WO2020059754A1 - 立方晶窒化硼素焼結体の製造方法、立方晶窒化硼素焼結体、およびそれを含む切削工具 - Google Patents
立方晶窒化硼素焼結体の製造方法、立方晶窒化硼素焼結体、およびそれを含む切削工具 Download PDFInfo
- Publication number
- WO2020059754A1 WO2020059754A1 PCT/JP2019/036569 JP2019036569W WO2020059754A1 WO 2020059754 A1 WO2020059754 A1 WO 2020059754A1 JP 2019036569 W JP2019036569 W JP 2019036569W WO 2020059754 A1 WO2020059754 A1 WO 2020059754A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- boron nitride
- cubic boron
- sintered body
- nitride sintered
- powder
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/583—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride
- C04B35/5831—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on boron nitride based on cubic boron nitrides or Wurtzitic boron nitrides, including crystal structure transformation of powder
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B27/00—Tools for turning or boring machines; Tools of a similar kind in general; Accessories therefor
- B23B27/14—Cutting tools of which the bits or tips or cutting inserts are of special material
- B23B27/148—Composition of the cutting inserts
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/628—Coating the powders or the macroscopic reinforcing agents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/626—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
- C04B35/63—Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
- C04B35/6303—Inorganic additives
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/64—Burning or sintering processes
- C04B35/645—Pressure sintering
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making non-ferrous alloys
- C22C1/04—Making non-ferrous alloys by powder metallurgy
- C22C1/05—Mixtures of metal powder with non-metallic powder
- C22C1/051—Making hard metals based on borides, carbides, nitrides, oxides or silicides; Preparation of the powder mixture used as the starting material therefor
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/02—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on carbides or carbonitrides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C29/00—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides
- C22C29/16—Alloys based on carbides, oxides, nitrides, borides, or silicides, e.g. cermets, or other metal compounds, e.g. oxynitrides, sulfides based on nitrides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F5/00—Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
- B22F2005/001—Cutting tools, earth boring or grinding tool other than table ware
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
- B22F2998/10—Processes characterised by the sequence of their steps
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2226/00—Materials of tools or workpieces not comprising a metal
- B23B2226/12—Boron nitride
- B23B2226/125—Boron nitride cubic [CBN]
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23B—TURNING; BORING
- B23B2228/00—Properties of materials of tools or workpieces, materials of tools or workpieces applied in a specific manner
- B23B2228/10—Coatings
- B23B2228/105—Coatings with specified thickness
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3839—Refractory metal carbides
- C04B2235/3847—Tungsten carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/386—Boron nitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/402—Aluminium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/40—Metallic constituents or additives not added as binding phase
- C04B2235/405—Iron group metals
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/80—Phases present in the sintered or melt-cast ceramic products other than the main phase
- C04B2235/85—Intergranular or grain boundary phases
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C26/00—Alloys containing diamond or cubic or wurtzitic boron nitride, fullerenes or carbon nanotubes
Definitions
- the present disclosure relates to a method for producing a cubic boron nitride sintered body, a cubic boron nitride sintered body, and a cutting tool including the same.
- cBN sintered body As a high-hardness material used for a cutting tool or the like, there is a cubic boron nitride sintered body (hereinafter, also referred to as “cBN sintered body”).
- a cubic boron nitride sintered body is usually composed of cubic boron nitride particles (hereinafter, also referred to as “cBN particles”) and a binder, and its characteristics tend to vary depending on the content ratio of the cubic boron nitride particles. .
- a cubic boron nitride sintered body (hereinafter, also referred to as “High-cBN sintered body”) having a high content of cubic boron nitride (hereinafter, also referred to as “cBN”) is formed by cutting a sintered alloy or the like. Can be suitably used.
- Patent Document 1 discloses a technique for suppressing the occurrence of sudden defects in a High-cBN sintered body by appropriately selecting a binder.
- a method for producing a cubic boron nitride sintered body includes a step of producing an organic cubic boron nitride powder obtained by adhering an organic substance to a cubic boron nitride raw material powder, and an organic cubic boron nitride powder. And a binder material powder containing WC, Co and Al are mixed to prepare a mixed powder comprising 85% by volume or more and less than 100% by volume of organic cubic boron nitride powder and the balance of the binder material powder. And sintering the mixed powder to obtain a cubic boron nitride sintered body.
- a cubic boron nitride sintered body is a cubic boron nitride sintered body including cubic boron nitride particles of 85% by volume or more and less than 100% by volume, and a balance of a binder.
- the binder contains WC, Co and Al compounds, and TEM-EDX is used to analyze an interface region including an interface in which cubic boron nitride particles are adjacent to each other, carbon is present on the interface.
- the width D of the region where carbon exists is 0.1 nm or more and 10 nm or less.
- a cubic boron nitride sintered body is a cubic boron nitride sintered body including cubic boron nitride particles of 85% by volume or more and less than 100% by volume, and the remaining binder.
- the binder contains WC, Co, and Al compounds, and when TEM-EDX is used to analyze an interface region including an interface in which cubic boron nitride particles are adjacent to each other, carbon is not present on the interface.
- the width D of the region where carbon is present is 0.1 nm or more and 5 nm or less
- the maximum value M of the carbon content in the region where carbon is present is 0.1 atomic% or more and 5.0 atomic% or less. % Or less.
- a cutting tool is a cutting tool including the above cubic boron nitride sintered body.
- FIG. 1 is an example of the second image.
- FIG. 2 is an example of an element distribution based on the result of the element mapping analysis, and is an image showing a boron distribution state.
- FIG. 3 is an example of an element distribution based on the result of the element mapping analysis, and is an image showing a distribution state of nitrogen.
- FIG. 4 is an example of the element distribution based on the result of the element mapping analysis, and is an image showing the distribution state of carbon.
- FIG. 5 is an example of a graph showing the result of the line analysis.
- the life can be prolonged, and the cutting tool including the same can also have a prolonged life.
- the inventors of the present invention first, to complete a cubic boron nitride sintered body having a longer life, use WC (tungsten carbide), Co ( A binder raw material powder containing cobalt) and Al (aluminum) was used. This is because, according to the research conducted by the present inventors, when such a binder material powder is used, the binding force of the binder to the cubic boron nitride particles is particularly high, and as a result, an excellent cubic crystal is obtained. This is because they know that a boron nitride sintered body can be obtained.
- the amount of the binder is significantly smaller than the amount of the cubic boron nitride particles, so that the binder tends to be difficult to spread widely between the cubic boron nitride particles. For this reason, the present inventors thought that a breakthrough for prolonging the life of the High-cBN sintered body could not be achieved only by optimizing the binder.
- the present inventors have drastically changed the idea from the conventional method of increasing the bonding force between the binder and the cubic boron nitride particles, and thought that there is a method of increasing the bonding force between the cubic boron nitride particles. From various studies, it has been found that a small amount of carbon disposed between the cubic boron nitride particles can enhance the bonding force between the cubic boron nitride particles. However, on the other hand, if the amount of carbon between the cubic boron nitride particles is large, the characteristics of the cubic boron nitride sintered body change.
- the present inventors have found that, in order to arrange carbon between cubic boron nitride particles and to significantly increase the bonding force between cubic boron nitride particles, It was thought that it was necessary to arrange them uniformly without segregation, and diligent studies were conducted to find a method to make this possible. As a result of intensive studies, the present inventors have found a method for uniformly adhering an organic substance to the surface of the cubic boron nitride raw material powder, and furthermore, using this cubic boron nitride raw material powder, It has been found that by producing the carbon black, carbon can be uniformly arranged between the cubic boron nitride particles.
- the method for producing a cubic boron nitride sintered body includes a step of producing an organic cubic boron nitride powder obtained by adhering an organic substance to a cubic boron nitride raw material powder (production step). , An organic cubic boron nitride powder and a binder raw material powder containing WC, Co and Al are mixed to form an organic cubic boron nitride powder of 85% by volume or more and less than 100% by volume; And a step of sintering the mixed powder to obtain a cubic boron nitride sintered body (sintering step).
- an organic cubic boron nitride powder in which an organic substance is uniformly adhered to the surface of a cubic boron nitride raw material powder is manufactured by a manufacturing process.
- a mixed powder containing the organic cubic boron nitride powder is prepared by the preparation step, and a cubic boron nitride sintered body is manufactured by the subsequent sintering step.
- carbon located on the surface of the organic cubic boron nitride powder exhibits a catalytic function.
- the catalytic function of carbon means that B (boron) and / or N (nitrogen) constituting cubic boron nitride are diffused or precipitated through carbon.
- B (boron) and / or N (nitrogen) constituting cubic boron nitride are diffused or precipitated through carbon.
- the producing step includes a step of charging the cubic boron nitride raw material powder and the organic substance into supercritical water. This facilitates the preparation of an organic cubic boron nitride powder having an organic substance uniformly attached to its surface.
- the organic substance is an amine or a hydrocarbon compound having 5 or more carbon atoms.
- the organic substance is hexylamine, hexylnitrile, paraffin, or hexane.
- the producing step includes a step of attaching an organic substance to the cubic boron nitride raw material powder by plasma treatment. This facilitates the preparation of an organic cubic boron nitride powder having an organic substance uniformly attached to its surface.
- the organic substance is an amine or fluorocarbon. This makes it possible to prepare an organic cubic boron nitride powder in which an organic substance is uniformly attached to the surface of the cubic boron nitride raw material powder.
- a cubic boron nitride sintered body includes a cubic boron nitride sintered body including 85% by volume or more and less than 100% by volume of cubic boron nitride particles, and a remaining binder.
- the binder contains WC, Co and Al compounds, and the interface region including the interface where the cubic boron nitride particles are adjacent to each other is analyzed using TEM-EDX, Alternatively, carbon is partially present, and the width D of the region where carbon is present is 0.1 nm or more and 10 nm or less.
- the cubic boron nitride sintered body is a “High-cBN sintered body” in which the cubic boron nitride particles are likely to fall off from the content of the cubic boron nitride particles.
- the cubic boron nitride sintered body is a cubic boron nitride sintered body manufactured by the above manufacturing method. Therefore, the interface between the cubic boron nitride particles adjacent to each other is determined using TEM-EDX. When the interfacial region is analyzed, carbon is present on the interface, and the width D of the region where carbon is present is 0.1 nm or more and 10 nm or less.
- the cubic boron nitride sintered body according to one embodiment of the present disclosure is a cubic boron nitride sintered body that has a reduced life of cubic boron nitride particles and can have a longer life.
- the width D is 0.1 nm or more and 5 nm or less. In this case, the life of the cubic boron nitride sintered body can be further extended.
- the maximum value M of the carbon content in the region where carbon is present is 0.1 atomic% or more and 5.0 atomic% or less. In this case, the life of the cubic boron nitride sintered body can be further extended.
- a cubic boron nitride sintered body includes a cubic boron nitride sintered body including 85% by volume or more and less than 100% by volume of cubic boron nitride particles, and a remaining binder.
- the binder contains WC, Co and Al compounds.
- Carbon has been present in all or part thereof, and the width D of the region where carbon is present is 0.1 nm or more and 5 nm or less. 1 atomic% or more and 5.0 atomic% or less.
- the cubic boron nitride sintered body according to one embodiment of the present disclosure is provided with such a configuration, whereby the falling of the cubic boron nitride particles is suppressed, and the cubic boron nitride sintered body capable of extending the life is provided. It is.
- a cubic boron nitride sintered body according to one embodiment of the present disclosure is a cutting tool including the above cubic boron nitride sintered body. According to the cutting tool, the life can be extended.
- the present embodiment is not limited to these.
- the notation in the form of “A to Z” means the upper and lower limits of the range (that is, A or more and Z or less), in which the unit is not described in A and the unit is described only in Z. , A and Z are the same.
- the method for producing a cubic boron nitride sintered body according to the present embodiment includes at least a step of producing an organic cubic boron nitride powder obtained by adhering an organic substance to a cubic boron nitride raw material powder (preparation step); A mixture consisting of a crystalline boron nitride powder, a binder raw material powder containing WC, Co and Al, and comprising an organic cubic boron nitride powder of 85% by volume or more and less than 100% by volume and a balance of the binder raw material powder
- the method includes a step of preparing powder (preparation step) and a step of sintering the mixed powder to obtain a cubic boron nitride sintered body (sintering step).
- This step is a step of producing an organic cubic boron nitride powder obtained by adhering an organic substance to the cubic boron nitride raw material powder.
- the cubic boron nitride raw material powder is a raw material powder of the cubic boron nitride particles contained in the cubic boron nitride sintered body.
- Examples of a method for attaching an organic substance to the cubic boron nitride raw material powder include a method using supercritical water and a method of performing a plasma treatment.
- a method of charging the cubic boron nitride raw material powder and the organic substance to supercritical water for example, a method of charging the cubic boron nitride raw material powder and the organic substance to supercritical water in this order, an organic substance and cubic nitride There is a method in which the boron raw material powder is charged in this order, and a method in which the cubic boron nitride raw material powder and the organic substance are simultaneously charged. According to these methods, the surface of the cubic boron nitride raw material powder is cleaned by contact between the cubic boron nitride raw material powder and supercritical water.
- the organic material adheres to the clean surface of the cubic boron nitride raw material powder.
- a method for performing the plasma processing will be described.
- a step of attaching an organic substance to the cubic boron nitride raw material powder by a plasma treatment is performed.
- a cubic boron nitride raw material powder is exposed to a first gas atmosphere containing carbon and then exposed to a second gas atmosphere containing ammonia in a plasma generator.
- a first gas CF 4 , CH 4 , C 2 H 2 or the like can be used.
- a mixed gas of NH 3 , N 2 and H 2 or the like can be used.
- the surface of the cubic boron nitride raw material powder is exposed to the first gas atmosphere, whereby the surface of the cubic boron nitride raw material powder is etched to form a clean surface, and carbon ( 1st gas) adheres.
- the cubic boron nitride raw material powder to which carbon is attached is exposed to the second gas atmosphere, whereby the carbon is terminated by ammonia.
- organic substances containing carbon and nitrogen adhere to the clean surface.
- the organic cubic boron nitride powder can be efficiently produced by either the method using supercritical water or the method of performing plasma treatment. In this step, it is preferable to adopt a method using supercritical water. This is because the organic substances adhering to the cubic boron nitride raw material powder can be easily made uniform, and thus the organic cubic boron nitride powder can be easily made uniform.
- the average particle size of the cubic boron nitride raw material powder is not particularly limited.
- the thickness is preferably 0.1 to 10 ⁇ m, more preferably 0.5 to 5.0 ⁇ m.
- the organic substance used is preferably an amine or a hydrocarbon compound having 5 or more carbon atoms.
- hexylamine, hexylnitrile, paraffin, and hexane are more preferred, and hexylamine is still more preferred.
- the present inventors have confirmed that when these organic substances are used, falling off of cubic boron nitride particles in the cubic boron nitride sintered body is drastically reduced.
- the organic substance to be attached includes amine, fluorocarbon, and the like.
- the preferred amount of the organic substance attached to the cubic boron nitride raw material powder varies depending on the particle size of the cubic boron nitride raw material powder.
- hexylamine it is preferable that hexylamine of 50 to 2000 ppm adheres to the cubic boron nitride raw material powder having an average particle diameter of 1 to 10 ⁇ m, and the average particle diameter is 0.1 to 1 ⁇ m. It is preferable that 100 to 5000 ppm of hexylamine adhere to the cubic boron nitride raw material powder. In such a case, a desired cubic boron nitride sintered body tends to be efficiently manufactured.
- the amount of organic substances attached to the organic cubic boron nitride powder can be measured, for example, by gas chromatography mass spectrometry.
- the organic cubic boron nitride powder used in the second step of the sintering step described below only needs to have enough carbon to exhibit a sufficient catalytic function.
