WO2020059499A1 - 波長変換部材用原料粉末 - Google Patents

波長変換部材用原料粉末 Download PDF

Info

Publication number
WO2020059499A1
WO2020059499A1 PCT/JP2019/034826 JP2019034826W WO2020059499A1 WO 2020059499 A1 WO2020059499 A1 WO 2020059499A1 JP 2019034826 W JP2019034826 W JP 2019034826W WO 2020059499 A1 WO2020059499 A1 WO 2020059499A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
conversion member
phosphor
powder
raw material
Prior art date
Application number
PCT/JP2019/034826
Other languages
English (en)
French (fr)
Inventor
寛之 清水
浅野 秀樹
Original Assignee
日本電気硝子株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気硝子株式会社 filed Critical 日本電気硝子株式会社
Publication of WO2020059499A1 publication Critical patent/WO2020059499A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Definitions

  • the present invention relates to a raw material powder for producing a wavelength conversion member for converting a wavelength of light emitted from a light emitting element such as a light emitting diode (LED: Light Emitting Diode) or a laser diode (LD: Laser Diode) to another wavelength. It is about.
  • a light emitting element such as a light emitting diode (LED: Light Emitting Diode) or a laser diode (LD: Laser Diode) to another wavelength. It is about.
  • Patent Literature 1 discloses a light source in which a wavelength conversion member that absorbs a part of light from the LED and converts the light into yellow light is disposed on an LED that emits blue light. Is disclosed. The light source emits white light that is a combined light of the blue light emitted from the LED and the yellow light emitted from the wavelength conversion member.
  • a material in which phosphor powder is dispersed in a resin matrix has been used.
  • the wavelength conversion member when used, there is a problem that the resin is deteriorated by the light from the LED, and the luminance of the light source is likely to be lowered.
  • the resin matrix is degraded by heat or high-energy short-wavelength (blue to ultraviolet) light emitted from the LED, causing discoloration or deformation.
  • the wavelength conversion member has a feature that glass serving as a base material is hardly deteriorated by heat or irradiation light of an LED chip, and problems such as discoloration and deformation are unlikely to occur.
  • JP 2000-208815 A JP-A-2003-258308
  • the wavelength conversion member described in Patent Literature 2 has a problem that devitrification easily occurs in the glass matrix due to firing during manufacturing. As a result, the excitation light and the converted fluorescent light incident on the wavelength conversion member are excessively scattered by the devitrified material, and the return light to the light source side increases, whereby the light extraction efficiency tends to decrease. There is.
  • the present invention is to provide a raw material powder for a wavelength conversion member capable of obtaining a wavelength conversion member that is less likely to generate a devitrified substance in glass powder due to firing during production and has excellent light extraction efficiency. With the goal.
  • the raw material powder for a wavelength conversion member of the present invention is characterized by containing, by mass%, a glass powder containing 70 to 90% of SiO 2 and 10 to 25% of B 2 O 3 , and a phosphor powder. I do.
  • the glass powder having the composition has a characteristic that it is not easily devitrified during firing. Therefore, the wavelength conversion member obtained by sintering the raw material powder for the wavelength conversion member of the present invention has less devitrified material in the glass matrix, and suppresses excessive scattering of excitation light and fluorescence, resulting in light extraction. Efficiency can be improved.
  • the raw material powder for a wavelength conversion member of the present invention preferably contains 0 to 5% of K 2 O and 0 to 5% of Al 2 O 3 by mass%.
  • the raw material powder for a wavelength conversion member of the present invention preferably has a glass powder having a softening point of 700 to 1100 ° C.
  • the refractive index (nd) of the glass powder is preferably 1.55 or less.
  • the phosphor powder is an oxide phosphor, a nitride phosphor, an oxynitride phosphor, a chloride phosphor, an acid chloride phosphor, a halide phosphor, and aluminate. It is preferably at least one selected from the group consisting of a salt phosphor and a halophosphate chloride phosphor.
  • the raw material powder for a wavelength conversion member of the present invention preferably contains 0.01 to 70% by mass of a phosphor powder.
  • the wavelength conversion member of the present invention is preferably made of a sintered body of the above-mentioned raw material powder for a wavelength conversion member.
  • the wavelength conversion member of the present invention is characterized in that phosphor powder is dispersed in a glass matrix containing 70 to 90% of SiO 2 and 10 to 25% of B 2 O 3 by mass.
  • a light emitting device includes the wavelength conversion member described above and a light source that irradiates the wavelength conversion member with excitation light.
  • a vehicle lighting system according to the present invention is characterized by using the above light emitting device.
  • the vehicle lighting of the present invention is preferably used as a headlight.
  • the raw material powder for a wavelength conversion member of the present invention hardly generates a devitrified substance in a glass powder during firing, it is possible to obtain a wavelength conversion member excellent in light extraction efficiency.
  • FIG. 1 is a schematic side view of a light emitting device according to one embodiment of the present invention.
  • the raw material powder for a wavelength conversion member of the present invention is characterized by containing a glass powder containing 70 to 90% of SiO 2 and 10 to 25% of B 2 O 3 by mass%, and a phosphor powder.
  • a glass powder containing 70 to 90% of SiO 2 and 10 to 25% of B 2 O 3 by mass%
