured RE is called a TRS RE.
  • a subframe configured for TRS transmission is called a TRS subframe.
  • a subframe in which a broadcast signal is transmitted is called a broadcast subframe or a PBCH subframe
  • a subframe in which a sync signal (for example, PSS and / or SSS) is transmitted is a sync signal subframe or a PSS / SSS subframe. It is called.
  • OFDM symbols / subcarriers / RE to which PSS / SSS is assigned or configured are referred to as PSS / SSS symbols / subcarriers / RE, respectively.
  • the CRS port, the UE-RS port, the CSI-RS port, and the TRS port are each an antenna port configured to transmit CRS, an antenna port configured to transmit UE-RS, An antenna port configured to transmit CSI-RS and an antenna port configured to transmit TRS.
  • Antenna ports configured to transmit CRSs can be distinguished from each other by the location of REs occupied by the CRS according to the CRS ports, and antenna ports configured to transmit UE-RSs
  • the antenna ports configured to transmit the CSI-RSs may be distinguished from each other by the positions of the REs occupied by the UE-RS according to the RS ports, and the CSI-RSs occupy the CSI-RS ports according to the CSI-RS ports.
  • CRS / UE-RS / CSI-RS / TRS port may be used as a term for a pattern of REs occupied by CRS / UE-RS / CSI-RS / TRS in a certain resource region.
  • Machine learning refers to the field of researching methodologies to define and solve various problems in the field of artificial intelligence. do.
  • Machine learning is defined as an algorithm that improves the performance of a task through a consistent experience with a task.
  • ANN Artificial Neural Network
  • the artificial neural network may be defined by a connection pattern between neurons of different layers, a learning process of updating model parameters, and an activation function generating an output value.
  • the artificial neural network may include an input layer, an output layer, and optionally one or more hidden layers. Each layer contains one or more neurons, and the artificial neural network may include synapses that connect neurons to neurons. In an artificial neural network, each neuron may output a function value of an active function for input signals, weights, and deflections input through a synapse.
  • the model parameter refers to a parameter determined through learning and includes weights of synaptic connections and deflection of neurons.
  • the hyperparameter means a parameter to be set before learning in the machine learning algorithm, and includes a learning rate, the number of iterations, a mini batch size, an initialization function, and the like.
  • the purpose of learning artificial neural networks can be seen as determining model parameters that minimize the loss function.
  • the loss function can be used as an index for determining an optimal model parameter in the learning process of an artificial neural network.
  • Machine learning can be categorized into supervised learning, unsupervised learning, and reinforcement learning.
  • Supervised learning refers to a method of learning artificial neural networks with a given label for training data, and a label indicates a correct answer (or result value) that the artificial neural network must infer when the training data is input to the artificial neural network.
  • Unsupervised learning may refer to a method of training artificial neural networks in a state where a label for training data is not given.
  • Reinforcement learning can mean a learning method that allows an agent defined in an environment to learn to choose an action or sequence of actions that maximizes cumulative reward in each state.
  • Machine learning which is implemented as a deep neural network (DNN) including a plurality of hidden layers among artificial neural networks, is called deep learning (Deep Learning), which is part of machine learning.
  • DNN deep neural network
  • Deep Learning Deep Learning
  • machine learning is used to mean deep learning.
  • a robot can mean a machine that automatically handles or operates a given task by its own ability.
  • a robot having a function of recognizing the environment, judging itself, and performing an operation may be referred to as an intelligent robot.
  • Robots can be classified into industrial, medical, household, military, etc. according to the purpose or field of use.
  • the robot may include a driving unit including an actuator or a motor to perform various physical operations such as moving a robot joint.
  • the movable robot includes a wheel, a brake, a propeller, and the like in the driving unit, and can travel on the ground or fly in the air through the driving unit.
  • Autonomous driving means a technology that drives by itself, and an autonomous vehicle means a vehicle that runs without a user's manipulation or with minimal manipulation of a user.
  • the technology of maintaining a driving lane the technology of automatically adjusting speed such as adaptive cruise control, the technology of automatically driving along a predetermined route, the technology of automatically setting a route when a destination is set, etc. All of these may be included.
  • the vehicle includes a vehicle having only an internal combustion engine, a hybrid vehicle having both an internal combustion engine and an electric motor together, and an electric vehicle having only an electric motor, and may include not only automobiles but also trains and motorcycles.
  • the autonomous vehicle may be viewed as a robot having an autonomous driving function.
  • Extended reality collectively refers to virtual reality (VR), augmented reality (AR), and mixed reality (MR).
  • VR technology provides real world objects and backgrounds only in CG images
  • AR technology provides virtual CG images on real objects images
  • MR technology mixes and combines virtual objects in the real world.
  • Graphic technology
  • MR technology is similar to AR technology in that it shows both real and virtual objects.
  • virtual objects are used as complementary objects to real objects, whereas in MR technology, virtual objects and real objects are used in an equivalent nature.
  • HMD Head-Mount Display
  • HUD Head-Up Display
  • mobile phone tablet PC, laptop, desktop, TV, digital signage, etc. It can be called.
  • the three key requirements areas for 5G are: (1) Enhanced Mobile Broadband (eMBB) area, (2) massive Machine Type Communication (mMTC) area, and (3) ultra-reliability and It includes the area of Ultra-reliable and Low Latency Communications (URLLC).
  • eMBB Enhanced Mobile Broadband
  • mMTC massive Machine Type Communication
  • URLLC Ultra-reliable and Low Latency Communications
  • KPI key performance indicator
  • eMBB goes far beyond basic mobile Internet access and covers media and entertainment applications in rich interactive work, cloud or augmented reality.
  • Data is one of the key drivers of 5G and may not see dedicated voice services for the first time in the 5G era.
  • voice is expected to be treated as an application simply using the data connection provided by the communication system.
  • the main reasons for the increased traffic volume are the increase in content size and the increase in the number of applications requiring high data rates.
  • Streaming services audio and video
  • interactive video and mobile Internet connections will become more popular as more devices connect to the Internet. Many of these applications require always-on connectivity to push real-time information and notifications to the user.
  • Cloud storage and applications are growing rapidly in mobile communication platforms, which can be applied to both work and entertainment.
  • cloud storage is a special use case that drives the growth of uplink data rates.
  • 5G is also used for remote work in the cloud and requires much lower end-to-end delays to maintain a good user experience when tactile interfaces are used.
  • Entertainment For example, cloud gaming and video streaming are another key factor in increasing the need for mobile broadband capabilities. Entertainment is essential in smartphones and tablets anywhere, including in high mobility environments such as trains, cars and airplanes.
  • Another use case is augmented reality and information retrieval for entertainment.
  • augmented reality requires very low latency and instantaneous amount of data.
  • one of the most anticipated 5G use cases relates to the ability to seamlessly connect embedded sensors in all applications, namely mMTC.
  • potential IoT devices are expected to reach 20 billion.
  • Industrial IoT is one of the areas where 5G plays a major role in enabling smart cities, asset tracking, smart utilities, agriculture and security infrastructure.
  • URLLC includes new services that will transform the industry through ultra-reliable / low latency available links such as remote control of key infrastructure and self-driving vehicles.
  • the level of reliability and latency is essential for smart grid control, industrial automation, robotics, drone control and coordination.
  • 5G can complement fiber-to-the-home (FTTH) and cable-based broadband (or DOCSIS) as a means of providing streams that are rated at hundreds of megabits per second to gigabits per second. This high speed is required to deliver TVs in 4K and higher resolutions (6K, 8K and higher) as well as virtual and augmented reality.
  • Virtual Reality (AVR) and Augmented Reality (AR) applications include nearly immersive sporting events. Certain applications may require special network settings. For example, for VR games, game companies may need to integrate core servers with network operator's edge network servers to minimize latency.
  • Automotive is expected to be an important new driver for 5G, with many use cases for mobile communications to vehicles. For example, entertainment for passengers requires simultaneous high capacity and high mobility mobile broadband. This is because future users continue to expect high quality connections regardless of their location and speed.
  • Another use case in the automotive sector is augmented reality dashboards. It identifies objects in the dark above what the driver sees through the front window and overlays information that tells the driver about the distance and movement of the object.
  • wireless modules enable communication between vehicles, information exchange between the vehicle and the supporting infrastructure, and information exchange between the vehicle and other connected devices (eg, devices carried by pedestrians).
  • the safety system guides alternative courses of action to help drivers drive safer, reducing the risk of an accident.
  • the next step will be a remotely controlled or self-driven vehicle.
  • Smart cities and smart homes will be embedded in high-density wireless sensor networks.
  • the distributed network of intelligent sensors will identify the conditions for cost and energy-efficient maintenance of the city or home. Similar settings can be made for each hypothesis.
  • Temperature sensors, window and heating controllers, burglar alarms and appliances are all connected wirelessly. Many of these sensors are typically low data rates, low power and low cost. However, for example, real time HD video may be required in certain types of devices for surveillance.
  • Smart grids interconnect these sensors using digital information and communication technologies to collect information and act accordingly. This information can include the behavior of suppliers and consumers, allowing smart grids to improve the distribution of fuels such as electricity in efficiency, reliability, economics, sustainability of production and in an automated manner. Smart Grid can be viewed as another sensor network with low latency.
  • the health sector has many applications that can benefit from mobile communications.
  • the communication system can support telemedicine, providing clinical care at a distance. This can help reduce barriers to distance and improve access to healthcare services that are not consistently available in remote rural areas. It is also used to save lives in critical care and emergencies.
  • a mobile communication based wireless sensor network can provide remote monitoring and sensors for parameters such as heart rate and blood pressure.
  • Wireless and mobile communications are becoming increasingly important in industrial applications. Wiring is expensive to install and maintain. Thus, the possibility of replacing the cables with reconfigurable wireless links is an attractive opportunity in many industries. However, achieving this requires that the wireless connection operate with cable-like delay, reliability, and capacity, and that management is simplified. Low latency and very low error probability are new requirements that need to be connected in 5G.
  • Logistics and freight tracking are important examples of mobile communications that enable the tracking of inventory and packages from anywhere using a location-based information system.
  • the use of logistics and freight tracking typically requires low data rates but requires wide range and reliable location information.
  • FIG. 1 is a diagram illustrating a control plane and a user plane structure of a radio interface protocol between a terminal and an E-UTRAN based on a 3GPP radio access network standard.
  • the control plane refers to a path through which control messages used by a user equipment (UE) and a network to manage a call are transmitted.
  • the user plane refers to a path through which data generated at an application layer, for example, voice data or Internet packet data, is transmitted.
  • the physical layer which is the first layer, provides an information transfer service to an upper layer by using a physical channel.
  • the physical layer is connected to the upper layer of the medium access control layer through a transport channel. Data moves between the medium access control layer and the physical layer through the transmission channel. Data moves between the physical layer between the transmitting side and the receiving side through the physical channel.
  • the physical channel utilizes time and frequency as radio resources.
  • the physical channel is modulated in an Orthogonal Frequency Division Multiple Access (OFDMA) scheme in downlink, and modulated in a Single Carrier Frequency Division Multiple Access (SC-FDMA) scheme in uplink.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the medium access control (MAC) layer of the second layer provides a service to a radio link control (RLC) layer, which is a higher layer, through a logical channel.
  • RLC radio link control
  • the RLC layer of the second layer supports reliable data transmission.
  • the function of the RLC layer may be implemented as a functional block inside the MAC.
  • the Packet Data Convergence Protocol (PDCP) layer of the second layer performs a header compression function to reduce unnecessary control information in order to efficiently transmit IP packets such as IPv4 or IPv6 in a narrow bandwidth wireless interface.
  • PDCP Packet Data Convergence Protocol
  • the radio resource control (RRC) layer located at the bottom of the third layer is defined only in the control plane.
  • the RRC layer is responsible for controlling logical channels, transmission channels, and physical channels in connection with configuration, reconfiguration, and release of radio bearers.
  • the radio bearer refers to a service provided by the second layer for data transmission between the terminal and the network.
  • the RRC layers of the UE and the network exchange RRC messages with each other. If there is an RRC connected (RRC Connected) between the UE and the RRC layer of the network, the UE is in an RRC connected mode, otherwise it is in an RRC idle mode.
  • the non-access stratum (NAS) layer above the RRC layer performs functions such as session management and mobility management.
  • the downlink transmission channel for transmitting data from the network to the UE includes a broadcast channel (BCH) for transmitting system information, a paging channel (PCH) for transmitting a paging message, and a shared channel (SCH) for transmitting user traffic or a control message.
  • BCH broadcast channel
  • PCH paging channel
  • SCH shared channel
  • Traffic or control messages of a downlink multicast or broadcast service may be transmitted through a downlink SCH or may be transmitted through a separate downlink multicast channel (MCH).
  • the uplink transmission channel for transmitting data from the terminal to the network includes a random access channel (RAC) for transmitting an initial control message and an uplink shared channel (SCH) for transmitting user traffic or a control message.
  • RAC random access channel
  • SCH uplink shared channel
  • the logical channel mapped to the transmission channel includes a broadcast control channel (BCCH), a paging control channel (PCCH), a common control channel (CCCH), a multicast control channel (MCCH), and an MTCH (multicast). Traffic Channel).
  • BCCH broadcast control channel
  • PCCH paging control channel
  • CCCH common control channel
  • MCCH multicast control channel
  • MTCH multicast. Traffic Channel
  • FIG. 2 is a diagram for explaining physical channels used in a 3GPP system and a general signal transmission method using the same.
  • the terminal When the terminal is powered on or enters a new cell, the terminal performs an initial cell search operation such as synchronizing with the base station (S201). To this end, the UE receives a Primary Synchronization Channel (P-SCH) and a Secondary Synchronization Channel (S-SCH) from the base station, synchronizes with the base station, and obtains information such as a cell ID. have. Thereafter, the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • P-SCH Primary Synchronization Channel
  • S-SCH Secondary Synchronization Channel
  • the terminal may receive a physical broadcast channel from the base station to obtain broadcast information in a cell. Meanwhile, the terminal may check a downlink channel state by receiving a downlink reference signal (DL RS) in an initial cell search step.
  • DL RS downlink reference signal
  • the UE After completing the initial cell search, the UE obtains more specific system information by receiving a physical downlink control channel (PDSCH) according to a physical downlink control channel (PDCCH) and information on the PDCCH. It may be (S202).
  • PDSCH physical downlink control channel
  • PDCCH physical downlink control channel
  • the terminal may perform a random access procedure (RACH) for the base station (steps S203 to S206).
  • RACH random access procedure
  • the UE may transmit a specific sequence as a preamble through a physical random access channel (PRACH) (S203 and S205), and receive a response message for the preamble through the PDCCH and the corresponding PDSCH ( S204 and S206).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE After performing the procedure described above, the UE performs a PDCCH / PDSCH reception (S207) and a physical uplink shared channel (PUSCH) / physical uplink control channel (Physical Uplink) as a general uplink / downlink signal transmission procedure.
  • Control Channel (PUCCH) transmission S208 may be performed.
  • the UE receives downlink control information (DCI) through the PDCCH.
  • the DCI includes control information such as resource allocation information for the terminal, and the format is different according to the purpose of use.
  • the control information transmitted by the terminal to the base station through the uplink or received by the terminal from the base station includes a downlink / uplink ACK / NACK signal, a channel quality indicator (CQI), a precoding matrix index (PMI), and a rank indicator (RI). ), And the like.
  • the terminal may transmit the above-described control information such as CQI / PMI / RI through the PUSCH and / or PUCCH.
  • the NR system considers using a high frequency band, that is, a millimeter frequency band of 6 GHz or more to transmit data while maintaining a high data rate to a large number of users using a wide frequency band.
  • 3GPP uses this as the name NR, which is referred to as NR system in the present invention.
  • 3 illustrates the structure of a radio frame used in NR.
  • uplink and downlink transmission are composed of frames.
  • the radio frame has a length of 10 ms and is defined as two 5 ms half-frames (HFs).
  • the half-frame is defined by five 1 ms subframes (SFs).
  • the subframe is divided into one or more slots, and the number of slots in the subframe depends on the subcarrier spacing (SCS).
  • SCS subcarrier spacing
  • Each slot includes 12 or 14 OFDM (A) symbols according to a cyclic prefix (CP). Usually when CP is used, each slot contains 14 symbols. If extended CP is used, each slot includes 12 symbols.
  • the symbol may include an OFDM symbol (or CP-OFDM symbol), an SC-FDMA symbol (or DFT-s-OFDM symbol).
  • Table 1 exemplarily shows that when the CP is used, the number of symbols per slot, the number of slots per frame, and the number of slots per subframe vary according to SCS.
  • Table 2 illustrates that when the extended CP is used, the number of symbols for each slot, the number of slots for each frame, and the number of slots for each subframe vary according to the SCS.
  • OFDM (A) numerology eg, SCS, CP length, etc.
  • a numerology eg, SCS, CP length, etc.
  • the (absolute time) section of a time resource eg, SF, slot, or TTI
  • a time unit TU
  • 4 illustrates a slot structure of an NR frame.
  • the slot includes a plurality of symbols in the time domain. For example, one slot includes seven symbols in the case of a normal CP, but one slot includes six symbols in the case of an extended CP.
  • the carrier includes a plurality of subcarriers in the frequency domain.
  • Resource block is defined as a plurality of consecutive subcarriers (eg, 12) in the frequency domain.
  • the bandwidth part (BWP) is defined as a plurality of consecutive (P) RBs in the frequency domain and may correspond to one numerology (eg, SCS, CP length, etc.).
  • the carrier may include up to N (eg, 4) BWPs. Data communication is performed through an activated BWP, and only one BWP may be activated by one UE.
  • Each element in the resource grid is referred to as a resource element (RE), one complex symbol may be mapped.
  • RE resource element
  • a frame is characterized by a self-complete structure in which all of DL control channels, DL or UL data, UL control channels, etc. may be included in one slot.
  • the first N symbols in a slot may be used to transmit a DL control channel (hereinafter DL control region), and the last M symbols in the slot may be used to transmit a UL control channel (hereinafter UL control region).
  • N and M are each an integer of 0 or more.
  • a resource region (hereinafter, referred to as a data region) between the DL control region and the UL control region may be used for DL data transmission, or may be used for UL data transmission.
  • a data region hereinafter, referred to as a data region
  • Each interval is listed in chronological order.
  • DL area (i) DL data area, (ii) DL control area + DL data area
  • UL region (i) UL data region, (ii) UL data region + UL control region
  • the PDCCH may be transmitted in the DL control region, and the PDSCH may be transmitted in the DL data region.
  • PUCCH may be transmitted in the UL control region, and PUSCH may be transmitted in the UL data region.
  • Downlink control information (DCI) for example, DL data scheduling information, UL data scheduling information, and the like may be transmitted in the PDCCH.
  • DCI Downlink control information
  • uplink control information (UCI) for example, positive acknowledgment / negative acknowledgment (ACK / NACK) information, channel state information (CSI) information, and scheduling request (SR) for DL data may be transmitted.
  • the GP provides a time gap in the process of switching from the transmission mode to the reception mode or the reception mode from the reception mode to the transmission mode. Some symbols at the time of switching from DL to UL in the subframe may be set to GP.
  • the base station transmits a related signal to a terminal through a downlink channel, which will be described later, and the terminal receives a related signal from the base station through a downlink channel, which will be described later.
  • PDSCH physical downlink shared channel
  • PDSCH carries downlink data (eg, DL-shared channel transport block, DL-SCH TB), and modulation methods such as Quadrature Phase Shift Keying (QPSK), 16 Quadrature Amplitude Modulation (QAM), 64 QAM, and 256 QAM are used. Apply.
  • a codeword is generated by encoding the TB.
  • the PDSCH can carry up to two codewords. Scrambling and modulation mapping are performed for each codeword, and modulation symbols generated from each codeword are mapped to one or more layers. Each layer is mapped to a resource together with a DMRS (Demodulation Reference Signal) to generate an OFDM symbol signal, and is transmitted through a corresponding antenna port.
  • QPSK Quadrature Phase Shift Keying
  • QAM 16 Quadrature Amplitude Modulation
  • 64 QAM 64 QAM
  • 256 QAM 256 QAM
  • the PDCCH carries downlink control information (DCI) and a QPSK modulation method is applied.
  • DCI downlink control information
  • One PDCCH is composed of 1, 2, 4, 8, 16 CCEs (Control Channel Elements) according to an aggregation level (AL).
  • One CCE consists of six Resource Element Groups (REGs).
  • REG is defined by one OFDM symbol and one (P) RB.
  • D represents a resource element (RE) to which DCI is mapped
  • R represents an RE to which DMRS is mapped.
  • DMRS is mapped to RE # 1, RE # 5 and RE # 9 in the frequency domain direction in one symbol.
  • CORESET is defined as a REG set with a given pneumonology (eg, SCS, CP length, etc.).
  • a plurality of OCRESET for one terminal may be overlapped in the time / frequency domain.
  • CORESET may be set through system information (eg, MIB) or UE-specific higher layer (eg, Radio Resource Control, RRC, layer) signaling.
  • system information eg, MIB
  • UE-specific higher layer eg, Radio Resource Control, RRC, layer
  • RRC Radio Resource Control
  • the number of RBs and the number of symbols (up to three) constituting the CORESET may be set by higher layer signaling.
  • the precoder granularity in the frequency domain for each CORESET is set to one of the following by higher layer signaling:
  • allContiguousRBs equal to the number of consecutive RBs in the frequency domain inside the CORESET
  • REGs in CORESET are numbered based on a time-first mapping manner. That is, the REGs are numbered sequentially from zero starting from the first OFDM symbol in the lowest-numbered resource block within CORESET.
  • the mapping type from CCE to REG is set to one of a non-interleaved CCE-REG mapping type or an interleaved CCE-REG mapping type.
  • FIG. 7A illustrates a non-interleaved CCE-REG mapping type
  • FIG. 7B illustrates an interleaved CCE-REG mapping type.
  • Non-interleaved CCE-REG mapping type (or localized mapping type): 6 REGs for a given CCE constitute one REG bundle, and all REGs for a given CCE are contiguous. One REG bundle corresponds to one CCE
  • Interleaved CCE-REG Mapping Type (or Distributed Mapping Type): 2, 3 or 6 REGs for a given CCE constitute one REG bundle, and the REG bundle is interleaved in CORESET.
  • the REG bundle in CORESET consisting of one OFDM symbol or two OFDM symbols consists of 2 or 6 REGs, and the REG bundle in CORESET consisting of three OFDM symbols consists of 3 or 6 REGs.
  • REG bundle size is set per CORESET
  • FIG. 8 illustrates a block interleaver.
  • the number of rows A of the (block) interleaver for the interleaving operation as described above is set to one of 2, 3, and 6. If the number of interleaving units for a given CORESET is P, the number of columns of the block interleaver is equal to P / A.
  • a write operation on the block interleaver is performed in a row-first direction as shown in FIG. 8, and a read operation is performed in a column-first direction.
  • a cyclic shift (CS) of interleaving units is applied based on an id settable independently of an ID settable for DMRS.
  • the UE performs decoding (aka blind decoding) on the set of PDCCH candidates to obtain a DCI transmitted through the PDCCH.
  • the set of PDCCH candidates decoded by the UE is defined as a PDCCH search space set.
  • the search space set may be a common search space or a UE-specific search space.
  • the UE may acquire the DCI by monitoring PDCCH candidates in one or more sets of search spaces set by MIB or higher layer signaling.
  • Each CORESET setting is associated with one or more sets of search spaces, and each set of search spaces is associated with one COREST setting.
  • One set of search spaces is determined based on the following parameters.
  • controlResourceSetId indicates the control resource set associated with the search space set
  • monitoringSymbolsWithinSlot indicates the PDCCH monitoring pattern in the slot for PDCCH monitoring (eg, indicates the first symbol (s) of the control resource set)
  • Table 3 illustrates the features of each search space type.
  • Type Search space RNTI Use case Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI (s) UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI (s) User specific PDSCH decoding
  • Table 4 illustrates the DCI formats transmitted on the PDCCH.
  • DCI format 0_0 is used for scheduling TB-based (or TB-level) PUSCH
  • DCI format 0_1 is used for scheduling TB-based (or TB-level) PUSCH or Code Block Group (CBG) -based (or CBG-level) PUSCH. It can be used to schedule.
  • DCI format 1_0 is used for scheduling TB-based (or TB-level) PDSCH
  • DCI format 1_1 is used for scheduling TB-based (or TB-level) PDSCH or CBG-based (or CBG-level) PDSCH. Can be.
  • DCI format 2_0 is used to deliver dynamic slot format information (eg, dynamic SFI) to the UE
  • DCI format 2_1 is used to deliver downlink pre-Emption information to the UE.
  • DCI format 2_0 and / or DCI format 2_1 may be delivered to UEs in a corresponding group through a group common PDCCH, which is a PDCCH delivered to UEs defined as one group.
  • the NR's DMRS is transmitted only when necessary to enhance network energy efficiency and ensure forward compatibility.
  • the time domain density of the DMRS may vary depending on the speed or mobility of the UE.
  • the density for the DMRS can be increased in the time domain to track the fast change of radio channel in NR.
  • the BS transmits DMRS configuration information to the UE.
  • the DMRS configuration information may refer to DMRS-DownlinkConfig IE.
  • the DMRS-DownlinkConfig IE may include a dmrs-Type parameter, a dmrs-AdditionalPosition parameter, a maxLength parameter, a phaseTrackingRS parameter, and the like.
  • the 'dmrs-Type' parameter is a parameter for selecting a DMRS type to be used for the DL.
  • DMRS can be divided into two types of configuration: (1) DMRS configuration type 1 and (2) DMRS configuration type 2.
  • DMRS configuration type 1 has a higher RS density in the frequency domain, and DMRS configuration type 2 has more DMRS antenna ports.
  • the 'dmrs-AdditionalPosition' parameter is a parameter indicating the position of additional DMRS in the DL.
  • the 'maxLength' parameter is a parameter representing the maximum number of OFDM symbols for DL front-loaded DMRS.
  • the 'phaseTrackingRS' parameter configures the DL PTRS.
  • the first position of the front-loaded DMRS is determined according to the PDSCH mapping type (type A or type B), and an additional DMRS may be configured to support a high speed UE.
  • the front-loaded DMRS occupies one or two consecutive OFDM symbols and is indicated by RRC signaling and DCI.
  • the BS generates a sequence used for DMRS based on the DMRS configuration.
  • the BS maps the generated sequence to resource elements.
  • the resource element may mean at least one of time, frequency, antenna port, or code.
  • the BS sends the DMRS to the UE on the resource elements.
  • the UE receives the PDSCH using the received DMRS.
  • the operation related to the UL DMRS is similar to the operation related to the DL DMRS, and names of parameters related to the DL may be replaced with names of parameters related to the UL.
  • the DMRS-DownlinkConfig IE may be replaced by a DMRS-UplinkConfig IE, a PDSCH mapping type by a PUSCH mapping type, and a PDSCH by PUSCH.
  • the BS may be replaced by the UE and the UE by the BS.
  • Sequence generation for the UL DMRS may be defined differently depending on whether transform precoding is enabled.
  • DMRS is a pseudo-noise (PN) sequence when using cyclic prefix orthogonal frequency division multiplexing (CP-OFDM) (ie, when transform precoding is not enabled).
  • CP-OFDM cyclic prefix orthogonal frequency division multiplexing
  • DFT-s-OFDM Discrete Fourier Transform-spread-OFDM
  • ZC Zadoff-Chu
  • up to 400 MHz may be supported per one carrier. If a UE operating on such a wideband carrier always operates with a radio frequency (RF) module for the entire carrier, UE battery consumption may increase.
  • RF radio frequency
  • eMBB enhanced mobile broadband
  • URLLC ultra-reliable and low-latency communications
  • mMTC massive machine type communications
  • V2X radio frequency
  • the base station may instruct the UE to operate only in some bandwidths rather than the entire bandwidths of the wideband carriers, and the corresponding bandwidths are called bandwidth parts (BWPs).
  • BWPs bandwidth parts
  • BWP is a subset of contiguous common resource blocks defined for the neuron ⁇ i in the bandwidth part i on the carrier, with one numerology (e.g., subcarrier spacing, CP length, slot / mini-slot) Duration) can be set.
  • numerology e.g., subcarrier spacing, CP length, slot / mini-slot
  • the base station may set one or more BWPs in one carrier configured for the UE.
  • some UEs may be moved to another BWP for load balancing.
  • some BWPs of the cell may be set in the same slot by excluding some spectrum from the entire bandwidth. That is, the base station may configure at least one DL / UL BWP to a UE associated with a wideband carrier, and may perform physical (Physically) at least one DL / UL BWP among DL / UL BWP (s) configured at a specific time point.
  • L1 signaling which is a layer control signal, MAC control element (CE), which is a MAC layer control signal, or RRC signaling.
  • L1 signaling which is a layer control signal
  • CE MAC control element
  • RRC signaling a timer value to allow the UE to switch to a defined DL / UL BWP when the timer expires.
  • DCI format 1_1 or DCI format 0_1 may be used.
  • An activated DL / UL BWP is particularly called an active DL / UL BWP.
  • the UE may not receive a configuration for the DL / UL BWP in a situation such as when the UE is in an initial access process or before the RRC connection of the UE is set up. In this situation, the UE assumes that the DL / UL BWP is called an initial active DL / UL BWP.
  • the DL BWP is a BWP for transmitting and receiving downlink signals such as PDCCH and / or PDSCH
  • the UL BWP is a BWP for transmitting and receiving uplink signals, such as PUCCH and / or PUSCH.
  • a downlink channel and / or a downlink signal may be transmitted and received within an active DL downlink bandwidth part (BWP).
  • an uplink channel and / or an uplink signal may be transmitted and received within an active UL Uplink Bandwidth Part (BWP).
  • BWP active DL downlink bandwidth part
  • the DL BWP and / or UL BWP may be defined or configured in a common resource block (RB) grid stage.
  • RB resource block
  • such a common RB grid may be changed dynamically and / or semi-statically by the base station.
  • a plurality of BWPs may be set in various ways in the common RB grid, and information on the common RB grid may be MU-MIMO or multiplexing between UEs operating in different BWPs. In consideration of (multiplexing), it may be used as a reference point for DMRS configuration and / or a reference point for RB or RB group (RBG) configuration.
  • the information on the common RB grid may be indicated by the base station to the UE through SIB1 (System Information Block 1). Therefore, the UE may not know information about the common RB grid until the SIB1 is successfully received. Alternatively, ambiguity with respect to the common RB grid may occur until the common RB grid information is changed through SIB1 update.
  • SIB1 System Information Block 1
  • the UE when the UE does not know the information on the common RB grid, or when the ambiguity of information on the common RB grid occurs, basically receiving a DMRS irrespective of the common RB gird Alternatively, a resource allocation method for DMRS may be needed.
  • the UE when the UE receives a downlink signal from the PSCell or the SCell, multiplexing with the UE having the cell as the PCell may be considered.
  • the UE performs handover when starting transmission and reception in the target cell, the method of operating the default mode of the UE considering the SIB1 transmission already operating in the corresponding cell again. You may need a definition for.
  • the operation method of the UE may be, for example, a method of generating a DMRS, an assumption and / or resource allocation method for a reference point, and the like.
  • DCI size setting and / or DCI in an NR system When performing initial BWP-based operations such as size conversion, we propose a method of operation in SCell.
  • 9 to 11 are diagrams for explaining an operation implementation example of the UE, the base station and the network according to the present invention.
  • the UE receives a physical downlink control channel (PDCCH) and / or a physical downlink shared channel (PDSCH), and a DMRS associated with the PDCCH and / or PDSCH.
  • a demodulation reference signal may be received (S901).
  • the UE assumes that the received DMRS is generated based on a default mode, and after detecting the DMRS (S903), may decode the PDCCH and / or PDSCH based on the channel estimate of the detected DMRS. (S905).
  • the PDCCH and PDSCH may be received in one slot, but may be received in different slots.
  • both the DMRS associated with the PDCCH and the DMRS associated with the PDSCH may be generated by a default mode operation, or only one DMRS may be generated by a default mode operation.
  • the DMRS generation method based on the basic mode may be based on embodiments described below.
  • the PDCCH and / or PDSCH may be for receiving SIB1.
  • the PDCCH may be for scheduling a PDSCH carrying SIB1
  • the PDSCH may be for carrying the SIB1.
  • the UE having received the SIB1 may obtain initial BWP (Bandwidth Part) information through the SIB1, and receives downlink control information (DCI) including group TPC information based on the initial BWP information. can do.
  • DCI downlink control information
  • a method of generating and transmitting / receiving a DCI including group TPC information may also be based on specific embodiments to be described below.
  • the base station may generate a DRMS associated with a PDCCH and / or a PDSCH based on a default mode (S1001).
  • the generated DMRS may be transmitted to the UE together with the PDCCH and / or PDSCH (S1003).
  • the PDCCH and PDSCH may be transmitted in one slot, but may be transmitted in different slots.
  • both the DMRS associated with the PDCCH and the DMRS associated with the PDSCH may be generated by a default mode operation, or only one DMRS may be generated by a default mode operation.
  • the DMRS generation method based on the basic mode may be based on embodiments described below.
  • the PDCCH and / or PDSCH may be for transmitting SIB1.
  • the PDCCH may be for scheduling a PDSCH carrying SIB1
  • the PDSCH may be for carrying the SIB1.
  • the base station transmitting the SIB1 may transmit initial BWP (Bandwidth Part) information through the SIB1, and may transmit downlink control information (DCI) including group TPC information based on the initial BWP information.
  • DCI downlink control information
  • a method of generating and transmitting / receiving a DCI including group TPC information may also be based on specific embodiments to be described below.
  • the base station may generate a DRMS associated with a PDCCH and / or a PDSCH based on a default mode (S1101).
  • the generated DMRS may be transmitted to the UE together with the PDCCH and / or PDSCH (S1103).
  • the UE that has received a Demodulation Reference Signal (DMRS) associated with the PDCCH and / or PDSCH assumes that the received DMRS is generated based on a default mode, and after detecting the DMRS (S1105),
  • the PDCCH and / or PDSCH may be decoded based on the channel estimate of DMRS (S1107).
  • DMRS Demodulation Reference Signal
  • the PDCCH and PDSCH may be transmitted in one slot, but may be transmitted in different slots.
  • both the DMRS associated with the PDCCH and the DMRS associated with the PDSCH may be generated by a default mode operation, or only one DMRS may be generated by a default mode operation.
  • the DMRS generation method based on the basic mode may be based on embodiments described below.
  • the PDCCH and / or PDSCH may be for transmitting SIB1.
  • the PDCCH may be for scheduling a PDSCH carrying SIB1
  • the PDSCH may be for carrying the SIB1.
  • the base station that has transmitted the SIB1 may obtain initial bandwidth part (BWP) information through the SIB1, and transmits downlink control information (DCI) including group TPC information based on the initial BWP information.
  • BWP bandwidth part
  • DCI downlink control information
  • a method of generating and transmitting / receiving a DCI including group TPC information may also be based on specific embodiments to be described below.
  • the UE may initially derive an initial DL BWP based on information included in a synchronization signal / physical broadcast channel block (SS / PBCH block) and a master information block (MIB) and / or a PBCH payload in the PBCH. .
  • SS / PBCH block synchronization signal / physical broadcast channel block
  • MIB master information block
  • the initial DL BWP may be BWP # 0, but is not limited thereto.
  • the initial DL BWP may be BWP # 0 when there are 3 or less (Configured) BWPs configured by a higher layer, and the initial DL BWP may be BWP # when there are 4 BWPs configured by a higher layer. It may be a BWP other than zero.
  • a control resource set (CORESET) configuration and a search space configuration for receiving SIB1 are received from a MIB and / or a PBCH payload in a PBCH, and the information is linked to an SS / PBCH block.
  • the initial DL BWP at this time may be initially set to the frequency domain for the CORESET.
  • the UE configures the SS / PBCH block information for the corresponding serving cell and CORESET for receiving the SIB1 of the corresponding cell through a dedicated signal.
  • a search space configuration, and initial DL BWP (eg, BWP # 0) may be configured.
  • the UE may call CORESET obtained through a dedicated signal and CORESET obtained through a MIB / PBCH payload as CORESET # 0. This may be one kind of common CORESET.
  • the UE may search for a search space acquired through a dedicated signal and a search space acquired through a MIB / PBCH payload. It may be referred to as a common search space, and in the present invention, it may be referred to as a search space # 0. This search space # 0 may be used to transmit and receive the PDCCH for system information.
  • the SS / PBCH block information for the serving cell may include information on a frequency position at which the SS / PBCH block is transmitted.
  • the CORESET setting and the search space setting for the SIB1 reception of the cell may be received through the MIB and / or PBCH payload included in the PBCH of the cell.
  • the UE may derive CORESET # 0 and / or search space # 0 for the corresponding serving cell.
  • a UE having each serving cell as a PCell may receive SIB1 from a corresponding cell.
  • a basic mode capable of receiving a PDCCH may be operated regardless of a common RB grid. have.
  • the UE may need to operate in a default mode according to the operation area of the UE.
  • the default mode is that the reference point of the generation is the subcarrier 0 of the lowest-numbered RB (RB) having the lowest number of the CORESET to which the PDCCH is transmitted.
  • RB lowest-numbered RB
  • a PDCCH transmission / mapping method such as an actual location of an index 0 and / or interleaving and an interleaving unit may be determined based on a reference point.
  • the DMRS may correspond to both a DMRS for a PDCCH and a DMRS for a PDSCH.
  • the CORESET through which the PDCCH is transmitted may be represented in another manner.
  • the corresponding CORESET may be represented by CORESET # 0 or CORESET set by SIB (eg, SIB1) or PBCH.
  • the CORESET set by the SIB1 may mean a CORESET configured through the SIB1 to separate CORESET for a random access response (RAR).
  • the configuration method of the corresponding CORESET may be assumed to use the same method as the method of specifying SIB1 through the PBCH in the initial DL BWP for alignment with CORESET # 0 configured in the PBCH. For example, this assumption applies only if the initial DL BWP set up via SIB1 does not override the initial DL BWP set up by PBCH, and the initial DL BWP set up via SIB1. May override the initial DL BWP set by the PBCH, it may be assumed that the CORESET configuration is performed based on the common RB grid.
  • the PDCCH When the area in which the PDCCH corresponding to the serving cell is transmitted is CORESET # 0 and / or search space # 0, the PDCCH is independent of the common RB grid. It may be transmitted based on the default mode. If a plurality of search spaces are set in the UE and a PDCCH is received from the plurality of search spaces, a specific search space related to CORESET # 0 is search space # 0 ( If all or part of the search space # 0 overlaps, it may be assumed that the PDCCH transmitted at the overlapping time point corresponds to the search space # 0.
  • the UE may set or use CORESET # 0 and / or Search space # 0 for a BWP other than the initial DL BWP, such as BWP # 0. If the UE receives the PDCCH through # 0 and / or the search space # 0, the PDCCH may be received based on a default mode.
  • the PDCCH has a default mode irrelevant to the common RB grid. mode) may be transmitted based on the mode.
  • the broadcast information could still be transmitted to the initial DL BWP.
  • the multiplexing of the PDCCH and the signal associated with the SIB1 detection may be based on the default mode (default mode) at the time of receiving the PDCCH in the initial (initial) DL BWP regardless of the success or failure.
  • the example may be limited to the case where the PDCCH is a PDCCH received in a common search space. The reason is that when the PDCCH is transmitted through the UE-specific search space, the DMRS sequence generation seed itself will be different between UEs regardless of the reference point. This is because the DMRS itself will be different.
  • the search space ID is not 0, and / or the BWP ID is not 0.
  • the settings for CORESET, Search Space and / or BWP are all or part of CORESET # 0, Search space # 0 and BWP # 0 respectively, or the corresponding CORESET, Search Space and / or BWP If the PDCCH transmitted via the COID, the search space, and / or the BWP with which ID or type is not distinguished, the specific CORESET, search space and / or BWP Assuming it is included, the PDCCH can be detected.
  • the specific CORESET, search space, and / or BWP may be CORESET # 0, search space # 0, and BWP # 0, respectively.
  • SIB1 including information on a common RB grid may be transmitted to the PDSCH. Accordingly, a default mode operation that is independent of the common RB grid needs to be defined to receive at least the PDSCH carrying SIB1.
  • the default mode is a lowest-numbered RB in which a reference point for generating a DMRS associated with a PDSCH has the lowest number of CORESETs on which a PDCCH for scheduling the PDSCH is transmitted.
  • Subcarrier 0 The CORESET through which the PDCCH is transmitted may be represented in another manner. For example, assuming an operation for receiving SIB1, the corresponding CORESET may be represented by CORESET # 0 or CORESET set by SIB (eg, SIB1) or PBCH.
  • the default mode is the RB having the lowest number of CORESETs in which a PDCCH for scheduling a PDSCH is transmitted by an RB bundle, which is a basic unit in interleaved VRB-to-PRB mapping. It may be defined from subcarrier 0 of. In other words, the boundary of the RB bundle may be aligned with the boundary of the initial DL BWP or the boundary of the CORESET region in which the PDCCH is transmitted.
  • the default mode may be configured in various combinations of each of the two basic modes described above.
  • the related PDCCH / PDSCH may use SI-RNTI in common. Therefore, when receiving the PDSCH, whether the information included in the PDSCH is SIB1 can be known only after decoding the PDSCH.
  • the base station may transmit system information in the third BWP after initial access, and in this case, PDCCH / PDSCH transmission based on common RB grid information is performed.
  • the UE may also expect PDCCH / PDSCH reception based on a common RB gird.