- the amount of organic substances attached to the cubic boron nitride raw material powder tends to decrease in subsequent steps (for example, a purification step, a preparation step, and the like described later). For this reason, even if the amount of the organic substance adhering to the cubic boron nitride raw material powder is other than the above, for example, an excessive amount, the organic cubic crystal to be supplied to the second step can be appropriately prepared in each of the subsequent steps. It is considered that a suitable amount of carbon can be left in the boron nitride powder.
- the cubic boron nitride sintered body manufactured using the organic cubic boron nitride powder having a suitable amount of carbon remaining is a cubic boron nitride sintered body according to a second embodiment described later.
- the organic cubic boron nitride powder is obtained as a slurry.
- the organic cubic boron nitride powder and unreacted organic substances can be separated.
- the organic cubic boron nitride raw material powder taken out of the supercritical water or the organic cubic boron nitride raw material powder taken out of the supercritical water and subjected to the above-described centrifugation and the like is further subjected to a heat treatment (for example, under vacuum).
- a heat treatment for example, under vacuum.
- impurities such as moisture adsorbed on the surface of the organic cubic boron nitride powder can be removed.
- the present inventors are concerned that, when the heat treatment is first performed on the organic cubic boron nitride powder, all of the organic substances attached to the cubic boron nitride raw material powder will volatilize and / or disappear. did.
- the organic matter is decomposed by the heat treatment, but the carbon remains uniformly on the surface of the organic cubic boron nitride powder. It was confirmed that. This carbon is considered to be organic.
- ⁇ Preparation process In this step, the organic cubic boron nitride powder and the binder raw material powder containing WC, Co and Al are mixed, and the organic cubic boron nitride powder of 85% by volume or more and less than 100% by volume is mixed with the remaining binder.
- This is a step of preparing a mixed powder composed of the raw material powder.
- the organic cubic boron nitride powder is the organic cubic boron nitride powder obtained by the above-described manufacturing process
- the binder raw material powder is the raw material of the binder for the cubic boron nitride sintered body.
- the binder raw material powder can be prepared as follows. First, WC powder, Co powder and Al powder are prepared. Next, each powder is mixed so as to have a predetermined ratio, and this is heat-treated (for example, at 1200 ° C.) under vacuum to produce an intermetallic compound. By pulverizing the intermetallic compound with a wet ball mill, wet bead mill, or the like, a binder raw material powder containing WC, Co, and Al is prepared.
- the method of mixing the powders is not particularly limited, but from the viewpoint of efficient and homogeneous mixing, ball mill mixing, bead mill mixing, planetary mill mixing, jet mill mixing, and the like are preferable. Each mixing method may be wet or dry.
- the organic cubic boron nitride powder and the prepared binder raw material powder are preferably mixed by wet ball mill mixing using ethanol, acetone or the like as a solvent. After the mixing, the solvent is removed by natural drying. Thereafter, it is preferable to remove impurities such as moisture adsorbed on the surface by heat treatment (for example, at 850 ° C. or more under vacuum). Thereby, as described above, on the surface of the organic cubic boron nitride powder, the organic substance is decomposed, and the carbon derived from the organic substance can remain uniformly, and thus, the organic cubic boron nitride surface-modified. A powder can be obtained. Thus, a mixed powder is prepared.
- the binder raw material powder may contain other elements in addition to WC, Co and Al.
- Preferred as other elements are Ni, Fe, Cr, Mn, Ti, V, Zr, Nb, Mo, Hf, Ta, Re and the like.
- This step is a step of sintering the mixed powder to obtain a cubic boron nitride sintered body.
- the mixed powder is exposed to high temperature and high pressure and sintered to produce a cubic boron nitride sintered body.
- the mixed powder is filled in a container and vacuum-sealed.
- the temperature of the vacuum seal is preferably 850 ° C. or higher. This is a temperature exceeding the melting point of the sealing material, and the organic substances adhering to the organic cubic boron nitride powder are decomposed, and the carbon derived from the organic substances remains uniformly on the surface of the organic cubic boron nitride powder. Temperature is sufficient.
- the vacuum-sealed mixed powder is sintered using an ultra-high temperature and high pressure apparatus.
- the sintering conditions are not particularly limited, but are preferably 5.5-8 GPa and 1500 ° C. or more and less than 2000 ° C. Particularly, from the viewpoint of the balance between cost and sintering performance, 6 to 7 GPa and 1600 to 1900 ° C. are preferable.
- the surface-modified organic cubic crystal in which carbon remains uniformly on the surface of the organic cubic boron nitride powder will be subjected to the first step. If the heat treatment has not been performed before this step, an organic cubic boron nitride powder whose surface has been modified is prepared by the first step, ie, vacuum sealing. Therefore, carbon is uniformly present on the surface of the organic cubic boron nitride powder used in the second step. The mixed powder containing such an organic cubic boron nitride powder undergoes the second step to produce a cubic boron nitride sintered body.
- a cubic boron nitride sintered body that can have a long life can be manufactured.
- the reason is that carbon uniformly present on the surface of the organic cubic boron nitride powder exerts a catalytic function, thereby promoting the generation of neck gloss between the cubic boron nitride particles and consequently the cubic nitride. It is presumed that a cubic boron nitride sintered body having excellent bonding force between boron particles was obtained.
- the method for producing a cubic boron nitride sintered body according to one embodiment of the present disclosure even in the case of a High-cBN sintered body, the falling of the cubic boron nitride particles is suppressed, and the life is prolonged.
- a possible cubic boron nitride sintered body can be manufactured.
- the carbon when carbon is contained in the binder raw material powder, the carbon does not exist uniformly on the surface of the cubic boron nitride particles, and the cubic boron nitride particles do not exist. It will segregate in between.
- cubic boron nitride sintered body The cubic boron nitride sintered body according to the present embodiment will be described.
- the cubic boron nitride sintered body according to the present embodiment is a cubic boron nitride sintered body manufactured by the above-described manufacturing method.
- the cubic boron nitride sintered body according to the present embodiment includes 85% by volume or more and less than 100% by volume of cubic boron nitride particles, and the remaining binder. That is, the cubic boron nitride sintered body according to the present embodiment is a so-called High-cBN sintered body. Note that the cubic boron nitride sintered body may contain unavoidable impurities due to raw materials used, manufacturing conditions, and the like. At this time, it can be understood that the inevitable impurities are contained in the binder.
- the content (vol%) of the cubic boron nitride particles in the cubic boron nitride sintered body is substantially the same as the content (vol%) of the cubic boron nitride raw material powder used in the mixed powder described later. Become. This is because the amount of change in volume caused by the adhesion of organic substances is extremely small with respect to the volume of the cubic boron nitride powder itself. Therefore, by controlling the content ratio of the cubic boron nitride raw material powder used in the mixed powder, the content (content ratio) of the cubic boron nitride particles in the cubic boron nitride sintered body is adjusted to a desired range. can do.
- the content (volume%) of the cubic boron nitride particles in the cubic boron nitride sintered body was determined by quantitative analysis by inductively coupled high frequency plasma spectroscopy (ICP) and energy dispersive X-rays provided with a scanning electron microscope (SEM). It can also be confirmed by observing the structure and performing elemental analysis on the cubic boron nitride sintered body using an analyzer (EDX) or an EDX attached to a transmission electron microscope (TEM).
- EDX analyzer
- TEM transmission electron microscope
- the content of cubic boron nitride particles in the cubic boron nitride sintered body is determined by a method using an SEM described below.
- the content ratio (volume%) of cubic boron nitride particles can be determined as follows. First, an arbitrary position of the cubic boron nitride sintered body is cut to prepare a sample including a cross section of the cubic boron nitride sintered body. For producing the cross section, a focused ion beam device, a cross section polisher device, or the like can be used. Next, the cross section is observed with a SEM at a magnification of 2000 to obtain a reflected electron image. In the backscattered electron image, the region where the cubic boron nitride particles exist is a black region, and the region where the binder is present is a gray region or a white region.
- binarization processing is performed on the reflected electron image using image analysis software (for example, “WinROOF” of Mitani Corporation), and each area ratio is calculated from the image after the binarization processing. .
- image analysis software for example, “WinROOF” of Mitani Corporation
- the calculated area ratio as volume%, the content ratio (vol%) of the cubic boron nitride particles can be obtained.
- the volume% of the binder can be determined at the same time.
- the cubic boron nitride particles have high hardness, strength, and toughness, and serve as a skeleton in the cubic boron nitride sintered body.
- the D 50 (average particle size) of the cubic boron nitride particles is not particularly limited, and may be, for example, 0.1 to 10.0 ⁇ m. Usually, there is a tendency that people D 50 is less increases the hardness of cubic boron nitride sintered body. Also, the smaller the variation of the particle size, the more the properties of the cubic boron nitride sintered body tend to be uniform.
- the cubic boron nitride particles preferably have a D 50 of, for example, 0.5 to 4.0 ⁇ m.
- D 50 of the cubic boron nitride particles is determined as follows. First, a sample including a cross section of a cubic boron nitride sintered body is prepared according to the above-described method for determining the content of cubic boron nitride particles, and a reflected electron image is obtained. Next, the equivalent circle diameter of each black region in the reflected electron image is calculated using image analysis software. It is preferable to calculate the equivalent circle diameter of 100 or more cubic boron nitride particles by observing 5 or more visual fields.
- the cumulative distribution is obtained by arranging the circle equivalent diameters in ascending order from the minimum value to the maximum value.
- Particle diameter at a cumulative area of 50% in the cumulative distribution is D 50.
- the equivalent circle diameter means the diameter of a circle having the same area as the measured area of the cubic boron nitride particles.
- the binder plays a role in enabling sintering of cubic boron nitride particles, which are difficult-to-sinter materials, at an industrial-level pressure temperature. Further, since reactivity with iron is lower than that of cubic boron nitride, a function of suppressing chemical wear and thermal wear in cutting hardened hardened steel is added to the cubic boron nitride sintered body. Further, when the cubic boron nitride sintered body contains a binder, the wear resistance in high-efficiency working of hardened steel with high hardness is improved.
- the binder contains WC, Co, and an Al compound.
- the “Al compound” means a compound containing Al as a constituent element. Examples of the Al compound include CoAl, Al 2 O 3 , AlN, and AlB 2 , and composite compounds thereof.
- the binder containing WC, Co and Al compounds is considered to be particularly effective for extending the life of the cubic boron nitride sintered body according to the present embodiment.
- WC is presumed to be effective in making the thermal expansion coefficient of the binder close to that of the cubic boron nitride particles.
- the above-mentioned catalytic function means that B (boron) and / or N (nitrogen) constituting the cubic boron nitride particles diffuse or precipitate through Co or Al.
- the composition of the binder contained in the cubic boron nitride sintered body can be specified by combining XRD (X-ray diffraction measurement) and ICP. Specifically, first, a test piece having a thickness of about 0.45 to 0.50 mm is cut out from the cubic boron nitride sintered body, XRD analysis is performed on the test piece, and the test piece is determined from the X-ray diffraction peak. Compounds, metals, etc. are determined.
- ICP analysis is performed on the acid-treated solution, and quantitative analysis of each metal element is performed.
- the composition of the binder is determined by analyzing the result of the XRD and the result of the ICP analysis.
- the binder in the present embodiment may include other binders in addition to the WC, Co and Al compounds. Suitable elements constituting the other binder include Ni, Fe, Cr, Mn, Ti, V, Zr, Nb, Mo, Hf, Ta, and Re.
- the cubic boron nitride sintered body according to the present embodiment has the following (1) and (2) when the interface region including the interface where the cubic boron nitride particles are adjacent to each other is analyzed using TEM-EDX. Is satisfied. (1) carbon is present on the interface; (2) The width D of the region where carbon exists is 0.1 to 10 nm.
- TEM-EDX The above analysis by TEM-EDX is performed as follows. First, a sample is collected from a cubic boron nitride sintered body, and the sample is sliced into a thickness of 30 to 100 nm using an argon ion slicer to prepare a section. Next, a first image is obtained by observing the section with a TEM (transmission electron microscope) at a magnification of 50,000. As the transmission electron microscope used at this time, for example, “JEM-2100F / Cs” (trade name) manufactured by JEOL Ltd. can be mentioned. In the first image, one interface where the cubic boron nitride particles are adjacent to each other is arbitrarily selected.
- the interface exists so as to extend from one end of the image, pass near the center of the image, and extend to another end facing the one end.
- the element mapping analysis by EDX is performed on the second image to analyze the distribution of carbon in the second image, that is, in the interface region including the interface.
- An example of the energy dispersive X-ray analyzer used at this time is “EDAX” (trade name) manufactured by AMETEK.
- the extension direction at which the interface is extended (the extension direction in which the region with a high carbon concentration extends) is confirmed, and the element line analysis is performed in a direction substantially perpendicular to the extension direction.
- the beam diameter is set to 0.3 nm or less, and the scan interval is set to 0.1 to 0.7 nm.
- the width D of the region where carbon is present is calculated.
- the width D is 0.1 to 10 nm, the cubic boron nitride sintered body satisfies the above (2).
- the cubic boron nitride sintered body is It can be regarded as the cubic boron nitride sintered body according to the embodiment.
- the condition (1) can also be understood as "carbon is present on all or a part of the interface".
- FIG. 1 is an example of the second image.
- a black region is a region (BN region) having B and N as main constituent elements, and a white region or a gray region corresponds to a region (SF region) recognized as an interface in the first image. I do.
- the SF region in the second image corresponds to “an interface where cubic boron nitride particles are adjacent to each other”, and the entire second image is “an interface region including an interface”. Is equivalent to
- the process returns to the first image and another interface is selected again. This is because when the width of the SF region exceeds 10 nm, it is difficult to say that the SF region corresponds to “an interface in which cubic boron nitride particles are adjacent to each other”.
- FIGS. 2 to 4 show the distribution states of boron, nitrogen, and carbon, respectively.
- the position where each element exists is shown in light color.
- the region exhibiting a dark color is a region where each element does not exist (or exists very slightly), and the lighter the color, the more the region where each element exists. .
- FIG. 4 shows that carbon exists in the SF region.
- a region where carbon is present (hereinafter, also referred to as a “carbon-containing region”) extends in the left-right direction in the figure and substantially coincides with the SF region.
- the white solid line shown in the image shown in FIG. 4 is the result of performing element line analysis in a direction (vertical direction in FIG. 4) substantially perpendicular to the direction of extension of the carbon-containing region (horizontal direction in FIG. 4). .
- FIG. 5 shows a graph of this.
- a solid line represents a result in which the distance (nm) at which the line analysis was performed is plotted on the abscissa and the value of the carbon content ratio (atomic%) in the spot calculated from the line analysis result is plotted on the ordinate.
- the distance (nm) at which the line analysis was performed is plotted on the abscissa
- the intensity (au) of the HAADF (high-angle annular dark field, High-Angular ⁇ Dark ⁇ Field) image is plotted on the ordinate. Shown by dotted lines.
- a peak of the carbon content ratio (atomic%) is observed in a region where the intensity of the HAADF image is high, that is, in the interface region.
- the portion where the peak is observed is the “region where carbon is present”, and the width d of the peak is “the width D of the region where carbon is present”.
- the life can be extended.
- the width D exceeds 10 nm, a cubic boron nitride sintered body having a prolonged life cannot be obtained.
- the reason is considered as follows. That is, when the amount of carbon remaining on the surfaces of the cubic boron nitride particles is too large, the width D exceeds 10 nm. In this case, the presence of excess free carbon in the cubic boron nitride particles causes a decrease in the bonding force between the cubic boron nitride particles. Similarly, when the width D is less than 0.1 nm, a cubic boron nitride sintered body having a prolonged life cannot be obtained.