  • a phosphor powder The reason for limiting the composition range of the glass powder in this way will be described below.
  • “%” means “% by mass” unless otherwise specified.
  • SiO 2 is a component that forms a glass network.
  • the content of SiO 2 is 70 to 90%, preferably 72 to 85%, 75 to 83%, particularly preferably 77 to 82%. If the content of SiO 2 is too small, devitrification tends to occur during firing. In addition, weather resistance and mechanical strength tend to decrease. On the other hand, if the content of SiO 2 is too large, the sintering temperature will be high, so that the phosphor powder tends to deteriorate during firing. In addition, the fluidity of the glass powder at the time of firing is inferior, and air bubbles tend to remain in the glass matrix after firing. The bubbles cause light scattering similarly to the devitrified material, and the light extraction efficiency of the wavelength conversion member may be reduced.
  • B 2 O 3 is a component that lowers the melting temperature and significantly improves the meltability.
  • the content of B 2 O 3 is 10 to 25%, preferably 12 to 24%, 15 to 21%, and particularly preferably 15 to 20%. If the content of B 2 O 3 is too small, devitrification tends to occur during firing. Further, the fluidity of the glass powder at the time of firing is inferior, and for the above-mentioned reason, the light extraction efficiency of the wavelength conversion member may be reduced. On the other hand, if the content of B 2 O 3 is too large, the weather resistance tends to decrease.
  • the following components can be contained in the glass powder.
  • K 2 O is a component that lowers the melting temperature to improve the meltability and lowers the softening point. However, if the content of K 2 O is too large, the weather resistance tends to decrease. Further, K 2 O serves as a coloring center to absorb excitation light and fluorescence, and tends to cause a decrease in emission intensity. Therefore, the content of K 2 O is preferably 0 to 5%, 0.5 to 4%, 1 to 3%, particularly preferably 1 to 2%.
  • Al 2 O 3 is a component that improves weather resistance, chemical durability, and mechanical strength.
  • the content of Al 2 O 3 is preferably 0 to 5%, 0.01 to 3%, 0.1 to 2%, particularly preferably 0.2 to 1%. If the content of Al 2 O 3 is too large, the meltability tends to decrease.
  • Li 2 O and Na 2 O are components that lower the melting temperature to improve the melting property and lower the softening point.
  • the weather resistance tends to decrease.
  • it tends to become a coloring center and absorb the excitation light or the fluorescent light, which tends to cause a decrease in the emission intensity. Therefore, the contents of Li 2 O and Na 2 O are preferably 0 to 5%, 0.5 to 4%, 1 to 3%, and particularly preferably 1 to 2%.
  • MgO, CaO, SrO and BaO are components that lower the melting temperature, improve the meltability, and lower the softening point. Note that these components, unlike the alkali metal components, do not affect the decrease in the emission intensity of the wavelength conversion member.
  • the content of these components is preferably 0 to 5%, 0.01 to 3%, 0.03 to 2%, and particularly preferably 0.05 to 1%. If the content of these components is too large, the weather resistance tends to decrease.
  • the total amount of MgO, CaO, SrO and BaO is also preferably within the above range.
  • ZnO, P 2 O 5 , La 2 O 3 , Ta 2 O 5 , TeO 2 , TiO 2 , Nb 2 O 5 , Gd 2 O 3 , Y 2 O 3 , CeO 2 , Sb 2 O 3 , SnO 2 , Bi 2 O 3 , As 2 O 3, ZrO 2, etc. may be contained in an amount of 10% or less, particularly 5% or less, and a total amount of 15% or less. Further, F can be contained.
  • F has the effect of reducing the softening point, it is contained in place of the alkali metal component, which is one of the causes of the formation of the colored center, to suppress the temporal decrease of the emission intensity while maintaining the low softening point. can do.
  • the content of F is preferably 0 to 10%, 0 to 8%, and particularly preferably 0.1 to 5% in terms of anion%.
  • Fe and Cr are components that reduce the visible light transmittance and cause a decrease in emission intensity. Therefore, the content of Fe is preferably 1000 ppm or less, 500 ppm or less, particularly preferably 100 ppm or less. Further, the content of Cr is preferably 500 ppm or less, particularly preferably 100 ppm or less. However, in order to prevent Fe and Cr from being contained in the glass, it is necessary to use expensive high-purity raw materials, so that the production cost tends to increase. Therefore, from the viewpoint of reducing the manufacturing cost, the contents of Fe and Cr are each preferably 5 ppm or more, particularly preferably 10 ppm or more.
  • the softening point of the glass powder is preferably 700 to 1100 ° C, 750 to 1050 ° C, and more preferably 800 to 1000 ° C. If the softening point of the glass powder is too low, the mechanical strength and weather resistance tend to decrease. On the other hand, if the softening point is too high, the sintering temperature will be high, so that the phosphor powder is liable to be deteriorated in the firing step during production.
  • the refractive index (nd) of the glass powder is preferably 1.55 or less, 1.52 or less, 1.5 or less, particularly preferably 1.48 or less. If the refractive index is too high, the difference in refractive index from air becomes large, and the fluorescence or excitation light is easily reflected on the light exit surface of the wavelength conversion member, so that the light extraction efficiency tends to be reduced.
  • the lower limit of the refractive index is not particularly limited, but is practically 1.4 or more, and more preferably 1.42 or more.
  • the average of the glass powder the particle diameter D 50 is 100 ⁇ m or less, 50 [mu] m or less, 20 [mu] m or less, more preferably 10 ⁇ m or less. If the average of the glass powder the particle diameter D 50 is too large, in the wavelength conversion member is obtained, bubbles are likely to remain in the glass matrix after firing, the reasons mentioned above, to decrease the light extraction efficiency of the wavelength conversion member afraid There is.