  • the PDSCH has a common RB grid. It can be transmitted based on a default mode irrelevant to (common RB grid).
  • a specific search space related to CORESET # 0 is search space # 0. If all or part of (Search space # 0) overlaps, it may be assumed that the PDCCH transmitted at the overlapping time point corresponds to search space # 0.
  • the UE may set or use CORESET # 0 and / or Search space # 0 for a BWP other than the initial DL BWP, such as BWP # 0. If the UE receives the PDCCH and / or PDSCH through # 0 and / or the search space # 0, the PDCCH and / or PDSCH may be received based on a default mode.
  • the PDSCH may be received based on a default mode only when the PDCCH scheduling the corresponding PDSCH is addressed with an SI-RNTI.
  • the PDSCH may be received based on a basic mode when the PDCCH is addressed to the SI-RNTI. This is because the PDCCH scheduling the PDSCH for SIB1 will be the PDCCH addressed to the SI-RNTI transmitted through the search space # 0 in CORESET # 0.
  • the PDSCH is a common RB grid. It may be transmitted based on a default mode irrelevant to. In this case, even if the UE successfully received the SIB1 and the UE knew the common RB grid information, the broadcast information could still be transmitted to the initial DL BWP. In consideration of multiplexing of the signal related to the PDSCH and the PDSCH, it may be based on a default mode upon reception of the PDCCH in the initial DL BWP regardless of whether the SIB1 is detected successfully.
  • this example may be limited to the case where the PDCCH scheduling the PDSCH is a PDCCH received in a common search space.
  • the reason is that when the PDCCH scheduling the PDSCH is transmitted through the UE-specific search space, the DMRS sequence generation seed itself is between UEs regardless of the reference point. Because it will be different, the DMRS itself will be different.
  • the search space ID is not 0, and / or the BWP ID is 0.
  • the settings for the corresponding CORESET, search space, and / or BWP are all or part of CORESET # 0, Search space # 0, and BWP # 0, respectively, or corresponding CORESET, search space.
  • / or a specific CORESET, search space if the PDCCH transmitted through the BWP is not distinguished about which ID or type of CORESET, search space, and / or BWP is transmitted.
  • / or a PDCCH scheduling a PDSCH may be detected assuming that the BWP is included in the BWP.
  • the specific CORESET, search space, and / or BWP may be CORESET # 0, search space # 0, and BWP # 0, respectively.
  • the conditions for using the default mode may vary according to the content of the default mode.
  • the default mode depends on whether the default mode is used to specify a reference point for DMRS, or as a reference point for RB bundle configuration in Interleaved VRB-to-PRB mapping. May be different.
  • a default mode operation for interleaved VRB-to-PRB mapping may be applied only to a specific cell such as a PCell.
  • a default mode may be used before the UE sets information on the BWP (eg, the starting RB index and / or number of RBs of the BWP).
  • the UE determines the size of the first RB bundle for interleaved VRB-to-PRB mapping. Assume that the size of the last RB bundle is Can be assumed.
  • Means start RB of BWP i May refer to the RB size or the number of RBs in BWP i. May be the bundle size of BWP i.
  • the above-described formula is just one example and may be expressed in other forms.
  • the above-described equation can be seen to be extended from the basic idea of the present invention of configuring the RB bundle from the first subcarrier of the active DL BWP currently assumed by the UE.
  • the size of the BWP may be expressed in other forms.
  • the initial BWP may be expressed as the number of RBs constituting a specific CORESET, such as CORESET # 0, or the total number of consecutive RBs from the lowest RB to the highest RB.
  • a specific BWP size such as a CORESET associated with a PDCCH scheduling a corresponding PDSCH, an initial DL BWP size, and an RB bundle size (bundle size) and / or based on a common RB grid.
  • the basic mode for the interleaved VRB-to-PRB mapping is performed based on the common RB grid, for example, based on Interleaved VRB-to- based on Point A or the first subcarrier 0 of the first RB in the common RB grid.
  • the basic mode for the PRB mapping may be performed.
  • the first subcarrier 0 of the first RB may mean subcarrier 0 of the RB having the lowest number.
  • the interleaving target region in interleaved VRB-to-PRB mapping may be a contiguous RB set by a specific BWP size, such as the initial DL BWP size, from the RB index having the lowest number of CORESET. If N is the lowest RB index of CORESET in the common RB grid, the initial DL BWP size is B, and the RB bundle size is L, the number of RB bundles is ( It may be an integer conversion value (eg, rounding value) for B + (N mod L)) / L.
  • the above example is merely an example of generating an RB bundle based on a common RB grid, and (N mode L) is omitted so that an integer conversion value for B / L is used as the number of RB bundles. Can be.
  • the RB bundle 0 may be composed of L- (N mod L) RBs.
  • the above example is also merely an example of generating an RB bundle based on a common RB grid, and (N mode L) may be omitted so that the L BRs may form RB bundle 0. have.
  • the initial DL BWP size may be represented in another form. For example, it may be replaced by the number of RBs constituting the CORESET (for example, CORESET # 0) that is referenced when setting the initial DL BWP.
  • the above-described default mode may be applied when the DCI scheduling the PDSCH is transmitted in the common search space.
  • the basic mode may not be applied when all or part of the search space and / or the CORESET for SIB1 overlap with the common search space through which the DCI is transmitted.
  • the case where all or part of the search space for SIB1 and / or CORESET overlaps with the common search space through which the DCI is transmitted for example, means a time point that overlaps with the search space for SIB1. can do.
  • the same resource allocation can be assumed regardless of their active BWPs. It works.
  • the payload size of a DCI (eg, DCI format 2-2 and / or DCI format 2-3) including group TPC (transmit power control) information that the UE receives in the PCell is common to that PCell. It may be set to have the same size as a fallback DCI (eg, DCI format 1_0 / 0_0) that can be transmitted in the search space. In addition, zero-padding and / or truncation may be performed to generate the DCI having the same size as the fallback DCI.
  • a DCI eg, DCI format 2-2 and / or DCI format 2-3
  • group TPC transmit power control
  • the payload size of the fallback DCI (DCI format 1_0 / 0_0) that may be transmitted in the common search space of the PCell may be set based on the size of the initial DL BWP.
  • DCI format 1_0 frequency domain resource allocation size may be set based on an initial DL BWP, and the size of DCI format 0_0 may be aligned with DCI format 1_0. .
  • the payload size of the fallback DCI (eg, DCI format 1_0 / 0_0) transmitted in the UE-specific search space may change based on the initial DL BWP and not the active DL BWP under certain circumstances. Can be.
  • the specific situation may be, for example, when the number of DCI sizes for the PDCCH addressed with the C-RNTI exceeds 3 or the total number of DCI sizes exceeds 4. . Through this, it is possible to limit the budget of the DCI size and to reduce the complexity of the UE.
  • the payload size of the DCI is based on a specific BWP (eg, initial DL BWP for the PCell or SCell), for example, due to a budget of DCI size or the like. You need to set it.
  • a specific BWP eg, initial DL BWP for the PCell or SCell
  • updating the initial DL BWP (e.g., BWP # 0) via higher layer signaling at least when a PSCell or SCell is added and / or when performing a handover.
  • BWP # 0 initial DL when the PSCell or SCell is added to a different value beyond the size value (eg, 24/48/96) that the initial DL BWP of the PSCell or SCell may have and / or when performing a handover. This is because the size of the BWP can be set.
  • the payload size for the DCI format (for example, DCI format 2_2 and DCI format 2_3) for transmitting the group TPC may be set through higher layer signaling.
  • the corresponding DCI payload size may be set through an upper layer.
  • the payload size of the DCI may be set based on the size of a serving cell to which the DCI including the group TPC is transmitted or the initial DL BWP of the PCell. For example, the size of the DCI including the group TPC may be set equal to the payload size of the DCI format 1_0 / 0_0 assuming the size of the initial DL BWP of the serving cell or PCell.
  • the payload size for the DCI format (eg, DCI format 2_2, DCI format 2_3) for transmitting the group TPC is the initial of the serving cell to which the DCI including the group TPC is transmitted. ) May be set based on the size of the DL BWP. For example, the payload of the DCI including the group TPC equal to the payload size of DCI format 1_0 / 0_0 assuming the initial DL BWP of the serving cell in which the DCI including the group TPC is transmitted. You can set the size.
  • an advantage of 3-2) is that a group TPC may be shared with a UE having a corresponding serving cell as a PCell. At this time, an initial DL BWP of a serving cell may be overridden to an initial DL BWP known by SIB or UE-dedicated signaling.
  • the DCI size is determined according to the size of the known initial DL BWP through a message for adding a PBCH, a handover command, or a PSCell, and then even if the initial DL BWP is changed. The DCI size may not change.
  • a PBCH, handover command, or PSCell in an initial access step
  • the size of the DCI including the corresponding group TPC is determined according to the known initial DL BWP, and will not be overridden after the adjusted initial DL BWP.
  • the field for updating the initial DL BWP is separate from the field for the initial DL BWP indicated by the PBCH. field), through which the UE can distinguish between an initial DL BWP and an updated initial DL BWP that are shared with other UEs notified by the PBCH.
  • the above-described method can be similarly applied to the PSCell addition (addition). That is, even if the initial DL BWP is changed through SIB update or UE-dedicated signaling, DCI format 0_0 / 1_0 transmitted through the common search space, DCI format 2_1 / 2 including TPC If the DCI format 0_0 / 1_0 transmitted over -2 and / or the UE specific search space is not sized based on the active BWP, then the initial DL BWP change will be affected. Can not give. That is, even if the size of the initial DL BWP is changed, the size of the DCI may be determined based on the size of the initial DL BWP before the change.
  • the payload size for the DCI format (eg, DCI format 2_2, DCI format 2_3) for transmitting the group TPC may be set based on the size of the initial DL BWP of the PCell. Can be.
  • the payload size of the DCI including the group TPC may be set to be equal to the payload size of the DCI format 1_0 / 0_0 assuming the initial DL BWP of the PCell to which the DCI including the group TPC is transmitted. .
  • the UE may not expect that the PDCCH addressed to the C-RNTI is transmitted through the common search space for the SCell. Thus, the UE may not unnecessarily increase the DCI size budget. In this case, however, in order to share a group TPC, the corresponding UEs need to have the same PCell or have the same size of an initial DL BWP for the PCell.
  • the size of the initial DL BWP may be replaced with the size from the lowest PRB to the highest PRB of CORESET in which the PDCCH is transmitted.
  • the size of the initial DL BWP may be replaced by (highest PRB index minus the lowest PRB index +1). It may also be replaced by the number of PRBs constituting the CORESET.
  • the payload size of the DCI including the group TPC may be set to the payload size of the DCI format 1_0 / 0_0 generated by assuming the size derived from the CORESET as the size of the BWP as described above. have.
  • the UE looks at an example for changing the payload size for the fallback DCI received in the UE-specific search space when the DCI size budget is not satisfied in the SCell. Let's see.
  • Payload size of the fallback DCI to be equal to the payload size for the DCI format (for example, DCI format 2_2, DCI format 2_3) for transmitting the group TPC received at the SCell Can be set.
  • the payload size of the DCI format including the group TPC the size of a specific field such as a frequency domain resource allocation field may be changed.
  • the payload size change of the DCI format including the group TPC described above may be limited to the case where the UE receives the DCI including the group TPC in the SCell. Except when receiving a DCI including a group TPC, it may be assumed or expected that the DCI size budget is satisfied (filled) for the SCell.
  • the payload size of the fallback DCI received in the UE-specific search space of the SCell may be set through higher layer signaling. For example, only when the information on the initial DL BWP is changed through dedicated RRC signaling, the payload size of the fallback DCI may be set through the upper layer. . Otherwise, the payload size of the fallback DCI may be set based on the size of an initial DL BWP of the serving cell or PCell.
  • the payload size of the fallback DCI may be set based on an initial DL BWP of the PCell.
  • the base station may change the initial DL BWP of the target serving cell through dedicated signaling. In this case, however, an initial DL BWP for initial access of a serving cell and a PDCCH / PDSCH transmission based thereon need to be maintained.
  • the PDCCH is CORESET # 0 of the serving cell (serving cell) May not be expected to correspond to search space # 0, searchSpace-OSI, ra-SearchSpace, and / or pagingSearchSpace. That is, more specifically, the specific UE may expect that the PDCCH monitoring opportunity (Occasion) of the changed initial DL BWP of the target serving cell does not overlap with the PDCCH monitoring opportunity (Occasion) of the initial DL BWP of the serving cell.
  • FIG. 12 illustrates an embodiment of a wireless communication device according to an embodiment of the present invention.
  • the wireless communication device described with reference to FIG. 12 may represent a terminal and / or a base station according to an embodiment of the present invention.
  • the wireless communication device of FIG. 12 is not necessarily limited to a terminal and / or a base station according to the present embodiment, and may be replaced with various devices such as a vehicle communication system or device, a wearable device, a laptop, a smart phone, and the like.
  • the apparatus includes a base station, a network node, a transmission terminal, a reception terminal, a wireless device, a wireless communication device, a vehicle, a vehicle equipped with an autonomous driving function, an unmanned aerial vehicle (UAV), and artificial intelligence (AI).
  • UAV unmanned aerial vehicle
  • AI artificial intelligence
  • a drone may be a vehicle in which humans fly by radio control signals.
  • the MTC device and the IoT device are devices that do not require human intervention or manipulation, and may be smart meters, bending machines, thermometers, smart bulbs, door locks, various sensors, and the like.
  • a medical device is a device used for the purpose of inspecting, replacing, or modifying a device, structure, or function used for diagnosing, treating, alleviating, treating, or preventing a disease.
  • the security device is a device installed to prevent a risk that may occur and maintain safety, and may be a camera, a CCTV, a black box, or the like.
  • the fintech device is a device that can provide financial services such as mobile payment, and may be a payment device or a point of sales (POS).
  • the climate / environmental device may mean a device for monitoring and predicting the climate / environment.
  • the transmitting terminal and the receiving terminal are mobile phones, smart phones, laptop computers, digital broadcasting terminals, personal digital assistants, portable multimedia players, navigation, slate PCs. , Tablet PCs, ultrabooks, wearable devices (eg, smartwatches, glass glasses, head mounted displays), foldables foldable) devices and the like.
  • the HMD is a display device of a head type, and may be used to implement VR or AR.
  • a terminal and / or a base station may include at least one processor 10, a transceiver 35, such as a digital signal processor (DSP) or a microprocessor, Power management module 5, antenna 40, battery 55, display 15, keypad 20, memory 30, subscriber identity module (SIM) card 25, speaker 45 and microphone ( 50) and the like.
  • the terminal and / or base station may include a single antenna or multiple antennas.
  • the transceiver 35 may also be referred to as an RF module.
  • the processor 10 may be configured to implement the functions, procedures, and / or methods described in FIGS. 1-11. In at least some of the embodiments described in FIGS. 1-11, the processor 10 may implement one or more protocols, such as layers of a radio interface protocol (eg, functional layers).
  • layers of a radio interface protocol eg, functional layers
  • the memory 30 is connected to the processor 10 and stores information related to the operation of the processor 10.
  • the memory 30 may be located inside or outside the processor 10 and may be connected to the processor through various technologies such as wired or wireless communication.
  • the user may enter various types of information (eg, indication information such as phone number) by pressing a button on the keypad 20 or by various techniques such as voice activation using the microphone 50.
  • the processor 10 performs appropriate functions such as receiving and / or processing the user's information and dialing the telephone number.
  • the processor 10 may receive and process GPS information from a GPS chip to obtain location information of a terminal and / or a base station such as a vehicle navigation and a map service, or perform a function related to the location information.
  • the processor 10 may display these various types of information and data on the display 15 for the user's reference and convenience.
  • the transceiver 35 is connected to the processor 10 to transmit and / or receive a radio signal such as a radio frequency (RF) signal.
  • the processor 10 may control the transceiver 35 to initiate communication and transmit a radio signal including various types of information or data such as voice communication data.
  • Transceiver 35 may include a receiver for receiving wireless signals and a transmitter for transmitting.
  • Antenna 40 facilitates the transmission and reception of wireless signals.
  • the transceiver 35 may forward and convert the signal to a baseband frequency for processing by the processor 10.
  • the processed signal may be processed according to various techniques, such as being converted into audible or readable information, and such a signal may be output through the speaker 45.
  • the senor may also be connected to the processor 10.
  • the sensor may include one or more sensing devices configured to detect various types of information including speed, acceleration, light, vibration, and the like.
  • the processor 10 receives and processes sensor information obtained from the sensor such as proximity, position, and image, thereby performing various functions such as collision avoidance and autonomous driving.
  • a camera and a USB port may be additionally included in the terminal and / or the base station.
  • a camera may be further connected to the processor 10, and such a camera may be used for various services such as autonomous driving, vehicle safety service, and the like.
  • FIG. 12 is only an embodiment of devices configuring the terminal and / or the base station, but is not limited thereto.
  • some components such as keypad 20, Global Positioning System (GPS) chip, sensor, speaker 45 and / or microphone 50 may be excluded for terminal and / or base station implementation in some embodiments. It may be.
  • GPS Global Positioning System
  • the operation of the wireless communication device represented in FIG. 12 is a terminal according to an embodiment of the present invention.
  • the processor 10 controls the transceiver 35 to receive a physical downlink control channel (PDCCH) and / or a physical downlink shared channel (PDSCH),
  • the transceiver 35 may be controlled to receive a demodulation reference signal (DMRS) associated with the PDCCH and / or PDSCH.
  • DMRS demodulation reference signal
  • the processor 10 may assume that the received DMRS is generated based on a default mode, detect the DMRS, and then decode the PDCCH and / or PDSCH based on a channel estimate of the detected DMRS. have.
  • the PDCCH and PDSCH may be received in one slot, but may be received in different slots.
  • both the DMRS associated with the PDCCH and the DMRS associated with the PDSCH may be generated by a default mode operation, or only one DMRS may be generated by a default mode operation.
  • the DMRS generation method based on the basic mode may be based on the above-described embodiments.
  • the PDCCH and / or PDSCH may be for receiving SIB1.
  • the PDCCH may be for scheduling a PDSCH carrying SIB1
  • the PDSCH may be for carrying the SIB1.
  • the processor 10 receiving the SIB1 may obtain initial BWP (Bandwidth Part) information through the SIB1 and downlink control information including group TPC information based on the initial BWP information.
  • a method of generating and transmitting / receiving a DCI including group TPC information may also be based on the above-described specific embodiments.
  • the processor 10 is based on a PDCCH and / or a default mode.
  • a DRMS associated with the PDSCH may be generated.
  • the transceiver 35 may be controlled to transmit the generated DMRS to the UE together with the PDCCH and / or PDSCH.
  • the PDCCH and PDSCH may be transmitted in one slot, but may be transmitted in different slots.
  • both the DMRS associated with the PDCCH and the DMRS associated with the PDSCH may be generated by a default mode operation, or only one DMRS may be generated by a default mode operation.
  • the DMRS generation method based on the basic mode may be based on the above-described embodiments.
  • the PDCCH and / or PDSCH may be for transmitting SIB1.
  • the PDCCH may be for scheduling a PDSCH carrying SIB1
  • the PDSCH may be for carrying the SIB1.
  • the processor 10 transmitting the SIB1 may transmit initial bandwidth part (BWP) information through the SIB1, and includes downlink control information (DCI) including group TPC information based on the initial BWP information. Can be transmitted.
  • BWP bandwidth part
  • DCI downlink control information
  • a method of generating and transmitting / receiving a DCI including group TPC information may also be based on the following specific embodiments.
  • FIG 13 illustrates an AI device 100 that may implement embodiments of the present invention.
  • the AI device 100 is a TV, a projector, a mobile phone, a smartphone, a desktop computer, a notebook, a digital broadcasting terminal, a personal digital assistant (PDA), a portable multimedia player (PMP), a navigation device, a tablet PC, a wearable device, and a set-top box (STB). ), A DMB receiver, a radio, a washing machine, a refrigerator, a desktop computer, a digital signage, a robot, a vehicle, and the like, or a fixed device or a mobile device.
  • PDA personal digital assistant
  • PMP portable multimedia player
  • STB set-top box
  • the terminal 100 connects the communication unit 110, the input unit 120, the running processor 130, the sensing unit 140, the output unit 150, the memory 170, the processor 180, and the like. It may include.
  • the communicator 110 may transmit / receive data to / from external devices such as the other AI devices 100a to 100e or the AI server 200 using wired or wireless communication technology.
  • the communicator 110 may transmit / receive sensor information, a user input, a learning model, a control signal, and the like with external devices.
  • the communication technology used by the communication unit 110 includes Global System for Mobile communication (GSM), Code Division Multi Access (CDMA), Long Term Evolution (LTE), 5G, Wireless LAN (WLAN), and Wireless-Fidelity (Wi-Fi). ), Bluetooth (Bluetooth®), Radio Frequency Identification (RFID), Infrared Data Association (IrDA), ZigBee, Near Field Communication (NFC), and the like.
  • GSM Global System for Mobile communication
  • CDMA Code Division Multi Access
  • LTE Long Term Evolution
  • 5G Fifth Generation
  • Wi-Fi Wireless-Fidelity
  • Bluetooth Bluetooth
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • ZigBee ZigBee
  • NFC Near Field Communication
  • the input unit 120 may acquire various types of data.
  • the input unit 120 may include a camera for inputting an image signal, a microphone for receiving an audio signal, a user input unit for receiving information from a user, and the like.
  • a signal obtained from the camera or microphone may be referred to as sensing data or sensor information by treating the camera or microphone as a sensor.
  • the input unit 120 may acquire input data to be used when acquiring an output using training data and a training model for model training.
  • the input unit 120 may obtain raw input data, and in this case, the processor 180 or the running processor 130 may extract input feature points as preprocessing on the input data.
  • the learning processor 130 may train a model composed of artificial neural networks using the training data.
  • the learned artificial neural network may be referred to as a learning model.
  • the learning model may be used to infer result values for new input data other than the training data, and the inferred values may be used as a basis for judgment to perform an operation.
  • the running processor 130 may perform AI processing together with the running processor 240 of the AI server 200.
  • the running processor 130 may include a memory integrated with or implemented in the AI device 100.
  • the running processor 130 may be implemented using the memory 170, an external memory directly coupled to the AI device 100, or a memory held in the external device.
  • the sensing unit 140 may acquire at least one of internal information of the AI device 100, surrounding environment information of the AI device 100, and user information using various sensors.
  • the sensors included in the sensing unit 140 include a proximity sensor, an illumination sensor, an acceleration sensor, a magnetic sensor, a gyro sensor, an inertial sensor, an RGB sensor, an IR sensor, a fingerprint sensor, an ultrasonic sensor, an optical sensor, a microphone, and a li. , Radar and so on.
  • the output unit 150 may generate an output related to visual, auditory, or tactile.
  • the output unit 150 may include a display unit for outputting visual information, a speaker for outputting auditory information, and a haptic module for outputting tactile information.
  • the memory 170 may store data supporting various functions of the AI device 100.
  • the memory 170 may store input data, training data, training model, training history, and the like acquired by the input unit 120.
  • the processor 180 may determine at least one executable operation of the AI device 100 based on the information determined or generated using the data analysis algorithm or the machine learning algorithm. In addition, the processor 180 may control the components of the AI device 100 to perform a determined operation.
  • the processor 180 may request, search for, receive, or utilize data of the running processor 130 or the memory 170, and may perform an operation predicted or determined to be preferable among the at least one executable operation.
  • the components of the AI device 100 may be controlled to execute.
  • the processor 180 may generate a control signal for controlling the corresponding external device and transmit the generated control signal to the corresponding external device.
  • the processor 180 may obtain intention information about the user input, and determine the user's requirements based on the obtained intention information.
  • the processor 180 uses at least one of a speech to text (STT) engine for converting a voice input into a string or a natural language processing (NLP) engine for obtaining intention information of a natural language. Intent information corresponding to the input can be obtained.
  • STT speech to text
  • NLP natural language processing
  • At least one or more of the STT engine or the NLP engine may be configured as an artificial neural network, at least partly learned according to a machine learning algorithm. At least one of the STT engine or the NLP engine may be learned by the running processor 130, learned by the running processor 240 of the AI server 200, or may be learned by distributed processing thereof. It may be.
  • the processor 180 collects history information including operation contents of the AI device 100 or feedback of a user about the operation, and stores the information in the memory 170 or the running processor 130, or the AI server 200. Can transmit to external device. The collected historical information can be used to update the learning model.
  • the processor 180 may control at least some of the components of the AI device 100 to drive an application program stored in the memory 170. In addition, the processor 180 may operate by combining two or more of the components included in the AI device 100 to drive the application program.
  • FIG 14 illustrates an AI server 200 that can implement embodiments of the present invention.
  • the AI server 200 may refer to an apparatus for learning an artificial neural network using a machine learning algorithm or using an learned artificial neural network.
  • the AI server 200 may be composed of a plurality of servers to perform distributed processing, or may be defined as a 5G network.
  • the AI server 200 may be included as a part of the AI device 100 to perform at least some of the AI processing together.
  • the AI server 200 may include a communication unit 210, a memory 230, a running processor 240, a processor 260, and the like.
  • the communication unit 210 may transmit / receive data with an external device such as the AI device 100.
  • the memory 230 may include a model storage unit 231.
  • the model storage unit 231 may store a trained model or a trained model (or artificial neural network 231a) through the running processor 240.
  • the running processor 240 may train the artificial neural network 231a using the training data.
  • the learning model may be used while mounted in the AI server 200 of the artificial neural network, or may be mounted and used in an external device such as the AI device 100.
  • the learning model can be implemented in hardware, software or a combination of hardware and software. When some or all of the learning model is implemented in software, one or more instructions constituting the learning model may be stored in the memory 230.
  • the processor 260 may infer a result value with respect to the new input data using the learning model, and generate a response or control command based on the inferred result value.
  • FIG 15 shows an AI system 1 according to which embodiments of the present invention can be implemented.
  • the AI system 1 may include at least one of an AI server 200, a robot 100a, an autonomous vehicle 100b, an XR device 100c, a smartphone 100d, or a home appliance 100e.
  • This cloud network 10 is connected.
  • the robot 100a to which the AI technology is applied, the autonomous vehicle 100b, the XR device 100c, the smartphone 100d or the home appliance 100e may be referred to as the AI devices 100a to 100e.
  • the cloud network 10 may refer to a network that forms part of the cloud computing infrastructure or exists in the cloud computing infrastructure.
  • the cloud network 10 may be configured using a 3G network, 4G or Long Term Evolution (LTE) network or a 5G network.
  • LTE Long Term Evolution
  • the devices 100a to 100e and 200 constituting the AI system 1 may be connected to each other through the cloud network 10.
  • the devices 100a to 100e and 200 may communicate with each other through the base station, but may communicate with each other directly without passing through the base station.
  • the AI server 200 may include a server that performs AI processing and a server that performs operations on big data.
  • the AI server 200 includes at least one or more of the AI devices constituting the AI system 1, such as a robot 100a, an autonomous vehicle 100b, an XR device 100c, a smartphone 100d, or a home appliance 100e. Connected via the cloud network 10, the AI processing of the connected AI devices 100a to 100e may help at least a part.
  • the AI devices constituting the AI system 1 such as a robot 100a, an autonomous vehicle 100b, an XR device 100c, a smartphone 100d, or a home appliance 100e.
  • the AI processing of the connected AI devices 100a to 100e may help at least a part.
  • the AI server 200 may train the artificial neural network according to the machine learning algorithm on behalf of the AI devices 100a to 100e and directly store the learning model or transmit the training model to the AI devices 100a to 100e.
  • the AI server 200 receives input data from the AI devices 100a to 100e, infers a result value with respect to the received input data using a learning model, and generates a response or control command based on the inferred result value. Can be generated and transmitted to the AI device (100a to 100e).
  • the AI devices 100a to 100e may infer a result value from input data using a direct learning model and generate a response or control command based on the inferred result value.
  • the AI devices 100a to 100e to which the above-described technology is applied will be described.
  • the AI devices 100a to 100e illustrated in FIG. 22 may be viewed as specific embodiments of the AI device 100 illustrated in FIG. 20.
  • the robot 100a may be applied to an AI technology, and may be implemented as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, or the like.
  • the robot 100a may include a robot control module for controlling an operation, and the robot control module may refer to a software module or a chip implemented in hardware.
  • the robot 100a acquires state information of the robot 100a by using sensor information obtained from various kinds of sensors, detects (recognizes) the surrounding environment and an object, generates map data, moves paths and travels. You can decide on a plan, determine a response to a user interaction, or determine an action.
  • the robot 100a may use sensor information obtained from at least one sensor among a rider, a radar, and a camera to determine a movement route and a travel plan.
  • the robot 100a may perform the above operations by using a learning model composed of at least one artificial neural network.
  • the robot 100a may recognize the surrounding environment and the object using the learning model, and determine the operation using the recognized surrounding environment information or the object information.
  • the learning model may be directly learned by the robot 100a or may be learned by an external device such as the AI server 200.
  • the robot 100a may perform an operation by generating a result using a direct learning model, but transmits sensor information to an external device such as the AI server 200 and receives the result generated accordingly to perform an operation. You may.
  • the robot 100a determines a movement route and a travel plan by using at least one of map data, object information detected from sensor information, or object information obtained from an external device, and controls the driving unit to determine the movement path and the travel plan. Accordingly, the robot 100a may be driven.
  • the map data may include object identification information for various objects arranged in a space in which the robot 100a moves.
  • the map data may include object identification information about fixed objects such as walls and doors and movable objects such as flower pots and desks.
  • the object identification information may include a name, type, distance, location, and the like.
  • the robot 100a may control the driving unit based on the control / interaction of the user, thereby performing an operation or driving.
  • the robot 100a may acquire the intention information of the interaction according to the user's motion or voice utterance, and determine the response based on the obtained intention information to perform the operation.
  • the autonomous vehicle 100b may be implemented by an AI technology and implemented as a mobile robot, a vehicle, an unmanned aerial vehicle, or the like.
  • the autonomous vehicle 100b may include an autonomous driving control module for controlling the autonomous driving function, and the autonomous driving control module may refer to a software module or a chip implemented in hardware.
  • the autonomous driving control module may be included inside as a configuration of the autonomous driving vehicle 100b, but may be configured as a separate hardware and connected to the outside of the autonomous driving vehicle 100b.
  • the autonomous vehicle 100b obtains state information of the autonomous vehicle 100b by using sensor information obtained from various types of sensors, detects (recognizes) an environment and an object, generates map data, A travel route and a travel plan can be determined, or an action can be determined.
  • the autonomous vehicle 100b may use sensor information acquired from at least one sensor among a lidar, a radar, and a camera, similarly to the robot 100a, to determine a movement route and a travel plan.
  • the autonomous vehicle 100b may receive or recognize sensor information from external devices or receive information directly recognized from external devices. .
  • the autonomous vehicle 100b may perform the above operations by using a learning model composed of at least one artificial neural network.
  • the autonomous vehicle 100b may recognize a surrounding environment and an object using a learning model, and determine a driving line using the recognized surrounding environment information or object information.
  • the learning model may be learned directly from the autonomous vehicle 100b or may be learned from an external device such as the AI server 200.
  • the autonomous vehicle 100b may perform an operation by generating a result using a direct learning model, but transmits sensor information to an external device such as the AI server 200 and receives the result generated accordingly. You can also do
  • the autonomous vehicle 100b determines a moving route and a driving plan by using at least one of map data, object information detected from sensor information, or object information obtained from an external device, and controls the driving unit to determine the moving route and the driving plan. According to the plan, the autonomous vehicle 100b can be driven.
  • the map data may include object identification information for various objects arranged in a space (eg, a road) on which the autonomous vehicle 100b travels.
  • the map data may include object identification information about fixed objects such as street lights, rocks, buildings, and movable objects such as vehicles and pedestrians.
  • the object identification information may include a name, type, distance, location, and the like.
  • the autonomous vehicle 100b may perform an operation or drive by controlling the driving unit based on the user's control / interaction.
  • the autonomous vehicle 100b may acquire the intention information of the interaction according to the user's motion or voice utterance, and determine the response based on the obtained intention information to perform the operation.
  • AI technology is applied to the XR device 100c, and a head-mount display (HMD), a head-up display (HUD) provided in a vehicle, a television, a mobile phone, a smartphone, a computer, a wearable device, a home appliance, and a digital signage It may be implemented as a vehicle, a fixed robot or a mobile robot.
  • HMD head-mount display
  • HUD head-up display
  • the XR apparatus 100c analyzes three-dimensional point cloud data or image data obtained through various sensors or from an external device to generate location data and attribute data for three-dimensional points, thereby providing information on the surrounding space or reality object. It can obtain and render XR object to output. For example, the XR apparatus 100c may output an XR object including additional information about the recognized object in correspondence with the recognized object.
  • the XR apparatus 100c may perform the above-described operations using a learning model composed of at least one artificial neural network.
  • the XR apparatus 100c may recognize a reality object in 3D point cloud data or image data using a learning model, and may provide information corresponding to the recognized reality object.
  • the learning model may be learned directly from the XR device 100c or learned from an external device such as the AI server 200.
  • the XR apparatus 100c may perform an operation by generating a result using a direct learning model, but transmits sensor information to an external device such as the AI server 200 and receives the result generated accordingly. It can also be done.
  • the robot 100a may be implemented using an AI technology and an autonomous driving technology, such as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, or the like.
  • an autonomous driving technology such as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, or the like.
  • the robot 100a to which the AI technology and the autonomous driving technology are applied may mean a robot itself having an autonomous driving function, a robot 100a interacting with the autonomous vehicle 100b, and the like.
  • the robot 100a having an autonomous driving function may collectively move devices according to a given copper line or determine a copper line by itself without controlling the user.
  • the robot 100a and the autonomous vehicle 100b having the autonomous driving function may use a common sensing method to determine one or more of a movement route or a driving plan.
  • the robot 100a and the autonomous vehicle 100b having the autonomous driving function may determine one or more of the movement route or the driving plan by using information sensed through the lidar, the radar, and the camera.
  • the robot 100a that interacts with the autonomous vehicle 100b is separate from the autonomous vehicle 100b and is linked to the autonomous driving function inside or outside the autonomous vehicle 100b, or the autonomous vehicle 100b. ) May perform an operation associated with the user who boarded.
  • the robot 100a interacting with the autonomous vehicle 100b acquires sensor information on behalf of the autonomous vehicle 100b and provides the sensor information to the autonomous vehicle 100b or obtains sensor information, By generating object information and providing the object information to the autonomous vehicle 100b, the autonomous vehicle function of the autonomous vehicle 100b can be controlled or assisted.
  • the robot 100a interacting with the autonomous vehicle 100b may monitor a user in the autonomous vehicle 100b or control a function of the autonomous vehicle 100b through interaction with the user. .
  • the robot 100a may activate the autonomous driving function of the autonomous vehicle 100b or assist the control of the driver of the autonomous vehicle 100b.
  • the function of the autonomous vehicle 100b controlled by the robot 100a may include not only an autonomous vehicle function but also a function provided by a navigation system or an audio system provided inside the autonomous vehicle 100b.
  • the robot 100a interacting with the autonomous vehicle 100b may provide information or assist a function to the autonomous vehicle 100b outside the autonomous vehicle 100b.
  • the robot 100a may provide traffic information including signal information to the autonomous vehicle 100b, such as a smart signal light, or may interact with the autonomous vehicle 100b, such as an automatic electric charger of an electric vehicle. You can also automatically connect an electric charger to the charging port.
  • the robot 100a may be applied to an AI technology and an XR technology, and may be implemented as a guide robot, a transport robot, a cleaning robot, a wearable robot, an entertainment robot, a pet robot, an unmanned flying robot, a drone, or the like.
  • the robot 100a to which the XR technology is applied may mean a robot that is the object of control / interaction in the XR image.
  • the robot 100a may be distinguished from the XR apparatus 100c and interlocked with each other.
  • the robot 100a When the robot 100a that is the object of control / interaction in the XR image acquires sensor information from sensors including a camera, the robot 100a or the XR apparatus 100c generates an XR image based on the sensor information. In addition, the XR apparatus 100c may output the generated XR image. The robot 100a may operate based on a control signal input through the XR apparatus 100c or user interaction.
  • the user may check an XR image corresponding to the viewpoint of the robot 100a that is remotely linked through an external device such as the XR device 100c, and may adjust the autonomous driving path of the robot 100a through interaction. You can control the movement or driving, or check the information of the surrounding objects.
  • the autonomous vehicle 100b may be implemented by an AI technology and an XR technology, such as a mobile robot, a vehicle, an unmanned aerial vehicle, and the like.
  • the autonomous vehicle 100b to which the XR technology is applied may mean an autonomous vehicle having a means for providing an XR image, or an autonomous vehicle that is the object of control / interaction in the XR image.
  • the autonomous vehicle 100b, which is the object of control / interaction in the XR image is distinguished from the XR apparatus 100c and may be linked with each other.
  • the autonomous vehicle 100b having means for providing an XR image may acquire sensor information from sensors including a camera and output an XR image generated based on the obtained sensor information.
  • the autonomous vehicle 100b may provide a passenger with an XR object corresponding to a real object or an object in a screen by outputting an XR image with a HUD.
  • the XR object when the XR object is output to the HUD, at least a part of the XR object may be output to overlap the actual object to which the occupant's eyes are directed.
  • the XR object when the XR object is output on the display provided inside the autonomous vehicle 100b, at least a portion of the XR object may be output to overlap the object in the screen.
  • the autonomous vehicle 100b may output XR objects corresponding to objects such as a road, another vehicle, a traffic light, a traffic sign, a motorcycle, a pedestrian, a building, and the like.
  • the autonomous vehicle 100b that is the object of control / interaction in the XR image acquires sensor information from sensors including a camera
  • the autonomous vehicle 100b or the XR apparatus 100c may be based on the sensor information.
  • the XR image may be generated, and the XR apparatus 100c may output the generated XR image.
  • the autonomous vehicle 100b may operate based on a user's interaction or a control signal input through an external device such as the XR apparatus 100c.
  • Certain operations described in this document as being performed by a base station may be performed by an upper node in some cases. That is, it is obvious that various operations performed for communication with the terminal in a network including a plurality of network nodes including a base station may be performed by the base station or other network nodes other than the base station.
  • a base station may be replaced by terms such as a fixed station, a Node B, an eNode B (eNB), an access point, and the like.
  • Embodiments according to the present invention may be implemented by various means, for example, hardware, firmware, software, or a combination thereof.
  • an embodiment of the present invention may include one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), FPGAs ( field programmable gate arrays), processors, controllers, microcontrollers, microprocessors, and the like.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGAs field programmable gate arrays
  • processors controllers, microcontrollers, microprocessors, and the like.
  • an embodiment of the present invention may be implemented in the form of a module, procedure, function, etc. that performs the functions or operations described above.
  • the software code may be stored in a memory unit and driven by a processor.
  • the memory unit may be located inside or outside the processor, and may exchange data with the processor by various known means.