- the cubic boron nitride sintered body according to the present embodiment preferably further has a width D of 0.1 to 5 nm. In this case, the life of the cubic boron nitride sintered body can be further extended.
- carbon may exist between the cubic boron nitride particles.
- this carbon is carbon derived from the binder, and therefore segregates between the cubic boron nitride particles, and therefore does not uniformly exist between the cubic boron nitride particles.
- the width of the region where carbon due to segregation exists is as large as about 0.1 to 2.0 ⁇ m, and does not satisfy the above (2).
- the maximum value M of the carbon content in the region where carbon is present is 0.1 to 5.0 atomic%. Is preferred. In this case, the life of the cubic boron nitride sintered body can be further extended.
- the maximum value M of the carbon content is the maximum value of the carbon content ratio (atomic%) in each spot calculated from the line analysis result. For example, in FIG. 5, the maximum value M of the carbon content in the carbon-containing region is about 1.4 atomic%.
- the maximum value M is less than 0.1 atomic%, the above effects may not be able to be suitably exerted. If the maximum value M is more than 5.0 atomic%, excess free carbon may be present, which may cause a reduction in bonding force between particles.
- the cubic boron nitride sintered body according to the present embodiment has a remarkably long length when the width D is 0.1 to 5 nm and the maximum value M is 0.1 to 5.0 atomic%.
- the service life can be extended.
- the cutting tool according to the present embodiment includes the cubic boron nitride sintered body.
- the cutting tool includes the cubic boron nitride sintered body as a base material. Further, the cutting tool according to the present embodiment may have a coating on the surface of the cubic boron nitride sintered body as the base material.
- the shape and application of the cutting tool according to the present embodiment are not particularly limited.
- a pin milling tip for a shaft may be used.
- the cutting tool according to the present embodiment is not limited to the one in which the entire tool is made of a cubic boron nitride sintered body, and only a part of the tool (particularly, a cutting edge portion (cutting edge portion) or the like) is cubic nitrided. Also includes those made of a boron sintered body.
- a cutting tool according to the present embodiment includes a substrate (support) made of a cemented carbide or the like in which only the cutting edge portion is formed of a cubic boron nitride sintered body.
- the cutting edge portion is regarded as a cutting tool in terms of words.
- the cubic boron nitride sintered body is referred to as a cutting tool.
- the life of the cutting tool can be extended because the cutting tool includes the cubic boron nitride sintered body.
- (Appendix 1) a step of preparing an organic cBN powder obtained by adhering an organic substance to the cBN raw material powder;
- the organic cBN powder is mixed with a binder raw material powder containing WC, Co and Al to obtain a mixed powder composed of the organic cBN powder in an amount of 85% by volume or more and less than 100% by volume and the remaining binder raw material powder.
- (Appendix 2) The step of making, The method for producing a cubic boron nitride sintered body according to claim 1, comprising a step of charging the cBN raw material powder and the organic substance into supercritical water.
- (Appendix 3) The step of making, The method for producing a cubic boron nitride sintered body according to claim 1, further comprising a step of attaching the organic substance to the cBN raw material powder by a plasma treatment.
- (Appendix 4) A cubic boron nitride sintered body comprising 85% by volume or more and less than 100% by volume of cBN particles and the balance of a binder.
- the binder comprises WC, Co and Al compounds;
- an interface region including an interface in which the cBN particles are adjacent to each other is analyzed using TEM-EDX, Carbon is present on the interface,
- a cubic boron nitride sintered body, wherein the width D of the region where the carbon exists is 0.1 nm or more and 10 nm or less.
- a stock solution of hexylamine was continuously charged into the above-described apparatus so that the concentration of hexylamine in the supercritical water was 10.0% by weight.
- a cubic boron nitride raw material powder having an average particle diameter of 2 ⁇ m was continuously charged into the above-described apparatus so that the amount of the cubic boron nitride raw material powder in the supercritical water was 10% by weight.
- the cubic boron nitride raw material powder and the organic matter were charged into the supercritical water.
- an organic cubic boron nitride powder was produced.
- the prepared organic cubic boron nitride powder was subjected to gas chromatography mass spectrometry, it was confirmed that 895 ppm of hexylamine was present (attached) to the cubic boron nitride powder.
- a cubic boron nitride sintered body was produced by sintering the obtained mixed powder. Specifically, the mixed powder was filled in a Ta container while being in contact with a WC-6% Co cemented carbide disc and a Co foil, and vacuum sealed. This was sintered at 7.0 GPa and 1700 ° C. for 15 minutes using a belt type ultra-high pressure and high temperature generator. Thus, a cubic boron nitride sintered body was produced.
- ⁇ Experimental example 2> The concentration of hexylamine to be administered was 8.0% by weight, and the organic cubic boron nitride powder and the binder raw material powder were mixed in a volume ratio of organic cubic boron nitride powder: binder raw material powder 95: 5. Then, the mixture was uniformly mixed by a wet ball mill method using ethanol. Thereafter, a cubic boron nitride sintered body was produced in the same manner as in Experimental Example 1, except that heat treatment was performed on the powder mixed at 250 ° C. under vacuum. When the organic cubic boron nitride powder was subjected to gas chromatography mass spectrometry, it was confirmed that 821 ppm of hexylamine was present with respect to the cubic boron nitride.
- a cubic boron nitride sintered body was produced in the same manner as in Experimental Example 1 except that the above operation was performed.
- the organic cubic boron nitride powder was subjected to gas chromatography mass spectrometry, it was confirmed that 302 ppm of hexylamine was present with respect to the cubic boron nitride.
- a cubic boron nitride sintered body was produced in the same manner as in Experimental Example 1 except that the above operation was performed.
- the organic cubic boron nitride powder was subjected to gas chromatography mass spectrometry, it was confirmed that 1343 ppm of hexylamine was present with respect to the cubic boron nitride.
- an organic cubic boron nitride powder was produced by plasma treatment. Specifically, after etching the surface of the cubic boron nitride raw material powder in a CF 4 atmosphere using a plasma reforming apparatus (low-pressure plasma apparatus FEMTO, manufactured by Dienner), the inside of the apparatus is switched to an NH 3 atmosphere, The cubic boron nitride raw material powder after the etching was treated. Except for the above, a cubic boron nitride sintered body was manufactured in the same manner as in Experimental Example 1.
- a plasma reforming apparatus low-pressure plasma apparatus FEMTO, manufactured by Dienner
- Example 7 A cubic boron nitride sintered body was manufactured in the same manner as in Experimental Example 2 except that the above-described plasma treatment was used instead of the method using supercritical water.
- Example 8 A cubic boron nitride sintered body was manufactured in the same manner as in Experimental Example 3 except that the above plasma treatment was used instead of the method using supercritical water.