  • the lower limit of the average particle diameter D 50 of the glass powder is not particularly limited, considering the production cost and handling properties, 0.1 [mu] m or more, 1 [mu] m or more, and particularly preferably 2 ⁇ m or more. In the present invention, the average particle diameter D 50 refers to the value measured by a laser diffraction method.
  • the glass powder used in the present invention is hardly devitrified by firing.
  • the sintered body of the glass powder used in the present invention can achieve a total light transmittance of 70% or more, 73% or more, particularly 75% or more at a wavelength of 550 nm and a thickness of 1 mm.
  • the phosphor powder examples include oxide phosphors (including garnet phosphors such as YAG phosphors), nitride phosphors, oxynitride phosphors, chloride phosphors, acid chloride phosphors, and halide phosphors. At least one inorganic phosphor selected from the group consisting of aluminate phosphors and halophosphate chloride phosphors can be used. Of these phosphor powders, oxide phosphors, nitride phosphors, and oxynitride phosphors are preferable because they have high heat resistance and are relatively unlikely to deteriorate during firing. In addition, a sulfide phosphor may be used as a phosphor other than the above.
  • the phosphor powder has an excitation band at a wavelength of 300 to 500 nm and an emission peak at a wavelength of 380 to 780 nm, particularly blue (wavelength 440 to 480 nm), green (wavelength 500 to 540 nm), and yellow (wavelength 540 to 540 nm). 595 nm) and red (wavelength: 600 to 700 nm).
  • Examples of the phosphor powder that emits blue light when irradiated with ultraviolet to near ultraviolet excitation light having a wavelength of 300 to 440 nm include (Sr, Ba) MgAl 10 O 17 : Eu 2+ , (Sr, Ba) 3 MgSi 2 O 8 : Eu 2+ and the like.
  • SrAl 2 O 4 Eu 2+
  • SrBaSiO 4 Eu 2+
  • (Y, Gd) 3 Al 5 O 12 are phosphor powders that emit green fluorescence when irradiated with ultraviolet to near ultraviolet excitation light having a wavelength of 300 to 440 nm.
  • Ce 3+ SrSiON: Eu 2+
  • BaMgAl 10 O 17 Eu 2+
  • Mn 2+ Mn 2+
  • Ba 2 MgSi 2 O 7 Eu 2+
  • Ba 2 SiO 4 Eu 2+
  • Ba 2 Li 2 Si 2 O 7 Eu 2+
  • BaAl 2 O 4 Eu 2+ and the like.
  • SrAl 2 O 4 : Eu 2+ , SrBaSiO 4 : Eu 2+ , (Y, Gd) 3 Al 5 O 12 : Ce 3+ include phosphor powders that emit green fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm.
  • Examples of the phosphor powder that emits yellow fluorescence when irradiated with ultraviolet to near ultraviolet excitation light having a wavelength of 300 to 440 nm include La 3 Si 6 N 11 : Ce 3+ .
  • Examples of the phosphor powder that emits yellow fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include (Y, Gd) 3 Al 5 O 12 : Ce 3+ and Sr 2 SiO 4 : Eu 2+ .
  • Phosphor powders that emit red fluorescence when irradiated with ultraviolet to near-ultraviolet excitation light having a wavelength of 300 to 440 nm include MgSr 3 Si 2 O 8 : Eu 2+ , Mn 2+ , Ca 2 MgSi 2 O 7 : Eu 2+ , Mn. 2+ and the like.
  • Phosphor powders that emit red fluorescence when irradiated with blue excitation light having a wavelength of 440 to 480 nm include CaAlSiN 3 : Eu 2+ , CaSiN 3 : Eu 2+ , (Ca, Sr) 2 Si 5 N 8 : Eu 2+ , ⁇ —SiAlON: Eu 2+ and the like.
  • a plurality of phosphor powders may be mixed and used in accordance with the wavelength range of the excitation light or light emission. For example, when white light is obtained by irradiating with ultraviolet excitation light, phosphor powders that emit blue, green, yellow, and red fluorescence may be mixed and used.
  • the luminous efficiency (lm / W) of the wavelength conversion member varies depending on the type and content of the phosphor powder, the thickness of the wavelength conversion member, and the like.
  • the content of the phosphor powder and the thickness of the wavelength conversion member may be appropriately adjusted so as to optimize luminous efficiency and chromaticity. For example, when the thickness of the wavelength conversion member is small, the content of the phosphor powder may be increased so as to obtain desired luminous efficiency and chromaticity.
  • the content of the phosphor powder is too large, sintering becomes difficult, the porosity becomes large, and it becomes difficult for the excitation light to efficiently irradiate the phosphor powder, or the mechanical strength of the wavelength conversion member is increased. May be reduced.
  • the content of the phosphor powder in the raw material powder for a wavelength conversion member of the present invention is preferably 0.01 to 70% by mass, more preferably 0.05 to 50% by mass. , 0.08 to 30% by mass.
  • the emission intensity is not limited to the above, but is maximized.
  • the content of the phosphor powder can be increased (for example, 30 to 80% by mass, further 40 to 75% by mass).
  • the wavelength conversion member of the present invention comprises a sintered body of the above-mentioned raw material powder for a wavelength conversion member.
  • the wavelength conversion member of the present invention is such that the phosphor powder is dispersed in a glass matrix containing 70 to 90% of SiO 2 and 10 to 25% of B 2 O 3 by mass.
  • the reason for limiting the composition of the glass matrix in this way is as described above, and the description is omitted.
  • the firing temperature of the raw material powder for a wavelength conversion member is preferably within ⁇ 150 ° C of the softening point of the glass powder, and more preferably within ⁇ 100 ° C of the softening point of the glass powder. If the firing temperature is too low, the glass powder does not flow sufficiently, and it is difficult to obtain a dense sintered body. On the other hand, if the firing temperature is too high, the phosphor powder components may be thermally degraded and the emission intensity may be reduced.