Abstract

본 발명은 무선 통신 시스템에서, 단말이 DMRS (Demodulation Reference Signal)을 수신하는 방법을 개시한다. 특히, 상기 방법은, PDCCH(Physical Downlink Control Channel)를 CORESET (Control Resource set) #0을 통해 수신하고, 상기 PDCCH를 기반으로 스케줄링되는 PDSCH (Physical Downlink Shared Channel) 및 상기 PDSCH를 위한 DMRS를 수신하는 것을 특징으로 하고, 상기 PDCCH가 SI-RNTI(System Information-Radio Network Temporary Identifier)로 어드레스(addressed)된 경우, 상기 DMRS를 위한 기준점은 상기 CORESET #0에 포함된 RB(Resource Block)들 중, 가장 낮은 넘버(number)를 가진 RB의 부반송파 #0일 수 있다.

Description

참조 신호를 송수신하는 방법 및 이를 위한 장치
본 발명은 참조 신호를 송수신하는 방법 및 이를 위한 장치에 관한 것으로서, 더욱 상세하게는, 하향링크 데이터 채널을 위한 DMRS (Demodulation Reference Signal)를 맵핑하기 위해 사용되는 기준점(Reference Point)을 기반으로 상기 DMRS를 송수신하는 방법 및 이를 위한 장치에 관한 것이다.
시대의 흐름에 따라 더욱 많은 통신 기기들이 더욱 큰 통신 트래픽을 요구하게 되면서, 기존 LTE 시스템보다 향상된 무선 광대역 통신인 차세대 5G 시스템이 요구되고 있다. NewRAT이라고 명칭되는, 이러한 차세대 5G 시스템에서는 Enhanced Mobile BroadBand (eMBB)/ Ultra-reliability and low-latency communication (URLLC)/Massive Machine-Type Communications (mMTC) 등으로 통신 시나리오가 구분된다.
여기서, eMBB는 High Spectrum Efficiency, High User Experienced Data Rate, High Peak Data Rate 등의 특성을 갖는 차세대 이동통신 시나리오이고, URLLC는 Ultra Reliable, Ultra Low Latency, Ultra High Availability 등의 특성을 갖는 차세대 이동통신 시나리오이며 (e.g., V2X, Emergency Service, Remote Control), mMTC는 Low Cost, Low Energy, Short Packet, Massive Connectivity 특성을 갖는 차세대 이동통신 시나리오이다. (e.g., IoT).
본 발명은 참조 신호를 송수신하는 방법 및 이를 위한 장치를 제공하고자 한다.
본 발명에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 발명의 실시 예에 따른 무선 통신 시스템에서, 단말이 DMRS (Demodulation Reference Signal)을 수신하는 방법에 있어서, PDCCH(Physical Downlink Control Channel)를 CORESET (Control Resource set) #0을 통해 수신하고, 상기 PDCCH를 기반으로 스케줄링되는 PDSCH (Physical Downlink Shared Channel) 및 상기 PDSCH를 위한 DMRS를 수신하는 것을 특징으로 하고, 상기 PDCCH가 SI-RNTI(System Information-Radio Network Temporary Identifier)로 어드레스(addressed)된 경우, 상기 DMRS를 위한 기준점은 상기 CORESET #0에 포함된 RB(Resource Block)들 중, 가장 낮은 넘버(number)를 가진 RB의 부반송파 #0일 수 있다.
이 때, 상기 CORESET #0은, SS/PBCH(Synchronization Signal/Physical Broadcast Channel) 블록에 포함된 PBCH를 기반으로 설정될 수 있다.
또한, 상기 PDCCH는, 상기 CORESET #0의 검색 공간(Search Space) #0을 통해 수신될 수 있다.
또한, 상기 검색 공간 #0은, SS/PBCH(Synchronization Signal/Physical Broadcast Channel) 블록에 포함된 PBCH를 기반으로 설정되는 공통 검색 공간(Common Search Space)일 수 있다.
또한, 상기 단말은, 상기 단말 이외의 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능할 수 있다.
본 발명에 따른 무선 통신 시스템에서, DMRS (Demodulation Reference Signal)을 수신하기 위한 장치에 있어서, 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, PDCCH(Physical Downlink Control Channel)를 CORESET (Control Resource set) #0을 통해 수신하고, 상기 PDCCH를 기반으로 스케줄링되는 PDSCH (Physical Downlink Shared Channel) 및 상기 PDSCH를 위한 DMRS를 수신하는 것을 특징으로 하고, 상기 PDCCH가 SI-RNTI(System Information-Radio Network Temporary Identifier)로 어드레스(addressed)된 경우, 상기 DMRS를 위한 기준점은 상기 CORESET #0에 포함된 RB(Resource Block)들 중, 가장 낮은 넘버(number)를 가진 RB의 부반송파 #0일 수 있다.
또한, 상기 CORESET #0은, SS/PBCH(Synchronization Signal/Physical Broadcast Channel) 블록에 포함된 PBCH를 기반으로 설정될 수 있다.
또한, 상기 PDCCH는, 상기 CORESET #0의 검색 공간(Search Space) #0을 통해 수신될 수 있다.
또한, 상기 검색 공간 #0은, SS/PBCH(Synchronization Signal/Physical Broadcast Channel) 블록에 포함된 PBCH를 기반으로 설정되는 공통 검색 공간(Common Search Space)일 수 있다.
또한, 상기 장치는, 단말, 네트워크, 기지국 및 상기 장치 이외의 자율 주행 차량 중 적어도 하나와 통신 가능할 수 있다.
본 발명에 따른 무선 통신 시스템에서, DMRS (Demodulation Reference Signal)을 수신하기 위한 단말에 있어서, 적어도 하나의 트랜시버; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, 상기 적어도 하나의 트랜시버를 통해, PDCCH(Physical Downlink Control Channel)를 CORESET (Control Resource set) #0을 통해 수신하고, 상기 적어도 하나의 트랜시버를 통해, 상기 PDCCH를 기반으로 스케줄링되는 PDSCH (Physical Downlink Shared Channel) 및 상기 PDSCH를 위한 DMRS를 수신하는 것을 특징으로 하고, 상기 PDCCH가 SI-RNTI(System Information-Radio Network Temporary Identifier)로 어드레스(addressed)된 경우, 상기 DMRS를 위한 기준점은 상기 CORESET #0에 포함된 RB(Resource Block)들 중, 가장 낮은 넘버(number)를 가진 RB의 부반송파 #0일 수 있다.
본 발명의 실시 예에 따른 무선 통신 시스템에서, 기지국이 DMRS (Demodulation Reference Signal)을 전송하는 방법에 있어서, PDCCH(Physical Downlink Control Channel)를 CORESET (Control Resource set) #0을 통해 전송하고, 상기 PDCCH를 기반으로 스케줄링되는 PDSCH (Physical Downlink Shared Channel) 및 상기 PDSCH를 위한 DMRS를 전송하는 것을 특징으로 하고, 상기 PDCCH가 SI-RNTI(System Information-Radio Network Temporary Identifier)로 어드레스(addressed)된 경우, 상기 DMRS를 위한 기준점은 상기 CORESET #0에 포함된 RB(Resource Block)들 중, 가장 낮은 넘버(number)를 가진 RB의 부반송파 #0일 수 있다.
본 발명에 따른 무선 통신 시스템에서, DMRS (Demodulation Reference Signal)을 전송하기 위한 기지국에 있어서, 적어도 하나의 트랜시버; 적어도 하나의 프로세서; 및 상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고, 상기 특정 동작은, 상기 적어도 하나의 트랜시버를 통해, PDCCH(Physical Downlink Control Channel)를 CORESET (Control Resource set) #0을 통해 전송하고, 상기 적어도 하나의 트랜시버를 통해, 상기 PDCCH를 기반으로 스케줄링되는 PDSCH (Physical Downlink Shared Channel) 및 상기 PDSCH를 위한 DMRS를 전송하는 것을 특징으로 하고, 상기 PDCCH가 SI-RNTI(System Information-Radio Network Temporary Identifier)로 어드레스(addressed)된 경우, 상기 DMRS를 위한 기준점은 상기 CORESET #0에 포함된 RB(Resource Block)들 중, 가장 낮은 넘버(number)를 가진 RB의 부반송파 #0일 수 있다.
본 발명에 따르면, 공통 자원 블록 그리드(Common Resource Block Grid)에 대한 정보를 정확히 알지 못하더라도, 모호성(ambiguity) 없이 참조 신호를 맵핑할 수 있다.
본 발명에서 얻을 수 있는 효과는 이상에서 언급한 효과들로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면.
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면.
도 3 내지 도 5은 NR 시스템에서 사용되는 무선 프레임 및 슬롯의 구조를 설명하기 위한 도면이다.
도 6 내지 도 8은 NR 시스템에서 하향링크 제어 채널 (Physical Downlink Control Channel; PDCCH)에 대해 설명하기 위한 도면이다.
도 9 내지 도 11은 본 발명에 따른 단말, 기지국 및 네트워크의 동작 구현 예를 설명하기 위한 도면이다.
도 12는 본 발명을 수행하는 무선 장치의 구성요소를 나타내는 블록도이다.
도 13 내지 도 15는 본 발명의 실시 예들을 구현하기 위한 AI (Artificial Intelligence) 시스템 및 장치의 예시를 나타내는 도면이다.
이하에서 첨부된 도면을 참조하여 설명된 본 발명의 실시예들에 의해 본 발명의 구성, 작용 및 다른 특징들이 용이하게 이해될 수 있을 것이다. 이하에서 설명되는 실시예들은 본 발명의 기술적 특징들이 3GPP 시스템에 적용된 예들이다.
본 명세서는 LTE 시스템, LTE-A 시스템 및 NR 시스템을 사용하여 본 발명의 실시예를 설명하지만, 이는 예시로서 본 발명의 실시예는 상기 정의에 해당되는 어떤 통신 시스템에도 적용될 수 있다.
또한, 본 명세서는 기지국의 명칭은 RRH(remote radio head), eNB, TP(transmission point), RP(reception point), 중계기(relay) 등을 포함하는 포괄적인 용어로 사용될 수 있다.
3GPP 기반 통신 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 하향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 하향링크 물리 신호들을 정의된다. 예를 들어, 물리 하향링크 공유 채널(physical downlink shared channel, PDSCH), 물리 브로드캐스트 채널(physical broadcast channel, PBCH), 물리 멀티캐스트 채널(physical multicast channel, PMCH), 물리 제어 포맷 지시자 채널(physical control format indicator channel, PCFICH), 물리 하향링크 제어 채널(physical downlink control channel, PDCCH) 및 물리 하이브리드 ARQ 지시자 채널(physical hybrid ARQ indicator channel, PHICH)들이 하향링크 물리 채널들로서 정의되어 있으며, 참조 신호와 동기 신호가 하향링크 물리 신호들로서 정의되어 있다. 파일럿(pilot)이라고도 지칭되는 참조 신호(reference signal, RS)는 gNB와 UE가 서로 알고 있는 기정의된 특별한 파형의 신호를 의미하는데, 예를 들어, 셀 특정적 RS(cell specific RS), UE-특정적 RS(UE-specific RS, UE-RS), 포지셔닝 RS(positioning RS, PRS) 및 채널 상태 정보 RS(channel state information RS, CSI-RS)가 하향링크 참조 신호로서 정의된다. 3GPP LTE/LTE-A 표준은 상위 계층으로부터 기원한 정보를 나르는 자원 요소들에 대응하는 상향링크 물리 채널들과, 물리 계층에 의해 사용되나 상위 계층으로부터 기원하는 정보를 나르지 않는 자원 요소들에 대응하는 상향링크 물리 신호들을 정의하고 있다. 예를 들어, 물리 상향링크 공유 채널(physical uplink shared channel, PUSCH), 물리 상향링크 제어 채널(physical uplink control channel, PUCCH), 물리 임의 접속 채널(physical random access channel, PRACH)가 상향링크 물리 채널로서 정의되며, 상향링크 제어/데이터 신호를 위한 복조 참조 신호(demodulation reference signal, DMRS)와 상향링크 채널 측정에 사용되는 사운딩 참조 신호(sounding reference signal, SRS)가 정의된다.
본 발명에서 PDCCH(Physical Downlink Control CHannel)/PCFICH(Physical Control Format Indicator CHannel)/PHICH((Physical Hybrid automatic retransmit request Indicator CHannel)/PDSCH(Physical Downlink Shared CHannel)은 각각 DCI(Downlink Control Information)/CFI(Control Format Indicator)/하향링크 ACK/NACK(ACKnowlegement/Negative ACK)/하향링크 데이터를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 또한, PUCCH(Physical Uplink Control CHannel)/PUSCH(Physical Uplink Shared CHannel)/PRACH(Physical Random Access CHannel)는 각각 UCI(Uplink Control Information)/상향링크 데이터/랜덤 엑세스 신호를 나르는 시간-주파수 자원의 집합 혹은 자원요소의 집합을 의미한다. 본 발명에서는, 특히, PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH에 할당되거나 이에 속한 시간-주파수 자원 혹은 자원요소(Resource Element, RE)를 각각 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH RE 또는 PDCCH/PCFICH/PHICH/PDSCH/PUCCH/PUSCH/PRACH 자원이라고 칭한다. 이하에서 사용자기기가 PUCCH/PUSCH/PRACH를 전송한다는 표현은, 각각, PUSCH/PUCCH/PRACH 상에서 혹은 통해서 상향링크 제어정보/상향링크 데이터/랜덤 엑세스 신호를 전송한다는 것과 동일한 의미로 사용된다. 또한, gNB가 PDCCH/PCFICH/PHICH/PDSCH를 전송한다는 표현은, 각각, PDCCH/PCFICH/PHICH/PDSCH 상에서 혹은 통해서 하향링크 데이터/제어정보를 전송한다는 것과 동일한 의미로 사용된다.
이하에서는 CRS/DMRS/CSI-RS/SRS/UE-RS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 CRS/DMRS/CSI-RS/SRS/UE-RS 심볼/반송파/부반송파/RE라고 칭한다. 예를 들어, 트랙킹 RS(tracking RS, TRS)가 할당된 혹은 설정(Configuration)된 OFDM 심볼은 TRS 심볼이라고 칭하며, TRS가 할당된 혹은 설정(Configuration)된 부반송파는 TRS 부반송파라 칭하며, TRS가 할당된 혹은 설정(Configuration)된 RE 는 TRS RE라고 칭한다. 또한, TRS 전송을 위해 설정(Configuration)된(configured) 서브프레임을 TRS 서브프레임이라 칭한다. 또한 브로드캐스트 신호가 전송되는 서브프레임을 브로드캐스트 서브프레임 혹은 PBCH 서브프레임이라 칭하며, 동기 신호(예를 들어, PSS 및/또는 SSS)가 전송되는 서브프레임을 동기 신호 서브프레임 혹은 PSS/SSS 서브프레임이라고 칭한다. PSS/SSS가 할당된 혹은 설정(Configuration)된(configured) OFDM 심볼/부반송파/RE를 각각 PSS/SSS 심볼/부반송파/RE라 칭한다.
본 발명에서 CRS 포트, UE-RS 포트, CSI-RS 포트, TRS 포트라 함은 각각 CRS를 전송하도록 설정(Configuration)된(configured) 안테나 포트, UE-RS를 전송하도록 설정(Configuration)된 안테나 포트, CSI-RS를 전송하도록 설정(Configuration)된 안테나 포트, TRS를 전송하도록 설정(Configuration)된 안테나 포트를 의미한다. CRS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CRS 포트들에 따라 CRS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, UE-RS들을 전송하도록 설정(Configuration)된(configured) 안테나 포트들은 UE-RS 포트들에 따라 UE-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있으며, CSI-RS들을 전송하도록 설정(Configuration)된 안테나 포트들은 CSI-RS 포트들에 따라 CSI-RS가 점유하는 RE들의 위치에 의해 상호 구분될 수 있다. 따라서 CRS/UE-RS/CSI-RS/TRS 포트라는 용어가 일정 자원 영역 내에서 CRS/UE-RS/CSI-RS/TRS가 점유하는 RE들의 패턴을 의미하는 용어로서 사용되기도 한다.
<인공 지능(AI: Artificial Intelligence)>
인공 지능은 인공적인 지능 또는 이를 만들 수 있는 방법론을 연구하는 분야를 의미하며, 머신 러닝(기계 학습, Machine Learning)은 인공 지능 분야에서 다루는 다양한 문제를 정의하고 그것을 해결하는 방법론을 연구하는 분야를 의미한다. 머신 러닝은 어떠한 작업에 대하여 꾸준한 경험을 통해 그 작업에 대한 성능을 높이는 알고리즘으로 정의하기도 한다.
인공 신경망(ANN: Artificial Neural Network)은 머신 러닝에서 사용되는 모델로써, 시냅스의 결합으로 네트워크를 형성한 인공 뉴런(노드)들로 구성되는, 문제 해결 능력을 가지는 모델 전반을 의미할 수 있다. 인공 신경망은 다른 레이어의 뉴런들 사이의 연결 패턴, 모델 파라미터를 갱신하는 학습 과정, 출력값을 생성하는 활성화 함수(Activation Function)에 의해 정의될 수 있다.
인공 신경망은 입력층(Input Layer), 출력층(Output Layer), 그리고 선택적으로 하나 이상의 은닉층(Hidden Layer)를 포함할 수 있다. 각 층은 하나 이상의 뉴런을 포함하고, 인공 신경망은 뉴런과 뉴런을 연결하는 시냅스를 포함할 수 있다. 인공 신경망에서 각 뉴런은 시냅스를 통해 입력되는 입력 신호들, 가중치, 편향에 대한 활성 함수의 함숫값을 출력할 수 있다.
모델 파라미터는 학습을 통해 결정되는 파라미터를 의미하며, 시냅스 연결의 가중치와 뉴런의 편향 등이 포함된다. 그리고, 하이퍼파라미터는 머신 러닝 알고리즘에서 학습 전에 설정되어야 하는 파라미터를 의미하며, 학습률(Learning Rate), 반복 횟수, 미니 배치 크기, 초기화 함수 등이 포함된다.
인공 신경망의 학습의 목적은 손실 함수를 최소화하는 모델 파라미터를 결정하는 것으로 볼 수 있다. 손실 함수는 인공 신경망의 학습 과정에서 최적의 모델 파라미터를 결정하기 위한 지표로 이용될 수 있다.
머신 러닝은 학습 방식에 따라 지도 학습(Supervised Learning), 비지도 학습(Unsupervised Learning), 강화 학습(Reinforcement Learning)으로 분류할 수 있다.
지도 학습은 학습 데이터에 대한 레이블(label)이 주어진 상태에서 인공 신경망을 학습시키는 방법을 의미하며, 레이블이란 학습 데이터가 인공 신경망에 입력되는 경우 인공 신경망이 추론해 내야 하는 정답(또는 결과 값)을 의미할 수 있다. 비지도 학습은 학습 데이터에 대한 레이블이 주어지지 않는 상태에서 인공 신경망을 학습시키는 방법을 의미할 수 있다. 강화 학습은 어떤 환경 안에서 정의된 에이전트가 각 상태에서 누적 보상을 최대화하는 행동 혹은 행동 순서를 선택하도록 학습시키는 학습 방법을 의미할 수 있다.
인공 신경망 중에서 복수의 은닉층을 포함하는 심층 신경망(DNN: Deep Neural Network)으로 구현되는 머신 러닝을 딥 러닝(심층 학습, Deep Learning)이라 부르기도 하며, 딥 러닝은 머신 러닝의 일부이다. 이하에서, 머신 러닝은 딥 러닝을 포함하는 의미로 사용된다.
<로봇(Robot)>
로봇은 스스로 보유한 능력에 의해 주어진 일을 자동으로 처리하거나 작동하는 기계를 의미할 수 있다. 특히, 환경을 인식하고 스스로 판단하여 동작을 수행하는 기능을 갖는 로봇을 지능형 로봇이라 칭할 수 있다.
로봇은 사용 목적이나 분야에 따라 산업용, 의료용, 가정용, 군사용 등으로 분류할 수 있다.
로봇은 액츄에이터 또는 모터를 포함하는 구동부를 구비하여 로봇 관절을 움직이는 등의 다양한 물리적 동작을 수행할 수 있다. 또한, 이동 가능한 로봇은 구동부에 휠, 브레이크, 프로펠러 등이 포함되어, 구동부를 통해 지상에서 주행하거나 공중에서 비행할 수 있다.
<자율 주행(Self-Driving, Autonomous-Driving)>
자율 주행은 스스로 주행하는 기술을 의미하며, 자율 주행 차량은 사용자의 조작 없이 또는 사용자의 최소한의 조작으로 주행하는 차량(Vehicle)을 의미한다.
예컨대, 자율 주행에는 주행중인 차선을 유지하는 기술, 어댑티브 크루즈 컨트롤과 같이 속도를 자동으로 조절하는 기술, 정해진 경로를 따라 자동으로 주행하는 기술, 목적지가 설정되면 자동으로 경로를 설정하여 주행하는 기술 등이 모두 포함될 수 있다.
차량은 내연 기관만을 구비하는 차량, 내연 기관과 전기 모터를 함께 구비하는 하이브리드 차량, 그리고 전기 모터만을 구비하는 전기 차량을 모두 포괄하며, 자동차뿐만 아니라 기차, 오토바이 등을 포함할 수 있다.
이때, 자율 주행 차량은 자율 주행 기능을 가진 로봇으로 볼 수 있다.
<확장 현실(XR: eXtended Reality)>
확장 현실은 가상 현실(VR: Virtual Reality), 증강 현실(AR: Augmented Reality), 혼합 현실(MR: Mixed Reality)을 총칭한다. VR 기술은 현실 세계의 객체나 배경 등을 CG 영상으로만 제공하고, AR 기술은 실제 사물 영상 위에 가상으로 만들어진 CG 영상을 함께 제공하며, MR 기술은 현실 세계에 가상 객체들을 섞고 결합시켜서 제공하는 컴퓨터 그래픽 기술이다.
MR 기술은 현실 객체와 가상 객체를 함께 보여준다는 점에서 AR 기술과 유사하다. 그러나, AR 기술에서는 가상 객체가 현실 객체를 보완하는 형태로 사용되는 반면, MR 기술에서는 가상 객체와 현실 객체가 동등한 성격으로 사용된다는 점에서 차이점이 있다.
XR 기술은 HMD(Head-Mount Display), HUD(Head-Up Display), 휴대폰, 태블릿 PC, 랩탑, 데스크탑, TV, 디지털 사이니지 등에 적용될 수 있고, XR 기술이 적용된 장치를 XR 장치(XR Device)라 칭할 수 있다.
이제, NR 시스템을 포함한 5G 통신에 대해서 살펴보도록 한다.
5G의 세 가지 주요 요구 사항 영역은 (1) 개선된 모바일 광대역 (Enhanced Mobile Broadband, eMBB) 영역, (2) 다량의 머신 타입 통신 (massive Machine Type Communication, mMTC) 영역 및 (3) 초-신뢰 및 저 지연 통신 (Ultra-reliable and Low Latency Communications, URLLC) 영역을 포함한다.
일부 사용 예(Use Case)는 최적화를 위해 다수의 영역들이 요구될 수 있고, 다른 사용 예는 단지 하나의 핵심 성능 지표 (Key Performance Indicator, KPI)에만 포커싱될 수 있다. 5G는 이러한 다양한 사용 예들을 유연하고 신뢰할 수 있는 방법으로 지원하는 것이다.
eMBB는 기본적인 모바일 인터넷 액세스를 훨씬 능가하게 하며, 풍부한 양방향 작업, 클라우드 또는 증강 현실에서 미디어 및 엔터테인먼트 애플리케이션을 커버한다. 데이터는 5G의 핵심 동력 중 하나이며, 5G 시대에서 처음으로 전용 음성 서비스를 볼 수 없을 수 있다. 5G에서, 음성은 단순히 통신 시스템에 의해 제공되는 데이터 연결을 사용하여 응용 프로그램으로서 처리될 것이 기대된다. 증가된 트래픽 양(volume)을 위한 주요 원인들은 콘텐츠 크기의 증가 및 높은 데이터 전송률을 요구하는 애플리케이션 수의 증가이다. 스트리밍 서비스 (오디오 및 비디오), 대화형 비디오 및 모바일 인터넷 연결은 더 많은 장치가 인터넷에 연결될수록 더 널리 사용될 것이다. 이러한 많은 응용 프로그램들은 사용자에게 실시간 정보 및 알림을 푸쉬하기 위해 항상 켜져 있는 연결성이 필요하다. 클라우드 스토리지 및 애플리케이션은 모바일 통신 플랫폼에서 급속히 증가하고 있으며, 이것은 업무 및 엔터테인먼트 모두에 적용될 수 있다. 그리고, 클라우드 스토리지는 상향링크 데이터 전송률의 성장을 견인하는 특별한 사용 예이다. 5G는 또한 클라우드의 원격 업무에도 사용되며, 촉각 인터페이스가 사용될 때 우수한 사용자 경험을 유지하도록 훨씬 더 낮은 단-대-단(end-to-end) 지연을 요구한다. 엔터테인먼트 예를 들어, 클라우드 게임 및 비디오 스트리밍은 모바일 광대역 능력에 대한 요구를 증가시키는 또 다른 핵심 요소이다. 엔터테인먼트는 기차, 차 및 비행기와 같은 높은 이동성 환경을 포함하는 어떤 곳에서든지 스마트폰 및 태블릿에서 필수적이다. 또 다른 사용 예는 엔터테인먼트를 위한 증강 현실 및 정보 검색이다. 여기서, 증강 현실은 매우 낮은 지연과 순간적인 데이터 양을 필요로 한다.
또한, 가장 많이 예상되는 5G 사용 예 중 하나는 모든 분야에서 임베디드 센서를 원활하게 연결할 수 있는 기능 즉, mMTC에 관한 것이다. 2020년까지 잠재적인 IoT 장치들은 204 억 개에 이를 것으로 예측된다. 산업 IoT는 5G가 스마트 도시, 자산 추적(asset tracking), 스마트 유틸리티, 농업 및 보안 인프라를 가능하게 하는 주요 역할을 수행하는 영역 중 하나이다.
URLLC는 주요 인프라의 원격 제어 및 자체-구동 차량(self-driving vehicle)과 같은 초 신뢰 / 이용 가능한 지연이 적은 링크를 통해 산업을 변화시킬 새로운 서비스를 포함한다. 신뢰성과 지연의 수준은 스마트 그리드 제어, 산업 자동화, 로봇 공학, 드론 제어 및 조정에 필수적이다.
다음으로, NR 시스템을 포함한 5G 통신 시스템에서의 다수의 사용 예들에 대해 보다 구체적으로 살펴본다.
5G는 초당 수백 메가 비트에서 초당 기가 비트로 평가되는 스트림을 제공하는 수단으로 FTTH (fiber-to-the-home) 및 케이블 기반 광대역 (또는 DOCSIS)을 보완할 수 있다. 이러한 빠른 속도는 가상 현실과 증강 현실뿐 아니라 4K 이상(6K, 8K 및 그 이상)의 해상도로 TV를 전달하는데 요구된다. VR(Virtual Reality) 및 AR(Augmented Reality) 애플리케이션들은 거의 몰입형(immersive) 스포츠 경기를 포함한다. 특정 응용 프로그램은 특별한 네트워크 설정이 요구될 수 있다. 예를 들어, VR 게임의 경우, 게임 회사들이 지연을 최소화하기 위해 코어 서버를 네트워크 오퍼레이터의 에지 네트워크 서버와 통합해야 할 수 있다.
자동차(Automotive)는 차량에 대한 이동 통신을 위한 많은 사용 예들과 함께 5G에 있어 중요한 새로운 동력이 될 것으로 예상된다. 예를 들어, 승객을 위한 엔터테인먼트는 동시의 높은 용량과 높은 이동성 모바일 광대역을 요구한다. 그 이유는 미래의 사용자는 그들의 위치 및 속도와 관계 없이 고품질의 연결을 계속해서 기대하기 때문이다. 자동차 분야의 다른 활용 예는 증강 현실 대시보드이다. 이는 운전자가 앞면 창을 통해 보고 있는 것 위에 어둠 속에서 물체를 식별하고, 물체의 거리와 움직임에 대해 운전자에게 말해주는 정보를 겹쳐서 디스플레이 한다. 미래에, 무선 모듈은 차량들 간의 통신, 차량과 지원하는 인프라구조 사이에서 정보 교환 및 자동차와 다른 연결된 디바이스들(예를 들어, 보행자에 의해 수반되는 디바이스들) 사이에서 정보 교환을 가능하게 한다. 안전 시스템은 운전자가 보다 안전한 운전을 할 수 있도록 행동의 대체 코스들을 안내하여 사고의 위험을 낮출 수 있게 한다. 다음 단계는 원격 조종되거나 자체 운전 차량(self-driven vehicle)이 될 것이다. 이는 서로 다른 자체 운전 차량들 사이 및 자동차와 인프라 사이에서 매우 신뢰성이 있고, 매우 빠른 통신을 요구한다. 미래에, 자체 운전 차량이 모든 운전 활동을 수행하고, 운전자는 차량 자체가 식별할 수 없는 교통 이상에만 집중하도록 할 것이다. 자체 운전 차량의 기술적 요구 사항은 트래픽 안전을 사람이 달성할 수 없을 정도의 수준까지 증가하도록 초 저 지연과 초고속 신뢰성을 요구한다.
스마트 사회(smart society)로서 언급되는 스마트 도시와 스마트 홈은 고밀도 무선 센서 네트워크로 임베디드될 것이다. 지능형 센서의 분산 네트워크는 도시 또는 집의 비용 및 에너지-효율적인 유지에 대한 조건을 식별할 것이다. 유사한 설정이 각 가정을 위해 수행될 수 있다. 온도 센서, 창 및 난방 컨트롤러, 도난 경보기 및 가전 제품들은 모두 무선으로 연결된다. 이러한 센서들 중 많은 것들이 전형적으로 낮은 데이터 전송 속도, 저전력 및 저비용이다. 하지만, 예를 들어, 실시간 HD 비디오는 감시를 위해 특정 타입의 장치에서 요구될 수 있다.
열 또는 가스를 포함한 에너지의 소비 및 분배는 고도로 분산화되고 있어, 분산 센서 네트워크의 자동화된 제어가 요구된다. 스마트 그리드는 정보를 수집하고 이에 따라 행동하도록 디지털 정보 및 통신 기술을 사용하여 이런 센서들을 상호 연결한다. 이 정보는 공급 업체와 소비자의 행동을 포함할 수 있으므로, 스마트 그리드가 효율성, 신뢰성, 경제성, 생산의 지속 가능성 및 자동화된 방식으로 전기와 같은 연료들의 분배를 개선하도록 할 수 있다. 스마트 그리드는 지연이 적은 다른 센서 네트워크로 볼 수도 있다.
건강 부문은 이동 통신의 혜택을 누릴 수 있는 많은 응용 프로그램을 보유하고 있다. 통신 시스템은 멀리 떨어진 곳에서 임상 진료를 제공하는 원격 진료를 지원할 수 있다. 이는 거리에 대한 장벽을 줄이는데 도움을 주고, 거리가 먼 농촌에서 지속적으로 이용하지 못하는 의료 서비스들로의 접근을 개선시킬 수 있다. 이는 또한 중요한 진료 및 응급 상황에서 생명을 구하기 위해 사용된다. 이동 통신 기반의 무선 센서 네트워크는 심박수 및 혈압과 같은 파라미터들에 대한 원격 모니터링 및 센서들을 제공할 수 있다.
무선 및 모바일 통신은 산업 응용 분야에서 점차 중요해지고 있다. 배선은 설치 및 유지 비용이 높다. 따라서, 케이블을 재구성할 수 있는 무선 링크들로의 교체 가능성은 많은 산업 분야에서 매력적인 기회이다. 그러나, 이를 달성하는 것은 무선 연결이 케이블과 비슷한 지연, 신뢰성 및 용량으로 동작하는 것과, 그 관리가 단순화될 것이 요구된다. 낮은 지연과 매우 낮은 오류 확률은 5G로 연결될 필요가 있는 새로운 요구 사항이다.
물류(logistics) 및 화물 추적(freight tracking)은 위치 기반 정보 시스템을 사용하여 어디에서든지 인벤토리(inventory) 및 패키지의 추적을 가능하게 하는 이동 통신에 대한 중요한 사용 예이다. 물류 및 화물 추적의 사용 예는 전형적으로 낮은 데이터 속도를 요구하지만 넓은 범위와 신뢰성 있는 위치 정보가 필요하다.
도 1은 3GPP 무선 접속망 규격을 기반으로 한 단말과 E-UTRAN 사이의 무선 인터페이스 프로토콜(Radio Interface Protocol)의 제어평면(Control Plane) 및 사용자평면(User Plane) 구조를 나타내는 도면이다. 제어평면은 단말(User Equipment; UE)과 네트워크가 호를 관리하기 위해서 이용하는 제어 메시지들이 송신되는 통로를 의미한다. 사용자평면은 애플리케이션 계층에서 생성된 데이터, 예를 들어, 음성 데이터 또는 인터넷 패킷 데이터 등이 송신되는 통로를 의미한다.
제1계층인 물리계층은 물리채널(Physical Channel)을 이용하여 상위 계층에게 정보 송신 서비스(Information Transfer Service)를 제공한다. 물리계층은 상위에 있는 매체접속제어(Medium Access Control) 계층과는 송신채널(Trans포트 Channel)을 통해 연결되어 있다. 상기 송신채널을 통해 매체접속제어 계층과 물리계층 사이에 데이터가 이동한다. 송신측과 수신측의 물리계층 사이는 물리채널을 통해 데이터가 이동한다. 상기 물리채널은 시간과 주파수를 무선 자원으로 활용한다. 구체적으로, 물리채널은 하향링크에서 OFDMA(Orthogonal Frequency Division Multiple Access) 방식으로 변조되고, 상향링크에서 SC-FDMA(Single Carrier Frequency Division Multiple Access) 방식으로 변조된다.
제2계층의 매체접속제어(Medium Access Control; MAC) 계층은 논리채널(Logical Channel)을 통해 상위계층인 무선링크제어(Radio Link Control; RLC) 계층에 서비스를 제공한다. 제2계층의 RLC 계층은 신뢰성 있는 데이터 송신을 지원한다. RLC 계층의 기능은 MAC 내부의 기능 블록으로 구현될 수도 있다. 제2계층의 PDCP(Packet Data Convergence Protocol) 계층은 대역폭이 좁은 무선 인터페이스에서 IPv4나 IPv6와 같은 IP 패킷을 효율적으로 송신하기 위해 불필요한 제어정보를 줄여주는 헤더 압축(Header Compression) 기능을 수행한다.
제3계층의 최하부에 위치한 무선 자원제어(Radio Resource Control; RRC) 계층은 제어평면에서만 정의된다. RRC 계층은 무선베어러(Radio Bearer)들의 설정(Configuration), 재설정(Re-configuration) 및 해제(Release)와 관련되어 논리채널, 송신채널 및 물리채널들의 제어를 담당한다. 무선 베어러는 단말과 네트워크 간의 데이터 전달을 위해 제2계층에 의해 제공되는 서비스를 의미한다. 이를 위해, 단말과 네트워크의 RRC 계층은 서로 RRC 메시지를 교환한다. 단말과 네트워크의 RRC 계층 사이에 RRC 연결(RRC Connected)이 있을 경우, 단말은 RRC 연결 상태(Connected Mode)에 있게 되고, 그렇지 못할 경우 RRC 휴지 상태(Idle Mode)에 있게 된다. RRC 계층의 상위에 있는 NAS(Non-Access Stratum) 계층은 세션 관리(Session Management)와 이동성 관리(Mobility Management) 등의 기능을 수행한다.