- Example 9 A cubic boron nitride sintered body was manufactured in the same manner as in Experimental Example 4 except that the above-described plasma treatment was used instead of the method using supercritical water.
- Example 10 A cubic boron nitride sintered body was manufactured in the same manner as in Experimental Example 5 except that the above-described plasma treatment was used instead of the method using supercritical water.
- Example 21 A cubic boron nitride sintered body was manufactured in the same manner as in Experimental Example 3 except that a mixed powder was prepared using a cubic boron nitride raw material powder without performing the treatment using supercritical water. .
- Example 23 A cubic boron nitride powder was prepared in the same manner as in Experimental Example 1, except that only the cubic boron nitride raw material powder was used without performing the treatment using supercritical water and without blending the binder raw material powder. A body was produced.
- Experimental Examples 1 to 10 correspond to Examples.
- Experimental examples 21 to 23 correspond to comparative examples.
- the energy dispersive X-ray analyzer used was "EDAX" (trade name) manufactured by AMETEK.
- the beam diameter in EDX was 0.2 nm, and the scan interval was 0.6 nm.
- the software used for element mapping analysis and element line analysis by EDX was Analysis Station manufactured by JEOL Ltd. Table 1 shows the results.
- Table 1 Each value shown in Table 1 is an average value of the visual field satisfying the above (1) and (2).
- the six interface regions arbitrarily extracted. In all of the above, the above (1) and (2) were satisfied.
- Experimental Example 2 the above (1) and (2) were satisfied in one visual field among the six interface regions arbitrarily extracted.
- Experimental Example 3 (1) and (2) were satisfied in three visual fields among the six interface regions arbitrarily extracted.
- a cutting tool (substrate shape: CNGA120408, blade edge treatment T01215) was produced using each of the produced cubic boron nitride sintered bodies. Using this, a cutting test was performed under the following cutting conditions. Cutting speed: 150 m / min. Feed speed: 0.05 mm / rev. Cut: 0.1mm Coolant: DRY Cutting method: Intermittent cutting lathe: LB400 (manufactured by Okuma Corporation) Work material: sintered part (quenched sintered alloy D-40 manufactured by Sumitomo Electric Industries, hardness of hardened cut part: 40 HRC).
- the cutting edge was observed at a cutting distance of 0.4 km, and the amount of the falling edge was measured.
- the falling-off amount of the cutting edge was defined as a retreat width due to wear from the position of the cutting edge ridge line before cutting.
- the size of the deficiency was defined as the shedding amount.
- the cutting distance at the time when the falling amount of the cutting edge became 0.05 mm or more was measured. The cutting distance was used as an index of the life of the cutting tool. Table 1 shows the results.
- Table 1 also shows the volume% of cubic boron nitride in the cubic boron nitride sintered body.
- composition of the binder it was confirmed in Experimental Examples 1 to 10 and Experimental Examples 21 to 22 that at least WC, Co, and Al compounds were present. Since no clear peak was detected in XRD for the Al compound, it was inferred that the Al compound was a composite compound composed of a plurality of Al compounds.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Structural Engineering (AREA)
- Mechanical Engineering (AREA)
- Inorganic Chemistry (AREA)
- Metallurgy (AREA)
- Crystallography & Structural Chemistry (AREA)
- Ceramic Products (AREA)
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Powder Metallurgy (AREA)
Abstract
立方晶窒化硼素原料粉末に有機物を付着させてなる有機立方晶窒化硼素粉末を作製する工程と、有機立方晶窒化硼素粉末と、WC、CoおよびAlを含む結合材原料粉末とを混合して、85体積%以上100体積%未満の有機立方晶窒化硼素粉末と、残部の結合材原料粉末とからなる混合粉末を調製する工程と、混合粉末を焼結して立方晶窒化硼素焼結体を得る工程と、を含む、立方晶窒化硼素焼結体の製造方法。
Description
本開示は、立方晶窒化硼素焼結体の製造方法、立方晶窒化硼素焼結体、およびそれを含む切削工具に関する。本出願は、2018年9月19日に出願した日本特許出願である特願2018-174695号に基づく優先権を主張する。当該日本特許出願に記載された全ての記載内容は、参照によって本明細書に援用される。
切削工具等に用いられる高硬度材料として、立方晶窒化硼素焼結体(以下、「cBN焼結体」ともいう。)がある。立方晶窒化硼素焼結体は、通常、立方晶窒化硼素粒子(以下、「cBN粒子」ともいう。)と結合材とからなり、立方晶窒化硼素粒子の含有割合によってその特性が異なる傾向がある。
このため、切削加工の分野においては、被削材の材質、要求される加工精度等によって、切削工具に適用される立方晶窒化硼素焼結体の種類が使い分けられる。たとえば、立方晶窒化硼素(以下、「cBN」ともいう)の含有割合の高い立方晶窒化硼素焼結体(以下、「High-cBN焼結体」ともいう。)は、焼結合金等の切削に好適に用いることができる。
しかし、High-cBN焼結体は、突発的な欠損が発生しやすい傾向がある。この突発的な欠損は、立方晶窒化硼素粒子同士の結合力が弱く、立方晶窒化硼素粒子が脱落してしまうことに起因すると考えられる。たとえば、国際公開第2005/066381号(特許文献1)には、結合材の適切な選択により、High-cBN焼結体における突発的な欠損の発生を抑制する技術が開示されている。
本開示の一態様に係る立方晶窒化硼素焼結体の製造方法は、立方晶窒化硼素原料粉末に有機物を付着させてなる有機立方晶窒化硼素粉末を作製する工程と、有機立方晶窒化硼素粉末と、WC、CoおよびAlを含む結合材原料粉末とを混合して、85体積%以上100体積%未満の有機立方晶窒化硼素粉末と、残部の結合材原料粉末とからなる混合粉末を調製する工程と、混合粉末を焼結して立方晶窒化硼素焼結体を得る工程と、を含む。
本開示の一態様に係る立方晶窒化硼素焼結体は、85体積%以上100体積%未満の立方晶窒化硼素粒子と、残部の結合材と、を備える立方晶窒化硼素焼結体であって、結合材は、WC、CoおよびAl化合物を含み、TEM-EDXを用いて、立方晶窒化硼素粒子同士が隣接してなる界面を含む界面領域を分析した場合に、界面上に炭素が存在しており、炭素が存在する領域の幅Dは、0.1nm以上10nm以下である。
本開示の他の一態様に係る立方晶窒化硼素焼結体は、85体積%以上100体積%未満の立方晶窒化硼素粒子と、残部の結合材と、を備える立方晶窒化硼素焼結体であって、結合材は、WC、CoおよびAl化合物を含み、TEM-EDXを用いて、立方晶窒化硼素粒子同士が隣接してなる界面を含む界面領域を分析した場合に、界面上に炭素が存在しており、炭素が存在する領域の幅Dは、0.1nm以上5nm以下であり、炭素が存在する領域における炭素の含有量の最大値Mは、0.1原子%以上5.0原子%以下である。
本開示の一態様に係る切削工具は、上記の立方晶窒化硼素焼結体を含む切削工具である。
[本開示が解決しようとする課題]
近年、機械部品の急速な高機能化に伴い、機械部品となる被削材の難削化が加速している。これに伴い、切削工具の短寿命化によるコスト増という問題が顕在化している。このため、High-cBN焼結体のさらなる改良が望まれる。この点に鑑み、本開示では、長寿命化を可能とする立方晶窒化硼素焼結体の製造方法、立方晶窒化硼素焼結体、およびそれを含む切削工具を提供することを目的とする。
近年、機械部品の急速な高機能化に伴い、機械部品となる被削材の難削化が加速している。これに伴い、切削工具の短寿命化によるコスト増という問題が顕在化している。このため、High-cBN焼結体のさらなる改良が望まれる。この点に鑑み、本開示では、長寿命化を可能とする立方晶窒化硼素焼結体の製造方法、立方晶窒化硼素焼結体、およびそれを含む切削工具を提供することを目的とする。
[本開示の効果]
上記により得られる立方晶窒化硼素焼結体によれば、長寿命化が可能となり、それを含む切削工具もまた、長寿命化が可能となる。
上記により得られる立方晶窒化硼素焼結体によれば、長寿命化が可能となり、それを含む切削工具もまた、長寿命化が可能となる。
[本開示の実施形態の説明]
本発明者らはまず、より長寿命化が可能な立方晶窒化硼素焼結体を完成させるべく、High-立方晶窒化硼素焼結体における結合材の原料として、WC(炭化タングステン)、Co(コバルト)およびAl(アルミニウム)を含む結合材原料粉末を用いることとした。これは、本発明者らのこれまでの研究により、このような結合材原料粉末を用いた場合に、立方晶窒化硼素粒子に対する結合材の結合力が特に高く、結果的に、優れた立方晶窒化硼素焼結体が得られることを知見しているためである。
本発明者らはまず、より長寿命化が可能な立方晶窒化硼素焼結体を完成させるべく、High-立方晶窒化硼素焼結体における結合材の原料として、WC(炭化タングステン)、Co(コバルト)およびAl(アルミニウム)を含む結合材原料粉末を用いることとした。これは、本発明者らのこれまでの研究により、このような結合材原料粉末を用いた場合に、立方晶窒化硼素粒子に対する結合材の結合力が特に高く、結果的に、優れた立方晶窒化硼素焼結体が得られることを知見しているためである。
しかし、High-cBN焼結体においては、結合材の量が立方晶窒化硼素粒子の量に対して顕著に少ないため、結合材が立方晶窒化硼素粒子間に広く行き渡ることが難しい傾向がある。このため本発明者らは、結合材の最適化だけでは、High-cBN焼結体の長寿命化のブレイクスルーは図れないと考えた。
そこで本発明者らは、結合材と立方晶窒化硼素粒子との結合力を高める従来の手法から大きく発想を転換し、立方晶窒化硼素粒子同士の結合力を高める手法はないかと考えた。そして種々の検討から、立方晶窒化硼素粒子間に配置された微量の炭素が、立方晶窒化硼素粒子同士の結合力を高め得るとの知見を得た。しかし一方で、立方晶窒化硼素粒子間における炭素の量が多いと、立方晶窒化硼素焼結体の特性が変化してしまう。
上記の知見から、本発明者らは、立方晶窒化硼素粒子間に炭素を配置させて、立方晶窒化硼素粒子同士の結合力を顕著に高めるためには、立方晶窒化硼素粒子間において、炭素を偏析させることなく、均一に配置させる必要があると考え、これを可能にする手法を見出すべく鋭意検討を重ねた。そして鋭意検討の結果、本発明者らは、立方晶窒化硼素原料粉末の表面に均一に有機物を付着させる手法を見出し、さらに、この立方晶窒化硼素原料粉末を用いて立方晶窒化硼素焼結体を製造することにより、立方晶窒化硼素粒子間に均一に炭素を配置させ得ることを見出した。
本開示は、上述のようにして完成されたものである。以下に、本開示の実施態様を列記して説明する。
〔1〕本開示の一態様に係る立方晶窒化硼素焼結体の製造方法は、立方晶窒化硼素原料粉末に有機物を付着させてなる有機立方晶窒化硼素粉末を作製する工程(作製工程)と、有機立方晶窒化硼素粉末と、WC、CoおよびAlを含む結合材原料粉末とを混合して、85体積%以上100体積%未満の有機立方晶窒化硼素粉末と、残部の結合材原料粉末とからなる混合粉末を調製する工程(調製工程)と、混合粉末を焼結して立方晶窒化硼素焼結体を得る工程(焼結工程)と、を含む。
上記製造方法によれば、長寿命化が可能な立方晶窒化硼素焼結体を製造することができる。その理由は次のように推察される。まず、作製工程により、立方晶窒化硼素原料粉末の表面に有機物が均一に付着した有機立方晶窒化硼素粉末が作製される。そして調製工程により、有機立方晶窒化硼素粉末を含む混合粉末が調製され、続く焼結工程により、立方晶窒化硼素焼結体が製造される。焼結工程において、有機立方晶窒化硼素粉末の表面に位置する炭素は触媒機能を発揮する。
ここで炭素の触媒機能とは、炭素を介して、立方晶窒化硼素を構成するB(硼素)および/またはN(窒素)を拡散させたり析出させたりすることを意味する。炭素が触媒機能を発揮することにより、有機立方晶窒化硼素粉末間におけるネックグロスの発生が促進されることとなり、もって立方晶窒化硼素焼結体において、立方晶窒化硼素粒子間の結合力が高まり、結果的に、立方晶窒化硼素粒子の脱落が抑制されることとなる。
したがって、本開示の一態様に係る立方晶窒化硼素焼結体の製造方法によれば、High-cBN焼結体であっても、立方晶窒化硼素粒子の脱落が抑制された、長寿命化が可能な立方晶窒化硼素焼結体を製造することができる。
〔2〕上記立方晶窒化硼素焼結体の製造方法において、作製する工程は、立方晶窒化硼素原料粉末と有機物とを、超臨界水に投入する工程を含む。これにより、その表面に有機物が均一に付着してなる有機立方晶窒化硼素粉末の調製が容易となる。
〔3〕上記立方晶窒化硼素焼結体の製造方法において、上記有機物は、アミン又は炭素数が5以上の炭化水素化合物である。これにより、製造された立方晶窒化硼素焼結体における立方晶窒化硼素粒子の脱落が飛躍的に低減される。
〔4〕上記立方晶窒化硼素焼結体の製造方法において、上記有機物は、ヘキシルアミン、ヘキシルニトリル、パラフィン又はヘキサンである。これにより、製造された立方晶窒化硼素焼結体における立方晶窒化硼素粒子の脱落が飛躍的に低減される。