  • the firing is preferably performed in a reduced pressure atmosphere.
  • the atmosphere during the firing is preferably less than 1.013 ⁇ 10 5 Pa, 1000 Pa or less, particularly preferably 400 Pa or less.
  • the entire sintering step may be performed in a reduced-pressure atmosphere, or, for example, only the sintering step may be performed in a reduced-pressure atmosphere. May go.
  • the shape of the wavelength conversion member of the present invention is not particularly limited. For example, not only a member having a specific shape itself, such as a plate, a column, a hemisphere, and a hemisphere dome, but also a substrate such as a glass substrate or a ceramic substrate. It also includes a film-shaped sintered body formed on the material surface.
  • an antireflection film or a fine uneven structure layer may be provided on the surface of the wavelength conversion member. By doing so, the light reflectance on the surface of the wavelength conversion member is reduced, the light extraction efficiency is improved, and the emission intensity can be improved.
  • the antireflection film examples include a single-layer film or a multilayer film (dielectric multilayer film) made of an oxide, a nitride, a fluoride, or the like, and can be formed by a sputtering method, a vapor deposition method, a coating method, or the like.
  • the light reflectance of the antireflection film is preferably 5% or less, 4% or less, particularly preferably 3% or less at a wavelength of 380 to 780 nm.
  • a laminate of a wavelength conversion layer containing the phosphor powder and a glass layer not containing the phosphor powder may be used.
  • the glass layer plays a role of an antireflection film, light extraction efficiency can be improved.
  • a sintered glass powder or bulk glass can be used as the glass layer.
  • the glass to be used preferably has the same composition as the glass to be used for the wavelength conversion layer, whereby light reflection loss at the interface between the wavelength conversion layer and the glass layer can be reduced.
  • the fine concavo-convex structure layer a moth-eye structure having a size equal to or smaller than the wavelength of visible light is exemplified.
  • a method for forming the fine uneven structure layer include a nanoimprint method and a photolithography method.
  • the fine concavo-convex structure layer can be formed by roughening the surface of the wavelength conversion member by sandblasting, etching, polishing, or the like.
  • the surface roughness Ra of the uneven structure layer is preferably 0.001 to 0.3 ⁇ m, 0.003 to 0.2 ⁇ m, and more preferably 0.005 to 0.15 ⁇ m. If the surface roughness Ra is too small, it is difficult to obtain a desired antireflection effect. On the other hand, if the surface roughness Ra is too large, light scattering increases, and the light emission intensity tends to decrease.
  • FIG. 1 shows an example of an embodiment of the light emitting device of the present invention.
  • the light emitting device 1 includes a wavelength conversion member 2 and a light source 3.
  • the light source 3 irradiates the wavelength conversion member 2 with excitation light L1.
  • the excitation light L1 that has entered the wavelength conversion member 2 is converted into fluorescence L2 of another wavelength and emitted from the side opposite to the light source 3.
  • a combined light of the excitation light L1 and the fluorescence L2 that have been transmitted without wavelength conversion may be emitted.
  • Table 1 shows Examples (No. 1 to No. 7) and Comparative Examples (No. 8).
  • Total light transmittance was measured as follows. A green compact was produced by press-molding the glass powder with a mold. The green compact was fired at a temperature shown in Table 1 under a reduced pressure atmosphere of 50 Pa or less, and the obtained sintered body was mirror-polished to a thickness of 1 mm. The total light transmittance of the obtained sample was measured by a method according to JIS K7105. Table 1 shows the transmittance at a wavelength of 550 nm.
  • the refractive index was shown as a measured value for a d-line (587.6 nm) of a helium lamp using a bulk glass sample prepared for measurement.
  • the glass powder of No. 7 has a high total light transmittance of 72 to 77.5%, which indicates that devitrification due to firing is suppressed.
  • a raw material powder for a wavelength conversion member is obtained by mixing YAG phosphor powder in the raw material powder in an amount of 8 to 12% by volume so that each glass powder sample has the same chromaticity.
  • the raw material powder was press-molded with a mold to prepare a columnar preform having a diameter of 1 cm. After sintering the pre-formed body at a temperature shown in Table 1 and a reduced pressure atmosphere of 50 Pa or less, the obtained sintered body is processed to obtain a 1.2 mm square, 0.2 mm thick wavelength conversion member. Obtained.
  • the wavelength conversion member was mounted on an LED chip having an emission wavelength of 445 nm, which was energized at 800 mA, and an irradiation test was performed.
  • the energy distribution spectrum of light emitted from the upper surface of the wavelength conversion member in the integrating sphere was measured using a general-purpose emission spectrum measuring device.
  • the total luminous flux value was calculated by multiplying the obtained emission spectrum by the standard relative luminous efficiency. Table 1 shows the results. In the table, No.
  • the relative luminous flux values for the sample No. 8 are set to 1 when the total luminous flux value is set to 1.
  • the wavelength conversion member of No. 7 has a total luminous flux value of 1.01 to 1.05. 8 was higher than the wavelength conversion member.
  • the wavelength conversion member of the present invention is suitable as a component for general lighting such as white LED or special lighting (for example, vehicle lighting such as a projector light source or a vehicle headlight).