네트워크에서 단말로 데이터를 송신하는 하향 송신채널은 시스템 정보를 송신하는 BCH(Broadcast Channel), 페이징 메시지를 송신하는 PCH(Paging Channel), 사용자 트래픽이나 제어 메시지를 송신하는 하향 SCH(Shared Channel) 등이 있다. 하향 멀티캐스트 또는 방송 서비스의 트래픽 또는 제어 메시지의 경우 하향 SCH를 통해 송신될 수도 있고, 또는 별도의 하향 MCH(Multicast Channel)을 통해 송신될 수도 있다. 한편, 단말에서 네트워크로 데이터를 송신하는 상향 송신채널로는 초기 제어 메시지를 송신하는 RACH(Random Access Channel), 사용자 트래픽이나 제어 메시지를 송신하는 상향 SCH(Shared Channel)가 있다. 송신채널의 상위에 있으며, 송신채널에 매핑되는 논리채널(Logical Channel)로는 BCCH(Broadcast Control Channel), PCCH(Paging Control Channel), CCCH(Common Control Channel), MCCH(Multicast Control Channel), MTCH(Multicast Traffic Channel) 등이 있다.
도 2는 3GPP 시스템에 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송신 방법을 설명하기 위한 도면이다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S201). 이를 위해, 단말은 기지국으로부터 주 동기 채널(Primary Synchronization Channel; P-SCH) 및 부 동기 채널(Secondary Synchronization Channel; S-SCH)을 수신하여 기지국과 동기를 맞추고, 셀 ID 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(Downlink Reference Signal; DL RS)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(Physical Downlink Control Channel; PDCCH) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(Physical Downlink Control Channel; PDSCH)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S202).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(Random Access Procedure; RACH)을 수행할 수 있다(단계 S203 내지 단계 S206). 이를 위해, 단말은 물리 임의 접속 채널(Physical Random Access Channel; PRACH)을 통해 특정 시퀀스를 프리앰블로 송신하고(S203 및 S205), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S204 및 S206). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S207) 및 물리 상향링크 공유 채널(Physical Uplink Shared Channel; PUSCH)/물리 상향링크 제어 채널(Physical Uplink Control Channel; PUCCH) 송신(S208)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(Downlink Control Information; DCI)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix 인덱스), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.
한편, NR 시스템은 넓은 주파수 대역을 이용하여 다수의 사용자에게 높은 전송율을 유지하면서 데이터 전송을 하기 위해 높은 초고주파 대역, 즉, 6GHz 이상의 밀리미터 주파수 대역을 이용하는 방안을 고려하고 있다. 3GPP에서는 이를 NR이라는 이름으로 사용하고 있으며, 본 발명에서는 앞으로 NR 시스템으로 칭한다.
도 3은 NR에서 사용되는 무선 프레임의 구조를 예시한다.
NR에서 상향링크 및 하향링크 전송은 프레임으로 구성된다. 무선 프레임은 10ms의 길이를 가지며, 2개의 5ms 하프-프레임(Half-Frame, HF)으로 정의된다. 하프-프레임은 5개의 1ms 서브프레임(Subframe, SF)으로 정의된다. 서브프레임은 하나 이상의 슬롯으로 분할되며, 서브프레임 내 슬롯 개수는 SCS(Subcarrier Spacing)에 의존한다. 각 슬롯은 CP(cyclic prefix)에 따라 12개 또는 14개의 OFDM(A) 심볼을 포함한다. 보통 CP가 사용되는 경우, 각 슬롯은 14개의 심볼을 포함한다. 확장 CP가 사용되는 경우, 각 슬롯은 12개의 심볼을 포함한다. 여기서, 심볼은 OFDM 심볼 (혹은, CP-OFDM 심볼), SC-FDMA 심볼 (혹은, DFT-s-OFDM 심볼)을 포함할 수 있다.
표 1은 보통 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
15KHz (u=0) 14 10 1
30KHz (u=1) 14 20 2
60KHz (u=2) 14 40 4
120KHz (u=3) 14 80 8
240KHz (u=4) 14 160 16
* N slot symb: 슬롯 내 심볼의 개수
* N frame,u slot: 프레임 내 슬롯의 개수
* N subframe,u slot: 서브프레임 내 슬롯의 개수
표 2는 확장 CP가 사용되는 경우, SCS에 따라 슬롯 별 심볼의 개수, 프레임 별 슬롯의 개수와 서브프레임 별 슬롯의 개수가 달라지는 것을 예시한다.
SCS (15*2^u) N slot symb N frame,u slot N subframe,u slot
60KHz (u=2) 12 40 4
NR 시스템에서는 하나의 단말에게 병합되는 복수의 셀들간에 OFDM(A) 뉴모놀로지(numerology)(예, SCS, CP 길이 등)가 상이하게 설정될 수 있다. 이에 따라, 동일한 개수의 심볼로 구성된 시간 자원(예, SF, 슬롯 또는 TTI)(편의상, TU(Time Unit)로 통칭)의 (절대 시간) 구간이 병합된 셀들간에 상이하게 설정될 수 있다. 도 4는 NR 프레임의 슬롯 구조를 예시한다. 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함한다. 반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (P)RB로 정의되며, 하나의 뉴모놀로지(numerology)(예, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예, 4개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화 될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(Resource Element, RE)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
도 5는 자기-완비(self-contained) 슬롯의 구조를 예시한다. NR 시스템에서 프레임은 하나의 슬롯 내에 DL 제어 채널, DL 또는 UL 데이터, UL 제어 채널 등이 모두 포함될 수 있는 자기-완비 구조를 특징으로 한다. 예를 들어, 슬롯 내의 처음 N개의 심볼은 DL 제어 채널을 전송하는데 사용되고(이하, DL 제어 영역), 슬롯 내의 마지막 M개의 심볼은 UL 제어 채널을 전송하는데 사용될 수 있다(이하, UL 제어 영역). N과 M은 각각 0 이상의 정수이다. DL 제어 영역과 UL 제어 영역의 사이에 있는 자원 영역(이하, 데이터 영역)은 DL 데이터 전송을 위해 사용되거나, UL 데이터 전송을 위해 사용될 수 있다. 일 예로, 다음의 구성을 고려할 수 있다. 각 구간은 시간 순서대로 나열되었다.
1. DL only 구성
2. UL only 구성
3. Mixed UL-DL 구성
- DL 영역 + GP(Guard Period) + UL 제어 영역
- DL 제어 영역 + GP + UL 영역
* DL 영역: (i) DL 데이터 영역, (ii) DL 제어 영역 + DL 데이터 영역
* UL 영역: (i) UL 데이터 영역, (ii) UL 데이터 영역 + UL 제어 영역
DL 제어 영역에서는 PDCCH가 전송될 수 있고, DL 데이터 영역에서는 PDSCH가 전송될 수 있다. UL 제어 영역에서는 PUCCH가 전송될 수 있고, UL 데이터 영역에서는 PUSCH가 전송될 수 있다. PDCCH에서는 DCI(Downlink Control Information), 예를 들어 DL 데이터 스케줄링 정보, UL 데이터 스케줄링 정보 등이 전송될 수 있다. PUCCH에서는 UCI(Uplink Control Information), 예를 들어 DL 데이터에 대한 ACK/NACK(Positive Acknowledgement/Negative Acknowledgement) 정보, CSI(Channel State Information) 정보, SR(Scheduling Request) 등이 전송될 수 있다. GP는 기지국과 단말이 송신 모드에서 수신 모드로 전환하는 과정 또는 수신 모드에서 송신 모드로 전환하는 과정에서 시간 갭을 제공한다. 서브프레임 내에서 DL에서 UL로 전환되는 시점의 일부 심볼이 GP로 설정될 수 있다.
하향링크 채널 구조
기지국은 후술하는 하향링크 채널을 통해 관련 신호를 단말에게 전송하고, 단말은 후술하는 하향링크 채널을 통해 관련 신호를 기지국으로부터 수신한다.
(1) 물리 하향링크 공유 채널(PDSCH)
PDSCH는 하향링크 데이터(예, DL-shared channel transport block, DL-SCH TB)를 운반하고, QPSK(Quadrature Phase Shift Keying), 16 QAM(Quadrature Amplitude Modulation), 64 QAM, 256 QAM 등의 변조 방법이 적용된다. TB를 인코딩하여 코드워드(codeword)가 생성된다. PDSCH는 최대 2개의 코드워드를 나를 수 있다. 코드워드(codeword) 별로 스크램블링(scrambling) 및 변조 매핑(modulation mapping)이 수행되고, 각 코드워드로부터 생성된 변조 심볼들은 하나 이상의 레이어로 매핑된다(Layer mapping). 각 레이어는 DMRS(Demodulation Reference Signal)과 함께 자원에 매핑되어 OFDM 심볼 신호로 생성되고, 해당 안테나 포트를 통해 전송된다.
(2) 물리 하향링크 제어 채널(PDCCH)
PDCCH는 하향링크 제어 정보(DCI)를 운반하고 QPSK 변조 방법이 적용된다. 하나의 PDCCH는 AL(Aggregation Level)에 따라 1, 2, 4, 8, 16 개의 CCE(Control Channel Element)로 구성된다. 하나의 CCE는 6개의 REG(Resource Element Group)로 구성된다. 하나의 REG는 하나의 OFDM 심볼과 하나의 (P)RB로 정의된다.
도 6은 하나의 REG 구조를 예시한다. 도 6에서, D는 DCI가 매핑되는 자원 요소 (RE)를 나타내고, R은 DMRS가 매핑되는 RE를 나타낸다. DMRS는 하나의 심볼 내 주파수 도메인 방향으로, RE #1, RE #5 및 RE #9에 매핑된다.
PDCCH는 제어 자원 세트(Control Resource Set, CORESET)를 통해 전송된다. CORESET는 주어진 뉴모놀로지(예, SCS, CP 길이 등)를 갖는 REG 세트로 정의된다. 하나의 단말을 위한 복수의 OCRESET는 시간/주파수 도메인에서 중첩될 수 있다. CORESET는 시스템 정보(예, MIB) 또는 단말-특정(UE-specific) 상위 계층(예, Radio Resource Control, RRC, layer) 시그널링을 통해 설정될 수 있다. 구체적으로, CORESET을 구성하는 RB의 개수 및 심볼의 개수(최대 3개)가 상위 계층 시그널링에 의해 설정될 수 있다.
각 CORESET을 위한 주파수 도메인 내 프리코더 입도 (precoder granularity)는 상위 계층 시그널링에 의해 다음 중 하나로 설정된다:
- sameAsREG-bundle: 주파수 도메인 내 REG 번들 크기와 동일함
- allContiguousRBs: CORESET 내부의 주파수 도메인 내 연속하는 RB들의 개수와 동일함
CORESET 내 REG들은 시간-우선 매핑 방식 (time-first mapping manner)에 기초하여 넘버링된다. 즉, REG들은 CORESET 내부의 가장-낮게 넘버링된 자원 블록 내 첫 번째 OFDM 심볼부터 시작하여 0부터 순차적으로 넘버링된다.
CCE에서 REG로의 매핑 타입은 비-인터리빙된 CCE-REG 매핑 타입 또는 인터리빙된 CCE-REG 매핑 타입 중 하나의 타입으로 설정된다. 도 7(a)는 비-인터리빙된 CCE-REG 매핑 타입을 예시하고, 도 7(b)는 인터리빙된 CCE-REG 매핑 타입을 예시한다.
- 비-인터리빙된(non-interleaved) CCE-REG 매핑 타입 (또는 localized 매핑 타입): 주어진 CCE를 위한 6 REG들은 하나의 REG 번들을 구성하고, 주어진 CCE를 위한 모든 REG들은 연속함. 하나의 REG 번들은 하나의 CCE에 대응함
- 인터리빙된 (interleaved) CCE-REG 매핑 타입 (또는 Distributed 매핑 타입): 주어진 CCE를 위한 2, 3 또는 6 REG들은 하나의 REG 번들을 구성하고, REG 번들은 CORESET 내에서 인터리빙됨. 1개 OFDM 심볼 또는 2개 OFDM 심볼로 구성된 CORESET 내 REG 번들은 2 또는 6 REG들로 구성되고, 3개 OFDM 심볼로 구성된 CORESET 내 REG 번들은 3 또는 6 REG들로 구성됨. REG 번들의 크기는 CORESET 별로 설정됨
도 8은 블록 인터리버를 예시한다. 위와 같은 인터리빙 동작을 위한 (블록) 인터리버(interleaver)의 행(row) 개수(A)는 2, 3, 6 중 하나로 설정된다. 주어진 CORESET을 위한 인터리빙 단위 (interleaving unit)의 개수가 P인 경우, 블록 인터리버의 열(column) 개수는 P/A와 같다. 블록 인터리버에 대한 쓰기(write) 동작은 하기 도 8과 같이 행-우선 (row-first) 방향으로 수행되고, 읽기(read) 동작은 열-우선(column-first) 방향으로 수행된다. 인터리빙 단위의 순환 시프트 (CS)는 DMRS를 위해 설정 가능한 ID와 독립적으로 설정 가능한 id에 기초하여 적용된다.
단말은 PDCCH 후보들의 세트에 대한 디코딩 (일명, 블라인드 디코딩)을 수행하여 PDCCH를 통해 전송되는 DCI를 획득한다. 단말이 디코딩하는 PDCCH 후보들의 세트는 PDCCH 검색 공간 (Search Space) 세트라 정의한다. 검색 공간 세트는 공통 검색 공간 (common search space) 또는 단말-특정 검색 공간 (UE-specific search space)일 수 있다. 단말은 MIB 또는 상위 계층 시그널링에 의해 설정된 하나 이상의 검색 공간 세트 내 PDCCH 후보를 모니터링하여 DCI를 획득할 수 있다. 각 CORESET 설정은 하나 이상의 검색 공간 세트와 연관되고(associated with), 각 검색 공간 세트는 하나의 COREST 설정과 연관된다. 하나의 검색 공간 세트는 다음의 파라미터들에 기초하여 결정된다.
- controlResourceSetId: 검색 공간 세트와 관련된 제어 자원 세트를 나타냄
- monitoringSlotPeriodicityAndOffset: PDCCH 모니터링 주기 구간 (슬롯 단위) 및 PDCCH 모니터링 구간 오프셋 (슬롯 단위)을 나타냄
- monitoringSymbolsWithinSlot: PDCCH 모니터링을 위한 슬롯 내 PDCCH 모니터링 패턴을 나타냄 (예, 제어 자원 세트의 첫 번째 심볼(들)을 나타냄)
- nrofCandidates: AL={1, 2, 4, 8, 16} 별 PDCCH 후보의 수 (0, 1, 2, 3, 4, 5, 6, 8 중 하나의 값)을 나타냄
표 3은 검색 공간 타입별 특징을 예시한다.
Type Search Space RNTI Use Case
Type0-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type0A-PDCCH Common SI-RNTI on a primary cell SIB Decoding
Type1-PDCCH Common RA-RNTI or TC-RNTI on a primary cell Msg2, Msg4 decoding in RACH
Type2-PDCCH Common P-RNTI on a primary cell Paging Decoding
Type3-PDCCH Common INT-RNTI, SFI-RNTI, TPC-PUSCH-RNTI, TPC-PUCCH-RNTI, TPC-SRS-RNTI, C-RNTI, MCS-C-RNTI, or CS-RNTI(s)
UE Specific C-RNTI, or MCS-C-RNTI, or CS-RNTI(s) User specific PDSCH decoding
표 4는 PDCCH를 통해 전송되는 DCI 포맷들을 예시한다.
DCI format Usage
0_0 Scheduling of PUSCH in one cell
0_1 Scheduling of PUSCH in one cell
1_0 Scheduling of PDSCH in one cell
1_1 Scheduling of PDSCH in one cell
2_0 Notifying a group of UEs of the slot format
2_1 Notifying a group of UEs of the PRB(s) and OFDM symbol(s) where UE may assume no transmission is intended for the UE
2_2 Transmission of TPC commands for PUCCH and PUSCH
2_3 Transmission of a group of TPC commands for SRS transmissions by one or more UEs
DCI format 0_0은 TB-기반 (또는 TB-level) PUSCH를 스케줄링 하기 위해 사용되고, DCI format 0_1은 TB-기반 (또는 TB-level) PUSCH 또는 CBG(Code Block Group)-기반 (또는 CBG-level) PUSCH를 스케줄링 하기 위해 사용될 수 있다. DCI format 1_0은 TB-기반 (또는 TB-level) PDSCH를 스케줄링 하기 위해 사용되고, DCI format 1_1은 TB-기반 (또는 TB-level) PDSCH 또는 CBG-기반 (또는 CBG-level) PDSCH를 스케줄링 하기 위해 사용될 수 있다. DCI format 2_0은 동적 슬롯 포맷 정보 (예, dynamic SFI)를 단말에게 전달하기 위해 사용되고, DCI format 2_1은 하향링크 선취 (pre-Emption) 정보를 단말에게 전달하기 위해 사용된다. DCI format 2_0 및/또는 DCI format 2_1은 하나의 그룹으로 정의된 단말들에게 전달되는 PDCCH인 그룹 공통 PDCCH (Group common PDCCH)를 통해 해당 그룹 내 단말들에게 전달될 수 있다.
DMRS(demodulation reference signal)
NR의 DMRS는 네트워크 에너지 효율성(network energy efficiency)를 강화하고, 상위 호환성(forward compatibility)를 보장하기 위해 필요할 때에만 전송되는 것이 특징이다. DMRS의 시간 도메인 밀도(time domain density)는 UE의 속도(speed) 또는 이동성(mobility)에 따라 다양할 수 있다. NR에서 무선 채널의 빠른 변화를 추적하기 위해 시간 도메인에서 DMRS에 대한 밀도가 증가될 수 있다.
1. DL DMRS 관련 동작
PDSCH 전송/수신을 위한 DMRS 관련 동작에 대해 살펴본다.
BS는 UE로 DMRS 설정(configuration) 정보를 전송한다. 상기 DMRS 설정 정보는 DMRS-DownlinkConfig IE를 지칭할 수 있다. 상기 DMRS-DownlinkConfig IE는 dmrs-Type 파라미터, dmrs-AdditionalPosition 파라미터, maxLength 파라미터, phaseTrackingRS 파라미터 등을 포함할 수 있다. 'dmrs-Type' 파라미터는 DL를 위해 사용될 DMRS 타입의 선택을 위한 파라미터이다. NR에서, DMRS는 (1) DMRS 설정 타입 1과 (2) DMRS 설정 타입 2의 2가지 설정 타입으로 구분될 수 있다. DMRS 설정 타입 1은 주파수 도메인에서 보다 높은 RS 밀도를 가지고, DMRS 설정 타입 2는 더 많은 DMRS 안테나 포트들을 가진다. 'dmrs-AdditionalPosition' 파라미터는 DL에서 추가적인(additional) DMRS의 위치를 나타내는 파라미터이다. 'maxLength' 파라미터는 DL front-loaded DMRS에 대한 OFDM 심볼의 최대 개수를 나타내는 파라미터이다. 'phaseTrackingRS' 파라미터는 DL PTRS를 설정하는 파라미터이다.
DMRS는 PDSCH 매핑 타입(타입 A 또는 타입 B)에 따라 front-loaded DMRS의 첫 번째 위치가 결정되며, 높은 속도(high speed)의 UE를 지원하기 위해 추가적인 DMRS가 설정될 수 있다. 상기 front-loaded DMRS는 1개 또는 2개 연속적(consecutive) OFDM 심볼들을 점유하며, RRC 시그널링 및 DCI에 의해 지시된다.
상기 BS는 상기 DMRS 설정을 기반으로 DMRS에 사용되는 시퀀스를 생성한다. 상기 BS는 상기 생성된 시퀀스를 자원 요소(resource element)들에 매핑한다. 여기서, 자원 요소는 시간, 주파수, 안테나 포트 또는 코드 중 적어도 하나를 포함하는 의미일 수 있다.
상기 BS는 상기 자원 요소들 상에서 상기 DMRS를 UE로 전송한다. 상기 UE는 상기 수신된 DMRS를 이용하여 PDSCH를 수신하게 된다.
2. UL DMRS 관련 동작
PUSCH 수신을 위한 DMRS 관련 동작에 대해 살펴본다.
UL DMRS 관련 동작은 DL DMRS 관련 동작과 유사하며, DL과 관련된 파라미터들의 명칭이 UL과 관련된 파라미터들의 명칭으로 대체될 수 있다. 예를 들어, DMRS-DownlinkConfig IE는 DMRS-UplinkConfig IE로, PDSCH 매핑 타입은 PUSCH 맵핑 타입으로, PDSCH는 PUSCH로 대체될 수 있다. 그리고, DL DMRS 관련 동작에서 BS는 UE로, UE는 BS으로 대체될 수 있다.
UL DMRS에 대한 시퀀스 생성은 트랜스폼 프리코딩(transform precoding)이 가능화(enable)되었는지에 따라 다르게 정의될 수 있다. 예를 들어, DMRS는 CP-OFDM(cyclic prefix orthogonal frequency division multiplexing)을 사용하는 경우(즉, 트랜스폼 프리코딩이 가능화(enable)되지 않은 경우), 의사-잡음(pseudo-noise, PN) 시퀀스를 사용하며, DFT-s-OFDM(Discrete Fourier Transform-spread-OFDM)을 사용하는 경우(즉, 트랜스폼 프리코딩이 가능화된 경우), 30 이상의 길이를 가지는 Zadoff-Chu(ZC) 시퀀스를 사용한다.
대역폭 파트 (Bandwidth part, BWP)
NR 시스템에서는 하나의 반송파(carrier)당 최대 400 MHz까지 지원될 수 있다. 이러한 와이드밴드(wideband) 반송파에서 동작하는 UE가 항상 반송파 전체에 대한 무선 주파수(radio frequency, RF) 모듈을 켜둔 채로 동작한다면 UE 배터리 소모가 커질 수 있다. 혹은 하나의 와이드밴드 반송파 내에 동작하는 여러 사용 예(use case)들 (e.g., eMBB, URLLC, mMTC, V2X 등)을 고려할 때 해당 반송파 내에 주파수 대역별로 서로 다른 뉴머롤로지(예, 부반송파 간격)가 지원될 수 있다. 혹은 UE별로 최대 대역폭에 대한 능력(capability)이 다를 수 있다. 이를 고려하여 기지국은 와이드밴드 반송파의 전체 대역폭이 아닌 일부 대역폭에서만 동작하도록 UE에게 지시할 수 있으며, 해당 일부 대역폭을 대역폭 파트(bandwidth part, BWP)라 칭한다. 주파수 도메인에서 BWP는 반송파 상의 대역폭 파트 i 내 뉴머롤러지 μ i에 대해 정의된 인접한(contiguous) 공통 자원 블록들의 서브셋이며, 하나의 뉴머롤로지(예, 부반송파 간격, CP 길이, 슬롯/미니-슬롯 지속기간)가 설정될 수 있다.
한편, 기지국은 UE에게 설정된 하나의 반송파 내에 하나 이상의 BWP를 설정할 수 있다. 혹은, 특정 BWP에 UE들이 몰리는 경우 부하 밸런싱(load balancing)을 위해 일부 UE들을 다른 BWP로 옮길 수 있다. 혹은, 이웃 셀들 간의 주파수 도메인 인터-셀 간섭 소거(frequency domain inter-cell interference cancellation) 등을 고려하여 전체 대역폭 중 가운데 일부 스펙트럼을 배제하고 셀의 양쪽 BWP들을 동일 슬롯 내에 설정할 수 있다. 즉, 기지국은 와이드밴드 반송파와 연관(associate)된 UE에게 적어도 하나의 DL/UL BWP를 설정해 줄 수 있으며, 특정 시점에 설정된 DL/UL BWP(들) 중 적어도 하나의 DL/UL BWP를 (물리 계층 제어 신호인 L1 시그널링, MAC 계층 제어 신호인 MAC 제어 요소(control element, CE), 또는 RRC 시그널링 등에 의해) 활성화(activate)시킬 수 있고 다른 설정된 DL/UL BWP로 스위칭할 것을 (L1 시그널링, MAC CE, 또는 RRC 시그널링 등에 의해) 지시하거나, 타이머 값을 설정하여 타이머가 만료(expire)되면 UE가 정해진 DL/UL BWP로 스위칭하도록 할 수도 있다. 이 때, 다른 설정된 DL/UL BWP로 스위칭할 것을 지시하기 위하여, DCI 포맷 1_1 또는 DCI 포맷 0_1을 사용할 수 있다. 활성화된 DL/UL BWP를 특히 활성(active) DL/UL BWP라고 한다. UE가 초기 접속(initial access) 과정에 있거나, 혹은 UE의 RRC 연결이 셋업 되기 전 등의 상황에서는 UE가 DL/UL BWP에 대한 설정(configuration)을 수신하지 못할 수도 있다. 이러한 상황에서 UE가 가정하는 DL/UL BWP는 초기 활성 DL/UL BWP라고 한다.
한편, 여기서 DL BWP는 PDCCH 및/또는 PDSCH 등과 같은 하향링크 신호를 송수신하기 위한 BWP이고, UL BWP는 PUCCH 및/또는 PUSCH 등과 같은 상향링크 신호를 송수신하기 위한 BWP이다.
NR 시스템에서는 하향링크 채널 및/또는 하향링크 신호가 활성(active) DL BWP (Downlink Bandwidth Part)내에서 송수신될 수 있다. 또한, 상향링크 채널 및/또는 상향링크 신호가 활성(active) UL BWP (Uplink Bandwidth Part) 내에서 송수신될 수 있다. 또한, 상기 DL BWP 및/또는 UL BWP는 공통 RB (Resource block) 그리드 (common RB grid) 단에서 정의되거나 설정될 수 있다. 또한, 이러한 공통 RB 그리드는 기지국에 의해서 동적(dynamic) 및/또는 준-정적 (semi-static)으로 변경될 수 있다.
한편, 상기 공통 RB 그리드(Common RB grid) 내에서 복수의 BWP들이 다양하게 설정될 수 있으며, 해당 공통 RB 그리드(common RB grid)에 대한 정보는 서로 상이한 BWP에서 동작하는 UE간 MU-MIMO 혹은 멀티플렉싱(multiplexing) 등을 고려하여 DMRS 설정의 기준 점(Reference Point) 및/또는 RB 또는 RB 그룹(RBG) 설정의 기준점 등으로 활용될 수 있다.
NR 시스템에서 공통 RB 그리드(Common RB grid)에 대한 정보는 SIB1 (System Information Block 1)을 통해 기지국이 UE에게 지시할 수 있다. 그러므로 UE는 SIB1을 성공적으로 수신하기 전까지 공통 RB 그리드(common RB grid)에 대한 정보를 모를 수 있다. 또는, SIB1 갱신(update)을 통해서 공통 RB 그리드(common RB grid) 정보가 변경되는 시점까지 공통 RB 그리드에 대한 모호성(ambiguity)이 발생할 수 있다.
따라서, UE가 공통 RB 그리드에 대한 정보를 모르거나, 공통 RB 그리드에 대한 정보의 모호성(ambiguity)가 발생할 때, UE가 기준점(Reference Point)로 참조할 수 있는 기본 모드(default mode) 동작에 대해 정의할 필요가 있다. 다시 말해, UE가 공통 RB 그리드에 대한 정보를 모르거나, 공통 RB 그리드에 대한 정보의 모호성(ambiguity)가 발생할 때, 기본적으로 공통 RB 그리드(common RB gird)와 관계없이 DMRS를 수신하는 방법 및/또는 DMRS를 위한 자원 할당 방법이 필요할 수 있다.
또한, UE가 PSCell 또는 SCell에서 하향링크 신호를 수신할 때, 해당 셀(cell)을 PCell로 갖는 UE와의 멀티플렉싱(multiplexing)을 고려할 수 있다. 유사하게, UE가 핸드오버(handover)를 수행하는 경우, 타겟 셀(target cell)에서의 송수신을 시작할 때, 다시 상기 해당 셀에서 이미 동작 중인 SIB1 전송을 고려한 UE의 기본 모드(default mode) 동작 방법에 대한 정의가 필요할 수 있다.
본 발명에서는 UE가 자신이 SIB1를 포함하는 브로드캐스트(broadcast) 정보를 수신하기 위한 영역 및/또는 다른 UE가 SIB1를 포함하는 브로드캐스트(broadcast) 정보를 수신하기 위한 영역에서의 UE의 동작 방법을 제안한다. 여기서, UE의 동작 방법이란, 예를 들어, DMRS 생성 방법, 기준점(reference point)에 대한 가정 및/또는 자원할당 방법 등이 될 수 있다 또한, 본 발명에서는 NR 시스템에서 DCI 크기 설정 및/또는 DCI 크기 변환과 같은 초기(Initial) BWP를 기반의 동작들을 수행하는 경우, SCell에서의 동작 방법을 제안한다.
도 9 내지 도 11은 본 발명에 따른 UE, 기지국 및 네트워크의 동작 구현 예를 설명하기 위한 도면이다.
먼저 도 9를 참조하여 본 발명에 따른 UE의 동작 구현 예를 살펴보면, UE는 PDCCH(Physical Downlink Control Channel) 및/또는 PDSCH(Physical Downlink Shared Channel)를 수신하고, 상기 PDCCH 및/또는 PDSCH와 연관된 DMRS(Demodulation Reference Signal)을 수신할 수 있다(S901). UE는 수신된 DMRS가 기본 모드(default mode)를 기반으로 생성된 것으로 가정하고, DMRS를 검출한 뒤(S903), 상기 검출된 DMRS의 채널 추정치를 기반으로 상기 PDCCH 및/또는 PDSCH를 디코딩할 수 있다(S905). 이 때, PDCCH와 PDSCH는 하나의 슬롯 내에서 수신될 수도 있지만, 서로 다른 슬롯에서 수신될 수도 있다. 또한, PDCCH에 연관된 DMRS와 PDSCH에 연관된 DMRS 모두 기본 모드(default mode) 동작에 의해 생성될 수도 있고, 어느 하나의 DMRS만 기본 모드(default mode) 동작에 의해 생성될 수도 있다. 기본 모드를 기반으로 한 DMRS 생성 방법은 후술하는 실시 예들을 기반으로 할 수 있다.
또한, 상기 PDCCH 및/또는 PDSCH는 SIB1을 수신하기 위한 것일 수 있다. 다시 말해, PDCCH는 SIB1을 운반(carry)하는 PDSCH를 스케줄링하기 위한 것일 수 있으며, PDSCH는 상기 SIB1을 운반하기 위한 것일 수 있다.
또한, 상기 SIB1을 수신한 UE는 상기 SIB1을 통해서 초기(initial) BWP(Bandwidth Part) 정보를 획득할 수 있고, 상기 초기 BWP 정보를 기반으로 그룹 TPC 정보를 포함하는 DCI(Downlink Control Information)을 수신할 수 있다. 이 때, 그룹 TPC 정보를 포함하는 DCI가 생성되는 방법 및 송수신하는 방법 또한 후술하는 구체적인 실시 예들을 기반으로 할 수 있다.
도 10을 통해 본 발명에 따른 기지국의 동작 구현 예를 살펴보도록 한다. 도 10을 참조하면, 기지국은 기본 모드(default mode)를 기반으로 PDCCH 및/또는 PDSCH와 연관된 DRMS를 생성할 수 있다(S1001). 그리고 생성된 DMRS를 상기 PDCCH 및/또는 PDSCH와 함께 UE로 전송할 수 있다(S1003).
이 때, PDCCH와 PDSCH는 하나의 슬롯 내에서 전송될 수도 있지만, 서로 다른 슬롯에서 전송될 수도 있다. 또한, PDCCH에 연관된 DMRS와 PDSCH에 연관된 DMRS 모두 기본 모드(default mode) 동작에 의해 생성될 수도 있고, 어느 하나의 DMRS만 기본 모드(default mode) 동작에 의해 생성될 수도 있다. 기본 모드를 기반으로 한 DMRS 생성 방법은 후술하는 실시 예들을 기반으로 할 수 있다.
또한, 상기 PDCCH 및/또는 PDSCH는 SIB1을 전송하기 위한 것일 수 있다. 다시 말해, PDCCH는 SIB1을 운반(carry)하는 PDSCH를 스케줄링하기 위한 것일 수 있으며, PDSCH는 상기 SIB1을 운반하기 위한 것일 수 있다.
또한, 상기 SIB1을 전송한 기지국은 상기 SIB1을 통해서 초기(initial) BWP(Bandwidth Part) 정보를 전송할 수 있고, 상기 초기 BWP 정보를 기반으로 그룹 TPC 정보를 포함하는 DCI(Downlink Control Information)을 전송할 수 있다. 이 때, 그룹 TPC 정보를 포함하는 DCI가 생성되는 방법 및 송수신하는 방법 또한 후술하는 구체적인 실시 예들을 기반으로 할 수 있다.
도 11은 본 발명에 따른 네트워크의 동작 구현 예를 나타낸다. 도 11을 참조하면, 기지국은 기본 모드(default mode)를 기반으로 PDCCH 및/또는 PDSCH와 연관된 DRMS를 생성할 수 있다(S1101). 그리고 생성된 DMRS를 상기 PDCCH 및/또는 PDSCH와 함께 UE로 전송할 수 있다(S1103). 상기 PDCCH 및/또는 PDSCH와 연관된 DMRS(Demodulation Reference Signal)을 수신한 UE는 수신된 DMRS가 기본 모드(default mode)를 기반으로 생성된 것으로 가정하고, DMRS를 검출한 뒤(S1105), 상기 검출된 DMRS의 채널 추정치를 기반으로 상기 PDCCH 및/또는 PDSCH를 디코딩할 수 있다(S1107).
이 때, PDCCH와 PDSCH는 하나의 슬롯 내에서 전송될 수도 있지만, 서로 다른 슬롯에서 전송될 수도 있다. 또한, PDCCH에 연관된 DMRS와 PDSCH에 연관된 DMRS 모두 기본 모드(default mode) 동작에 의해 생성될 수도 있고, 어느 하나의 DMRS만 기본 모드(default mode) 동작에 의해 생성될 수도 있다. 기본 모드를 기반으로 한 DMRS 생성 방법은 후술하는 실시 예들을 기반으로 할 수 있다.
또한, 상기 PDCCH 및/또는 PDSCH는 SIB1을 전송하기 위한 것일 수 있다. 다시 말해, PDCCH는 SIB1을 운반(carry)하는 PDSCH를 스케줄링하기 위한 것일 수 있으며, PDSCH는 상기 SIB1을 운반하기 위한 것일 수 있다.
또한, 상기 SIB1을 전송한 기지국은 상기 SIB1을 통해서 초기(initial) BWP(Bandwidth Part) 정보를 획득할 수 있고, 상기 초기 BWP 정보를 기반으로 그룹 TPC 정보를 포함하는 DCI(Downlink Control Information)을 전송할 수 있다. 이 때, 그룹 TPC 정보를 포함하는 DCI가 생성되는 방법 및 송수신하는 방법 또한 후술하는 구체적인 실시 예들을 기반으로 할 수 있다.
이제, 상기 도 9 내지 도 11에 따른, 기본 모드 동작에 따른 PDCCH/PDSCH 및 DMRS의 전송 방법에 대하여 상세하게 살펴보도록 한다.
먼저, PDCCH에서의 기본 모드 동작을 기반으로 한 DMRS 및 PDCCH 전송 방법을 살펴보도록 한다.
UE는 초기에 SS/PBCH 블록(Synchronization Signal/ Physical Broadcast Channel block)과 PBCH 내의 MIB (Master Information Block) 및/또는 PBCH 페이로드에 포함된 정보를 기반으로 초기(initial) DL BWP를 도출할 수 있다.
이 때, 초기 DL BWP는 BWP #0일 수도 있으나, 이에 한정되지 않는다. 예를 들어, 상위 계층에 의해 설정된 (Configured) BWP가 3개 이하인 경우에 초기 DL BWP는 BWP #0일 수 있고, 상위 계층에 의해 설정된(Configured) BWP가 4개인 경우, 초기 DL BWP는 BWP#0이외의 다른 BWP일 수도 있다.