〔5〕上記立方晶窒化硼素焼結体の製造方法において、作製する工程は、プラズマ処理により、立方晶窒化硼素原料粉末に有機物を付着させる工程を含む。これにより、その表面に有機物が均一に付着してなる有機立方晶窒化硼素粉末の調製が容易となる。
〔6〕上記立方晶窒化硼素焼結体の製造方法において、上記有機物は、アミン又はフッ化炭素である。これにより、立方晶窒化硼素原料粉末の表面に有機物が均一に付着してなる有機立方晶窒化硼素粉末の調製が可能となる。
〔7〕本開示の一態様に係る立方晶窒化硼素焼結体は、85体積%以上100体積%未満の立方晶窒化硼素粒子と、残部の結合材と、を備える立方晶窒化硼素焼結体であって、結合材は、WC、CoおよびAl化合物を含み、TEM-EDXを用いて、立方晶窒化硼素粒子同士が隣接してなる界面を含む界面領域を分析した場合に、界面上の全て又は一部に炭素が存在しており、炭素が存在する領域の幅Dは、0.1nm以上10nm以下である。
上記立方晶窒化硼素焼結体は、立方晶窒化硼素粒子の含有量から、立方晶窒化硼素粒子の脱落が生じやすい「High-cBN焼結体」であることが理解される。しかし上記立方晶窒化硼素焼結体は、上記製造方法により製造される立方晶窒化硼素焼結体であり、故に、TEM-EDXを用いて、立方晶窒化硼素粒子同士が隣接してなる界面を含む界面領域を分析した場合に、界面上に炭素が存在しており、さらに、炭素が存在する領域の幅Dは、0.1nm以上10nm以下である。このような立方晶窒化硼素焼結体においては、立方晶窒化硼素粒子同士の結合力が従来と比して高められている。したがって、本開示の一態様に係る立方晶窒化硼素焼結体は、立方晶窒化硼素粒子の脱落が抑制された、長寿命化が可能な立方晶窒化硼素焼結体である。
〔8〕上記立方晶窒化硼素焼結体において、幅Dは、0.1nm以上5nm以下である。この場合、立方晶窒化硼素焼結体のさらなる長寿命化が可能となる。
〔9〕上記立方晶窒化硼素焼結体において、炭素が存在する領域における炭素の含有量の最大値Mは、0.1原子%以上5.0原子%以下である。この場合、立方晶窒化硼素焼結体のさらなる長寿命化が可能となる。
〔10〕本開示の他の一態様に係る立方晶窒化硼素焼結体は、85体積%以上100体積%未満の立方晶窒化硼素粒子と、残部の結合材と、を備える立方晶窒化硼素焼結体であって、結合材は、WC、CoおよびAl化合物を含み、TEM-EDXを用いて、立方晶窒化硼素粒子同士が隣接してなる界面を含む界面領域を分析した場合に、界面上の全て又は一部に炭素が存在しており、炭素が存在する領域の幅Dは、0.1nm以上5nm以下であり、炭素が存在する領域における炭素の含有量の最大値Mは、0.1原子%以上5.0原子%以下である。本開示の一態様に係る立方晶窒化硼素焼結体は、このような構成を備えることによって、立方晶窒化硼素粒子の脱落が抑制された、長寿命化が可能な立方晶窒化硼素焼結体である。
〔11〕本開示の一態様に係る立方晶窒化硼素焼結体は、上記立方晶窒化硼素焼結体を含む切削工具である。当該切削工具によれば、長寿命化が可能となる。
[本開示の実施形態の詳細]
以下、本開示の一実施形態(以下「本実施形態」と記す)について説明する。ただし、本実施形態はこれらに限定されるものではない。なお、本明細書において「A~Z」という形式の表記は、範囲の上限下限(すなわちA以上Z以下)を意味し、Aにおいて単位の記載がなく、Zにおいてのみ単位が記載されている場合、Aの単位とZの単位とは同じである。
以下、本開示の一実施形態(以下「本実施形態」と記す)について説明する。ただし、本実施形態はこれらに限定されるものではない。なお、本明細書において「A~Z」という形式の表記は、範囲の上限下限(すなわちA以上Z以下)を意味し、Aにおいて単位の記載がなく、Zにおいてのみ単位が記載されている場合、Aの単位とZの単位とは同じである。
〈第1の実施形態:立方晶窒化硼素焼結体の製造方法〉
本実施形態に係る立方晶窒化硼素焼結体の製造方法について説明する。本実施形態に係る立方晶窒化硼素焼結体の製造方法は、少なくとも、立方晶窒化硼素原料粉末に有機物を付着させてなる有機立方晶窒化硼素粉末を作製する工程(作製工程)と、有機立方晶窒化硼素粉末と、WC、CoおよびAlを含む結合材原料粉末とを混合して、85体積%以上100体積%未満の有機立方晶窒化硼素粉末と、残部の結合材原料粉末とからなる混合粉末を調製する工程(調製工程)と、混合粉末を焼結して立方晶窒化硼素焼結体を得る工程(焼結工程)と、を含む。以下、各工程について詳述する。
本実施形態に係る立方晶窒化硼素焼結体の製造方法について説明する。本実施形態に係る立方晶窒化硼素焼結体の製造方法は、少なくとも、立方晶窒化硼素原料粉末に有機物を付着させてなる有機立方晶窒化硼素粉末を作製する工程(作製工程)と、有機立方晶窒化硼素粉末と、WC、CoおよびAlを含む結合材原料粉末とを混合して、85体積%以上100体積%未満の有機立方晶窒化硼素粉末と、残部の結合材原料粉末とからなる混合粉末を調製する工程(調製工程)と、混合粉末を焼結して立方晶窒化硼素焼結体を得る工程(焼結工程)と、を含む。以下、各工程について詳述する。
《作製工程》
本工程は、立方晶窒化硼素原料粉末に有機物を付着させてなる有機立方晶窒化硼素粉末を作製する工程である。
本工程は、立方晶窒化硼素原料粉末に有機物を付着させてなる有機立方晶窒化硼素粉末を作製する工程である。
立方晶窒化硼素原料粉末とは、立方晶窒化硼素焼結体に含まれる立方晶窒化硼素粒子の原料粉末である。立方晶窒化硼素原料粉末に有機物を付着させる方法としては、超臨界水を用いる方法、およびプラズマ処理を実施する方法等が挙げられる。
(超臨界水を用いる方法)
超臨界水を用いる方法について説明する。当該方法においては、立方晶窒化硼素原料粉末と有機物とを超臨界水に投入する工程が実施される。これにより、有機立方晶窒化硼素粉末を作製することができる。なお本明細書において、超臨界水とは、超臨界状態または亜臨界状態の水を意味する。
超臨界水を用いる方法について説明する。当該方法においては、立方晶窒化硼素原料粉末と有機物とを超臨界水に投入する工程が実施される。これにより、有機立方晶窒化硼素粉末を作製することができる。なお本明細書において、超臨界水とは、超臨界状態または亜臨界状態の水を意味する。
立方晶窒化硼素原料粉末と有機物とを超臨界水に投入する方法としては、たとえば、超臨界水に対し、立方晶窒化硼素原料粉末と有機物とをこの順で投入する方法、有機物と立方晶窒化硼素原料粉末とをこの順で投入する方法、立方晶窒化硼素原料粉末と有機物とを同時に投入する方法が挙げられる。これらの方法によれば、立方晶窒化硼素原料粉末と超臨界水との接触により、立方晶窒化硼素原料粉末の表面が清浄化される。また、清浄化された表面(以下、「清浄面」ともいう。)を有する立方晶窒化硼素原料粉末と有機物との接触により、有機物が立方晶窒化硼素原料粉末の清浄面に付着する。
(プラズマ処理を実施する方法)
プラズマ処理を実施する方法について説明する。当該方法においては、プラズマ処理により、立方晶窒化硼素原料粉末に有機物を付着させる工程が実施される。具体的には、プラズマ発生装置内において、立方晶窒化硼素原料粉末を、炭素を含む第1ガス雰囲気に曝した後、アンモニアを含む第2ガス雰囲気下に曝す方法が挙げられる。第1ガスとしては、CF4、CH4、C2H2等を用いることができる。第2ガスとしては、NH3、N2およびH2の混合ガス等を用いることができる。
プラズマ処理を実施する方法について説明する。当該方法においては、プラズマ処理により、立方晶窒化硼素原料粉末に有機物を付着させる工程が実施される。具体的には、プラズマ発生装置内において、立方晶窒化硼素原料粉末を、炭素を含む第1ガス雰囲気に曝した後、アンモニアを含む第2ガス雰囲気下に曝す方法が挙げられる。第1ガスとしては、CF4、CH4、C2H2等を用いることができる。第2ガスとしては、NH3、N2およびH2の混合ガス等を用いることができる。
上記方法によれば、立方晶窒化硼素原料粉末が第1ガス雰囲気下に曝されることにより、立方晶窒化硼素原料粉末の表面がエッチングされて清浄面が形成され、かつ該清浄面に炭素(第1ガス)が付着する。引き続き、炭素が付着された立方晶窒化硼素原料粉末が第2ガス雰囲気下に曝されることにより、該炭素がアンモニアにより終端される。これにより、結果的に、炭素と窒素を含む有機物が清浄面に付着することとなる。
以上のように、超臨界水を用いる方法およびプラズマ処理を実施する方法のいずれかにより、有機立方晶窒化硼素粉末を効率的に作製することができる。本工程においては、超臨界水を用いる方法を採用することが好ましい。立方晶窒化硼素原料粉末に付着する有機物の均一化が容易であり、もって有機立方晶窒化硼素粉末の均一化が容易なためである。
本工程において、立方晶窒化硼素原料粉末の平均粒子径は特に制限されない。高強度であり高耐摩耗性および高耐欠損性を兼ね備える立方晶窒化硼素焼結体を形成する観点からは、0.1~10μmが好ましく、0.5~5.0μmがより好ましい。
超臨界水を用いて本工程を実施する場合、用いられる有機物は、アミン、炭素数が5以上の炭化水素化合物が好ましい。なかでも、ヘキシルアミン、ヘキシルニトリル、パラフィン、ヘキサンがより好ましく、ヘキシルアミンがさらに好ましい。本発明者らは、これらの有機物を用いた場合に、立方晶窒化硼素焼結体における立方晶窒化硼素粒子の脱落が飛躍的に低減されることを確認している。プラズマ処理を利用して本工程を実施する場合、付着される有機物としては、アミン、フッ化炭素等が挙げられる。
立方晶窒化硼素原料粉末に付着する有機物の好ましい量は、立方晶窒化硼素原料粉末の粒径により変化する。たとえば、有機物としてヘキシルアミンを用いる場合、平均粒子径が1~10μmの立方晶窒化硼素原料粉末に対して、50~2000ppmのヘキシルアミンが付着することが好ましく、平均粒子径が0.1~1μmの立方晶窒化硼素原料粉末に対して、100~5000ppmのヘキシルアミンが付着することが好ましい。このような場合に、所望する立方晶窒化硼素焼結体が効率的に製造される傾向がある。有機立方晶窒化硼素粉末に付着した有機物の量は、たとえばガスクロマトグラフ質量分析法により測定することができる。
ここで、本実施形態では、後述する焼結工程の第2工程に供される有機立方晶窒化硼素粉末において、十分な触媒機能を発揮し得る程度の炭素が存在していればよい。また、立方晶窒化硼素原料粉末に付着した有機物は、続く工程(例えば、後述する精製工程、調製工程等)により、その量が減少する傾向がある。このため、立方晶窒化硼素原料粉末に付着する有機物の量が上記以外、たとえば過剰量であっても、続く工程の各処理時において適宜調製することにより、第2工程に供される有機立方晶窒化硼素粉末において好適な炭素量を残存させることができると考えられる。なお、好適な炭素量が残存した有機立方晶窒化硼素粉末を用いて製造された立方晶窒化硼素焼結体は、後述する第2の実施形態に係る立方晶窒化硼素焼結体となる。
《精製工程》
上記作製工程により得られた有機立方晶窒化硼素粉末を、下記調製工程に用いるにあたって、有機立方晶窒化硼素粉末から不純物を除去することが好ましい。不純物としては、たとえば未反応の有機物が挙げられる。未反応の有機物を除去することにより、調製工程および/または焼結工程における意図しない反応を抑制することができる。
上記作製工程により得られた有機立方晶窒化硼素粉末を、下記調製工程に用いるにあたって、有機立方晶窒化硼素粉末から不純物を除去することが好ましい。不純物としては、たとえば未反応の有機物が挙げられる。未反応の有機物を除去することにより、調製工程および/または焼結工程における意図しない反応を抑制することができる。
たとえば、超臨界水を用いた場合、有機立方晶窒化硼素粉末はスラリーとして得られる。この場合、該スラリーに対して遠心分離を実施することにより、有機立方晶窒化硼素粉末と未反応の有機物とを分離することができる。
また、超臨界水から取り出した有機立方晶窒化硼素原料粉末、または、超臨界水から取り出した後に上述の遠心分離等を実施した有機立方晶窒化硼素原料粉末に対し、さらに熱処理(たとえば、真空下で250℃以上、好ましくは400℃以上、より好ましくは850℃以上)を実施してもよい。これにより、有機立方晶窒化硼素粉末の表面に吸着された水分等の不純物を除去することができる。
ここで本発明者らは、当初、有機立方晶窒化硼素粉末に対して熱処理が実施された場合、立方晶窒化硼素原料粉末に付着する有機物の全てが揮発および/または消失してしまうことを懸念した。ところが驚くべきことに、オージェ電子分光法により有機立方晶窒化硼素粉末を観察した結果、熱処理を経ることによって有機物は分解されるものの、有機立方晶窒化硼素粉末の表面には、炭素が均一に残存していることが確認された。この炭素は有機物由来とみなされる。
すなわち、有機立方晶窒化硼素粉末に対して熱処理を施すことにより、有機立方晶窒化硼素粉末の表面の不純物が除去されるだけでなく、その表面に均一に炭素が付着してなる、表面改質された有機立方晶窒化硼素粉末が得られることが確認された。このメカニズムは不明であるが、本発明者らは、超臨界水、プラズマ等の処理を経て形成された清浄面は、顕著に高い活性を有しており、故に、清浄面と有機物とが非常に強く結合するものであって、この強い結合が、有機立方晶窒化硼素粉末の表面改質に関与していると推察している。
《調製工程》
本工程は、有機立方晶窒化硼素粉末と、WC、CoおよびAlを含む結合材原料粉末とを混合して、85体積%以上100体積%未満の有機立方晶窒化硼素粉末と、残部の結合材原料粉末とからなる混合粉末を調製する工程である。有機立方晶窒化硼素粉末は、上述の作製工程により得られた有機立方晶窒化硼素粉末であり、結合材原料粉末は、立方晶窒化硼素焼結体の結合材の原料である。
本工程は、有機立方晶窒化硼素粉末と、WC、CoおよびAlを含む結合材原料粉末とを混合して、85体積%以上100体積%未満の有機立方晶窒化硼素粉末と、残部の結合材原料粉末とからなる混合粉末を調製する工程である。有機立方晶窒化硼素粉末は、上述の作製工程により得られた有機立方晶窒化硼素粉末であり、結合材原料粉末は、立方晶窒化硼素焼結体の結合材の原料である。
上記結合材原料粉末は、次のようにして調製することができる。まず、WC粉末、Co粉末およびAl粉末を準備する。次に、各粉末を所定の比率となるように混合し、これを真空下で熱処理(たとえば1200℃)して金属間化合物を作製する。当該金属間化合物を湿式のボールミル、湿式のビーズミル等で粉砕することにより、WC、CoおよびAlを含む結合材原料粉末が調製される。なお、各粉末の混合方法は特に制限されないが、効率よく均質に混合する観点から、ボールミル混合、ビーズミル混合、遊星ミル混合、およびジェットミル混合などが好ましい。各混合方法は、湿式でもよく乾式でもよい。
有機立方晶窒化硼素粉末と、準備された結合材原料粉末とは、エタノール、アセトン等を溶媒に用いた湿式ボールミル混合により混合されることが好ましい。また、混合後は自然乾燥により溶媒が除去される。その後、熱処理(たとえば、真空下で850℃以上)により、表面に吸着された水分等の不純物を除去することが好ましい。これにより、上述のように、有機立方晶窒化硼素粉末の表面において、有機物が分解されるとともに、有機物由来の炭素が均一に残存することができ、もって、表面改質された有機立方晶窒化硼素粉末を得ることができる。以上により、混合粉末が調製される。
上記結合材原料粉末は、WC、CoおよびAlの他に、他の元素を含んでいてもよい。他の元素として好適なものは、Ni、Fe、Cr、Mn、Ti、V、Zr、Nb、Mo、Hf、Ta、Re等である。
《焼結工程》
本工程は、混合粉末を焼結して立方晶窒化硼素焼結体を得る工程である。本工程において、混合粉末が高温高圧条件下に曝されて焼結されることにより、立方晶窒化硼素焼結体が製造される。
本工程は、混合粉末を焼結して立方晶窒化硼素焼結体を得る工程である。本工程において、混合粉末が高温高圧条件下に曝されて焼結されることにより、立方晶窒化硼素焼結体が製造される。
具体的には、まず、第1工程として、混合粉末を容器に充填して真空シールする。真空シールの温度は850℃以上が好ましい。これは、シール材の融点を超える温度であり、かつ、有機立方晶窒化硼素粉末に付着する有機物が分解されるとともに、有機立方晶窒化硼素粉末の表面に有機物由来の炭素を均一に残存させるのに十分な温度である。
次に、第2工程として、超高温高圧装置を用いて、真空シールされた混合粉末を焼結処理する。焼結条件は特に制限されないが、5.5~8GPaおよび1500℃以上2000℃未満が好ましい。特に、コストと焼結性能とのバランスの観点から、6~7GPaおよび1600~1900℃が好ましい。
本工程以前に熱処理(精製工程における熱処理および/または調製工程における熱処理)が実施されている場合には、炭素が有機立方晶窒化硼素粉末表面に均一に残存する、表面改質された有機立方晶窒化硼素粉末が第1工程に供されることとなる。本工程以前に熱処理が実施されていない場合には、第1工程、すなわち真空シールにより、表面改質された有機立方晶窒化硼素粉末が調製されることとなる。このため、第2工程に供される有機立方晶窒化硼素粉末の表面には、炭素が均一に存在することとなる。このような有機立方晶窒化硼素粉末を含む混合粉末が第2工程を経ることにより、立方晶窒化硼素焼結体が製造される。
《作用効果》
上述の本実施形態に係る立方晶窒化硼素焼結体の製造方法によれば、長寿命化が可能な立方晶窒化硼素焼結体を製造することができる。その理由は、有機立方晶窒化硼素粉末の表面に均一に存在する炭素が触媒機能を発揮し、これにより、立方晶窒化硼素粒子間におけるネックグロスの発生が促進され、結果的に、立方晶窒化硼素粒子間の結合力に優れた立方晶窒化硼素焼結体が得られるためと推察される。
上述の本実施形態に係る立方晶窒化硼素焼結体の製造方法によれば、長寿命化が可能な立方晶窒化硼素焼結体を製造することができる。その理由は、有機立方晶窒化硼素粉末の表面に均一に存在する炭素が触媒機能を発揮し、これにより、立方晶窒化硼素粒子間におけるネックグロスの発生が促進され、結果的に、立方晶窒化硼素粒子間の結合力に優れた立方晶窒化硼素焼結体が得られるためと推察される。