Abstract

製造時の焼成によりガラス粉末中に失透物が発生しにくく、光取出し効率に優れた波長変換部材を得ることが可能な波長変換部材用原料粉末を提供する。 質量%で、SiO 70~90%、B 10~25%を含有するガラス粉末、及び、蛍光体粉末を含有することを特徴とする波長変換部材用原料粉末。

Description

波長変換部材用原料粉末
 本発明は、発光ダイオード(LED:Light Emitting Diode)やレーザーダイオード(LD:Laser Diode)等の発光素子の発する光の波長を別の波長に変換するための波長変換部材を作製するための原料粉末に関するものである。
 近年、蛍光ランプや白熱灯に変わる次世代の光源として、低消費電力、小型軽量、容易な光量調節という観点から、LEDやLDを用いた光源に対する注目が高まってきている。そのような次世代光源の一例として、例えば特許文献1には、青色光を出射するLED上に、LEDからの光の一部を吸収して黄色光に変換する波長変換部材が配置された光源が開示されている。この光源は、LEDから出射された青色光と、波長変換部材から出射された黄色光との合成光である白色光を発する。
 波長変換部材としては、従来、樹脂マトリクス中に蛍光体粉末を分散させたものが用いられている。しかしながら、当該波長変換部材を用いた場合、LEDからの光により樹脂が劣化し、光源の輝度が低くなりやすいという問題がある。特に、LEDが発する熱や高エネルギーの短波長(青色~紫外)光によって樹脂マトリクスが劣化し、変色や変形を起こすという問題がある。
 そこで、樹脂に代えてガラスマトリクス中に蛍光体粉末を分散固定した完全無機固体からなる波長変換部材が提案されている(例えば、特許文献2参照)。当該波長変換部材は、母材となるガラスがLEDチップの熱や照射光により劣化しにくく、変色や変形といった問題が生じにくいという特徴を有している。
特開2000-208815号公報 特開2003-258308号公報
 しかしながら、特許文献2に記載の波長変換部材は、製造時の焼成によりガラスマトリクス中に失透物が発生しやすいという問題がある。その結果、波長変換部材内に入射した励起光や変換された蛍光光が、当該失透物により過剰散乱してしまい、光源側への戻り光が増加することによって、光取出し効率が低下する傾向がある。
 以上に鑑み、本発明は、製造時の焼成によりガラス粉末中に失透物が発生しにくく、光取出し効率に優れた波長変換部材を得ることが可能な波長変換部材用原料粉末を提供することを目的とする。
 本発明者等が鋭意検討した結果、特定の組成を有するガラス粉末を使用した波長変換部材用原料粉末により、上記課題を解決できることを見出した。
 即ち、本発明の波長変換部材用原料粉末は、質量%で、SiO 70~90%、B 10~25%を含有するガラス粉末、及び、蛍光体粉末を含有することを特徴とする。当該組成を有するガラス粉末は、焼成時に失透しにくいという特徴とを有する。そのため、本発明の波長変換部材用原料粉末を焼成して得られる波長変換部材は、ガラスマトリクス中に失透物が少なくなり、励起光や蛍光の過剰散乱が抑制されるため、結果として光取出し効率を向上させることができる。
 本発明の波長変換部材用原料粉末は、質量%で、KO 0~5%、Al 0~5%を含有することが好ましい。
 本発明の波長変換部材用原料粉末は、ガラス粉末の軟化点が700~1100℃であることが好ましい。
 本発明の波長変換部材用原料粉末は、ガラス粉末の屈折率(nd)が1.55以下であることが好ましい。
 本発明の波長変換部材用原料粉末は、蛍光体粉末が、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、ハロゲン化物蛍光体、アルミン酸塩蛍光体及びハロリン酸塩化物蛍光体からなる群より選択される少なくとも1種であることが好ましい。
 本発明の波長変換部材用原料粉末は、蛍光体粉末を0.01~70質量%含有することが好ましい。
 本発明の波長変換部材は、上記の波長変換部材用原料粉末の焼結体からなることが好ましい。
 本発明の波長変換部材は、質量%で、SiO 70~90%、B 10~25%を含有するガラスマトリクス中に、蛍光体粉末が分散してなることを特徴とする。
 本発明の発光デバイスは、上記の波長変換部材、及び、波長変換部材に励起光を照射する光源を備えてなることを特徴とする。
 本発明の車載用照明は、上記の発光デバイスを用いたことを特徴とする。
 本発明の車載用照明は、前照灯として使用されることが好ましい。
 本発明の波長変換部材用原料粉末は、焼成時にガラス粉末中に失透物が発生しにくいため、光取出し効率に優れた波長変換部材を得ることが可能となる。
本発明の一実施形態に係る発光デバイスの模式的側面図である。
 本発明の波長変換部材用原料粉末は、質量%で、SiO 70~90%、B 10~25%を含有するガラス粉末、及び、蛍光体粉末を含有することを特徴とする。ガラス粉末の組成範囲をこのように限定した理由を以下に説明する。なお、以下の説明において、特に断りのない限り「%」は「質量%」を意味する。
 SiOはガラスネットワークを形成する成分である。SiOの含有量は70~90%であり、72~85%、75~83%、特に77~82%であることが好ましい。SiOの含有量が少なすぎると、焼成時に失透が発生しやすくなる。また、耐候性や機械的強度が低下する傾向がある。一方、SiOの含有量が多すぎると、焼結温度が高温になるため、焼成時に蛍光体粉末が劣化しやすくなる。また、焼成時におけるガラス粉末の流動性に劣り、焼成後のガラスマトリクス中に気泡が残存しやすくなる。当該気泡は失透物と同様に光散乱要因となり、波長変換部材の光取出し効率が低下するおそれがある。
 Bは溶融温度を低下させて溶融性を著しく改善する成分である。Bの含有量は10~25%であり、12~24%、15~21%、特に15~20%であることが好ましい。Bの含有量が少なすぎると、焼成時に失透が発生しやすくなる。また、焼成時におけるガラス粉末の流動性に劣り、上述の理由から、波長変換部材の光取出し効率が低下するおそれがある。一方、Bの含有量が多すぎると、耐候性が低下しやすくなる。
 ガラス粉末中には、上記成分以外にも以下の成分を含有させることができる。
 KOは溶融温度を低下させて溶融性を改善するとともに、軟化点を低下させる成分である。しかしながら、KOは含有量が多すぎると、耐候性が低下しやすくなる。また、KOは着色中心となって励起光や蛍光を吸収し、発光強度低下の原因となる傾向がある。よって、KOの含有量は0~5%、0.5~4%、1~3%、特に1~2%であることが好ましい。
 Alは耐候性、化学的耐久性、及び機械的強度を向上させる成分である。Alの含有量は0~5%、0.01~3%、0.1~2%、特に0.2~1%であることが好ましい。Alの含有量が多すぎると、溶融性が低下する傾向がある。