구체적으로 PBCH 내의 MIB 및/또는 PBCH 페이로드로부터 SIB1 수신을 위한 CORESET(Control Resource Set) 설정(configuration)과 검색 공간(search space) 설정(configuration)을 수신하며, 상기 정보들은 SS/PBCH 블록에 연동될 수 있다. 한편, 이 때의 초기(Initial) DL BWP는 CORESET에 대한 주파수 영역으로 초기 설정될 수 있다. PSCell 또는 SCell의 추가 및/또는 핸드오버(Handover)시에, UE는 전용 신호(dedicated signal)를 통해서 해당 서빙 셀(serving cell)에 대한 SS/PBCH 블록 정보 및 해당 셀의 SIB1 수신을 위한 CORESET 설정과 검색 공간 설정(configuration)을 수신하고, 초기 DL BWP(예를 들어, BWP#0)을 설정받을 수 있다.
여기서, PSCell 또는 SCell 추가 및/또는 핸드오버(Handover)시에, UE는 전용 신호(dedicated signal)를 통해서 획득되는 CORESET 및 MIB/PBCH 페이로드를 통해 획득되는 CORESET을 CORESET #0라고 명칭할 수 있으며, 이는 공통 CORESET(Common CORESET)의 한 종류일 수 있다.
또한, PSCell 또는 SCell 추가 및/또는 핸드오버(Handover)시에, UE는 전용 신호(dedicated signal)를 통해서 획득되는 검색 공간 및 MIB/PBCH 페이로드를 통해 획득되는 검색 공간을 Type-0 PDCCH 공통 검색 공간(Common Search Space)라고 명칭할 수 있으며, 본 발명에서는 편의를 위해 '검색 공간 #0'이라고 명칭할 수 있다. 이러한 검색 공간 #0은 시스템 정보를 위한 PDCCH를 송수신하기 위해 사용될 수 있다.
한편, 상기 서빙 셀에 대한 SS/PBCH 블록 정보는 상기 SS/PBCH 블록이 전송되는 주파수 위치에 대한 정보를 포함할 수 있다. 또한, 해당 셀의 SIB1 수신을 위한 CORESET 설정과 검색 공간 설정은, 상기 해당 셀의 PBCH에 포함된 MIB 및/또는 PBCH 페이로드를 통해 수신할 수 있다. 또한, 상술한 정보를 기반으로 UE는 해당 서빙 셀(serving cell)에 대한 CORESET#0 및/또는 검색 공간#0 (search space#0)를 도출할 수 있다.
각 서빙 셀(serving cell)을 PCell로 갖는 UE는 해당 셀(cell)로부터 SIB1을 수신할 수 있으며, 이러한 경우, 공통 RB 그리드(Common RB grid)와 관계 없이 PDCCH 수신이 가능한 기본 모드가 동작될 수 있다. 또한, UE는 해당 셀을 PSCell 또는 SCell로 연결되거나 핸드오버 이후에 해당 셀(cell)에서 PDCCH를 수신하는 경우에도 UE의 동작 영역에 따라, 기본 모드(default mode)로 동작해야 할 수도 있다.
예를 들어, 기본 모드(default mode)는 DMRS를 생성할 때, 생성의 기준 되는 기준점(reference point)이 PDCCH가 전송되는 CORESET의 가장 낮은 넘버를 가지는 RB(lowest-numbered RB)의 부반송파 0인 것일 수 있다. 이 때, 기준점을 기반으로 인덱스 0의 실제 위치 및/또는 인터리빙(interleaving) 유무 및 인터리빙 단위와 같은 PDCCH 전송/맵핑 방법이 결정될 수 있다. 한편, 상기 DMRS는 PDCCH를 위한 DMRS 및 PDSCH를 위한 DMRS 모두에 대응될 수 있다.
한편, 상기 PDCCH가 전송되는 CORESET은 다른 방식으로 표현되는 것일 수 있다. 예를 들어, SIB1을 수신하기 위한 동작을 가정할 때, 해당 CORESET은 CORESET #0으로 표현되거나 SIB (예를 들어, SIB1)또는 PBCH에 의해 설정되는 CORESET으로 표현될 수 있다.
또한, SIB1에 의해 설정되는 CORESET이라고 함은 RAR(Random Access Response) 등을 위하여 별도의 CORESET을 SIB1을 통해 구성되는 CORESET을 의미할 수 있다. 해당 CORESET 의 설정(configuration) 방식은 PBCH에서 구성한 CORESET#0와의 정렬(alignment)을 위하여 초기(initial) DL BWP 내에서 PBCH를 통해 SIB1을 지정하는 방식과 동일한 방식을 사용한다고 가정할 수 있다. 예를 들어, 이러한 가정은 SIB1를 통해서 설정된 초기(initial) DL BWP가 PBCH에 의해 설정된 초기(initial) DL BWP 를 덮어쓰지(override) 않은 경우에만 적용되고, SIB1을 통해 설정된 초기(initial) DL BWP 가 PBCH에 의해 설정된 초기 DL BWP를 덮어쓰는(override) 경우에는 공통 RB 그리드(common RB grid)를 기반으로 CORESET 설정(configuration) 이 수행된다고 가정할 수 있다.
이하, 공통 RB 그리드에 관계 없이 동작하는 PDCCH 수신에 대한 기본 모드(default mode)가 동작하는 조건에 대해 상세하게 살펴보도록 한다.
1-1) 서빙 셀(serving cell)에 대응하는 PDCCH가 전송되는 영역이 CORESET#0 및/또는 검색 공간#0(Search space#0)인 경우, PDCCH는 공통 RB 그리드(common RB grid)와는 무관하게 기본 모드(default mode)를 기반으로 전송될 수 있다. 만약, UE에게 복수의 검색 공간(search space)들이 설정되고, 복수의 검색 공간(search space)들로부터 PDCCH를 수신하는 경우, CORESET#0에 관련된 특정 검색 공간(search space)이 검색 공간#0(Search space#0)과 전체 또는 일부가 겹치면, 해당 겹치는 시점에서 전송된 PDCCH는 검색 공간#0에 대응되는 것으로 가정할 수 있다. 예를 들어, UE는 BWP#0과 같은 초기(initial) DL BWP가 아닌 다른 BWP에 대해서도 CORESET#0 및/또는 검색 공간#0(Search space#0)을 설정하거나 사용할 수도 있으며, 이러한 경우에도 CORESET#0 및/또는 검색 공간 #0을 통해 UE가 PDCCH를 수신한다면 기본 모드(default mode)를 기반으로 PDCCH가 수신될 수 있다.
1-2) 서빙 셀(serving cell)에 대응하는 PDCCH가 전송되는 영역이 BWP#0과 같은 초기(initial) DL BWP인 경우에 PDCCH는 공통 RB 그리드(common RB grid)와는 무관한 기본 모드(default mode)를 기반으로 전송될 수 있다.
이러한 경우, SIB1을 성공적으로 수신하여, UE가 공통 RB 그리드(Common RB gird) 정보를 알았더라도, 여전히 초기(initial) DL BWP로는 다른 브로드캐스트(broadcast) 정보의 전송이 가능하므로, 해당 브로드캐스트 정보와 관련된 신호와 PDCCH가 멀티플렉싱(multiplexing)되는 것을 고려했을 때에는 SIB1 검출 성공 전후에 관계 없이 초기(initial) DL BWP에서의 PDCCH 수신 시에 기본 모드(default mode)에 기반할 수 있다. 이 때, 본 예시는 상기 PDCCH는 공통 검색 공간(Common Search space)에서 수신되는 PDCCH인 경우로 한정될 수 있다. 그 이유는, PDCCH가 UE 특정 검색 공간(UE-Specific Search Space)를 통해 전송되는 경우에는, 기준점(reference point)과는 무관하게 DMRS 시퀀스 생성 시드(sequence generation seed) 자체가 UE간에 상이할 것이기 때문에, DMRS 자체가 다를 것이기 때문이다.
상술한 1-1) 및 1-2)에서 PDCCH가 전송되는 CORESET ID가 0가 아닌 경우, 검색 공간 ID(Search space ID)가 0가 아닌 경우, 및/또는 BWP ID가 0이 아닌 경우에도 해당 CORESET, 검색 공간 및/또는 BWP에 대한 설정 값이 각각 CORESET#0, 검색 공간#0(Search space#0), BWP#0와 전체 또는 일부가 동일하거나, 해당 CORESET, 검색 공간 및/또는 BWP를 통해 전송되는 PDCCH가 어떤 ID 혹은 어느 타입을 가지는 CORESET, 검색 공간(search space), 및/또는 BWP를 통해 전송되는지에 대해 구분되지 않는 경우에는 특정 CORESET, 검색 공간(Search space) 및/또는 BWP에 포함되는 것으로 가정하고 PDCCH를 검출할 수 있다. 여기서, 특정 CORESET, 검색 공간(Search space) 및/또는 BWP는 각각 CORESET#0, 검색 공간(Search space)#0 및 BWP#0일 수 있다.
이제, PDSCH에서의 기본 모드 동작을 기반으로 한 DMRS 및 PDSCH 전송 방법을 살펴보도록 한다.
NR 시스템에서 공통 RB 그리드(Common RB grid)에 대한 정보를 포함하는 SIB1은 PDSCH로 전송될 수 있다. 따라서, 적어도 SIB1을 운반하는 PDSCH를 수신하기 위해 공통 RB 그리드(Common RB grid)와 무관한 기본 모드(default mode) 동작이 정의될 필요가 있다.
예를 들어, 기본 모드(Default mode)는 PDSCH에 연관된 DMRS를 생성하기 위한 기준점(reference point)이 해당 PDSCH를 스케줄링(scheduling)하는 PDCCH가 전송되는 CORESET의 가장 낮은 넘버를 가지는 RB(lowest-numbered RB)의 부반송파 0(subcarrier 0)인 것일 수 있다. 상기 PDCCH가 전송되는 CORESET은 다른 방식으로 표현되는 것일 수 있다. 예를 들어, SIB1을 수신하기 위한 동작을 가정할 때, 해당 CORESET은 CORESET #0으로 표현되거나 SIB (예를 들어, SIB1)또는 PBCH에 의해 설정되는 CORESET으로 표현될 수 있다.
한편, 기본 모드(Default mode)의 또 다른 예로는 interleaved VRB-to-PRB mapping에서의 기본 단위인 RB 번들(bundle)이 PDSCH를 스케줄링(scheduling)하는 PDCCH가 전송되는 CORESET의 가장 낮은 넘버를 가진 RB의 부반송파 0부터 정의되는 것일 수 있다. 다시 말해, RB 번들의 경계(boundary)가 초기 DL BWP의 경계(boundary) 또는 PDCCH가 전송되는 CORESET 영역의 경계(boundary)에 정렬(aligned)되는 것일 수 있다. 또한, 상기 기본 모드(default mode)는 상술한 2개의 기본 모드에 대한 예시 각각의 다양한 조합으로 구성될 수도 있다.
그런데, SIB1을 포함한 시스템 정보(System information)는 관련 PDCCH/PDSCH가 SI-RNTI를 공통적으로 이용할 수 있다. 따라서, PDSCH를 수신할 때, PDSCH에 포함되는 정보가 SIB1인지 여부는 PDSCH를 디코딩(decoding) 한 이후에야 알 수 있다. 또한, 기지국은 초기 접속(Initial Access) 이후에 제 3의 BWP에서 시스템 정보(System information)을 전송할 수도 있으며, 이러한 경우, 공통 RB 그리드(common RB grid) 정보를 기반으로 한 PDCCH/PDSCH 전송을 수행할 수도 있으며, UE도 공통 RB 그리드(common RB gird)를 기반으로 PDCCH/PDSCH 수신을 기대할 수 있다.
이하, 공통 RB 그리드(Common RB gird)에 관계 없이 기본 모드(default mode)를 기반으로 PDSCH를 수신하기 위한 조건들에 대해 살펴보도록 한다.
2-1) 서빙 셀(serving cell)에 대응하는 PDSCH를 스케줄링(scheduling)하는 PDCCH가 전송되는 영역이 CORESET#0 및/또는 검색 공간#0(Search space#0)인 경우에 PDSCH는 공통 RB 그리드(common RB grid)와는 무관한 기본 모드(default mode)를 기반으로 전송될 수 있다.
만약, UE에게 복수의 검색 공간(search space)들이 설정되고, 상기 복수의 검색 공간(search space)들로부터 PDCCH를 수신하는 경우, CORESET#0에 관련된 특정 검색 공간(search space)이 검색 공간#0(Search space#0)과 전체 또는 일부가 겹치면, 해당 겹치는 시점에서 전송된 PDCCH는 검색 공간#0에 대응되는 것으로 가정할 수 있다. 예를 들어, UE는 BWP#0과 같은 초기(initial) DL BWP가 아닌 다른 BWP에 대해서도 CORESET#0 및/또는 검색 공간#0(Search space#0)을 설정하거나 사용할 수도 있으며, 이러한 경우에도 CORESET#0 및/또는 검색 공간 #0을 통해 UE가 PDCCH 및/또는 PDSCH를 수신한다면 기본 모드(default mode)를 기반으로 PDCCH 및/또는 PDSCH가 수신될 수 있다. 또한, 해당 PDSCH를 스케줄링(scheduling)하는 PDCCH가 SI-RNTI로 어드레스(addressed)되는 경우에 한정하여 기본 모드(default mode)를 기반으로 PDSCH를 수신할 수 있다. 다시 말해, PDSCH를 스케줄링하는 PDCCH가 CORESET #0 및/또는 검색 공간 #0을 통해서 전송되면서, 상기 PDCCH가 SI-RNTI로 어드레스된 경우에 기본 모드를 기반으로 상기 PDSCH를 수신할 수 있다. 이는, SIB1를 위한 PDSCH를 스케줄링(scheduling)하는 PDCCH는 CORESET#0 내의 검색 공간#0(Search space#0) 을 통해 전송되는 SI-RNTI로 어드레스된 PDCCH일 것이기 때문이다.
2-2) 서빙 셀(serving cell)에 대응하는 PDSCH를 스케줄링 (scheduling)하는 PDCCH가 전송되는 영역이 BWP#0과 같은 초기(initial) DL BWP인 경우에 PDSCH는 공통 RB 그리드(common RB grid)와는 무관한 기본 모드(default mode)를 기반으로 전송될 수 있다. 이러한 경우, SIB1을 성공적으로 수신하여, UE가 공통 RB 그리드(Common RB gird) 정보를 알았더라도, 여전히 초기(initial) DL BWP로는 다른 브로드캐스트(broadcast) 정보의 전송이 가능하므로, 해당 브로드캐스트 정보와 관련된 신호와 PDSCH가 멀티플렉싱(multiplexing)되는 것을 고려했을 때에는 SIB1 검출 성공 전후에 관계 없이 초기(initial) DL BWP에서의 PDCCH 수신 시에 기본 모드(default mode)에 기반할 수 있다. 이 때, 본 예시는 상기 PDSCH를 스케줄링 하는 PDCCH가 공통 검색 공간(Common Search space)에서 수신되는 PDCCH인 경우로 한정될 수 있다. 그 이유는, PDSCH를 스케줄링하는 PDCCH가 UE 특정 검색 공간(UE-Specific Search Space)를 통해 전송되는 경우에는, 기준점(reference point)과는 무관하게 DMRS 시퀀스 생성 시드(sequence generation seed) 자체가 UE간에 상이할 것이기 때문에, DMRS 자체가 다를 것이기 때문이다.
상술한 2-1) 및 2-2)에서 만약 PDSCH를 스케줄링하는 PDCCH가 전송되는 CORESET ID가 0가 아닌 경우, 검색 공간 ID(Search space ID)가 0가 아닌 경우, 및/또는 BWP ID가 0이 아닌 경우에도 해당 CORESET, 검색 공간 및/또는 BWP에 대한 설정 값이 각각 CORESET#0, 검색 공간#0(Search space#0), BWP#0와 전체 또는 일부가 동일하거나, 해당 CORESET, 검색 공간 및/또는 BWP를 통해 전송되는 PDCCH가 어떤 ID 혹은 어느 타입을 가지는 CORESET, 검색 공간(search space), 및/또는 BWP를 통해 전송되는지에 대해 구분되지 않는 경우에는 특정 CORESET, 검색 공간(Search space) 및/또는 BWP에 포함되는 것으로 가정하고 PDSCH를 스케줄링하는 PDCCH를 검출할 수 있다. 여기서, 특정 CORESET, 검색 공간(Search space) 및/또는 BWP는 각각 CORESET#0, 검색 공간(Search space)#0 및 BWP#0일 수 있다.
한편, PDSCH의 경우에는 기본 모드(default mode)에 대한 내용에 따라서 기본 모드를 사용하는 조건이 상이할 수도 있다. 예를 들어, 기본 모드가 DMRS를 위한 기준점(reference point) 지정을 위해 사용되는지, 아니면 Interleaved VRB-to-PRB mapping시 RB 번들(bundle) 설정을 위한 기준점을 위해 사용되는지 에 따라서 기본 모드(default mode)를 사용하는 조건이 상이할 수도 있다. 예를 들어, Interleaved VRB-to-PRB mapping에 대한 기본 모드(default mode) 동작은 PCell과 같은 특정 셀에 대해서만 적용될 수도 있다.
한편, Interleaved VRB-to-PRB mapping에 대하여 기본 모드(default mode) 는, UE가 BWP에 대한 정보 (예를 들어, BWP의 시작 RB 인덱스 및/또는 RB개수) 가 설정되기 전에 사용될 수도 있다. 이러한 경우, UE는 interleaved VRB-to-PRB mapping에 대한 첫 번째 RB 번들(bundle)의 크기를
Figure PCTKR2019008950-appb-img-000001
으로 가정하고, 마지막 RB 번들(bundle)의 크기는
Figure PCTKR2019008950-appb-img-000002
으로 가정할 수 있다. 여기서,
Figure PCTKR2019008950-appb-img-000003
는 BWP i의 시작 RB를 의미하고,
Figure PCTKR2019008950-appb-img-000004
는 BWP i의 RB 크기 또는 RB 개수를 의미할 수 있으며,
Figure PCTKR2019008950-appb-img-000005
는 BWP i의 번들 크기일 수 있다.
하지만, 상술한 수식은 하나의 예시에 불과하며, 다른 형태로 표현이 될 수도 있다. 다시 말해, 상술한 수식은 UE가 현재 가정하고 있는 활성(active) DL BWP의 첫 번째 부반송파(subcarrier)부터 RB 번들(bundle)을 설정하는 본 발명의 기본 사상으로부터 확장된 것으로 볼 수 있다.
또한, 상기에서 BWP의 크기는 다른 형태로 표현될 수 있다. 예를 들어, 초기(initial) BWP는 CORESET #0과 같은 특정 CORESET을 구성하는 RB개수 또는 가장 낮은 RB부터 가장 높은 RB까지의 연속된 RB들의 총 개수로 표현될 수도 있다.
한편, Interleaved VRB-to-PRB mapping에 대한 기본 모드(default mode)의 또 다른 예시로는, 해당 PDSCH를 스케줄링(scheduling)하는 PDCCH와 연관된 CORESET, 초기 DL BWP 크기와 같은 특정 BWP 크기, RB 번들 크기(bundle size) 및/또는 공통 RB 그리드를 기반으로 수행될 수 있다. 여기서, 공통 RB 그리드를 기반으로 Interleaved VRB-to-PRB mapping에 대한 기본 모드가 수행되는 것은, 예를 들어, Point A 또는 공통 RB 그리드에서의 첫번째 RB의 첫번째 부반송파 0을 기준으로 Interleaved VRB-to-PRB mapping에 대한 기본 모드가 수행되는 것일 수 있다. 이 때, 첫번째 RB의 첫번째 부반송파 0은 가장 낮은 넘버를 가진 RB의 부반송파 0을 의미할 수 있다.
구체적으로, interleaved VRB-to-PRB mapping시 인터리빙(interleaving)의 대상 영역은 CORESET의 가장 낮은 넘버를 가진 RB 인덱스로부터 초기 DL BWP 크기 같은 특정 BWP 크기 만큼의 연속된 RB 집합일 수 있다. 만약, N을 공통 RB 그리드(Common RB grid)에서의 CORESET의 가장 낮은 RB 인덱스라고 하고, 초기 DL BWP 크기를 B라고 하고, RB 번들 크기를 L이라고 할 때, RB 번들(bundle)의 개수는 (B+(N mod L))/L에 대한 정수 변환 값 (예를 들어, 올림 값) 일 수 있다.
한편, 상기 예시는 공통 RB 그리드를 기반으로 RB 번들(bundle)을 생성하는 것에 대한 예시에 불과하며, (N mode L)가 생략되어, B/L에 대한 정수 변환 값이 RB 번들의 개수로 사용될 수 있다.
또한, RB 번들(bundle) 0은 L-(N mod L)개의 RB들로 구성될 수 있다. 상기 예시 또한, 공통 RB 그리드(common RB grid)를 기반으로 RB 번들(bundle)을 생성하는 것에 대한 예시에 불과하며, (N mode L)이 생략되어, L개의 BR들이 RB 번들 0을 구성할 수도 있다.
또한, 마지막 RB 번들(bundle)은 (N+B) mod L if (N+B) mod L>0개의 RB들 혹은 L (if (N+B) mod L=0)개의 RB들로 구성될 수 있다. 이러한 예시 또한, 공통 RB 그리드(common RB grid)를 기반으로 RB 번들(bundle)을 생성하는 것에 대한 예시에 불과하며, N이 생략되어, B mod L if (N+B) mod L>0개의 RB 혹은 L (if B mod L=0)개의 RB들로 구성될 수 있다. 한편, 상술한 예시에서 초기(initial) DL BWP 크기는 다른 형태로 표현이 될 수도 있다. 예를 들어, 초기(initial) DL BWP를 설정할 때 참조되는 CORESET (예를 들어, CORESET #0)을 구성하는 RB 개수로 대체될 수도 있다.
또한, 상술한 기본 모드(default mode)는 PDSCH를 스케줄링(scheduling)하는 DCI가 공통 검색 공간(Common Search Space)에서 전송될 때 적용될 수 있다. 다만, SIB1에 대한 검색 공간 및/또는 CORESET에 전체 혹은 일부가 상기 DCI가 전송되는 공통 검색 공간과 겹치는 경우에는 상기 기본 모드가 적용되지 않을 수 있다. 이 때, 상기, SIB1에 대한 검색 공간 및/또는 CORESET에 전체 혹은 일부가 상기 DCI가 전송되는 공통 검색 공간과 겹치는 경우란, 예를 들어, SIB1에 대한 검색 공간(Search Space)과 겹치는 시점을 의미할 수 있다. 이러한 경우, 서로 다른 BWP를 갖는 UE가 interleaved VRB-to-PRB mapping을 사용하면서 동일한 공통 검색 공간을 공유하더라도, 각자의 활성(active) BWP와 관계없이 동일한 자원 할당(resource allocation)을 가정할 수 있는 효과가 있다.
다음으로, 기본 모드(default mode) 동작에 대한 DCI 크기 결정 방법을 설명하도록 한다.
UE가 PCell에서 수신하는 그룹 TPC (Transmit power control) 정보를 포함하는 DCI(예를 들어, DCI 포맷 2-2 및/또는 DCI 포맷 2-3)의 패이로드 크기(payload size)는 해당 PCell의 공통 검색 공간(Common Search Space)에서 전송될 수 있는 폴백 DCI (예를 들어, DCI 포맷 1_0/0_0)와 동일한 크기가 되도록 설정될 수 있다. 또한, 상기 DCI의 크기가 폴백 DCI의 동일한 크기로 생성되기 위하여 제로 패딩(zero-padding) 및/또는 절삭(truncation)을 수행할 수 있다.
또한, PCell의 공통 검색 공간에서 전송될 수 있는 폴백 DCI (DCI 포맷 1_0/0_0)의 페이로드 크기는 초기(initial) DL BWP의 크기를 기반으로 설정될 수 있다. 예를 들어, DCI 포맷 1_0은 주파수 도메인 자원 할당 크기(frequency domain resource allocation size)가 초기(initial) DL BWP를 기반으로 설정되고, DCI 포맷 0_0의 크기는 DCI 포맷 1_0과 정렬(Align)될 수 있었다.
또한, UE 특정 검색 공간(UE-Specific Search Space)에서 전송되는 폴백 DCI (예를 들어, DCI 포맷 1_0/0_0)의 페이로드 크기는 특정 상황에서 활성 DL BWP가 아닌 초기 DL BWP를 기반으로 변경될 수 있다. 여기서, 상기 특정 상황이란, 예를 들어, C-RNTI로 어드레스(addressed)되는 PDCCH에 대한 DCI 크기의 개수가 3개를 초과한 경우 또는 DCI 크기의 총 개수가 4개를 초과한 경우일 수 있다. 이를 통해, DCI 크기의 버짓(budget)을 제한할 수 있고, UE의 복잡성(complexity)를 줄일 수 있다.
이와 유사하게, PSCell 또는 SCell에 대해서도 DCI 크기의 버짓(budget) 등을 이유로 DCI의 페이로드 크기(payload size)를 특정 BWP (예를 들어, PCell 또는 SCell을 위한 초기(initial) DL BWP)를 기준으로 설정할 필요가 있다.
NR 시스템에서는 적어도 PSCell 또는 SCell이 추가될 때 및/또는 핸드오버를 수행할 때, 초기 DL BWP(예를 들어, BWP#0)를 상위 계층 시그널링(higher layer signalling)을 통해서 갱신(update)하는 것을 고려할 수 있다. 이는, PSCell 또는 SCell의 초기 DL BWP가 가질 수 있는 크기 값(예를 들어, 24/48/96)을 벗어나서 다른 값으로 PSCell 또는 SCell이 추가될 때 및/또는 핸드오버를 수행할 때의 초기 DL BWP의 크기가 설정될 수 있기 때문이다.
이제, UE가 SCell에서 수신하는 그룹 TPC를 포함하는 DCI의 페이로드 크기를 설정하는 예시를 살펴보도록 한다.
3-1) 그룹 TPC를 전송하기 위한 DCI 포맷 (예를 들어, DCI 포맷 2_2, DCI 포맷 2_3)에 대한 페이로드 크기는 상위 계층 시그널링(higher layer signalling)을 통해서 설정될 수 있다. 또한, 초기(Initial) DL BWP에 대한 정보가 전용 RRC 시그널링(dedicated RRC signalling)을 통해서 변경이 가능할 때에 한정하여 해당 DCI 페이로드 크기(payload size)를 상위 계층을 통해 설정할 수 있다. 그 외에는 그룹 TPC를 포함하는 DCI가 전송되는 서빙 셀(serving cell) 또는 PCell의 초기(initial) DL BWP의 크기를 기반으로 DCI의 페이로드 크기가 설정될 수 있다. 예를 들어, 그룹 TPC를 포함하는 DCI의 크기를 서빙 셀 또는 PCell의 초기 DL BWP의 크기를 가정한 DCI 포맷 1_0/0_0의 페이로드 크기와 동일하게 설정할 수 있다.
3-2) 그룹 TPC를 전송하기 위한 DCI 포맷 (예를 들어, DCI 포맷 2_2, DCI 포맷 2_3)에 대한 페이로드 크기는 그룹 TPC를 포함하는 DCI가 전송되는 서빙 셀(serving cell)의 초기(initial) DL BWP의 크기를 기반으로 설정될 수 있다. 예를 들어, 그룹 TPC를 포함하는 DCI가 전송되는 서빙 셀(serving cell)의 초기(initial) DL BWP 를 가정한 DCI 포맷 1_0/0_0의 페이로드 크기와 동일하게 그룹 TPC를 포함하는 DCI의 페이로드 크기를 설정할 수 있다.
한편, 3-2)의 이점으로는, 해당 서빙 셀(serving cell)을 PCell로 갖는 UE와도 그룹 TPC를 공유(sharing)할 수 있다는 것이다. 이 때, 서빙 셀(serving cell)의 초기(initial) DL BWP가 SIB 또는 UE 전용 시그널링(UE-dedicated signalling)에 의해서 알려진 초기 DL BWP로 변경(override)될 수 있다. 하지만 3-2)에 의하면, PBCH, 핸드 오버 코멘드(handover command) 또는 PSCell 추가를 위한 메시지를 통해 알려진 초기(initial) DL BWP의 크기에 따라 DCI 크기가 결정되고, 이후 초기 DL BWP가 변경되더라도 해당 DCI 크기는 변하지 않을 수 있다.
구체적으로, 하나의 단말에 설정된 초기(initial) DL BWP를 하나의 BWP 설정(configuration)을 통해 조정(adaptation)할 때, 초기 접속(initial access) 단계에서 PBCH, 핸드 오버 코멘드(handover command) 또는 PSCell 추가를 위한 메시지를 통해 알려진 초기(initial) DL BWP에 따라 해당 그룹 TPC를 포함하는 DCI의 크기가 정해지고, 이후 조정된 초기 DL BWP로 변경(override)되지 않을 것을 가정할 수 있다.
이를 위해, SIB을 통해서 초기(initial) DL BWP를 갱신(update)하는 경우, 초기 DL BWP의 갱신을 위한 필드(field)는 PBCH에서 알려주는 초기(initial) DL BWP를 위한 필드와 별도의 필드(field)를 통해서 전송될 수 있고, 이를 통해 UE는 PBCH 에서 알려주는 다른 UE와 공유(share)되는 초기(initial) DL BWP와 갱신(updated)된 초기(initial) DL BWP를 구별할 수 있다.
한편, 상술한 방식은 PSCell 추가(addition)에도 유사하게 적용할 수 있다. 즉, SIB 갱신(update) 또는 UE 전용 시그널링(UE-dedicated signalling)을 통해서 초기(initial) DL BWP가 변경되더라도 공통 검색 공간을 통해 전송되는 DCI 포맷 0_0/1_0, TPC를 포함하는 DCI format 2_1/2-2 및/또는 UE 특정 검색 공간을 통해 전송되는 DCI 포맷 0_0/1_0이 활성(active) BWP를 기반으로 DCI의 크기(size)가 정해지지 않는 경우에는 초기(initial) DL BWP가 변경되는 것은 영향을 주지 않을 수 있다. 즉, 초기 DL BWP의 크기가 변경되더라도, 변경 전 초기 DL BWP의 크기를 기반으로 DCI의 크기가 결정될 수 있다.
3-3) 그룹 TPC를 전송하기 위한 DCI 포맷 (예를 들어. DCI 포맷 2_2, DCI 포맷 2_3)에 대한 페이로드 크기(payload size)는 PCell의 초기(initial) DL BWP 의 크기를 기반으로 설정될 수 있다. 예를 들어, 그룹 TPC를 포함하는 DCI가 전송되는 PCell의 초기(initial) DL BWP 를 가정한 DCI 포맷 1_0/0_0의 페이로드 크기와 동일하게 그룹 TPC를 포함하는 DCI의 페이로드 크기를 설정할 수 있다.
이 때, UE는 SCell에 대해서는 공통 검색 공간(Common Search Space)을 통해 C-RNTI로 어드레스(addressed)된 PDCCH가 전송되는 것을 기대하지 않을 수 있다. 따라서, UE는 불필요하게 DCI 크기 버짓(size budget)을 늘리지 않을 수 있다. 다만, 이러한 경우, 그룹 TPC를 공유(sharing)하기 위해서는 해당 UE들이 동일한 PCell을 가지거나 PCell을 위한 초기(initial) DL BWP의 크기가 동일할 필요가 있다.
한편, 초기(Initial) DL BWP의 크기는 PDCCH가 전송되는 CORESET의 가장 낮은 PRB로부터 가장 높은 PRB까지의 크기로 대체될 수 있다. 예를 들어, 초기 DL BWP의 크기는 (가장 높은 PRB 인덱스 - 가장 낮은 PRB index +1) 로 대체될 수 있다. 또한, CORESET을 구성하는 PRB 개수로 대체될 수도 있다. 이러한 경우에는, 그룹 TPC를 포함하는 DCI의 페이로드 크기(payload size)는 상술한 바와 같이 CORESET으로부터 도출된 크기를 BWP의 크기로 가정하여 생성한 DCI 포맷 1_0/0_0의 페이로드 크기로 설정될 수 있다.
이제, UE가 SCell에서 DCI 크기 버짓(size budget)이 충족(fulfilled)되지 않는 경우에 UE 특정 검색 공간(UE-Specific Search Space)에서 수신하는 폴백 DCI에 대한 페이로드 크기를 변경하기 위한 예시를 살펴보도록 한다.
4-1) SCell에서 수신되는 그룹 TPC를 전송하기 위한 DCI 포맷 (예를 들어, DCI 포맷 2_2, DCI 포맷 2_3)에 대한 페이로드 크기와 동일하도록 폴백(fallback) DCI의 페이로드 크기(payload size)를 설정할 수 있다. 한편, 그룹 TPC를 포함하는 DCI 포맷의 페이로드 크기를 변경할 때, 주파수 도메인 자원 할당 필드(frequency domain resource allocation field)와 같은 특정 필드의 크기를 변경할 수 있다. 또한, 상술한 그룹 TPC를 포함하는 DCI 포맷의 페이로드 크기 변경은 UE가 SCell에서 그룹 TPC를 포함하는 DCI를 수신하는 경우로 한정될 수 있다. 그룹 TPC를 포함하는 DCI를 수신하는 경우 이외에는 해당 SCell에 대해서는 DCI 크기 버짓(size budget)이 충족(fulfilled)되는 것으로 가정하거나 기대할 수 있다.
4-2) SCell의 UE 특정 검색 공간(UE-Specific Search Space)에서 수신되는 폴백(fallback) DCI의 페이로드 크기(payload size)를 상위 계층 시그널링(higher layer signalling)을 통해서 설정할 수 있다. 예를 들어, 초기(Initial) DL BWP에 대한 정보가 전용 RRC 시그널링(dedicated RRC signalling)을 통해서 변경될 때에 한정하여 폴백(fallback) DCI의 페이로드 크기(payload size)를 상위 계층을 통해 설정할 수 있다. 그 외에는 해당 서빙 셀(serving cell) 또는 PCell의 초기(initial) DL BWP의 크기를 기반으로 폴백(fallback) DCI의 페이로드 크기가 설정될 수 있다.
한편, UE는 공통 검색 공간(Common Search Space)에서 폴백(fallback) DCI를 수신하는 경우, 폴백 DCI의 페이로드 크기는 해당 PCell의 초기(initial) DL BWP를 기반으로 설정될 수 있다.
또한, NR 시스템에서는 핸드 오버를 할 때, 기지국이 타겟 서빙 셀(target serving cell)의 초기(initial) DL BWP를 전용 시그널링(dedicated signalling)을 통해서 변경할 수도 있다. 다만, 이러한 경우, 서빙 셀(serving cell)의 초기 접속(initial access)을 위한 초기(initial) DL BWP와 이를 기반으로 한 PDCCH/PDSCH 전송은 유지될 필요가 있다.
구체적으로 특정 UE에 대한 초기(initial) DL BWP 정보를 변경하는 경우, 상기 특정 UE는 타겟 서빙 셀의 변경된 초기 DL BWP를 통해 PDCCH를 수신함에 있어서 상기 PDCCH가 서빙 셀(serving cell)의 CORESET#0, 검색 공간#0, searchSpace-OSI, ra-SearchSpace 및/또는 pagingSearchSpace에 대응되는 것을 기대하지 않을 수 있다. 즉, 좀더 특징적으로 상기 특정 UE는 타겟 서빙 셀의 변경된 초기 DL BWP의 PDCCH 모니터링 기회(Occasion)과 서빙 셀의 초기 DL BWP의 PDCCH 모니터링 기회(Occasion)이 겹치지 않을 것을 기대할 수도 있다. 이는, 서빙 셀의 CORESET#0, 검색 공간#0, searchSpace-OSI, ra-SearchSpace 및/또는 pagingSearchSpace에 대응되는 CORESET 및/또는 검색 공간(search space)에서는 전용 시그널링(dedicated signalling)으로 변경되기 이전의 초기 DL BWP를 기반으로 동작되는 것을 가정하기 위함이다.
도 12는 본 발명의 실시 예에 따른 무선 통신 장치의 일 실시 예를 도시한다.
도 12에서 설명하는 무선 통신 장치는 본 발명의 실시 예에 따른 단말 및/또는 기지국을 나타낼 수 있다. 그러나, 도 12의 무선 통신 장치는, 본 실시 예에 따른 단말 및/또는 기지국에 반드시 한정되는 것은 아니며, 차량 통신 시스템 또는 장치, 웨어러블(wearable) 장치, 랩톱, 스마트 폰 등과 같은 다양한 장치로 대체될 수 있다. 좀 더 구체적으로, 상기 장치는 기지국, 네트워크 노드, 전송 단말, 수신 단말, 무선 장치, 무선 통신 장치, 차량, 자율주행 기능을 탑재한 차량, 드론(Unmanned Aerial Vehicle, UAV), AI(Artificial Intelligence) 모듈, 로봇, AR(Augmented Reality) 장치, VR(Virtual Reality) 장치, MTC 장치, IoT 장치, 의료 장치, 핀테크 장치(또는 금융 장치), 보안 장치, 기후/환경 장치 또는 그 이외 4차 산업 혁명 분야 또는 5G 서비스와 관련된 장치 등일 수 있다. 예를 들어, 드론은 사람이 타지 않고 무선 컨트롤 신호에 의해 비행하는 비행체일 수 있다. 예를 들어, MTC 장치 및 IoT 장치는 사람의 직접적인 개입이나 또는 조작이 필요하지 않는 장치로서, 스마트 미터, 벤딩 머신, 온도계, 스마트 전구, 도어락, 각종 센서 등일 수 있다. 예를 들어, 의료 장치는 질병을 진단, 치료, 경감, 처치 또는 예방할 목적으로 사용되는 장치, 구조 또는 기능을 검사, 대체 또는 변형할 목적으로 사용되는 장치로서, 진료용 장비, 수술용 장치, (체외) 진단용 장치, 보청기, 시술용 장치 등일 수 있다. 예를 들어, 보안 장치는 발생할 우려가 있는 위험을 방지하고, 안전을 유지하기 위하여 설치한 장치로서, 카메라, CCTV, 블랙박스 등일 수 있다. 예를 들어, 핀테크 장치는 모바일 결제 등 금융 서비스를 제공할 수 있는 장치로서, 결제 장치, POS(Point of Sales) 등일 수 있다. 예를 들어, 기후/환경 장치는 기후/환경을 모니터링, 예측하는 장치를 의미할 수 있다.