したがって、本開示の一態様に係る立方晶窒化硼素焼結体の製造方法によれば、High-cBN焼結体であっても、立方晶窒化硼素粒子の脱落が抑制された、長寿命化が可能な立方晶窒化硼素焼結体を製造することができる。なお、従来のHigh-cBN焼結体の製造方法において、結合材原料粉末に炭素を含有させた場合、炭素は立方晶窒化硼素粒子の表面に均一に存在することはなく、立方晶窒化硼素粒子間に偏析することとなる。
〈第2の実施形態:立方晶窒化硼素焼結体〉
本実施形態に係る立方晶窒化硼素焼結体について説明する。本実施形態に係る立方晶窒化硼素焼結体は、上述の製造方法により製造される立方晶窒化硼素焼結体である。
本実施形態に係る立方晶窒化硼素焼結体について説明する。本実施形態に係る立方晶窒化硼素焼結体は、上述の製造方法により製造される立方晶窒化硼素焼結体である。
具体的には、本実施形態に係る立方晶窒化硼素焼結体は、85体積%以上100体積%未満の立方晶窒化硼素粒子と、残部の結合材と、を備える。すなわち本実施形態に係る立方晶窒化硼素焼結体は、いわゆるHigh-cBN焼結体である。なお立方晶窒化硼素焼結体は、使用する原材料、製造条件等に起因する不可避不純物を含み得る。このとき、当該不可避不純物は結合材に含まれていると把握することができる。
立方晶窒化硼素焼結体における立方晶窒化硼素粒子の含有割合(体積%)は、後述する混合粉末に用いられる立方晶窒化硼素原料粉末の含有割合(体積%)と実質的に同一の割合となる。有機物の付着等により生じる体積変化量は、立方晶窒化硼素粉末自身の体積に対して極めて小さいためである。したがって、混合粉末に用いられる立方晶窒化硼素原料粉末の含有割合を制御することにより、立方晶窒化硼素焼結体中の立方晶窒化硼素粒子の含有量(含有割合)を、所望の範囲に調製することができる。
また、立方晶窒化硼素焼結体における立方晶窒化硼素粒子の含有割合(体積%)は、誘導結合高周波プラズマ分光分析(ICP)による定量分析、走査電子顕微鏡(SEM)付帯のエネルギー分散型X線分析装置(EDX)または透過型電子顕微鏡(TEM)付帯のEDXを用いて、立方晶窒化硼素焼結体に対し、組織観察、元素分析等を実施することによっても確認することができる。本実施形態では、特に理由が無い限り、後述するSEMを用いる方法で、立方晶窒化硼素焼結体における立方晶窒化硼素粒子の含有割合を求めるものとする。
たとえば、SEMを用いた場合、次のようにして立方晶窒化硼素粒子の含有割合(体積%)を求めることができる。まず、立方晶窒化硼素焼結体の任意の位置を切断し、立方晶窒化硼素焼結体の断面を含む試料を作製する。断面の作製には、集束イオンビーム装置、クロスセクションポリッシャ装置等を用いることができる。次に、上記断面をSEMにて2000倍で観察して、反射電子像を得る。反射電子像においては、立方晶窒化硼素粒子が存在する領域が黒色領域となり、結合材が存在する領域が灰色領域または白色領域となる。
次に、上記反射電子像に対して画像解析ソフト(たとえば、三谷商事(株)の「WinROOF」)を用いて二値化処理を行い、二値化処理後の画像から各面積比率を算出する。算出された面積比率を体積%とみなすことにより、立方晶窒化硼素粒子の含有割合(体積%)を求めることができる。なお、これにより結合材の体積%を同時に求めることができる。
《立方晶窒化硼素粒子》
立方晶窒化硼素粒子は、硬度、強度、靱性が高く、立方晶窒化硼素焼結体中の骨格としての役割を果たす。立方晶窒化硼素粒子のD50(平均粒径)は特に限定されず、例えば、0.1~10.0μmとすることができる。通常、D50が小さい方が立方晶窒化硼素焼結体の硬度が高くなる傾向がある。また、粒径のばらつきが小さい方が、立方晶窒化硼素焼結体の性質が均質となる傾向がある。立方晶窒化硼素粒子のD50は、例えば、0.5~4.0μmとすることが好ましい。
立方晶窒化硼素粒子は、硬度、強度、靱性が高く、立方晶窒化硼素焼結体中の骨格としての役割を果たす。立方晶窒化硼素粒子のD50(平均粒径)は特に限定されず、例えば、0.1~10.0μmとすることができる。通常、D50が小さい方が立方晶窒化硼素焼結体の硬度が高くなる傾向がある。また、粒径のばらつきが小さい方が、立方晶窒化硼素焼結体の性質が均質となる傾向がある。立方晶窒化硼素粒子のD50は、例えば、0.5~4.0μmとすることが好ましい。
立方晶窒化硼素粒子のD50は次のようにして求められる。まず上記の立方晶窒化硼素粒子の含有量の求め方に準じて、立方晶窒化硼素焼結体の断面を含む試料を作製し、反射電子像を得る。次いで、画像解析ソフトを用いて反射電子像中の各黒色領域の円相当径を算出する。5視野以上を観察することによって100個以上の立方晶窒化硼素粒子の円相当径を算出することが好ましい。
次いで、各円相当径を最小値から最大値まで昇順に並べて累積分布を求める。累積分布において累積面積50%となる粒径がD50となる。なお円相当径とは、計測された立方晶窒化硼素粒子の面積と同じ面積を有する円の直径を意味する。
《結合材》
結合材は、難焼結性材料である立方晶窒化硼素粒子を工業レベルの圧力温度で焼結可能とする役割を果たす。また、鉄との反応性が立方晶窒化硼素より低いため、高硬度焼入鋼の切削においての化学的摩耗及び熱的摩耗を抑制する働きを立方晶窒化硼素焼結体に付加する。また、立方晶窒化硼素焼結体が結合材を含有すると、高硬度焼入鋼の高能率加工における耐摩耗性が向上する。
結合材は、難焼結性材料である立方晶窒化硼素粒子を工業レベルの圧力温度で焼結可能とする役割を果たす。また、鉄との反応性が立方晶窒化硼素より低いため、高硬度焼入鋼の切削においての化学的摩耗及び熱的摩耗を抑制する働きを立方晶窒化硼素焼結体に付加する。また、立方晶窒化硼素焼結体が結合材を含有すると、高硬度焼入鋼の高能率加工における耐摩耗性が向上する。
本実施形態の立方晶窒化硼素焼結体において、結合材は、WC、CoおよびAl化合物を含む。ここで、「Al化合物」とは、Alを構成元素として含む化合物を意味する。Al化合物としては、CoAl、Al2O3、AlN、およびAlB2、ならびにこれらの複合化合物等が挙げられる。次の理由から、WC、CoおよびAl化合物を含む当該結合材は、本実施形態に係る立方晶窒化硼素焼結体の長寿命化に特に有効と考えられる。
第1に、CoおよびAlは触媒機能を有するため、上述の焼結工程において、立方晶窒化硼素粒子同士のネックグロスを促進することができる。第2に、WCは、結合材の熱膨張係数を立方晶窒化硼素粒子の熱膨張係数に近づけるために有効と推察される。なお、上記の触媒機能とは、立方晶窒化硼素粒子を構成するB(硼素)および/またはN(窒素)が、CoまたはAlを介して拡散したり、析出したりすることを意味する。
立方晶窒化硼素焼結体に含まれる結合材の組成は、XRD(X線回折測定)およびICPを組み合わせることによって特定することができる。具体的には、まず、立方晶窒化硼素焼結体から、厚み0.45~0.50mm程度の試験片を切り出し、該試験片に対してXRD分析を実施し、X線回折ピークから決定される化合物、金属等を決定する。次に、試験片を密閉容器内で弗硝酸(濃硝酸(60%):蒸留水:濃弗酸(47%)=2:2:1の体積比混合の混合酸)に浸漬し、結合材が溶解された酸処理液を得る。該酸処理液に対してICP分析を実施し、各金属元素の定量分析を行う。そして、XRDの結果およびICP分析の結果を解析することにより、結合材の組成を決定する。
本実施形態における結合材は、WC、CoおよびAl化合物の他に、他の結合材を含んでいてもよい。他の結合材を構成する元素として好適なものは、Ni、Fe、Cr、Mn、Ti、V、Zr、Nb、Mo、Hf、Ta、Re等である。
《TEM-EDXによる分析》
本実施形態における立方晶窒化硼素焼結体は、TEM-EDXを用いて、立方晶窒化硼素粒子同士が隣接してなる界面を含む界面領域を分析した場合に、以下(1)および(2)を満たすことを特徴とする。
(1)界面上に炭素が存在しており;
(2)炭素が存在する領域の幅Dは、0.1~10nmである。
本実施形態における立方晶窒化硼素焼結体は、TEM-EDXを用いて、立方晶窒化硼素粒子同士が隣接してなる界面を含む界面領域を分析した場合に、以下(1)および(2)を満たすことを特徴とする。
(1)界面上に炭素が存在しており;
(2)炭素が存在する領域の幅Dは、0.1~10nmである。
TEM-EDXによる上記分析は、次のようにして実施される。まず、立方晶窒化硼素焼結体からサンプルを採取し、アルゴンイオンスライサーを用いて、サンプルを30~100nmの厚みに薄片化して切片を作製する。次いで、当該切片をTEM(透過型電子顕微鏡)にて50000倍で観察することにより、第1画像を得る。このときに用いられる透過型電子顕微鏡としては、例えば、日本電子株式会社製の「JEM-2100F/Cs」(商品名)が挙げられる。第1画像において、立方晶窒化硼素粒子同士が隣接してなる一の界面を任意に選択する。次に、選択された界面が、画像の中央付近を通るように位置決めを行い、観察倍率を200万倍に変更して観察することにより、第2画像を得る。得られた第2画像(100nm×100nm)において、界面は、画像の一端から、画像の中央付近を通って、該一端に対向する他の一旦に伸びるように存在することとなる。
次に、第2画像に対し、EDXによる元素マッピング分析を実施し、第2画像内、すなわち界面を含む界面領域における炭素の分布を分析する。このときに用いられるエネルギー分散型X線分析装置としては、例えば、AMETEK社製の「EDAX」(商品名)が挙げられる。界面上に(界面の形状に一致するように)、炭素の濃度が高い領域が観察された場合には、当該立方晶窒化硼素焼結体は上記(1)を満たすこととなる。
上記(1)を満たす第2画像において、界面の伸張する伸張方向(炭素の濃度が高い領域が伸張する伸張方向)を確認し、該伸張方向に対する略垂直方向に、元素ライン分析を実施する。そのときのビーム径は0.3nm以下とし、スキャン間隔は0.1~0.7nmとする。元素ライン分析の結果から、炭素が存在する領域の幅Dを算出する。当該幅Dが0.1~10nmである場合には、当該立方晶窒化硼素焼結体は、上記(2)を満たすこととなる。
6視野分の第1画像において上述の分析を繰り返し実施し、1視野分以上において、上記(1)および(2)を満たすことが確認された場合、当該立方晶窒化硼素焼結体は、本実施形態に係る立方晶窒化硼素焼結体であるとみなすことができる。このとき、上記(1)の条件は、「界面上の全て又は一部に炭素が存在している」と把握することもできる。
上述の分析に関し、理解を容易とするために、図1~図5を用いてさらに詳述する。
図1は、第2画像の一例である。図1を参照し、黒色領域が、BおよびNを主な構成元素とする領域(BN領域)であり、白色領域または灰色領域が第1画像において界面と認識された領域(SF領域)に相当する。図1に示されるように、第2画像のうちのSF領域が、「立方晶窒化硼素粒子同士が隣接してなる界面」に相当し、第2画像の全体が、「界面を含む界面領域」に相当する。
図1は、第2画像の一例である。図1を参照し、黒色領域が、BおよびNを主な構成元素とする領域(BN領域)であり、白色領域または灰色領域が第1画像において界面と認識された領域(SF領域)に相当する。図1に示されるように、第2画像のうちのSF領域が、「立方晶窒化硼素粒子同士が隣接してなる界面」に相当し、第2画像の全体が、「界面を含む界面領域」に相当する。
ここで、第2画像において、SF領域の幅(図1においては略上下方向)が10nmを超える場合には、第1画像に戻り、他の一の界面を再選択する。SF領域の幅が10nmを超える場合には、当該SF領域が「立方晶窒化硼素粒子同士が隣接してなる界面」に相当するとは言い難いためである。
図1に示す第2画像に対し、EDXによる元素マッピング分析を実施した結果が図2~図4であり、それぞれ、硼素、窒素、および炭素の分布状態を示す。元素マッピング分析において、各元素が存在している位置は淡色を示す。このため、図2~図4において、濃色を呈する領域は、各元素が存在しない(またはごくわずかに存在する)領域であり、その色味が淡くなるほど、各元素が多く存在する領域となる。
図2~図3を参照し、SF領域における硼素および窒素の各分布量は、BN領域におけるBおよびNの各分布量よりも低下している。一方、図4から、炭素は、SF領域に存在することが分かる。図4において、炭素が存在する領域(以下、「炭素含有領域」ともいう。)は、図中の左右方向に伸張しており、SF領域に略一致している。
図4に示す画像内に示される白い実線は、炭素含有領域の伸張方向(図4においては左右方向)に対する略垂直方向(図4においては上下方向)に、元素ライン分析を実施した結果である。これをグラフ化したものが図5に示される。図5において、ライン分析を実施した距離(nm)を横軸とし、ライン分析結果から算出される、スポットにおける炭素の含有割合(原子%)の値を縦軸とした結果を実線で示す。また図5においては、参考として、ライン分析を実施した距離(nm)を横軸とし、HAADF(高角環状暗視野、High-angle Annular Dark Field)像の強度(a.u.)を縦軸とした結果を点線で示す。
図5を参照し、HAADF像の強度が高い領域、すなわち界面領域において、炭素の含有割合(原子%)のピークが観察されている。当該ピークが観察される部分が「炭素が存在する領域」であり、当該ピークの幅dが「炭素が存在する領域の幅D」となる。
《作用効果》
上述の本実施形態に係る立方晶窒化硼素焼結体によれば、長寿命化が可能となる。第1の実施形態に係る製造方法により製造された立方晶窒化硼素焼結体であり、立方晶窒化硼素粒子同士の界面に炭素が均一に存在しており、これにより、立方晶窒化硼素粒子同士の結合力が高められているためである。種々の検討によれば、上述の方法において観察される6視野のうち、3視野以上において、上記(1)および(2)を満たすことが好ましいことが確認されている。
上述の本実施形態に係る立方晶窒化硼素焼結体によれば、長寿命化が可能となる。第1の実施形態に係る製造方法により製造された立方晶窒化硼素焼結体であり、立方晶窒化硼素粒子同士の界面に炭素が均一に存在しており、これにより、立方晶窒化硼素粒子同士の結合力が高められているためである。種々の検討によれば、上述の方法において観察される6視野のうち、3視野以上において、上記(1)および(2)を満たすことが好ましいことが確認されている。
一方、幅Dが10nmを超える場合には、長寿命化された立方晶窒化硼素焼結体を得ることができない。この理由は次のように考えられる。すなわち、立方晶窒化硼素粒子の表面に残存する炭素量が多すぎる場合に、幅Dが10nmを超えてしまう。この場合、立方晶窒化硼素粒子内に過剰な遊離炭素が存在することにより、立方晶窒化硼素粒子間の結合力の低下が引き起こされる。また、幅Dが0.1nm未満の場合にも同様に、長寿命化された立方晶窒化硼素焼結体を得ることができない。これは、立方晶窒化硼素粒子の表面に存在する炭素量が少なすぎるために、炭素による立方晶窒化硼素粒子同士の結合力の向上が十分でないためと考えられる。さらに本実施形態に係る立方晶窒化硼素焼結体は、さらに幅Dが0.1~5nmであることが好ましい。この場合、立方晶窒化硼素焼結体のさらなる長寿命化が可能となる。
なお、従来のHigh-cBN焼結体においても、立方晶窒化硼素粒子間に炭素が存在することはあり得る。しかし、この炭素は、結合材由来の炭素であり、このため立方晶窒化硼素粒子間に偏析しており、故に立方晶窒化硼素粒子間に均一に存在することはない。また、偏析による炭素が存在する領域の幅は、0.1~2.0μm程度と大きく、上記(2)を満たすものではない。
本実施形態に係る立方晶窒化硼素焼結体は、炭素が存在する領域(第2画像の炭素含有領域)における炭素の含有量の最大値Mが、0.1~5.0原子%であることが好ましい。この場合、立方晶窒化硼素焼結体のさらなる長寿命化が可能となる。当該炭素の含有量の最大値Mとは、ライン分析結果から算出される、各スポットにおける炭素の含有割合(原子%)のうちの最大値である。たとえば図5においては、炭素含有領域における炭素の含有量の最大値Mは、約1.4原子%である。
一方、最大値Mが0.1原子%未満の場合、上記効果を好適に発揮することができない恐れがある。また、最大値Mが5.0原子%超の場合、過剰な遊離炭素が存在してしまい、これにより逆に粒子間の結合力の低下が引き起こされる恐れがある。
なかでも、本実施形態に係る立方晶窒化硼素焼結体は、幅Dが0.1~5nmであり、かつ最大値Mが0.1~5.0原子%である場合に、顕著な長寿命化が可能となる。
〈第3の実施形態:切削工具〉
本実施形態に係る切削工具は、上記立方晶窒化硼素焼結体を含む。本実施形態の一側面において、上記切削工具は、基材として上記立方晶窒化硼素焼結体を含む。また本実施形態に係る切削工具は、基材となる立方晶窒化硼素焼結体の表面に被膜を有していてもよい。
本実施形態に係る切削工具は、上記立方晶窒化硼素焼結体を含む。本実施形態の一側面において、上記切削工具は、基材として上記立方晶窒化硼素焼結体を含む。また本実施形態に係る切削工具は、基材となる立方晶窒化硼素焼結体の表面に被膜を有していてもよい。
本実施形態に係る切削工具の形状および用途は特に制限されない。たとえばドリル、エンドミル、ドリル用刃先交換型切削チップ、エンドミル用刃先交換型切削チップ、フライス加工用刃先交換型切削チップ、旋削加工用刃先交換型切削チップ、メタルソー、歯切工具、リーマ、タップ、クランクシャフトのピンミーリング加工用チップなどを挙げることができる。
また、本実施形態に係る切削工具は、工具の全体が立方晶窒化硼素焼結体からなるもののみに限らず、工具の一部(特に刃先部位(切れ刃部)等)のみが立方晶窒化硼素焼結体からなるものも含む。たとえば、超硬合金等からなる基体(支持体)の刃先部位のみが立方晶窒化硼素焼結体で構成されるようなものも本実施形態に係る切削工具に含まれる。この場合は、文言上、その刃先部位を切削工具とみなすものとする。換言すれば、立方晶窒化硼素焼結体が切削工具の一部のみを占める場合であっても、立方晶窒化硼素焼結体を切削工具と呼ぶものとする。
本実施形態に係る切削工具によれば、上記立方晶窒化硼素焼結体を含むことから、長寿命化が可能となる。
以上の説明は、以下に付記する特徴を含む。
(付記1)
cBN原料粉末に有機物を付着させてなる有機cBN粉末を作製する工程と、
前記有機cBN粉末と、WC、CoおよびAlを含む結合材原料粉末とを混合して、85体積%以上100体積%未満の前記有機cBN粉末と、残部の結合材原料粉末とからなる混合粉末を調製する工程と、
前記混合粉末を焼結してcBN焼結体を得る工程と、を含む、立方晶窒化硼素焼結体の製造方法。
(付記2)
前記作製する工程は、
前記cBN原料粉末と前記有機物とを、超臨界水に投入する工程を含む、付記1に記載の立方晶窒化硼素焼結体の製造方法。
(付記3)
前記作製する工程は、
プラズマ処理により、前記cBN原料粉末に前記有機物を付着させる工程を含む、付記1に記載の立方晶窒化硼素焼結体の製造方法。
(付記4)
85体積%以上100体積%未満のcBN粒子と、残部の結合材と、を備える立方晶窒化硼素焼結体であって、
前記結合材は、WC、CoおよびAl化合物を含み、
TEM-EDXを用いて、前記cBN粒子同士が隣接してなる界面を含む界面領域を分析した場合に、
前記界面上に炭素が存在しており、
前記炭素が存在する領域の幅Dは、0.1nm以上10nm以下である、立方晶窒化硼素焼結体。
(付記5)
前記幅Dは、0.1nm以上5nm以下である、付記4に記載の立方晶窒化硼素焼結体。
(付記6)
前記炭素が存在する領域における前記炭素の含有量の最大値Mは、0.1原子%以上5.0原子%以下である、付記4または付記5に記載の立方晶窒化硼素焼結体。
(付記7)
付記4から付記6のいずれかに記載の立方晶窒化硼素焼結体を含む切削工具。
(付記1)
cBN原料粉末に有機物を付着させてなる有機cBN粉末を作製する工程と、
前記有機cBN粉末と、WC、CoおよびAlを含む結合材原料粉末とを混合して、85体積%以上100体積%未満の前記有機cBN粉末と、残部の結合材原料粉末とからなる混合粉末を調製する工程と、
前記混合粉末を焼結してcBN焼結体を得る工程と、を含む、立方晶窒化硼素焼結体の製造方法。
(付記2)
前記作製する工程は、
前記cBN原料粉末と前記有機物とを、超臨界水に投入する工程を含む、付記1に記載の立方晶窒化硼素焼結体の製造方法。
(付記3)
前記作製する工程は、
プラズマ処理により、前記cBN原料粉末に前記有機物を付着させる工程を含む、付記1に記載の立方晶窒化硼素焼結体の製造方法。
(付記4)
85体積%以上100体積%未満のcBN粒子と、残部の結合材と、を備える立方晶窒化硼素焼結体であって、
前記結合材は、WC、CoおよびAl化合物を含み、
TEM-EDXを用いて、前記cBN粒子同士が隣接してなる界面を含む界面領域を分析した場合に、
前記界面上に炭素が存在しており、
前記炭素が存在する領域の幅Dは、0.1nm以上10nm以下である、立方晶窒化硼素焼結体。
(付記5)
前記幅Dは、0.1nm以上5nm以下である、付記4に記載の立方晶窒化硼素焼結体。
(付記6)
前記炭素が存在する領域における前記炭素の含有量の最大値Mは、0.1原子%以上5.0原子%以下である、付記4または付記5に記載の立方晶窒化硼素焼結体。
(付記7)
付記4から付記6のいずれかに記載の立方晶窒化硼素焼結体を含む切削工具。
以下、実施例を挙げて本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。
〈実験例1〉
まず、有機立方晶窒化硼素粉末を作製した。具体的には、まず、超臨界水合成装置(株式会社アイテック社製、「MOMI超mini」)を用いて、以下の条件下で超臨界水を作製した。
圧力:35MPa
温度:375℃
流速:2ml/分。
まず、有機立方晶窒化硼素粉末を作製した。具体的には、まず、超臨界水合成装置(株式会社アイテック社製、「MOMI超mini」)を用いて、以下の条件下で超臨界水を作製した。
圧力:35MPa
温度:375℃
流速:2ml/分。
次に、超臨界水中におけるヘキシルアミンの濃度が10.0重量%となるように、ヘキシルアミンの原液を上記装置内に連続投入した。さらに、超臨界水中における立方晶窒化硼素原料粉末の量が10重量%となるように、平均粒子径が2μmの立方晶窒化硼素原料粉末を上記装置内に連続投入した。これにより、立方晶窒化硼素原料粉末と有機物とが、超臨界水に投入された。
上記の超臨界水処理を100分間継続した後、装置内を常温常圧に戻し、調製工程を終了し、得られたスラリーを全量回収した。同スラリーを遠心分離(10000rpm、5分間)し、立方晶窒化硼素原料粉末に付着していない余剰のヘキシルアミンを分離した。分離後の濃縮スラリーを乾燥(-90℃、12時間)し、超臨界水処理後の粉末約20gを回収した。
以上により、有機立方晶窒化硼素粉末が作製された。作製された有機立方晶窒化硼素粉末をガスクロマトグラフ質量分析法に供したところ、立方晶窒化硼素粉末に対して895ppmのヘキシルアミンが存在する(付着されている)ことが確認された。
次に、結合材の原料となる結合材原料粉末を準備した。具体的には、WC粉末、Co粉末、およびAl粉末を準備し、これらを重量%でWC:Co:Al=50:40:10の比率で配合した。なお、各粉末の平均粒子径は2μmであった。これを、熱処理(真空下、1200℃、30分間)して均一化し、その後、超硬ボールミルで微粉砕した。これにより、平均粒子径1μmの結合材原料粉末を得た。
有機立方晶窒化硼素粉末と得られた結合材原料粉末とを、体積%で有機立方晶窒化硼素粉末:結合材原料粉末=85:15の比率で配合し、エタノールを用いた湿式ボールミル法により均一に混合した。その後、真空下にて900℃で混合した粉末に熱処理を実施した。熱処理後の有機立方晶窒化硼素粉末をオージェ電子分光法にて分析したことろ、その表面に炭素が残存していることが確認された。以上により、混合粉末が作製された。
次に、得られた混合粉末を焼結することにより、立方晶窒化硼素焼結体を作製した。具体的には、混合粉末を、WC-6%Coの超硬合金製円盤とCo箔とに接した状態で、Ta製の容器に充填して真空シールした。これを、ベルト型超高圧高温発生装置を用いて、7.0GPa、1700℃で15分間焼結した。これにより、立方晶窒化硼素焼結体が作製された。
〈実験例2〉
投与するヘキシルアミンの濃度を8.0重量%とし、有機立方晶窒化硼素粉末と結合材原料粉末とを、体積%で有機立方晶窒化硼素粉末:結合材原料粉末=95:5の比率で配合し、エタノールを用いた湿式ボールミル法により均一に混合した。その後、真空下にて250℃で混合した粉末に熱処理を実施したこと以外は、実験例1と同様の方法により、立方晶窒化硼素焼結体を作製した。有機立方晶窒化硼素粉末をガスクロマトグラフ質量分析法に供したところ、立方晶窒化硼素に対して821ppmのヘキシルアミンが存在することが確認された。
投与するヘキシルアミンの濃度を8.0重量%とし、有機立方晶窒化硼素粉末と結合材原料粉末とを、体積%で有機立方晶窒化硼素粉末:結合材原料粉末=95:5の比率で配合し、エタノールを用いた湿式ボールミル法により均一に混合した。その後、真空下にて250℃で混合した粉末に熱処理を実施したこと以外は、実験例1と同様の方法により、立方晶窒化硼素焼結体を作製した。有機立方晶窒化硼素粉末をガスクロマトグラフ質量分析法に供したところ、立方晶窒化硼素に対して821ppmのヘキシルアミンが存在することが確認された。
〈実験例3〉
投与するヘキシルアミンの濃度を6.0重量%とし、有機立方晶窒化硼素粉末と結合材原料粉末とを、体積%で有機立方晶窒化硼素粉末:結合材原料粉末=92:8の比率で配合し、エタノールを用いた湿式ボールミル法により均一に混合した。その後、真空下にて400℃で混合した粉末に熱処理を実施したこと以外は、実験例1と同様の方法により、立方晶窒化硼素焼結体を作製した。有機立方晶窒化硼素粉末をガスクロマトグラフ質量分析法に供したところ、立方晶窒化硼素に対して543ppmのヘキシルアミンが存在することが確認された。
投与するヘキシルアミンの濃度を6.0重量%とし、有機立方晶窒化硼素粉末と結合材原料粉末とを、体積%で有機立方晶窒化硼素粉末:結合材原料粉末=92:8の比率で配合し、エタノールを用いた湿式ボールミル法により均一に混合した。その後、真空下にて400℃で混合した粉末に熱処理を実施したこと以外は、実験例1と同様の方法により、立方晶窒化硼素焼結体を作製した。有機立方晶窒化硼素粉末をガスクロマトグラフ質量分析法に供したところ、立方晶窒化硼素に対して543ppmのヘキシルアミンが存在することが確認された。
〈実験例4〉
投与するヘキシルアミンの濃度を4.0重量%とし、有機立方晶窒化硼素粉末と結合材原料粉末とを、体積%で有機立方晶窒化硼素粉末:結合材原料粉末=92:8の比率で配合すること以外は、実験例1と同様の方法により、立方晶窒化硼素焼結体を作製した。有機立方晶窒化硼素粉末をガスクロマトグラフ質量分析法に供したところ、立方晶窒化硼素に対して302ppmのヘキシルアミンが存在することが確認された。
投与するヘキシルアミンの濃度を4.0重量%とし、有機立方晶窒化硼素粉末と結合材原料粉末とを、体積%で有機立方晶窒化硼素粉末:結合材原料粉末=92:8の比率で配合すること以外は、実験例1と同様の方法により、立方晶窒化硼素焼結体を作製した。有機立方晶窒化硼素粉末をガスクロマトグラフ質量分析法に供したところ、立方晶窒化硼素に対して302ppmのヘキシルアミンが存在することが確認された。
〈実験例5〉
投与するヘキシルアミンの濃度を13.0重量%とし、有機立方晶窒化硼素粉末と結合材原料粉末とを、体積%で有機立方晶窒化硼素粉末:結合材原料粉末=92:8の比率で配合すること以外は、実験例1と同様の方法により、立方晶窒化硼素焼結体を作製した。有機立方晶窒化硼素粉末をガスクロマトグラフ質量分析法に供したところ、立方晶窒化硼素に対して1343ppmのヘキシルアミンが存在することが確認された。
投与するヘキシルアミンの濃度を13.0重量%とし、有機立方晶窒化硼素粉末と結合材原料粉末とを、体積%で有機立方晶窒化硼素粉末:結合材原料粉末=92:8の比率で配合すること以外は、実験例1と同様の方法により、立方晶窒化硼素焼結体を作製した。有機立方晶窒化硼素粉末をガスクロマトグラフ質量分析法に供したところ、立方晶窒化硼素に対して1343ppmのヘキシルアミンが存在することが確認された。
〈実験例6〉
超臨界水を用いる方法に代えて、プラズマ処理により有機立方晶窒化硼素粉末を作製した。具体的には、プラズマ改質装置(低圧プラズマ装置FEMTO、Dienner社製)を用いて、CF4雰囲気下で立方晶窒化硼素原料粉末の表面をエッチングした後、装置内をNH3雰囲気に切り替え、エッチング後の立方晶窒化硼素原料粉末を処理した。上記以外は、実験例1と同様の方法により、立方晶窒化硼素焼結体を製造した。
超臨界水を用いる方法に代えて、プラズマ処理により有機立方晶窒化硼素粉末を作製した。具体的には、プラズマ改質装置(低圧プラズマ装置FEMTO、Dienner社製)を用いて、CF4雰囲気下で立方晶窒化硼素原料粉末の表面をエッチングした後、装置内をNH3雰囲気に切り替え、エッチング後の立方晶窒化硼素原料粉末を処理した。上記以外は、実験例1と同様の方法により、立方晶窒化硼素焼結体を製造した。
〈実験例7〉
超臨界水を用いる方法に代えて、上述のプラズマ処理を用いた以外は、実験例2と同様の方法により、立方晶窒化硼素焼結体を製造した。
超臨界水を用いる方法に代えて、上述のプラズマ処理を用いた以外は、実験例2と同様の方法により、立方晶窒化硼素焼結体を製造した。
〈実験例8〉
超臨界水を用いる方法に代えて、上述のプラズマ処理を用いた以外は、実験例3と同様の方法により、立方晶窒化硼素焼結体を製造した。
超臨界水を用いる方法に代えて、上述のプラズマ処理を用いた以外は、実験例3と同様の方法により、立方晶窒化硼素焼結体を製造した。
〈実験例9〉
超臨界水を用いる方法に代えて、上述のプラズマ処理を用いた以外は、実験例4と同様の方法により、立方晶窒化硼素焼結体を製造した。
超臨界水を用いる方法に代えて、上述のプラズマ処理を用いた以外は、実験例4と同様の方法により、立方晶窒化硼素焼結体を製造した。
〈実験例10〉
超臨界水を用いる方法に代えて、上述のプラズマ処理を用いた以外は、実験例5と同様の方法により、立方晶窒化硼素焼結体を製造した。
超臨界水を用いる方法に代えて、上述のプラズマ処理を用いた以外は、実験例5と同様の方法により、立方晶窒化硼素焼結体を製造した。
〈実験例21〉
超臨界水を用いた処理を実施せずに、立方晶窒化硼素原料粉末を用いて混合粉末を調製した以外には、実験例3と同様の方法により、立方晶窒化硼素焼結体を製造した。
超臨界水を用いた処理を実施せずに、立方晶窒化硼素原料粉末を用いて混合粉末を調製した以外には、実験例3と同様の方法により、立方晶窒化硼素焼結体を製造した。
〈実験例22〉
有機立方晶窒化硼素粉末と結合材原料粉末とを、体積%で有機立方晶窒化硼素粉末:結合材原料粉末=65:35の比率で配合した以外は、実験例4と同様の方法により、立方晶窒化硼素焼結体を作製した。
有機立方晶窒化硼素粉末と結合材原料粉末とを、体積%で有機立方晶窒化硼素粉末:結合材原料粉末=65:35の比率で配合した以外は、実験例4と同様の方法により、立方晶窒化硼素焼結体を作製した。
〈実験例23〉
超臨界水を用いた処理を実施せずに、かつ結合材原料粉末を配合せずに立方晶窒化硼素原料粉末のみを用いた以外は、実験例1と同様の方法により、立方晶窒化硼素焼結体を作製した。
超臨界水を用いた処理を実施せずに、かつ結合材原料粉末を配合せずに立方晶窒化硼素原料粉末のみを用いた以外は、実験例1と同様の方法により、立方晶窒化硼素焼結体を作製した。
以上のようにして実験例1~10及び実験例21~23の立方晶窒化硼素焼結体を作製した。ここで、実験例1~10は、実施例に相当する。実験例21~23は比較例に相当する。
〈特性評価〉
《幅Dおよび最大値M》
作製された各立方晶窒化硼素焼結体に関し、任意の位置で切断した後、露出した面を研磨して平滑面を作製した。その後、アルゴンイオンスライサーを用いて、50nmの厚みに薄片化して切片を作製した。次いで、上述の方法に従って、第2画像(100nm×100nm)に対して、EDXによる元素マッピング分析および元素ライン分析を実施した。このとき、透過型電子顕微鏡は、日本電子株式会社製の「JEM-2100F/Cs」(商品名)を用いた。また、エネルギー分散型X線分析装置は、AMETEK社製の「EDAX」(商品名)を用いた。EDXにおけるビーム径は0.2nmとし、スキャン間隔は0.6nmとした。EDXによる元素マッピング分析および元素ライン分析に用いたソフトは日本電子株式会社製のAnalysis Stationであった。これらの結果を表1に示す。
《幅Dおよび最大値M》
作製された各立方晶窒化硼素焼結体に関し、任意の位置で切断した後、露出した面を研磨して平滑面を作製した。その後、アルゴンイオンスライサーを用いて、50nmの厚みに薄片化して切片を作製した。次いで、上述の方法に従って、第2画像(100nm×100nm)に対して、EDXによる元素マッピング分析および元素ライン分析を実施した。このとき、透過型電子顕微鏡は、日本電子株式会社製の「JEM-2100F/Cs」(商品名)を用いた。また、エネルギー分散型X線分析装置は、AMETEK社製の「EDAX」(商品名)を用いた。EDXにおけるビーム径は0.2nmとし、スキャン間隔は0.6nmとした。EDXによる元素マッピング分析および元素ライン分析に用いたソフトは日本電子株式会社製のAnalysis Stationであった。これらの結果を表1に示す。
なお表1に示される各値は、上記(1)および(2)を満たす視野の平均値であり、実験例1、4~10の切片の各々においては、任意に抽出された6つの界面領域の全てにおいて、上記(1)および(2)が満たされていた。実験例2においては、任意に抽出された6つの界面領域のうち1視野において、上記(1)および(2)が満たされていた。実験例3においては、任意に抽出された6つの界面領域のうち3視野において、上記(1)および(2)が満たされていた。
《結合材の組成》
作製された各立方晶窒化硼素焼結体から、長さ6mm、幅3mm、厚み0.45~0.50mmの試験片を切り出し、該試験片に対してXRD分析を実施した。次に、密閉容器内において、各試験片を140℃の弗硝酸(濃硝酸(60%):蒸留水:濃弗酸(47%)=2:2:1の体積比混合の混合酸)に48時間浸漬し、結合材が溶解された酸処理液を得た。当該酸処理液に対してICP分析を実施した。そして、XRD分析の結果およびICP分析の結果から、結合材の組成を特定した。
作製された各立方晶窒化硼素焼結体から、長さ6mm、幅3mm、厚み0.45~0.50mmの試験片を切り出し、該試験片に対してXRD分析を実施した。次に、密閉容器内において、各試験片を140℃の弗硝酸(濃硝酸(60%):蒸留水:濃弗酸(47%)=2:2:1の体積比混合の混合酸)に48時間浸漬し、結合材が溶解された酸処理液を得た。当該酸処理液に対してICP分析を実施した。そして、XRD分析の結果およびICP分析の結果から、結合材の組成を特定した。
《抗折強度》
上述の酸処理後の各試験片に対し、3点曲げ試験機を用いて、4mmスパン、ストローク速度0.5mm/minで抗折強度(GPa)を測定した。その結果を表1に示す。
上述の酸処理後の各試験片に対し、3点曲げ試験機を用いて、4mmスパン、ストローク速度0.5mm/minで抗折強度(GPa)を測定した。その結果を表1に示す。
《切削試験》
作製された各立方晶窒化硼素焼結体を用いて切削工具(基材形状:CNGA120408、刃先処理T01215)を作製した。これを用いて、以下の切削条件下で切削試験を実施した。
切削速度:150m/min.
送り速度:0.05mm/rev.
切込み:0.1mm
クーラント:DRY
切削方法:断続切削
旋盤:LB400(オークマ株式会社製)
被削材:焼結部品(住友電気工業社製の焼入焼結合金D-40、焼入れされた切削部の硬度:40HRC)。
作製された各立方晶窒化硼素焼結体を用いて切削工具(基材形状:CNGA120408、刃先処理T01215)を作製した。これを用いて、以下の切削条件下で切削試験を実施した。
切削速度:150m/min.
送り速度:0.05mm/rev.
切込み:0.1mm
クーラント:DRY
切削方法:断続切削
旋盤:LB400(オークマ株式会社製)
被削材:焼結部品(住友電気工業社製の焼入焼結合金D-40、焼入れされた切削部の硬度:40HRC)。
切削距離0.4km毎に刃先を観察し、刃先の脱落量を測定した。刃先の脱落量は切削前の刃先稜線の位置からの摩耗による後退幅とした。欠損した場合は、欠損の大きさを脱落量とした。刃先脱落量が0.05mm以上となる時点の切削距離を測定した。なお、この切削距離を切削工具の寿命の指標とした。その結果を表1に示す。
表1には、立方晶窒化硼素焼結体における立方晶窒化硼素の体積%も示す。また、結合材の組成に関し、実験例1~10および実験例21~22において、少なくともWC、Co、およびAl化合物が存在することが確認された。なおAl化合物に関し、XRDにおいて明瞭なピークが検出されなかったことから、Al化合物は、複数のAl化合物からなる複合化合物であると推察された。
表1を参照し、実験例1、4~10においては、任意の6視野において抽出された6つの界面の全てにおいて上記(1)および(2)が満たされていた。実験例2においては、任意に抽出された6つの界面領域のうち1視野において、上記(1)および(2)が満たされていた。実験例3においては、任意に抽出された6つの界面領域のうち3視野において、上記(1)および(2)が満たされていた。このため、実験例1及び3~10の各欄においては、それぞれの平均値が示されている。一方、実験例21~23においては、任意の6視野において抽出された6つの界面の全てにおいて炭素含有領域は確認されず、故に上記(1)および(2)を満たすことはなかった。このため、実験例21~23の各欄においては「-」が示されている。
表1を参照し、実験例1~10の立方晶窒化硼素焼結体は、実験例21~23の立方晶窒化硼素焼結体と比して、抗折強度が高いことが確認された。なお実験例22および実験例23における「崩壊」とは、酸処理後の立方晶窒化硼素焼結体が自壊したことを意味する。実験例1~10の立方晶窒化硼素焼結体に関し、酸処理後の試験片の抗折強度が高いことから、立方晶窒化硼素粒子同士の結合が強固であることが理解される。これは、炭素が存在することにより、立方晶窒化硼素粒子同士のネックグロスが促進されているとの仮説を裏付ける結果でもある。
また実験例1~10は、実験例21~23と比して切削距離が顕著に長い。このことから、実験例1~10に係る立方晶窒化硼素焼結体は、顕著に長寿命化されていることが確認された。なかでも、実験例2~4、7~9において、切削距離がより顕著に長いことから、幅Dが0.1~5.0nmであり、かつ最大値Mが0.1~5.0原子%の場合に、より顕著な長寿命化が可能であることが確認された。
今回開示された実施の形態はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。
Claims (11)
- 立方晶窒化硼素原料粉末に有機物を付着させてなる有機立方晶窒化硼素粉末を作製する工程と、
前記有機立方晶窒化硼素粉末と、WC、CoおよびAlを含む結合材原料粉末とを混合して、85体積%以上100体積%未満の前記有機立方晶窒化硼素粉末と、残部の結合材原料粉末とからなる混合粉末を調製する工程と、
前記混合粉末を焼結して立方晶窒化硼素焼結体を得る工程と、を含む、立方晶窒化硼素焼結体の製造方法。 - 前記作製する工程は、
前記立方晶窒化硼素原料粉末と前記有機物とを、超臨界水に投入する工程を含む、請求項1に記載の立方晶窒化硼素焼結体の製造方法。 - 前記有機物は、アミン又は炭素数が5以上の炭化水素化合物である、請求項2に記載の立方晶窒化硼素焼結体の製造方法。
- 前記有機物は、ヘキシルアミン、ヘキシルニトリル、パラフィン又はヘキサンである、請求項3に記載の立方晶窒化硼素焼結体の製造方法。
- 前記作製する工程は、
プラズマ処理により、前記立方晶窒化硼素原料粉末に前記有機物を付着させる工程を含む、請求項1に記載の立方晶窒化硼素焼結体の製造方法。 - 前記有機物は、アミン又はフッ化炭素である、請求項5に記載の立方晶窒化硼素焼結体の製造方法。
- 85体積%以上100体積%未満の立方晶窒化硼素粒子と、残部の結合材と、を備える立方晶窒化硼素焼結体であって、
前記結合材は、WC、CoおよびAl化合物を含み、
TEM-EDXを用いて、前記立方晶窒化硼素粒子同士が隣接してなる界面を含む界面領域を分析した場合に、
前記界面上の全て又は一部に炭素が存在しており、
前記炭素が存在する領域の幅Dは、0.1nm以上10nm以下である、立方晶窒化硼素焼結体。 - 前記幅Dは、0.1nm以上5nm以下である、請求項7に記載の立方晶窒化硼素焼結体。
- 前記炭素が存在する領域における前記炭素の含有量の最大値Mは、0.1原子%以上5.0原子%以下である、請求項7または請求項8に記載の立方晶窒化硼素焼結体。
- 85体積%以上100体積%未満の立方晶窒化硼素粒子と、残部の結合材と、を備える立方晶窒化硼素焼結体であって、
前記結合材は、WC、CoおよびAl化合物を含み、
TEM-EDXを用いて、前記立方晶窒化硼素粒子同士が隣接してなる界面を含む界面領域を分析した場合に、
前記界面上の全て又は一部に炭素が存在しており、
前記炭素が存在する領域の幅Dは、0.1nm以上5nm以下であり、
前記炭素が存在する領域における前記炭素の含有量の最大値Mは、0.1原子%以上5.0原子%以下である、立方晶窒化硼素焼結体。 - 請求項7から請求項10のいずれか1項に記載の立方晶窒化硼素焼結体を含む切削工具。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020506827A JP6744520B1 (ja) | 2018-09-19 | 2019-09-18 | 立方晶窒化硼素焼結体、およびそれを含む切削工具 |
EP19862666.5A EP3854897A4 (en) | 2018-09-19 | 2019-09-18 | METHOD FOR PRODUCTION OF CUBIC BORON NITRIDE SINTERED BODY, CUBIC BORON NITRIDE SINTERED BODY AND CUTTING TOOL THEREOF |
CN201980061238.6A CN112771190B (zh) | 2018-09-19 | 2019-09-18 | 立方氮化硼烧结体的制造方法、立方氮化硼烧结体和包括该立方氮化硼烧结体的切削工具 |
US17/262,220 US11155901B2 (en) | 2018-09-19 | 2019-09-18 | Method of producing cubic boron nitride sintered material, cubic boron nitride sintered material, and cutting tool including cubic boron nitride sintered material |
US17/492,690 US12054813B2 (en) | 2018-09-19 | 2021-10-04 | Method of producing cubic boron nitride sintered material, cubic boron nitride sintered material, and cutting tool including cubic boron nitride sintered material |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018174695 | 2018-09-19 | ||
JP2018-174695 | 2018-09-19 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/262,220 A-371-Of-International US11155901B2 (en) | 2018-09-19 | 2019-09-18 | Method of producing cubic boron nitride sintered material, cubic boron nitride sintered material, and cutting tool including cubic boron nitride sintered material |
US17/492,690 Continuation US12054813B2 (en) | 2018-09-19 | 2021-10-04 | Method of producing cubic boron nitride sintered material, cubic boron nitride sintered material, and cutting tool including cubic boron nitride sintered material |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020059754A1 true WO2020059754A1 (ja) | 2020-03-26 |
Family
ID=69887747
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/036569 WO2020059754A1 (ja) | 2018-09-19 | 2019-09-18 | 立方晶窒化硼素焼結体の製造方法、立方晶窒化硼素焼結体、およびそれを含む切削工具 |
Country Status (5)
Country | Link |
---|---|
US (2) | US11155901B2 (ja) |
EP (1) | EP3854897A4 (ja) |
JP (1) | JP6744520B1 (ja) |
CN (1) | CN112771190B (ja) |
WO (1) | WO2020059754A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022025293A1 (ja) * | 2020-07-31 | 2022-02-03 | 住友電気工業株式会社 | 立方晶窒化硼素焼結体、およびそれを含む切削工具 |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4000778A4 (en) | 2019-07-18 | 2022-09-21 | Sumitomo Electric Industries, Ltd. | CUBIC BORON NITRIDE SINTERED COMPACT PART AND METHOD FOR MANUFACTURING THEREOF |
WO2021010474A1 (ja) * | 2019-07-18 | 2021-01-21 | 住友電気工業株式会社 | 立方晶窒化硼素焼結体 |
JP7064658B1 (ja) | 2020-11-04 | 2022-05-10 | 住友電気工業株式会社 | 立方晶窒化硼素焼結体 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005066381A1 (ja) | 2004-01-08 | 2005-07-21 | Sumitomo Electric Hardmetal Corp. | 立方晶型窒化硼素焼結体 |
JP2006021977A (ja) * | 2004-07-09 | 2006-01-26 | Sumitomo Electric Ind Ltd | 立方晶窒化ホウ素多結晶体の製造方法 |
JP2006169080A (ja) * | 2004-12-20 | 2006-06-29 | Sumitomo Electric Ind Ltd | 立方晶窒化硼素多結晶体の製造方法 |
WO2006112156A1 (ja) * | 2005-04-14 | 2006-10-26 | Sumitomo Electric Hardmetal Corp. | cBN焼結体、及びそれを用いた切削工具 |
JP2006347850A (ja) * | 2005-06-20 | 2006-12-28 | Sumitomo Electric Ind Ltd | 立方晶窒化硼素焼結体およびその製造方法 |
JP2007070148A (ja) * | 2005-09-06 | 2007-03-22 | National Institute For Materials Science | 高純度立方晶窒化ホウ素焼結体の製造法 |
JP2018174695A (ja) | 2017-03-30 | 2018-11-08 | 日軽金アクト株式会社 | 太陽光パネル用架台の固定構造および固定部材 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0520403B1 (en) * | 1991-06-25 | 1995-09-27 | Sumitomo Electric Industries, Ltd | Hard sintered compact for tools |
AU4496799A (en) * | 1998-04-15 | 1999-11-08 | Extreme Energy And Power Company Limited | Loading especially metallic or metal-ceramic technical surfaces with a fluoro-organic compound |
GB2421506B (en) * | 2003-05-22 | 2008-07-09 | Zyvex Corp | Nanocomposites and methods thereto |
WO2006046753A1 (en) * | 2004-10-28 | 2006-05-04 | Kyocera Corporation | Cubic boron nitride sintered material and cutting tool using the same |
JP5032318B2 (ja) * | 2005-07-15 | 2012-09-26 | 住友電工ハードメタル株式会社 | 複合焼結体 |
US8999023B2 (en) | 2006-06-12 | 2015-04-07 | Sumitomo Electric Hardmetal Corp. | Composite sintered body |
US7862634B2 (en) * | 2006-11-14 | 2011-01-04 | Smith International, Inc. | Polycrystalline composites reinforced with elongated nanostructures |
CN101602192B (zh) * | 2009-06-29 | 2011-12-14 | 云南光电辅料有限公司 | 磨料表面改性改善金属基磨具加工光洁度的方法 |
EP2613900B1 (en) * | 2010-09-08 | 2016-03-23 | Element Six Limited | Manufacturing method of an edm cuttable, high cbn content solid pcbn compact |
US9327352B2 (en) * | 2011-11-07 | 2016-05-03 | Tungaloy Corporation | Cubic boron nitride sintered body |
US20130299249A1 (en) * | 2012-05-08 | 2013-11-14 | Gary E. Weaver | Super-abrasive material with enhanced attachment region and methods for formation and use thereof |
US11465388B2 (en) * | 2017-01-15 | 2022-10-11 | Honeywell International Inc. | Peel strength between dissimilar fabrics |
-
2019
- 2019-09-18 WO PCT/JP2019/036569 patent/WO2020059754A1/ja unknown
- 2019-09-18 JP JP2020506827A patent/JP6744520B1/ja active Active
- 2019-09-18 EP EP19862666.5A patent/EP3854897A4/en active Pending
- 2019-09-18 US US17/262,220 patent/US11155901B2/en active Active
- 2019-09-18 CN CN201980061238.6A patent/CN112771190B/zh active Active
-
2021
- 2021-10-04 US US17/492,690 patent/US12054813B2/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005066381A1 (ja) | 2004-01-08 | 2005-07-21 | Sumitomo Electric Hardmetal Corp. | 立方晶型窒化硼素焼結体 |
JP2006021977A (ja) * | 2004-07-09 | 2006-01-26 | Sumitomo Electric Ind Ltd | 立方晶窒化ホウ素多結晶体の製造方法 |
JP2006169080A (ja) * | 2004-12-20 | 2006-06-29 | Sumitomo Electric Ind Ltd | 立方晶窒化硼素多結晶体の製造方法 |
WO2006112156A1 (ja) * | 2005-04-14 | 2006-10-26 | Sumitomo Electric Hardmetal Corp. | cBN焼結体、及びそれを用いた切削工具 |
JP2006347850A (ja) * | 2005-06-20 | 2006-12-28 | Sumitomo Electric Ind Ltd | 立方晶窒化硼素焼結体およびその製造方法 |
JP2007070148A (ja) * | 2005-09-06 | 2007-03-22 | National Institute For Materials Science | 高純度立方晶窒化ホウ素焼結体の製造法 |
JP2018174695A (ja) | 2017-03-30 | 2018-11-08 | 日軽金アクト株式会社 | 太陽光パネル用架台の固定構造および固定部材 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3854897A4 |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022025293A1 (ja) * | 2020-07-31 | 2022-02-03 | 住友電気工業株式会社 | 立方晶窒化硼素焼結体、およびそれを含む切削工具 |
JP7064659B1 (ja) * | 2020-07-31 | 2022-05-10 | 住友電気工業株式会社 | 立方晶窒化硼素焼結体、およびそれを含む切削工具 |
US11959156B2 (en) | 2020-07-31 | 2024-04-16 | Sumitomo Electric Industries, Ltd. | Cubic boron nitride sintered material and cutting tool including same |
Also Published As
Publication number | Publication date |
---|---|
US20220025490A1 (en) | 2022-01-27 |
JP6744520B1 (ja) | 2020-08-19 |
CN112771190A (zh) | 2021-05-07 |
EP3854897A1 (en) | 2021-07-28 |
US11155901B2 (en) | 2021-10-26 |
US12054813B2 (en) | 2024-08-06 |
EP3854897A4 (en) | 2022-06-22 |
CN112771190B (zh) | 2022-06-28 |
JPWO2020059754A1 (ja) | 2021-01-07 |
US20210246536A1 (en) | 2021-08-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020059754A1 (ja) | 立方晶窒化硼素焼結体の製造方法、立方晶窒化硼素焼結体、およびそれを含む切削工具 | |
WO2020059755A1 (ja) | 立方晶窒化硼素焼結体、それを含む切削工具、および立方晶窒化硼素焼結体の製造方法 | |
JP6703214B1 (ja) | 立方晶窒化硼素焼結体、およびそれを含む切削工具 | |
JP7019093B2 (ja) | 立方晶窒化硼素焼結体、及び、その製造方法 | |
KR20220095243A (ko) | 입방정 질화붕소 소결체 | |
JP6990320B2 (ja) | 立方晶窒化硼素焼結体 | |
JP7064659B1 (ja) | 立方晶窒化硼素焼結体、およびそれを含む切削工具 | |
CN114144391B (zh) | 立方晶氮化硼烧结体 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2020506827 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19862666 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2019862666 Country of ref document: EP Effective date: 20210419 |