 LiO及びNaOは、KOと同様に溶融温度を低下させて溶融性を改善するとともに、軟化点を低下させる成分である。しかしながら、これらの成分の含有量が多すぎると、耐候性が低下しやすくなる。また、着色中心となって励起光や蛍光を吸収し、発光強度低下の原因となる傾向がある。よって、LiO及びNaOの含有量は各々0~5%、0.5~4%、1~3%、特に1~2%であることが好ましい。
 MgO、CaO、SrO及びBaOは溶融温度を低下させて溶融性を改善し、軟化点を低下させる成分である。なお、これらの成分はアルカリ金属成分と異なり、波長変換部材における発光強度の低下に影響を与えない。これらの成分の含有量は、各々0~5%、0.01~3%、0.03~2%、特に0.05~1%であることが好ましい。これらの成分の含有量が多すぎると、耐候性が低下しやすくなる。なお、MgO、CaO、SrO及びBaOの合量も上記範囲内であることが好ましい。
 また、上記成分以外にも、本発明の効果を損なわない範囲で種々の成分を含有させることができる。例えば、ZnO、P、La、Ta、TeO、TiO、Nb、Gd、Y、CeO、Sb、SnO、Bi、As及びZrO等を各々10%以下、特に5%以下、合量で15%以下の範囲で含有させてもよい。またFを含有させることもできる。Fは軟化点を低減する効果があるため、着色中心形成の原因の1つであるアルカリ金属成分の代わりに含有させることにより、低軟化点を維持したまま、発光強度の経時的な低下を抑制することができる。Fの含有量はアニオン%で0~10%、0~8%、特に0.1~5%であることが好ましい。
 Fe及びCrは可視光透過率を低下させ、発光強度低下の原因となる成分である。よって、Feの含有量は1000ppm以下、500ppm以下、特に100ppm以下であることが好ましい。また、Crの含有量は500ppm以下、特に100ppm以下であることであることが好ましい。ただし、ガラス中にFe及びCrを含有しないようにするためには、高価な高純度原料を使用する必要があるため、製造コストが高騰しやすくなる。よって、製造コストを低減する観点からは、Fe及びCrの含有量は各々5ppm以上、特に10ppm以上であることが好ましい。
 ガラス粉末の軟化点は700~1100℃、750~1050℃、特に800~1000℃であることが好ましい。ガラス粉末の軟化点が低すぎると、機械的強度及び耐候性が低下しやすくなる。一方、軟化点が高すぎると焼結温度も高くなるため、製造時の焼成工程において蛍光体粉末が劣化しやすくなる。
 ガラス粉末の屈折率(nd)は1.55以下、1.52以下、1.5以下、特に1.48以下であることが好ましい。屈折率が高すぎると、空気との屈折率差が大きくなり、波長変換部材の光出射面で蛍光や励起光が反射しやすくなるため、光取出し効率が低下しやすくなる。一方、屈折率の下限は特に限定されないが、現実的には1.4以上、さらには1.42以上である。
 ガラス粉末の平均粒子径D50は100μm以下、50μm以下、20μm以下、特に10μm以下であることが好ましい。ガラス粉末の平均粒子径D50が大きすぎると、得られる波長変換部材において、焼成後のガラスマトリクス中に気泡が残存しやすくなり、上述の理由から、波長変換部材の光取出し効率が低下するおそれがある。ガラス粉末の平均粒子径D50の下限は特に限定されないが、生産コストや取扱い性を考慮し、0.1μm以上、1μm以上、特に2μm以上であることが好ましい。なお本発明において、平均粒子径D50はレーザー回折法により測定した値を指す。
 上述の通り、本発明で使用するガラス粉末は焼成により失透が生じにくい。例えば、本発明で使用するガラス粉末の焼結体は、波長550nm、厚さ1mmにおいて、70%以上、73%以上、特に75%以上の全光線透過率を達成することができる。
 蛍光体粉末としては、酸化物蛍光体(YAG蛍光体等のガーネット系蛍光体を含む)、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、ハロゲン化物蛍光体、アルミン酸塩蛍光体及びハロリン酸塩化物蛍光体からなる群より選択される少なくとも1種の無機蛍光体を使用することができる。これらの蛍光体粉末のうち、酸化物蛍光体、窒化物蛍光体及び酸窒化物蛍光体は耐熱性が高く、焼成時に比較的劣化しにくいため好ましい。なお、上記以外の蛍光体として硫化物蛍光体を使用することもできる。
 上記蛍光体粉末としては、波長300~500nmに励起帯を有し波長380~780nmに発光ピークを有するもの、特に青色(波長440~480nm)、緑色(波長500~540nm)、黄色(波長540~595nm)、赤色(波長600~700nm)に発光するものが挙げられる。
 波長300~440nmの紫外~近紫外の励起光を照射すると青色の発光を発する蛍光体粉末としては、(Sr,Ba)MgAl1017:Eu2+、(Sr,Ba)MgSi:Eu2+等が挙げられる。
 波長300~440nmの紫外~近紫外の励起光を照射すると緑色の蛍光を発する蛍光体粉末としては、SrAl:Eu2+、SrBaSiO:Eu2+、(Y,Gd)Al12:Ce3+、SrSiON:Eu2+、BaMgAl1017:Eu2+,Mn2+、BaMgSi:Eu2+、BaSiO:Eu2+、BaLiSi:Eu2+、BaAl:Eu2+等が挙げられる。
 波長440~480nmの青色の励起光を照射すると緑色の蛍光を発する蛍光体粉末としては、SrAl:Eu2+、SrBaSiO:Eu2+、(Y,Gd)Al12:Ce3+、SrSiON:Eu2+、β-SiAlON:Eu2+、LuAl12:Ce3+等が挙げられる。
 波長300~440nmの紫外~近紫外の励起光を照射すると黄色の蛍光を発する蛍光体粉末としては、LaSi11:Ce3+等が挙げられる。
 波長440~480nmの青色の励起光を照射すると黄色の蛍光を発する蛍光体粉末としては、(Y,Gd)Al12:Ce3+、SrSiO:Eu2+が挙げられる。
 波長300~440nmの紫外~近紫外の励起光を照射すると赤色の蛍光を発する蛍光体粉末としては、MgSrSi:Eu2+,Mn2+、CaMgSi:Eu2+,Mn2+等が挙げられる。
 波長440~480nmの青色の励起光を照射すると赤色の蛍光を発する蛍光体粉末としては、CaAlSiN:Eu2+、CaSiN:Eu2+、(Ca,Sr)Si:Eu2+、α-SiAlON:Eu2+等が挙げられる。
 なお、励起光や発光の波長域に合わせて、複数の蛍光体粉末を混合して用いてもよい。例えば、紫外域の励起光を照射して白色光を得る場合は、青色、緑色、黄色、赤色の蛍光を発する蛍光体粉末を混合して使用すればよい。
 波長変換部材の発光効率(lm/W)は、蛍光体粉末の種類や含有量、さらには波長変換部材の厚み等によって変化する。蛍光体粉末の含有量と波長変換部材の厚みは、発光効率や色度が最適になるように適宜調整すればよい。例えば、波長変換部材の厚みが小さい場合は、所望の発光効率や色度が得られるよう蛍光体粉末の含有量を多くすればよい。ただし、蛍光体粉末の含有量が多くなりすぎると、焼結しにくくなったり、気孔率が大きくなって、励起光が効率良く蛍光体粉末に照射されにくくなったり、波長変換部材の機械的強度が低下する等の問題が生じるおそれがある。一方、蛍光体粉末の含有量が少なすぎると、所望の発光強度を得ることが困難になる。このような観点から、本発明の波長変換部材用原料粉末における蛍光体粉末の含有量は、0.01~70質量%であることが好ましく、0.05~50質量%であることがより好ましく、0.08~30質量%であることがさらに好ましい。