또한, 전송 단말 및 수신 단말은 휴대폰, 스마트 폰(smart phone), 노트북 컴퓨터(laptop computer), 디지털 방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 슬레이트 PC(slate PC), 태블릿 PC(tablet PC), 울트라북(ultrabook), 웨어러블 디바이스(wearable device, 예를 들어, 워치형 단말기 (smartwatch), 글래스형 단말기 (smart glass), HMD(head mounted display)), 폴더블(foldable) 디바이스 등을 포함할 수 있다. 예를 들어, HMD는 머리에 착용하는 형태의 디스플레이 장치로서, VR 또는 AR을 구현하기 위해 사용될 수 있다. 
도 12를 참조하면, 본 발명의 실시 예에 따른 단말 및/또는 기지국은 디지털 신호 프로세서(Digital Signal Processor; DSP) 또는 마이크로 프로세서와 같은 적어도 하나의 프로세서(10), 트랜시버(Transceiver)(35), 전력 관리 모듈(5), 안테나(40), 배터리(55), 디스플레이(15), 키패드(20), 메모리(30), 가입자 식별 모듈(SIM)카드 (25), 스피커(45) 및 마이크로폰(50)등을 포함할 수 있다. 또한, 상기 단말 및/또는 기지국은 단일 안테나 또는 다중 안테나를 포함할 수 있다. 한편, 상기 트랜시버(Transceiver)(35)는 RF 모듈(Radio Frequency Module)로도 명칭될 수 있다.
프로세서(10)는 도 1 내지 11에 설명된 기능, 절차 및/또는 방법을 구현하도록 구성될 수 있다. 도 1 내지 도 11에서 설명한 실시 예들 중 적어도 일부에 있어서, 프로세서(10)는 무선 인터페이스 프로토콜의 계층들 (예를 들어, 기능 계층들(functional layers))과 같은 하나 이상의 프로토콜들을 구현할 수 있다.
메모리(30)는 프로세서(10)에 연결되어 프로세서(10)의 동작과 관련된 정보를 저장한다. 메모리(30)는 프로세서(10)의 내부 또는 외부에 위치 할 수 있으며, 유선 또는 무선 통신과 같은 다양한 기술을 통해 프로세서에 연결될 수 있다.
사용자는 키패드(20)의 버튼을 누름으로써 또는 마이크로폰(50)을 이용한 음성 활성화와 같은 다양한 기술에 의한 다양한 유형의 정보 (예를 들어, 전화 번호와 같은 지시 정보)를 입력 할 수 있다. 프로세서(10) 는 사용자의 정보를 수신 및/또는 처리하고 전화 번호를 다이얼하는 것과 같은 적절한 기능을 수행한다.
또한, 상기 적절한 기능들을 수행하기 위해 SIM 카드(25) 또는 메모리 (30)로부터 데이터(예를 들어, 조작 데이터)를 검색할 수도 있다. 또한, 프로세서 (10)는 GPS 칩으로부터 GPS 정보를 수신 및 처리하여 차량 네비게이션, 지도 서비스 등과 같은 단말 및/또는 기지국의 위치 정보를 획득하거나 위치 정보와 관련된 기능을 수행 할 수 있다. 또한, 프로세서(10)는 사용자의 참조 및 편의를 위해 이러한 다양한 유형의 정보 및 데이터를 디스플레이(15) 상에 표시할 수 있다.
트랜시버(Transceiver)(35)는 프로세서(10)에 연결되어 RF (Radio Frequency) 신호와 같은 무선 신호를 송신 및/또는 수신한다. 이 때, 프로세서(10)는 통신을 개시하고 음성 통신 데이터와 같은 다양한 유형의 정보 또는 데이터를 포함하는 무선 신호를 송신하도록 트랜시버(Transceiver)(35)를 제어 할 수 있다. 트랜시버(Transceiver) (35)는 무선 신호를 수신하는 수신기 및 송신하는 송신기를 포함할 수 있다. 안테나(40)는 무선 신호의 송신 및 수신을 용이하게 한다. 일부 실시 예에서, 무선 신호를 수신되면, 트랜시버(Transceiver)(35)는 프로세서(10)에 의한 처리를 위해 기저 대역 주파수로 신호를 포워딩하고 변환할 수 있다. 처리된 신호는 가청 또는 판독 가능한 정보로 변환되는 등, 다양한 기술에 따라 처리 될 수 있으며, 이러한 신호는 스피커 (45)를 통해 출력될 수 있다.
일부 실시 예에서, 센서 또한 프로세서(10)에 연결될 수 있다. 센서는 속도, 가속도, 광, 진동 등을 포함하는 다양한 유형의 정보를 검출하도록 구성된 하나 이상의 감지 장치를 포함 할 수 있다. 근접, 위치, 이미지 등과 같이 센서로부터 얻어진 센서 정보를 프로세서(10)가 수신하여 처리함으로써, 충돌 회피, 자율 주행 등의 각종 기능을 수행 할 수 있다.
한편, 카메라, USB 포트 등과 같은 다양한 구성 요소가 단말 및/또는 기지국에 추가로 포함될 수 있다. 예를 들어, 카메라가 프로세서(10)에 추가로 연결될 수 있으며, 이러한 카메라는 자율 주행, 차량 안전 서비스 등과 같은 다양한 서비스에 사용될 수 있다.
이와 같이, 도 12는 단말 및/또는 기지국을 구성하는 장치들의 일 실시 예에 불과하면, 이에 한정되는 것은 아니다. 예를 들어, 키패드(20), GPS (Global Positioning System) 칩, 센서, 스피커(45) 및/또는 마이크로폰(50)과 같은 일부 구성 요소는 일부 실시 예들에서 단말 및/또는 기지국 구현을 위해 제외될 수도 있다.
구체적으로, 본 발명의 실시 예들을 구현하기 위해, 도 12에서 표현된 무선 통신 장치가 본 발명의 실시 예에 따른 단말인 경우의 동작을 살펴보도록 한다. 상기 무선 통신 장치가 본 발명의 실시 예에 따른 단말인 경우, 상기 프로세서(10)는 PDCCH(Physical Downlink Control Channel) 및/또는 PDSCH(Physical Downlink Shared Channel)를 수신하도록 트랜시버(35)를 제어하고, 상기 PDCCH 및/또는 PDSCH와 연관된 DMRS(Demodulation Reference Signal)을 수신하도록 트랜시버(35)를 제어할 수 있다. 프로세서(10)는 수신된 DMRS가 기본 모드(default mode)를 기반으로 생성된 것으로 가정하고, DMRS를 검출한 뒤, 상기 검출된 DMRS의 채널 추정치를 기반으로 상기 PDCCH 및/또는 PDSCH를 디코딩할 수 있다. 이 때, PDCCH와 PDSCH는 하나의 슬롯 내에서 수신될 수도 있지만, 서로 다른 슬롯에서 수신될 수도 있다. 또한, PDCCH에 연관된 DMRS와 PDSCH에 연관된 DMRS 모두 기본 모드(default mode) 동작에 의해 생성될 수도 있고, 어느 하나의 DMRS만 기본 모드(default mode) 동작에 의해 생성될 수도 있다. 기본 모드를 기반으로 한 DMRS 생성 방법은 상술한 실시 예들을 기반으로 할 수 있다.
또한, 상기 PDCCH 및/또는 PDSCH는 SIB1을 수신하기 위한 것일 수 있다. 다시 말해, PDCCH는 SIB1을 운반(carry)하는 PDSCH를 스케줄링하기 위한 것일 수 있으며, PDSCH는 상기 SIB1을 운반하기 위한 것일 수 있다.
또한, 상기 SIB1을 수신한 프로세서(10)는 상기 SIB1을 통해서 초기(initial) BWP(Bandwidth Part) 정보를 획득할 수 있고, 상기 초기 BWP 정보를 기반으로 그룹 TPC 정보를 포함하는 DCI(Downlink Control Information)을 수신하도록 트랜시버(35)를 제어할 수 있다. 이 때, 그룹 TPC 정보를 포함하는 DCI가 생성되는 방법 및 송수신하는 방법 또한 상술한 구체적인 실시 예들을 기반으로 할 수 있다.
한편, 본 발명의 실시 예들을 구현하기 위해, 도 12에서 표현된 무선 통신 장치가 본 발명의 실시 예에 따른 기지국인 경우, 상기 프로세서 (10)는 기본 모드(default mode)를 기반으로 PDCCH 및/또는 PDSCH와 연관된 DRMS를 생성할 수 있다. 그리고 생성된 DMRS를 상기 PDCCH 및/또는 PDSCH와 함께 UE로 전송하도록 트랜시버(35)를 제어할 수 있다.
이 때, PDCCH와 PDSCH는 하나의 슬롯 내에서 전송될 수도 있지만, 서로 다른 슬롯에서 전송될 수도 있다. 또한, PDCCH에 연관된 DMRS와 PDSCH에 연관된 DMRS 모두 기본 모드(default mode) 동작에 의해 생성될 수도 있고, 어느 하나의 DMRS만 기본 모드(default mode) 동작에 의해 생성될 수도 있다. 기본 모드를 기반으로 한 DMRS 생성 방법은 상술한 실시 예들을 기반으로 할 수 있다.
또한, 상기 PDCCH 및/또는 PDSCH는 SIB1을 전송하기 위한 것일 수 있다. 다시 말해, PDCCH는 SIB1을 운반(carry)하는 PDSCH를 스케줄링하기 위한 것일 수 있으며, PDSCH는 상기 SIB1을 운반하기 위한 것일 수 있다.
또한, 상기 SIB1을 전송한 프로세서(10)는 상기 SIB1을 통해서 초기(initial) BWP(Bandwidth Part) 정보를 전송할 수 있고, 상기 초기 BWP 정보를 기반으로 그룹 TPC 정보를 포함하는 DCI(Downlink Control Information)을 전송할 수 있다. 이 때, 그룹 TPC 정보를 포함하는 DCI가 생성되는 방법 및 송수신하는 방법 또한 후술한 구체적인 실시 예들을 기반으로 할 수 있다.
도 13은 본 발명의 실시 예들을 구현할 수 있는 AI 장치(100)를 나타낸다.
AI 장치(100)는 TV, 프로젝터, 휴대폰, 스마트폰, 데스크탑 컴퓨터, 노트북, 디지털방송용 단말기, PDA(personal digital assistants), PMP(portable multimedia player), 네비게이션, 태블릿 PC, 웨어러블 장치, 셋톱박스(STB), DMB 수신기, 라디오, 세탁기, 냉장고, 데스크탑 컴퓨터, 디지털 사이니지, 로봇, 차량 등과 같은, 고정형 기기 또는 이동 가능한 기기 등으로 구현될 수 있다.
도 13을 참조하면, 단말기(100)는 통신부(110), 입력부(120), 러닝 프로세서(130), 센싱부(140), 출력부(150), 메모리(170) 및 프로세서(180) 등을 포함할 수 있다.
통신부(110)는 유무선 통신 기술을 이용하여 다른 AI 장치(100a 내지 100e)나 AI 서버(200) 등의 외부 장치들과 데이터를 송수신할 수 있다. 예컨대, 통신부(110)는 외부 장치들과 센서 정보, 사용자 입력, 학습 모델, 제어 신호 등을 송수신할 수 있다.
이때, 통신부(110)가 이용하는 통신 기술에는 GSM(Global System for Mobile communication), CDMA(Code Division Multi Access), LTE(Long Term Evolution), 5G, WLAN(Wireless LAN), Wi-Fi(Wireless-Fidelity), 블루투스(Bluetooth쪠), RFID(Radio Frequency Identification), 적외선 통신(Infrared Data Association; IrDA), ZigBee, NFC(Near Field Communication) 등이 있다.
입력부(120)는 다양한 종류의 데이터를 획득할 수 있다.
이때, 입력부(120)는 영상 신호 입력을 위한 카메라, 오디오 신호를 수신하기 위한 마이크로폰, 사용자로부터 정보를 입력 받기 위한 사용자 입력부 등을 포함할 수 있다. 여기서, 카메라나 마이크로폰을 센서로 취급하여, 카메라나 마이크로폰으로부터 획득한 신호를 센싱 데이터 또는 센서 정보라고 할 수도 있다.
입력부(120)는 모델 학습을 위한 학습 데이터 및 학습 모델을 이용하여 출력을 획득할 때 사용될 입력 데이터 등을 획득할 수 있다. 입력부(120)는 가공되지 않은 입력 데이터를 획득할 수도 있으며, 이 경우 프로세서(180) 또는 러닝 프로세서(130)는 입력 데이터에 대하여 전처리로써 입력 특징점(input feature)을 추출할 수 있다.
러닝 프로세서(130)는 학습 데이터를 이용하여 인공 신경망으로 구성된 모델을 학습시킬 수 있다. 여기서, 학습된 인공 신경망을 학습 모델이라 칭할 수 있다. 학습 모델은 학습 데이터가 아닌 새로운 입력 데이터에 대하여 결과 값을 추론해 내는데 사용될 수 있고, 추론된 값은 어떠한 동작을 수행하기 위한 판단의 기초로 이용될 수 있다.
이때, 러닝 프로세서(130)는 AI 서버(200)의 러닝 프로세서(240)과 함께 AI 프로세싱을 수행할 수 있다.
이때, 러닝 프로세서(130)는 AI 장치(100)에 통합되거나 구현된 메모리를 포함할 수 있다. 또는, 러닝 프로세서(130)는 메모리(170), AI 장치(100)에 직접 결합된 외부 메모리 또는 외부 장치에서 유지되는 메모리를 사용하여 구현될 수도 있다.
센싱부(140)는 다양한 센서들을 이용하여 AI 장치(100) 내부 정보, AI 장치(100)의 주변 환경 정보 및 사용자 정보 중 적어도 하나를 획득할 수 있다.
이때, 센싱부(140)에 포함되는 센서에는 근접 센서, 조도 센서, 가속도 센서, 자기 센서, 자이로 센서, 관성 센서, RGB 센서, IR 센서, 지문 인식 센서, 초음파 센서, 광 센서, 마이크로폰, 라이다, 레이더 등이 있다.
출력부(150)는 시각, 청각 또는 촉각 등과 관련된 출력을 발생시킬 수 있다.
이때, 출력부(150)에는 시각 정보를 출력하는 디스플레이부, 청각 정보를 출력하는 스피커, 촉각 정보를 출력하는 햅틱 모듈 등이 포함될 수 있다.
메모리(170)는 AI 장치(100)의 다양한 기능을 지원하는 데이터를 저장할 수 있다. 예컨대, 메모리(170)는 입력부(120)에서 획득한 입력 데이터, 학습 데이터, 학습 모델, 학습 히스토리 등을 저장할 수 있다.
프로세서(180)는 데이터 분석 알고리즘 또는 머신 러닝 알고리즘을 사용하여 결정되거나 생성된 정보에 기초하여, AI 장치(100)의 적어도 하나의 실행 가능한 동작을 결정할 수 있다. 그리고, 프로세서(180)는 AI 장치(100)의 구성 요소들을 제어하여 결정된 동작을 수행할 수 있다.
이를 위해, 프로세서(180)는 러닝 프로세서(130) 또는 메모리(170)의 데이터를 요청, 검색, 수신 또는 활용할 수 있고, 상기 적어도 하나의 실행 가능한 동작 중 예측되는 동작이나, 바람직한 것으로 판단되는 동작을 실행하도록 AI 장치(100)의 구성 요소들을 제어할 수 있다.
이때, 프로세서(180)는 결정된 동작을 수행하기 위하여 외부 장치의 연계가 필요한 경우, 해당 외부 장치를 제어하기 위한 제어 신호를 생성하고, 생성한 제어 신호를 해당 외부 장치에 전송할 수 있다.
프로세서(180)는 사용자 입력에 대하여 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 사용자의 요구 사항을 결정할 수 있다.
이때, 프로세서(180)는 음성 입력을 문자열로 변환하기 위한 STT(Speech To Text) 엔진 또는 자연어의 의도 정보를 획득하기 위한 자연어 처리(NLP: Natural Language Processing) 엔진 중에서 적어도 하나 이상을 이용하여, 사용자 입력에 상응하는 의도 정보를 획득할 수 있다.
이때, STT 엔진 또는 NLP 엔진 중에서 적어도 하나 이상은 적어도 일부가 머신 러닝 알고리즘에 따라 학습된 인공 신경망으로 구성될 수 있다. 그리고, STT 엔진 또는 NLP 엔진 중에서 적어도 하나 이상은 러닝 프로세서(130)에 의해 학습된 것이나, AI 서버(200)의 러닝 프로세서(240)에 의해 학습된 것이거나, 또는 이들의 분산 처리에 의해 학습된 것일 수 있다.
프로세서(180)는 AI 장치(100)의 동작 내용이나 동작에 대한 사용자의 피드백 등을 포함하는 이력 정보를 수집하여 메모리(170) 또는 러닝 프로세서(130)에 저장하거나, AI 서버(200) 등의 외부 장치에 전송할 수 있다. 수집된 이력 정보는 학습 모델을 갱신하는데 이용될 수 있다.
프로세서(180)는 메모리(170)에 저장된 응용 프로그램을 구동하기 위하여, AI 장치(100)의 구성 요소들 중 적어도 일부를 제어할 수 있다. 나아가, 프로세서(180)는 상기 응용 프로그램의 구동을 위하여, AI 장치(100)에 포함된 구성 요소들 중 둘 이상을 서로 조합하여 동작시킬 수 있다.
도 14는 본 발명의 실시 예들을 구현할 수 있는 AI 서버(200)를 나타낸다.
도 14를 참조하면, AI 서버(200)는 머신 러닝 알고리즘을 이용하여 인공 신경망을 학습시키거나 학습된 인공 신경망을 이용하는 장치를 의미할 수 있다. 여기서, AI 서버(200)는 복수의 서버들로 구성되어 분산 처리를 수행할 수도 있고, 5G 네트워크로 정의될 수 있다. 이때, AI 서버(200)는 AI 장치(100)의 일부의 구성으로 포함되어, AI 프로세싱 중 적어도 일부를 함께 수행할 수도 있다.
AI 서버(200)는 통신부(210), 메모리(230), 러닝 프로세서(240) 및 프로세서(260) 등을 포함할 수 있다.
통신부(210)는 AI 장치(100) 등의 외부 장치와 데이터를 송수신할 수 있다.
메모리(230)는 모델 저장부(231)를 포함할 수 있다. 모델 저장부(231)는 러닝 프로세서(240)을 통하여 학습 중인 또는 학습된 모델(또는 인공 신경망, 231a)을 저장할 수 있다.
러닝 프로세서(240)는 학습 데이터를 이용하여 인공 신경망(231a)을 학습시킬 수 있다. 학습 모델은 인공 신경망의 AI 서버(200)에 탑재된 상태에서 이용되거나, AI 장치(100) 등의 외부 장치에 탑재되어 이용될 수도 있다.
학습 모델은 하드웨어, 소프트웨어 또는 하드웨어와 소프트웨어의 조합으로 구현될 수 있다. 학습 모델의 일부 또는 전부가 소프트웨어로 구현되는 경우 학습 모델을 구성하는 하나 이상의 명령어(instruction)는 메모리(230)에 저장될 수 있다.
프로세서(260)는 학습 모델을 이용하여 새로운 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성할 수 있다.
도 15는 본 발명의 실시 예들을 구현할 수 있는 따른 AI 시스템(1)을 나타낸다.
도 15를 참조하면, AI 시스템(1)은 AI 서버(200), 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 중에서 적어도 하나 이상이 클라우드 네트워크(10)와 연결된다. 여기서, AI 기술이 적용된 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 등을 AI 장치(100a 내지 100e)라 칭할 수 있다.
클라우드 네트워크(10)는 클라우드 컴퓨팅 인프라의 일부를 구성하거나 클라우드 컴퓨팅 인프라 안에 존재하는 네트워크를 의미할 수 있다. 여기서, 클라우드 네트워크(10)는 3G 네트워크, 4G 또는 LTE(Long Term Evolution) 네트워크 또는 5G 네트워크 등을 이용하여 구성될 수 있다.
즉, AI 시스템(1)을 구성하는 각 장치들(100a 내지 100e, 200)은 클라우드 네트워크(10)를 통해 서로 연결될 수 있다. 특히, 각 장치들(100a 내지 100e, 200)은 기지국을 통해서 서로 통신할 수도 있지만, 기지국을 통하지 않고 직접 서로 통신할 수도 있다.
AI 서버(200)는 AI 프로세싱을 수행하는 서버와 빅 데이터에 대한 연산을 수행하는 서버를 포함할 수 있다.
AI 서버(200)는 AI 시스템(1)을 구성하는 AI 장치들인 로봇(100a), 자율 주행 차량(100b), XR 장치(100c), 스마트폰(100d) 또는 가전(100e) 중에서 적어도 하나 이상과 클라우드 네트워크(10)을 통하여 연결되고, 연결된 AI 장치들(100a 내지 100e)의 AI 프로세싱을 적어도 일부를 도울 수 있다.
이때, AI 서버(200)는 AI 장치(100a 내지 100e)를 대신하여 머신 러닝 알고리즘에 따라 인공 신경망을 학습시킬 수 있고, 학습 모델을 직접 저장하거나 AI 장치(100a 내지 100e)에 전송할 수 있다.
이때, AI 서버(200)는 AI 장치(100a 내지 100e)로부터 입력 데이터를 수신하고, 학습 모델을 이용하여 수신한 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성하여 AI 장치(100a 내지 100e)로 전송할 수 있다.
또는, AI 장치(100a 내지 100e)는 직접 학습 모델을 이용하여 입력 데이터에 대하여 결과 값을 추론하고, 추론한 결과 값에 기초한 응답이나 제어 명령을 생성할 수도 있다.
이하에서는, 상술한 기술이 적용되는 AI 장치(100a 내지 100e)의 다양한 실시 예들을 설명한다. 여기서, 도 22에 도시된 AI 장치(100a 내지 100e)는 도 20에 도시된 AI 장치(100)의 구체적인 실시 예로 볼 수 있다.
<AI+로봇>
로봇(100a)은 AI 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇 등으로 구현될 수 있다.
로봇(100a)은 동작을 제어하기 위한 로봇 제어 모듈을 포함할 수 있고, 로봇 제어 모듈은 소프트웨어 모듈 또는 이를 하드웨어로 구현한 칩을 의미할 수 있다.
로봇(100a)은 다양한 종류의 센서들로부터 획득한 센서 정보를 이용하여 로봇(100a)의 상태 정보를 획득하거나, 주변 환경 및 객체를 검출(인식)하거나, 맵 데이터를 생성하거나, 이동 경로 및 주행 계획을 결정하거나, 사용자 상호작용에 대한 응답을 결정하거나, 동작을 결정할 수 있다.
여기서, 로봇(100a)은 이동 경로 및 주행 계획을 결정하기 위하여, 라이다, 레이더, 카메라 중에서 적어도 하나 이상의 센서에서 획득한 센서 정보를 이용할 수 있다.
로봇(100a)은 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, 로봇(100a)은 학습 모델을 이용하여 주변 환경 및 객체를 인식할 수 있고, 인식된 주변 환경 정보 또는 객체 정보를 이용하여 동작을 결정할 수 있다. 여기서, 학습 모델은 로봇(100a)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, 로봇(100a)은 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
로봇(100a)은 맵 데이터, 센서 정보로부터 검출한 객체 정보 또는 외부 장치로부터 획득한 객체 정보 중에서 적어도 하나 이상을 이용하여 이동 경로와 주행 계획을 결정하고, 구동부를 제어하여 결정된 이동 경로와 주행 계획에 따라 로봇(100a)을 주행시킬 수 있다.
맵 데이터에는 로봇(100a)이 이동하는 공간에 배치된 다양한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 예컨대, 맵 데이터에는 벽, 문 등의 고정 객체들과 화분, 책상 등의 이동 가능한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 그리고, 객체 식별 정보에는 명칭, 종류, 거리, 위치 등이 포함될 수 있다.
또한, 로봇(100a)은 사용자의 제어/상호작용에 기초하여 구동부를 제어함으로써, 동작을 수행하거나 주행할 수 있다. 이때, 로봇(100a)은 사용자의 동작이나 음성 발화에 따른 상호작용의 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 응답을 결정하여 동작을 수행할 수 있다.
<AI+자율주행>
자율 주행 차량(100b)은 AI 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
자율 주행 차량(100b)은 자율 주행 기능을 제어하기 위한 자율 주행 제어 모듈을 포함할 수 있고, 자율 주행 제어 모듈은 소프트웨어 모듈 또는 이를 하드웨어로 구현한 칩을 의미할 수 있다. 자율 주행 제어 모듈은 자율 주행 차량(100b)의 구성으로써 내부에 포함될 수도 있지만, 자율 주행 차량(100b)의 외부에 별도의 하드웨어로 구성되어 연결될 수도 있다.
자율 주행 차량(100b)은 다양한 종류의 센서들로부터 획득한 센서 정보를 이용하여 자율 주행 차량(100b)의 상태 정보를 획득하거나, 주변 환경 및 객체를 검출(인식)하거나, 맵 데이터를 생성하거나, 이동 경로 및 주행 계획을 결정하거나, 동작을 결정할 수 있다.
여기서, 자율 주행 차량(100b)은 이동 경로 및 주행 계획을 결정하기 위하여, 로봇(100a)과 마찬가지로, 라이다, 레이더, 카메라 중에서 적어도 하나 이상의 센서에서 획득한 센서 정보를 이용할 수 있다.
특히, 자율 주행 차량(100b)은 시야가 가려지는 영역이나 일정 거리 이상의 영역에 대한 환경이나 객체는 외부 장치들로부터 센서 정보를 수신하여 인식하거나, 외부 장치들로부터 직접 인식된 정보를 수신할 수 있다.
자율 주행 차량(100b)은 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, 자율 주행 차량(100b)은 학습 모델을 이용하여 주변 환경 및 객체를 인식할 수 있고, 인식된 주변 환경 정보 또는 객체 정보를 이용하여 주행 동선을 결정할 수 있다. 여기서, 학습 모델은 자율 주행 차량(100b)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, 자율 주행 차량(100b)은 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
자율 주행 차량(100b)은 맵 데이터, 센서 정보로부터 검출한 객체 정보 또는 외부 장치로부터 획득한 객체 정보 중에서 적어도 하나 이상을 이용하여 이동 경로와 주행 계획을 결정하고, 구동부를 제어하여 결정된 이동 경로와 주행 계획에 따라 자율 주행 차량(100b)을 주행시킬 수 있다.
맵 데이터에는 자율 주행 차량(100b)이 주행하는 공간(예컨대, 도로)에 배치된 다양한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 예컨대, 맵 데이터에는 가로등, 바위, 건물 등의 고정 객체들과 차량, 보행자 등의 이동 가능한 객체들에 대한 객체 식별 정보가 포함될 수 있다. 그리고, 객체 식별 정보에는 명칭, 종류, 거리, 위치 등이 포함될 수 있다.
또한, 자율 주행 차량(100b)은 사용자의 제어/상호작용에 기초하여 구동부를 제어함으로써, 동작을 수행하거나 주행할 수 있다. 이때, 자율 주행 차량(100b)은 사용자의 동작이나 음성 발화에 따른 상호작용의 의도 정보를 획득하고, 획득한 의도 정보에 기초하여 응답을 결정하여 동작을 수행할 수 있다.
<AI+XR>
XR 장치(100c)는 AI 기술이 적용되어, HMD(Head-Mount Display), 차량에 구비된 HUD(Head-Up Display), 텔레비전, 휴대폰, 스마트 폰, 컴퓨터, 웨어러블 디바이스, 가전 기기, 디지털 사이니지, 차량, 고정형 로봇이나 이동형 로봇 등으로 구현될 수 있다.
XR 장치(100c)는 다양한 센서들을 통해 또는 외부 장치로부터 획득한 3차원 포인트 클라우드 데이터 또는 이미지 데이터를 분석하여 3차원 포인트들에 대한 위치 데이터 및 속성 데이터를 생성함으로써 주변 공간 또는 현실 객체에 대한 정보를 획득하고, 출력할 XR 객체를 렌더링하여 출력할 수 있다. 예컨대, XR 장치(100c)는 인식된 물체에 대한 추가 정보를 포함하는 XR 객체를 해당 인식된 물체에 대응시켜 출력할 수 있다.
XR 장치(100c)는 적어도 하나 이상의 인공 신경망으로 구성된 학습 모델을 이용하여 상기한 동작들을 수행할 수 있다. 예컨대, XR 장치(100c)는 학습 모델을 이용하여 3차원 포인트 클라우드 데이터 또는 이미지 데이터에서 현실 객체를 인식할 수 있고, 인식한 현실 객체에 상응하는 정보를 제공할 수 있다. 여기서, 학습 모델은 XR 장치(100c)에서 직접 학습되거나, AI 서버(200) 등의 외부 장치에서 학습된 것일 수 있다.
이때, XR 장치(100c)는 직접 학습 모델을 이용하여 결과를 생성하여 동작을 수행할 수도 있지만, AI 서버(200) 등의 외부 장치에 센서 정보를 전송하고 그에 따라 생성된 결과를 수신하여 동작을 수행할 수도 있다.
<AI+로봇+자율주행>
로봇(100a)은 AI 기술 및 자율 주행 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇 등으로 구현될 수 있다.
AI 기술과 자율 주행 기술이 적용된 로봇(100a)은 자율 주행 기능을 가진 로봇 자체나, 자율 주행 차량(100b)과 상호작용하는 로봇(100a) 등을 의미할 수 있다.
자율 주행 기능을 가진 로봇(100a)은 사용자의 제어 없이도 주어진 동선에 따라 스스로 움직이거나, 동선을 스스로 결정하여 움직이는 장치들을 통칭할 수 있다.
자율 주행 기능을 가진 로봇(100a) 및 자율 주행 차량(100b)은 이동 경로 또는 주행 계획 중 하나 이상을 결정하기 위해 공통적인 센싱 방법을 사용할 수 있다. 예를 들어, 자율 주행 기능을 가진 로봇(100a) 및 자율 주행 차량(100b)은 라이다, 레이더, 카메라를 통해 센싱된 정보를 이용하여, 이동 경로 또는 주행 계획 중 하나 이상을 결정할 수 있다.
자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)과 별개로 존재하면서, 자율 주행 차량(100b)의 내부 또는 외부에서 자율 주행 기능에 연계되거나, 자율 주행 차량(100b)에 탑승한 사용자와 연계된 동작을 수행할 수 있다.
이때, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)을 대신하여 센서 정보를 획득하여 자율 주행 차량(100b)에 제공하거나, 센서 정보를 획득하고 주변 환경 정보 또는 객체 정보를 생성하여 자율 주행 차량(100b)에 제공함으로써, 자율 주행 차량(100b)의 자율 주행 기능을 제어하거나 보조할 수 있다.
또는, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)에 탑승한 사용자를 모니터링하거나 사용자와의 상호작용을 통해 자율 주행 차량(100b)의 기능을 제어할 수 있다. 예컨대, 로봇(100a)은 운전자가 졸음 상태인 경우로 판단되는 경우, 자율 주행 차량(100b)의 자율 주행 기능을 활성화하거나 자율 주행 차량(100b)의 구동부의 제어를 보조할 수 있다. 여기서, 로봇(100a)이 제어하는 자율 주행 차량(100b)의 기능에는 단순히 자율 주행 기능뿐만 아니라, 자율 주행 차량(100b)의 내부에 구비된 네비게이션 시스템이나 오디오 시스템에서 제공하는 기능도 포함될 수 있다.
또는, 자율 주행 차량(100b)과 상호작용하는 로봇(100a)은 자율 주행 차량(100b)의 외부에서 자율 주행 차량(100b)에 정보를 제공하거나 기능을 보조할 수 있다. 예컨대, 로봇(100a)은 스마트 신호등과 같이 자율 주행 차량(100b)에 신호 정보 등을 포함하는 교통 정보를 제공할 수도 있고, 전기 차량의 자동 전기 충전기와 같이 자율 주행 차량(100b)과 상호작용하여 충전구에 전기 충전기를 자동으로 연결할 수도 있다.
<AI+로봇+XR>
로봇(100a)은 AI 기술 및 XR 기술이 적용되어, 안내 로봇, 운반 로봇, 청소 로봇, 웨어러블 로봇, 엔터테인먼트 로봇, 펫 로봇, 무인 비행 로봇, 드론 등으로 구현될 수 있다.
XR 기술이 적용된 로봇(100a)은 XR 영상 내에서의 제어/상호작용의 대상이 되는 로봇을 의미할 수 있다. 이 경우, 로봇(100a)은 XR 장치(100c)와 구분되며 서로 연동될 수 있다.
XR 영상 내에서의 제어/상호작용의 대상이 되는 로봇(100a)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하면, 로봇(100a) 또는 XR 장치(100c)는 센서 정보에 기초한 XR 영상을 생성하고, XR 장치(100c)는 생성된 XR 영상을 출력할 수 있다. 그리고, 이러한 로봇(100a)은 XR 장치(100c)를 통해 입력되는 제어 신호 또는 사용자의 상호작용에 기초하여 동작할 수 있다.
예컨대, 사용자는 XR 장치(100c) 등의 외부 장치를 통해 원격으로 연동된 로봇(100a)의 시점에 상응하는 XR 영상을 확인할 수 있고, 상호작용을 통하여 로봇(100a)의 자율 주행 경로를 조정하거나, 동작 또는 주행을 제어하거나, 주변 객체의 정보를 확인할 수 있다.
<AI+자율주행+XR>
자율 주행 차량(100b)은 AI 기술 및 XR 기술이 적용되어, 이동형 로봇, 차량, 무인 비행체 등으로 구현될 수 있다.
XR 기술이 적용된 자율 주행 차량(100b)은 XR 영상을 제공하는 수단을 구비한 자율 주행 차량이나, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량 등을 의미할 수 있다. 특히, XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(100b)은 XR 장치(100c)와 구분되며 서로 연동될 수 있다.
XR 영상을 제공하는 수단을 구비한 자율 주행 차량(100b)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하고, 획득한 센서 정보에 기초하여 생성된 XR 영상을 출력할 수 있다. 예컨대, 자율 주행 차량(100b)은 HUD를 구비하여 XR 영상을 출력함으로써, 탑승자에게 현실 객체 또는 화면 속의 객체에 대응되는 XR 객체를 제공할 수 있다.
이때, XR 객체가 HUD에 출력되는 경우에는 XR 객체의 적어도 일부가 탑승자의 시선이 향하는 실제 객체에 오버랩되도록 출력될 수 있다. 반면, XR 객체가 자율 주행 차량(100b)의 내부에 구비되는 디스플레이에 출력되는 경우에는 XR 객체의 적어도 일부가 화면 속의 객체에 오버랩되도록 출력될 수 있다. 예컨대, 자율 주행 차량(100b)은 차로, 타 차량, 신호등, 교통 표지판, 이륜차, 보행자, 건물 등과 같은 객체와 대응되는 XR 객체들을 출력할 수 있다.
XR 영상 내에서의 제어/상호작용의 대상이 되는 자율 주행 차량(100b)은 카메라를 포함하는 센서들로부터 센서 정보를 획득하면, 자율 주행 차량(100b) 또는 XR 장치(100c)는 센서 정보에 기초한 XR 영상을 생성하고, XR 장치(100c)는 생성된 XR 영상을 출력할 수 있다. 그리고, 이러한 자율 주행 차량(100b)은 XR 장치(100c) 등의 외부 장치를 통해 입력되는 제어 신호 또는 사용자의 상호작용에 기초하여 동작할 수 있다.
이상에서 설명된 실시예들은 본 발명의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 발명의 실시예를 구성하는 것도 가능하다. 본 발명의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 문서에서 기지국에 의해 수행된다고 설명된 특정 동작은 경우에 따라서는 그 상위 노드(upper node)에 의해 수행될 수 있다. 즉, 기지국을 포함하는 복수의 네트워크 노드들(network nodes)로 이루어지는 네트워크에서 단말과의 통신을 위해 수행되는 다양한 동작들은 기지국 또는 기지국 이외의 다른 네트워크 노드들에 의해 수행될 수 있음은 자명하다. 기지국은 고정국(fixed station), Node B, eNode B(eNB), 억세스 포인트(access point) 등의 용어에 의해 대체될 수 있다.
본 발명에 따른 실시예는 다양한 수단, 예를 들어, 하드웨어, 펌웨어(firmware), 소프트웨어 또는 그것들의 결합 등에 의해 구현될 수 있다. 하드웨어에 의한 구현의 경우, 본 발명의 일 실시예는 하나 또는 그 이상의 ASICs(application specific integrated circuits), DSPs(digital signal processors), DSPDs(digital signal processing devices), PLDs(programmable logic devices), FPGAs(field programmable gate arrays), 프로세서, 콘트롤러, 마이크로 콘트롤러, 마이크로 프로세서 등에 의해 구현될 수 있다.
펌웨어나 소프트웨어에 의한 구현의 경우, 본 발명의 일 실시예는 이상에서 설명된 기능 또는 동작들을 수행하는 모듈, 절차, 함수 등의 형태로 구현될 수 있다. 소프트웨어 코드는 메모리 유닛에 저장되어 프로세서에 의해 구동될 수 있다. 상기 메모리 유닛은 상기 프로세서 내부 또는 외부에 위치하여, 이미 공지된 다양한 수단에 의해 상기 프로세서와 데이터를 주고 받을 수 있다.
본 발명은 본 발명의 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상기의 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니되고 예시적인 것으로 고려되어야 한다. 본 발명의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 발명의 등가적 범위 내에서의 모든 변경은 본 발명의 범위에 포함된다.
상술한 바와 같은 참조 신호를 송수신하는 방법 및 이를 위한 장치는 5세대 NewRAT 시스템에 적용되는 예를 중심으로 설명하였으나, 5세대 NewRAT 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (13)

  1. 무선 통신 시스템에서, 단말이 DMRS (Demodulation Reference Signal)을 수신하는 방법에 있어서,
    PDCCH(Physical Downlink Control Channel)를 CORESET (Control Resource set) #0을 통해 수신하고,
    상기 PDCCH를 기반으로 스케줄링되는 PDSCH (Physical Downlink Shared Channel) 및 상기 PDSCH를 위한 DMRS를 수신하는 것을 특징으로 하고,
    상기 PDCCH가 SI-RNTI(System Information-Radio Network Temporary Identifier)로 어드레스(addressed)된 경우,
    상기 DMRS를 위한 기준점은 상기 CORESET #0에 포함된 RB(Resource Block)들 중, 가장 낮은 넘버(number)를 가진 RB의 부반송파 #0인,
    DMRS 수신 방법.
  2. 제 1 항에 있어서,
    상기 CORESET #0은,
    SS/PBCH(Synchronization Signal/Physical Broadcast Channel) 블록에 포함된 PBCH를 기반으로 설정되는,
    DMRS 수신 방법.
  3. 제 1 항에 있어서,
    상기 PDCCH는, 상기 CORESET #0의 검색 공간(Search Space) #0을 통해 수신되는,
    DMRS 수신 방법.
  4. 제 3 항에 있어서,
    상기 검색 공간 #0은,
    SS/PBCH(Synchronization Signal/Physical Broadcast Channel) 블록에 포함된 PBCH를 기반으로 설정되는 공통 검색 공간(Common Search Space)인,
    DMRS 수신 방법.
  5. 제 1 항에 있어서,
    상기 단말은, 상기 단말 이외의 단말, 네트워크, 기지국 및 자율 주행 차량 중 적어도 하나와 통신 가능한,
    DMRS 수신 방법.
  6. 무선 통신 시스템에서, DMRS (Demodulation Reference Signal)을 수신하기 위한 장치에 있어서,
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,
    상기 특정 동작은,
    PDCCH(Physical Downlink Control Channel)를 CORESET (Control Resource set) #0을 통해 수신하고,
    상기 PDCCH를 기반으로 스케줄링되는 PDSCH (Physical Downlink Shared Channel) 및 상기 PDSCH를 위한 DMRS를 수신하는 것을 특징으로 하고,
    상기 PDCCH가 SI-RNTI(System Information-Radio Network Temporary Identifier)로 어드레스(addressed)된 경우,
    상기 DMRS를 위한 기준점은 상기 CORESET #0에 포함된 RB(Resource Block)들 중, 가장 낮은 넘버(number)를 가진 RB의 부반송파 #0인,
    장치.
  7. 제 6 항에 있어서,
    상기 CORESET #0은,
    SS/PBCH(Synchronization Signal/Physical Broadcast Channel) 블록에 포함된 PBCH를 기반으로 설정되는,
    장치.
  8. 제 6 항에 있어서,
    상기 PDCCH는, 상기 CORESET #0의 검색 공간(Search Space) #0을 통해 수신되는,
    장치.
  9. 제 6 항에 있어서,
    상기 검색 공간 #0은,
    SS/PBCH(Synchronization Signal/Physical Broadcast Channel) 블록에 포함된 PBCH를 기반으로 설정되는 공통 검색 공간(Common Search Space)인,
    장치.
  10. 제 6 항에 있어서,
    상기 장치는, 단말, 네트워크, 기지국 및 상기 장치 이외의 자율 주행 차량 중 적어도 하나와 통신 가능한,
    장치.
  11. 무선 통신 시스템에서, DMRS (Demodulation Reference Signal)을 수신하기 위한 단말에 있어서,
    적어도 하나의 트랜시버;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,
    상기 특정 동작은,
    상기 적어도 하나의 트랜시버를 통해, PDCCH(Physical Downlink Control Channel)를 CORESET (Control Resource set) #0을 통해 수신하고,
    상기 적어도 하나의 트랜시버를 통해, 상기 PDCCH를 기반으로 스케줄링되는 PDSCH (Physical Downlink Shared Channel) 및 상기 PDSCH를 위한 DMRS를 수신하는 것을 특징으로 하고,
    상기 PDCCH가 SI-RNTI(System Information-Radio Network Temporary Identifier)로 어드레스(addressed)된 경우,
    상기 DMRS를 위한 기준점은 상기 CORESET #0에 포함된 RB(Resource Block)들 중, 가장 낮은 넘버(number)를 가진 RB의 부반송파 #0인,
    단말.
  12. 무선 통신 시스템에서, 기지국이 DMRS (Demodulation Reference Signal)을 전송하는 방법에 있어서,
    PDCCH(Physical Downlink Control Channel)를 CORESET (Control Resource set) #0을 통해 전송하고,
    상기 PDCCH를 기반으로 스케줄링되는 PDSCH (Physical Downlink Shared Channel) 및 상기 PDSCH를 위한 DMRS를 전송하는 것을 특징으로 하고,
    상기 PDCCH가 SI-RNTI(System Information-Radio Network Temporary Identifier)로 어드레스(addressed)된 경우,
    상기 DMRS를 위한 기준점은 상기 CORESET #0에 포함된 RB(Resource Block)들 중, 가장 낮은 넘버(number)를 가진 RB의 부반송파 #0인,
    DMRS 전송 방법.
  13. 무선 통신 시스템에서, DMRS (Demodulation Reference Signal)을 전송하기 위한 기지국에 있어서,
    적어도 하나의 트랜시버;
    적어도 하나의 프로세서; 및
    상기 적어도 하나의 프로세서에 동작 가능하도록 연결되고, 실행될 경우 상기 적어도 하나의 프로세서가 특정 동작을 수행하도록 하는 명령들(instructions)을 저장하는 적어도 하나의 메모리;를 포함하고,
    상기 특정 동작은,
    상기 적어도 하나의 트랜시버를 통해, PDCCH(Physical Downlink Control Channel)를 CORESET (Control Resource set) #0을 통해 전송하고,
    상기 적어도 하나의 트랜시버를 통해, 상기 PDCCH를 기반으로 스케줄링되는 PDSCH (Physical Downlink Shared Channel) 및 상기 PDSCH를 위한 DMRS를 전송하는 것을 특징으로 하고,
    상기 PDCCH가 SI-RNTI(System Information-Radio Network Temporary Identifier)로 어드레스(addressed)된 경우,
    상기 DMRS를 위한 기준점은 상기 CORESET #0에 포함된 RB(Resource Block)들 중, 가장 낮은 넘버(number)를 가진 RB의 부반송파 #0인,
    기지국.
PCT/KR2019/008950 2018-08-03 2019-07-19 참조 신호를 송수신하는 방법 및 이를 위한 장치 WO2020027471A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP19844919.1A EP3661303A4 (en) 2018-08-03 2019-07-19 METHOD AND DEVICE FOR TRANSMISSION OR RECEPTION OF A REFERENCE SIGNAL
JP2020502353A JP2020532892A (ja) 2018-08-03 2019-07-19 参照信号を送受信する方法及びそのための装置
CN201980003832.XA CN111034310A (zh) 2018-08-03 2019-07-19 发送或接收参考信号的方法及设备