 なお、波長変換部材において発生した蛍光を、励起光入射側へ反射させ、主に蛍光のみを外部に取り出すことを目的とした波長変換部材においては、上記の限りではなく、発光強度が最大になるように、蛍光体粉末の含有量を多くする(例えば、30~80質量%、さらには40~75質量%)ことができる。
 本発明の波長変換部材は上記の波長変換部材用原料粉末の焼結体からなる。具体的には、本発明の波長変換部材は、質量%で、SiO 70~90%、B 10~25%を含有するガラスマトリクス中に、蛍光体粉末が分散してなることを特徴とする。ガラスマトリクスの組成をこのように限定した理由は上述の通りであり、説明を割愛する。
 波長変換部材用原料粉末の焼成温度は、ガラス粉末の軟化点±150℃以内、特にガラス粉末の軟化点±100℃以内であることが好ましい。焼成温度が低すぎると、ガラス粉末が十分に流動せず、緻密な焼結体が得にくい。一方、焼成温度が高すぎると、蛍光体粉末成分が熱劣化して発光強度が低下するおそれがある。
 焼成は減圧雰囲気中で行うことが好ましい。具体的には、焼成中の雰囲気は1.013×10Pa未満、1000Pa以下、特に400Pa以下であることが好ましい。それにより、波長変換部材中に残存する気泡の量を少なくすることができ、上述の理由から、発光強度を向上させることができる。なお、焼成工程全体を減圧雰囲気中で行ってもよいし、例えば焼成工程のみを減圧雰囲気中で行い、その前後の昇温工程や降温工程を、減圧雰囲気ではない雰囲気(例えば大気圧下)で行ってもよい。
 本発明の波長変換部材の形状は特に制限されず、例えば、板状、柱状、半球状、半球ドーム状等、それ自身が特定の形状を有する部材だけでなく、ガラス基板やセラミック基板等の基材表面に形成された被膜状の焼結体等も含まれる。
 なお、波長変換部材表面に反射防止膜や微細凹凸構造層が設けられていてもよい。このようにすれば、波長変換部材表面での光反射率が低減して、光取出し効率が改善し、発光強度を向上させることができる。
 反射防止膜としては酸化物、窒化物、フッ化物等からなる単層膜または多層膜(誘電体多層膜)が挙げられ、スパッタ法、蒸着法、コーティング法等により形成することができる。反射防止膜の光反射率は、波長380~780nmにおいて5%以下、4%以下、特に3%以下であることが好ましい。
 なお、蛍光体粉末を含有する波長変換層と、蛍光体粉末を含有しないガラス層との積層体であってもよい。このようにすれば、ガラス層が反射防止膜の役割を果たすため、光取出し効率を向上させることができる。ここで、ガラス層としては、ガラス粉末焼結体やバルク状ガラスを使用することができる。使用するガラスは波長変換層に使用するガラスと同一組成であることが好ましく、それにより波長変換層とガラス層との界面での光反射ロスを低減することができる。
 微細凹凸構造層としては、可視光の波長以下のサイズからなるモスアイ構造等が挙げられる。微細凹凸構造層の作製方法としては、ナノインプリント法やフォトリソグラフィ法が挙げられる。あるいは、サンドブラスト、エッチング、研磨等により波長変換部材表面を粗面化することにより微細凹凸構造層を形成することもできる。凹凸構造層の表面粗さRaは0.001~0.3μm、0.003~0.2μm、特に0.005~0.15μmであることが好ましい。表面粗さRaが小さすぎると、所望の反射防止効果が得られにくくなる。一方、表面粗さRaが大きすぎると、光散乱が大きくなって、発光強度が低下しやすくなる。
 図1に、本発明の発光デバイスの実施形態の一例を示す。図1に示すように、発光デバイス1は波長変換部材2及び光源3を備えてなる。光源3は、波長変換部材2に対して励起光L1を照射する。波長変換部材2に入射した励起光L1は、別の波長の蛍光L2に変換され、光源3とは反対側から出射する。この際、波長変換されずに透過した励起光L1と、蛍光L2との合成光を出射させるようにしてもよい。
 以下に、本発明を実施例に基づいて詳細に説明するが、本発明はこれらの実施例に限定されるものではない。
 表1は実施例(No.1~No.7)及び比較例(No.8)を示している。
Figure JPOXMLDOC01-appb-T000001
 (1)ガラス粉末の作製
 表1に示すガラス組成となるように原料を調合し、白金坩堝を用いて1200~1700℃で1~2時間溶融してガラス化した。溶融ガラスを一対の冷却ローラー間に流し出すことによりフィルム状に成形した。得られたフィルム状ガラス成形体をボールミルで粉砕した後、分級して平均粒子径D50が2.5μmのガラス粉末を得た。得られたガラス粉末につき、下記の方法により、全光線透過率、屈折率、軟化点を測定した。
 全光線透過率は以下のようにして測定した。ガラス粉末を金型でプレス成形することにより圧粉体を作製した。圧粉体を表1に記載の温度かつ50Pa以下の減圧雰囲気下で焼成し、得られた焼結体を厚み1mmとなるように鏡面研磨加工を施した。得られた試料についてJIS K7105に準拠した方法で全光線透過率を測定した。表1には、波長550nmにおける透過率を示した。
 屈折率は、測定用に作製したバルク状ガラス試料を用いて、ヘリウムランプのd線(587.6nm)に対する測定値で示した。
 軟化点はファイバーエロンゲーション法を用い、粘度が107.6dPa・sとなる温度を採用した。
 表1に示すように、実施例であるNo.1~No.7におけるガラス粉末は、全光線透過率が72~77.5%と高く、焼成による失透が抑制されていることがわかる。
 (2)波長変換部材の作製
 各ガラス粉末試料に、同等色度が得られるように、YAG蛍光体粉末を原料粉末中に8~12体積%混合することにより、波長変換部材用原料粉末を得た。原料粉末を金型でプレス成形して直径1cmの円柱状予備成形体を作製した。予備成形体を表1に記載の温度かつ50Pa以下の減圧雰囲気下で焼成した後、得られた焼結体に加工を施すことにより、1.2mm角、厚さ0.2mmの波長変換部材を得た。
 上記波長変換部材を、800mAで通電した発光波長445nmのLEDチップ上に載置し照射試験を行った。積分球内で波長変換部材上面から発せられる光のエネルギー分布スペクトルを、汎用の発光スペクトル測定装置を用いて測定した。得られた発光スペクトルに標準比視感度を掛け合わせることにより全光束値を算出した。結果を表1に示す。なお、表にはNo.8の試料の全光束値を1とした場合の相対値で示している。
 表1に示すように、実施例であるNo.1~No.7の波長変換部材は全光束値が1.01~1.05であり、比較例であるNo.8の波長変換部材よりも高かった。
 本発明の波長変換部材は、白色LED等の一般照明や特殊照明(例えば、プロジェクター光源、車載用前照灯等の車載用照明)等の構成部材として好適である。
1 発光デバイス
2 波長変換部材
3 光源

Claims (11)

  1.  質量%で、SiO 70~90%、B 10~25%を含有するガラス粉末、及び、蛍光体粉末を含有することを特徴とする波長変換部材用原料粉末。
  2.  質量%で、KO 0~5%、Al 0~5%を含有することを特徴とする請求項1に記載の波長変換部材用原料粉末。
  3.  ガラス粉末の軟化点が700~1100℃であることを特徴とする請求項1または2に記載の波長変換部材用原料粉末。
  4.  ガラス粉末の屈折率(nd)が1.55以下であることを特徴とする請求項1~3のいずれか一項に記載の波長変換部材用原料粉末。
  5.  蛍光体粉末が、酸化物蛍光体、窒化物蛍光体、酸窒化物蛍光体、塩化物蛍光体、酸塩化物蛍光体、ハロゲン化物蛍光体、アルミン酸塩蛍光体及びハロリン酸塩化物蛍光体からなる群より選択される少なくとも1種であることを特徴とする請求項1~4のいずれか一項に記載の波長変換部材用原料粉末。
  6.  蛍光体粉末を0.01~70質量%含有することを特徴とする請求項1~5のいずれか一項に記載の波長変換部材用原料粉末。
  7.  請求項1~6のいずれか一項に記載の波長変換部材用原料粉末の焼結体からなることを特徴とする波長変換部材。
  8.  質量%で、SiO 70~90%、B 10~25%を含有するガラスマトリクス中に、蛍光体粉末が分散してなることを特徴とする波長変換部材。
  9.  請求項7または8に記載の波長変換部材、及び、波長変換部材に励起光を照射する光源を備えてなることを特徴とする発光デバイス。
  10.  請求項9に記載の発光デバイスを用いたことを特徴とする車載用照明。
  11.  前照灯として使用されることを特徴とする請求項10に記載の車載用照明。
PCT/JP2019/034826 2018-09-18 2019-09-04 波長変換部材用原料粉末 WO2020059499A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-173648 2018-09-18
JP2018173648A JP2020045255A (ja) 2018-09-18 2018-09-18 波長変換部材用原料粉末

Publications (1)

Publication Number Publication Date
WO2020059499A1 true WO2020059499A1 (ja) 2020-03-26

Family

ID=69887330

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034826 WO2020059499A1 (ja) 2018-09-18 2019-09-04 波長変換部材用原料粉末

Country Status (3)

Country Link
JP (1) JP2020045255A (ja)
TW (1) TW202021922A (ja)
WO (1) WO2020059499A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2023282050A1 (ja) * 2021-07-05 2023-01-12

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021367A1 (ja) * 2008-08-21 2010-02-25 旭硝子株式会社 発光装置
JP2014234487A (ja) * 2013-06-05 2014-12-15 日本電気硝子株式会社 波長変換部材及び発光デバイス
WO2015087812A1 (ja) * 2013-12-11 2015-06-18 旭硝子株式会社 発光ダイオードパッケージ用カバーガラス、封着構造体および発光装置
JP2016213334A (ja) * 2015-05-11 2016-12-15 日本電気硝子株式会社 波長変換部材及び発光デバイス
JP2017058654A (ja) * 2015-09-15 2017-03-23 日本電気硝子株式会社 波長変換部材及び発光デバイス
WO2018083903A1 (ja) * 2016-11-02 2018-05-11 日本電気硝子株式会社 波長変換部材、発光デバイス及び波長変換部材の製造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010021367A1 (ja) * 2008-08-21 2010-02-25 旭硝子株式会社 発光装置
JP2014234487A (ja) * 2013-06-05 2014-12-15 日本電気硝子株式会社 波長変換部材及び発光デバイス
WO2015087812A1 (ja) * 2013-12-11 2015-06-18 旭硝子株式会社 発光ダイオードパッケージ用カバーガラス、封着構造体および発光装置
JP2016213334A (ja) * 2015-05-11 2016-12-15 日本電気硝子株式会社 波長変換部材及び発光デバイス
JP2017058654A (ja) * 2015-09-15 2017-03-23 日本電気硝子株式会社 波長変換部材及び発光デバイス
WO2018083903A1 (ja) * 2016-11-02 2018-05-11 日本電気硝子株式会社 波長変換部材、発光デバイス及び波長変換部材の製造方法

Also Published As

Publication number Publication date
TW202021922A (zh) 2020-06-16
JP2020045255A (ja) 2020-03-26

Similar Documents

Publication Publication Date Title
JP7022398B2 (ja) 波長変換部材及びそれを用いてなる発光デバイス
KR102588721B1 (ko) 파장 변환 부재 및 그것을 사용하여 이루어지는 발광 디바이스
CN109301057B (zh) 波长变换部件及使用该部件而成的发光器件
WO2014106923A1 (ja) 波長変換材料に用いられるガラス、波長変換材料、波長変換部材及び発光デバイス
JP6365828B2 (ja) 波長変換材料に用いられるガラス、波長変換材料、波長変換部材及び発光デバイス
JP6902199B2 (ja) 波長変換部材及びそれを用いてなる発光デバイス
WO2020059499A1 (ja) 波長変換部材用原料粉末
WO2020184216A1 (ja) 波長変換部材及び発光デバイス
JP7205808B2 (ja) 波長変換部材及びそれを用いてなる発光デバイス
JP2020023438A (ja) 波長変換部材及びそれを用いてなる発光デバイス

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863640

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19863640

Country of ref document: EP

Kind code of ref document: A1