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2018-0090658 2018-08-03
KR20180090658 2018-08-03
KR20180093016 2018-08-09
KR10-2018-0093016 2018-08-09

Publications (1)

Publication Number Publication Date
WO2020027471A1 true WO2020027471A1 (ko) 2020-02-06

Family

ID=69227623

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/008950 WO2020027471A1 (ko) 2018-08-03 2019-07-19 참조 신호를 송수신하는 방법 및 이를 위한 장치

Country Status (6)

Country Link
US (1) US20200045708A1 (ko)
EP (1) EP3661303A4 (ko)
JP (1) JP2020532892A (ko)
KR (1) KR102150447B1 (ko)
CN (1) CN111034310A (ko)
WO (1) WO2020027471A1 (ko)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3651525B1 (en) * 2018-08-03 2021-11-24 LG Electronics Inc. Method for configuring reference point independent of common resource block grid, and device therefor
WO2021159473A1 (en) * 2020-02-14 2021-08-19 Qualcomm Incorporated Csi-rs to enhance pdcch transmission or reception
US20230091795A1 (en) * 2020-03-04 2023-03-23 Qualcomm Incorporated Bandwidth part mapping for control and data channels
BR112022017721A2 (pt) * 2020-03-06 2022-11-08 Idac Holdings Inc Métodos implementados por uma unidade de transmissão/recepção sem fio e por uma entidade de rede de acesso por rádio, unidade de transmissão/recepção sem fio, e, entidade de rede de acesso por rádio
US11432195B1 (en) * 2020-03-27 2022-08-30 T-Mobile Innovations Llc Load balancing based on pairing efficiency and channel bandwidth
WO2021212347A1 (zh) * 2020-04-21 2021-10-28 Oppo广东移动通信有限公司 一种通信方法及相关设备
CN113747368B (zh) * 2020-05-28 2023-05-09 华为技术有限公司 多播信息的接收方法、指示信息的收发方法及相关装置
US11832259B2 (en) 2020-06-26 2023-11-28 Huawei Technologies Canada Co., Ltd. Deep-learning for distributed channel feedback and precoding
CN114362896A (zh) * 2020-10-13 2022-04-15 中国电信股份有限公司 导频信号发送、接收、传输方法及基站、终端和通信网络
US20220407745A1 (en) * 2021-06-15 2022-12-22 Samsung Electronics Co., Ltd. Method and apparatus for reference symbol pattern adaptation
WO2023092349A1 (en) * 2021-11-24 2023-06-01 Nec Corporation Methods, devices, and medium for communication

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017160100A2 (ko) * 2016-03-16 2017-09-21 엘지전자 주식회사 무선 통신 시스템에서 제어 정보를 송수신 하는 방법 및 이를 위한 장치

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10333671B2 (en) * 2015-04-06 2019-06-25 Lg Electronics Inc. Method for transmitting and receiving signal based on shared resource in wireless communication system, and apparatus therefor
JP6163181B2 (ja) * 2015-08-21 2017-07-12 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
US10492157B2 (en) * 2017-01-04 2019-11-26 Samsung Electronics Co., Ltd. Method and apparatus for system information delivery in advanced wireless systems
KR102114096B1 (ko) * 2017-01-06 2020-05-25 주식회사 케이티 차세대 무선망에서 하향 링크 제어 채널을 송수신하는 방법 및 그 장치

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017160100A2 (ko) * 2016-03-16 2017-09-21 엘지전자 주식회사 무선 통신 시스템에서 제어 정보를 송수신 하는 방법 및 이를 위한 장치

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CATT: "Remaining issues on DMRS", RL-1801724, 3GPP TSG RAN WG1 MEETING #92, 17 February 2018 (2018-02-17), Athens, Greece, XP051397705 *
CMCC: "Discussion on remaining issues for unicast PDCCH in CORESET#0", RL-1806361, 3GPP TSG RAN WG1 MEETING 93, 12 May 2018 (2018-05-12), Busan, Korea, XP051462504 *
LG ELECTRONICS: "Remaining issues on Resource allocation", RL-1804558, 3GPP TSG RAN WG1 MEETING 92BIS, 7 April 2018 (2018-04-07), Sanya China, XP051413980 *
See also references of EP3661303A4 *
VIVO: "Remaining issues on PDCCH search space", RL-1803828, 3GPP TSG RAN WG1 MEETING #92BIS, 6 April 2018 (2018-04-06), Sanya, China, XP051413010 *

Also Published As

Publication number Publication date
EP3661303A4 (en) 2020-12-16
KR102150447B1 (ko) 2020-09-01
US20200045708A1 (en) 2020-02-06
KR20200015382A (ko) 2020-02-12
CN111034310A (zh) 2020-04-17
JP2020532892A (ja) 2020-11-12
EP3661303A1 (en) 2020-06-03

Similar Documents

Publication Publication Date Title
WO2020027473A1 (ko) 무선 통신 시스템에서, 하향링크 데이터 채널을 송수신하는 방법 및 이를 위한 장치
WO2020027471A1 (ko) 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2020027472A1 (ko) 공통 자원 블록 그리드에 관계 없는 기준점을 설정하는 방법 및 이를 위한 장치
WO2020032527A1 (ko) 무선 통신 시스템의 코어셋에서 신호를 수신하는 방법 및 상기 방법을 이용하는 장치
WO2019221553A1 (ko) 무선 통신 시스템에서 단말의 전송 설정 지시자 결정 방법 및 상기 방법을 이용하는 장치
WO2020032774A1 (ko) 무선 통신 시스템에서 채널 추정을 수행하기 위한 방법 및 이를 위한 장치
WO2020032569A1 (ko) 하향링크 신호를 송수신하는 방법 및 이를 위한 장치
WO2020226394A1 (ko) 무선 통신 시스템에서 사전 설정된 상향링크 자원을 통한 검색 공간 모니터링 방법 및 이에 대한 장치
WO2020036362A1 (ko) 채널 상태 정보 참조 신호 자원을 송수신하는 방법 및 이를 위한 장치
WO2021091244A1 (ko) 무선통신시스템에서 sci 관련 ue의 동작 방법
WO2020022660A1 (ko) 하향링크 제어 채널을 송수신하는 방법 및 이를 위한 장치
WO2020162735A1 (ko) 무선 통신 시스템에서 물리 샹항링크 공유 채널을 전송하는 방법 및 이를 위한 장치
WO2021096244A1 (ko) 무선통신시스템에서 사이드링크 drx에 관련된 ue의 동작 방법
WO2019216690A1 (ko) 시스템 정보를 송수신하는 방법 및 이를 위한 장치
WO2020167102A1 (ko) 무선 통신 시스템에서 사전 설정된 상향링크 자원을 통한 상향링크 데이터 전송 방법 및 이에 대한 장치
WO2020032546A1 (ko) Nr v2x에서 자원 예약을 수행하는 방법 및 장치
WO2020167098A1 (ko) 무선 통신 시스템에서 사전 설정된 자원을 이용한 상향링크 전송을 수행하는 방법 및 이를 위한 장치
WO2020022694A1 (ko) 하향링크 제어 채널을 송수신하는 방법 및 이를 위한 장치
WO2020032731A1 (ko) 무선 통신 시스템에서 단말이 채널을 추정하는 방법 및 이를 위한 장치
WO2020032771A1 (ko) 무선 통신 시스템에서 단말의 셀 접속 방법 및 이를 위한 장치
WO2020032507A1 (ko) 비면허 대역에서 무선 링크 모니터링을 위한 참조 신호를 송수신하는 방법 및 이를 위한 장치
WO2020167100A1 (ko) 무선 통신 시스템에서 사전 설정된 상향링크 자원을 통한 상향링크 데이터 전송 방법 및 이에 대한 장치
WO2020226400A1 (ko) 무선 통신 시스템에서 사전 설정된 상향링크 자원을 통한 상향링크 전송 방법 및 이에 대한 장치
WO2020022748A1 (ko) 채널 상태 정보를 보고하는 방법 및 이를 위한 장치
WO2020197355A1 (ko) 무선 통신 시스템에서 사전 설정된 자원을 이용한 상향링크 전송을 수행하는 방법 및 이를 위한 장치

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020502353

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019844919

Country of ref document: EP

Effective date: 20200228

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19844919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE