WO2020059468A1 - 光学素子パッケージ用リッド、光学素子パッケージ及びそれらの製造方法 - Google Patents

光学素子パッケージ用リッド、光学素子パッケージ及びそれらの製造方法 Download PDF

Info

Publication number
WO2020059468A1
WO2020059468A1 PCT/JP2019/034358 JP2019034358W WO2020059468A1 WO 2020059468 A1 WO2020059468 A1 WO 2020059468A1 JP 2019034358 W JP2019034358 W JP 2019034358W WO 2020059468 A1 WO2020059468 A1 WO 2020059468A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical element
lid
element package
metal
package according
Prior art date
Application number
PCT/JP2019/034358
Other languages
English (en)
French (fr)
Inventor
晴信 松井
大実 原田
竹内 正樹
Original Assignee
信越化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越化学工業株式会社 filed Critical 信越化学工業株式会社
Priority to CN201980060164.4A priority Critical patent/CN112673485A/zh
Priority to US17/277,531 priority patent/US20210351326A1/en
Priority to KR1020217010925A priority patent/KR20210060532A/ko
Priority to EP19863570.8A priority patent/EP3855514A4/en
Publication of WO2020059468A1 publication Critical patent/WO2020059468A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/483Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/08Treatment with low-molecular-weight non-polymer organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C3/00Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
    • C09C3/10Treatment with macromolecular organic compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J1/00Adhesives based on inorganic constituents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/02Containers; Seals
    • H01L23/10Containers; Seals characterised by the material or arrangement of seals between parts, e.g. between cap and base of the container or between leads and walls of the container
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0203Containers; Encapsulations, e.g. encapsulation of photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0232Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • H01L33/60Reflective elements

Definitions

  • the present invention relates to an optical element package, for example, a lid for an optical element package used for an optical element that emits or receives light in the ultraviolet region, such as a UV-LED, a laser light source having a short wavelength and a strong output, and an optical element package. It relates to a method for producing them.
  • a translucent resin such as an epoxy resin, a silicone resin, a modified acrylic resin, and an unsaturated polyester has been used (Patent Document 1: JP-A-2001-196644).
  • UV-LEDs that emit light in a short wavelength, particularly in the ultraviolet region, have been attracting attention as an alternative. Since an LED can extract an arbitrary wavelength, an LED having a wavelength according to the application has been developed. For example, a UV-LED that emits light having a wavelength of 265 nm in the UV region, which is a wavelength effective for sterilization, has been developed for use in sterilization.
  • the optical element of 265 nm is supplied stably, it is difficult to use the optical element without packaging, and it is necessary to increase the light extraction efficiency from the UV-LED as much as possible and package it. It has been demanded.
  • borosilicate glass or quartz glass is generally used as a window material for a package (Patent Document 2: JP-A-2006-269678).
  • a translucent resin or borosilicate glass is used as the window material, processing is easy, but there is a drawback that ultraviolet light transmission is low.
  • quartz glass although it has excellent ultraviolet transmittance, there is a drawback that workability is poor due to the high softening point of quartz glass.
  • mirror finishing of the surface is effective, but the mirror finishing causes light from an optical element having high directivity of light to be scattered by the window material. Therefore, in order to scatter the light, a member such as a diffuser filter for scattering the light is required separately.
  • an optical element such as a UV-LED is required to be housed in a housing member made of ceramic or the like and hermetically sealed with a window material via an adhesive layer.
  • a resin-based adhesive such as an epoxy resin or a silicone resin, which causes a problem that airtight sealing cannot be performed. Therefore, the housing member and the window material are joined by a laser.
  • Patent Document 3 JP-A-2017-191805).
  • the present invention has been made in view of the above circumstances, and as a window material for an optical element package, a light emitting element having a high transmittance and a large calorific value, such as a high-power LED, or a UV-light emitting a UV light.
  • a light emitting element having a high transmittance and a large calorific value such as a high-power LED, or a UV-light emitting a UV light.
  • a lid for an optical element package, an optical element package, and a method for manufacturing the same which can be used stably for a long time without being affected by heat or short-wavelength light.
  • the purpose is to provide.
  • the optical element is formed in a portion in contact with the housing member of the window member provided in the light emitting direction of the optical element of the housing member housed therein.
  • a lid for an optical element package including a metal-based adhesive layer formed of an adhesive composition including metal nanoparticles coated with a coating agent, a solder powder, and a dispersion medium can be used to reduce heat associated with an optical element.
  • the present inventors have found that an optical element package which is hardly damaged by short-wavelength light and can be stably formed for a long time can be constructed, and the present invention has been accomplished.
  • an optical element package comprising: a window member provided in a light emitting direction of the optical element of a housing member in which the optical element is housed, and a metal-based adhesive layer formed at a portion where the window member contacts the housing member.
  • the metal constituting the metal nanoparticles is one or more metals selected from the group consisting of gold, silver and copper, an alloy containing the metal, or a mixture of the metal and another metal, 2.
  • a melting point of the solder powder is lower than a sintering temperature of the metal nanoparticles.
  • the solder powder contains at least one selected from the group consisting of Sn-Bi solder, Sn-Zn-Bi solder and Sn-Zn solder. 10.
  • the dispersion medium contains one or more compounds selected from the group consisting of terpenes, monoterpene alcohols, alkyl alcohols, and naphthenic hydrocarbons.
  • the present invention it is possible to solve the problem of deterioration or cracking due to short-wavelength light, distortion or collapse of the adhesive due to heat generation of the light emitting element, and the long-term reliability associated therewith. That is, it is possible to provide a lid for an optical element package and an optical element package which are excellent in heat resistance, ultraviolet resistance and the like.
  • FIG. 1A and 1B show an example of a lid for an optical element package according to the present invention, in which FIG. 1A is a cross-sectional view and FIG. It is sectional drawing which shows an example of the optical element package which accommodated the optical element in the accommodation member using the lid for optical element packages of this invention.
  • the lid for an optical element package includes a window member provided in the light emitting direction of the optical element of the housing member in which the optical element is housed, and a metal-based adhesive formed in a portion where the window member is in contact with the housing member. And a layer.
  • the optical element package lid is used together with a housing member that houses the optical element, and is used to protect the optical element and to facilitate handling of the optical element.
  • the lid for an optical element package is formed on the surface of the window material 1, for example, at a portion where the window material comes into contact with the housing member, as shown in FIGS. 1A and 1B as a sectional view and a plan view, respectively.
  • a metal-based adhesive layer 2 is formed on an outer peripheral edge of a main surface of a window material 1.
  • This metal-based adhesive layer may be formed on the side surface other than the main surface of the window material, but is formed only on the main surface, particularly, only on one main surface in contact with the housing member housing the optical element. Is preferred.
  • the metal-based adhesive layer is preferably formed on the outer peripheral edge of the main surface of the window material so that light can be extracted from the center of the window material.
  • the metal-based adhesive layer may be formed in a central portion of the window material at a position where a proper range from which light can be extracted is secured, with a shape and an area sufficient for hermetic sealing.
  • the window material may be any of synthetic quartz glass, sapphire, borosilicate glass, non-alkali glass, etc., but synthetic quartz glass is preferable from the viewpoint of light transmittance, heat resistance, UV resistance and the like.
  • the shape of the window material includes, for example, a flat window material 1 as shown in FIG. 1 (A), and a concavo-convex shape (a shape having both a concave shape, a convex shape, a concave shape and a convex shape. The same applies hereinafter. ) And an aspherical surface having a concave-convex shape.
  • a flat plate is preferable from the viewpoint of cost and simplicity of handling.
  • a spherical or non-spherical shape such as a simple plano-convex lens shape, a plano-concave lens shape, or a convex meniscus lens shape having an irregular shape designed based on optical calculation is used. Spherical ones are preferred.
  • the thickness of the window material can be appropriately selected, but from the viewpoint of stress generated at the time of bonding, is preferably 0.1 mm or more, more preferably 0.2 mm or more, preferably 5 mm or less, more preferably 4 mm or less. It is.
  • the window material is preferably capable of sealing the inside of the housing member, and its size is appropriately selected depending on the use of the optical element, the housed optical element, the size of the housing member, and the like.
  • a member having a size equal to or slightly larger than the size of the opening of the optical element housing portion of the member is used.
  • the diameter or maximum diameter is preferably 1 mm or more, more preferably 2 mm or more, preferably 3 cm or less, more preferably Is 2 cm or less.
  • the window material preferably has at least one of the opposing substrate surfaces (main surfaces) (that is, only the front surface or only the back surface) is a mirror surface, and both the front surface and the back surface have a mirror surface. More preferably, it is a mirror surface.
  • the two surfaces, the front surface and the back surface, of the opposing substrate surface may be, for example, two surfaces where light intersects when light emitted from the optical element or light received by the optical element passes through the window material.
  • the mirror surface may have an arithmetic average roughness (Ra) of preferably 0.1 ⁇ m or less, more preferably 0.05 ⁇ m or less.
  • the method for manufacturing the window material is not particularly limited.
  • a flat window material is formed by lapping one or both surfaces selected from the front surface and the back surface of the raw material substrate, and the unevenness is obtained by sandblasting.
  • a spherical window material having a shape and an aspheric window material having an uneven shape can be manufactured.
  • a flat substrate for example, a rectangular substrate having a diagonal length of 100 to 300 mm, a circular substrate having a diameter of 100 to 300 mm, and a flat substrate having a thickness of 0.2 to 10 mm is suitably used.
  • single-sided or double-sided polishing is performed by a single-side polishing apparatus or a double-side polishing apparatus using abrasive grains (abrasive) mainly composed of alumina.
  • abrasive grains mainly composed of alumina.
  • polishing is performed using abrasive grains such as cerium oxide, silicon oxide, aluminum oxide, and silicon carbide.
  • mirror finishing after lapping or sand blasting, in the case of a flat window material, known polishing using a combination of abrasive grains such as cerium oxide or zirconium oxide and a foamed polyurethane-based polishing cloth.
  • a material, polishing by double-side polishing or single-side polishing method in the case of a spherical window material having an uneven shape, in the case of an aspheric window material having an uneven shape, a known etching process using a hydrofluoric acid aqueous solution or the like Can be mirror-finished.
  • the metal-based adhesive layer is formed by an adhesive composition containing metal nanoparticles, a solder powder, and a dispersion medium coated with a coating agent.
  • Metal nanoparticles coated with coating agent Since the metal nanoparticles contained in the metal-based adhesive layer are very fine particles, the natural sintering properties of the metal nanoparticles must be covered unless coated with a substance that can prevent the connection between the primary particles. And the primary particles cannot be maintained in a dispersed state. Therefore, the metal nanoparticles have a surface coated with a coating agent (for example, a liquid substance or a solid substance adheres in a thin layer on the surface). Used).
  • a coating agent for example, a liquid substance or a solid substance adheres in a thin layer on the surface. Used).
  • the metal constituting the metal nanoparticles is preferably at least one metal selected from the group consisting of gold, silver and copper, an alloy containing this metal, or a mixture of this metal and another metal.
  • it is an alloy or a mixture, it is preferable that one or more metals selected from the group consisting of gold, silver and copper account for at least 80% by mass of the entire metal nanoparticles.
  • the average particle diameter (average primary particle diameter) D 50 volume average median diameter) of the primary particles of the metal nanoparticles is determined from the viewpoint of increasing the number of reaction points between the metal nanoparticles and the solder powder and from the viewpoint of facilitating handling. , Preferably 20 nm or more, more preferably 30 nm or more, preferably 90 nm or less, more preferably 80 nm or less. As the particle diameter, a value measured by a dynamic light scattering method can be applied.
  • the coating agent may be separated from the metal nanoparticle surface with temperature responsiveness.
  • the temperature at which the coating agent separates from the metal nanoparticles is preferably a temperature equal to or higher than the sintering temperature of the metal nanoparticles, more preferably a temperature equal to or higher than the sintering temperature of the metal nanoparticles by 10 ° C., and further preferably a metal.
  • the temperature is at least 25 ° C. higher than the sintering temperature of the nanoparticles.
  • the separation temperature of the coating agent is not more than 50 ° C. higher than the sintering temperature of the metal nanoparticles ((the sintering temperature of metal nanoparticles + 50 ° C.) or less).
  • the temperature at which the coating agent separates from the metal nanoparticles can be a temperature at which the metal nanoparticles start necking.
  • the necking of the metal nanoparticles means that the metal nanoparticles are bonded to each other by the separation of the coating agent from the surface of the metal nanoparticles. When necking occurs, a weight change occurs due to the disappearance of the coating agent from the surface of the metal nanoparticles.
  • the coating agent preferably has a boiling point of 100 ° C or higher and 300 ° C or lower.
  • the boiling point of the coating agent is more preferably 120 ° C. or higher, and more preferably 200 ° C. or lower.
  • the coating preferably contains, for example, one or more compounds selected from the group consisting of amines, aliphatic carboxylic acids and alcohols.
  • the coating agent may be a polymer compound such as polyethylene glycol having a weight average molecular weight of preferably 200 to 500 (preferably having a polydispersity of 1.00 to 1.50).
  • polyethylene glycol having a weight average molecular weight of preferably 200 to 500 (preferably having a polydispersity of 1.00 to 1.50).
  • the metal nanoparticles after the coating agent is separated need to react with each other or with the solder powder in bonding the window material and the housing member with the metal-based adhesive layer.
  • the sintering temperature of the metal nanoparticles is preferably 110 ° C. or higher, preferably 180 ° C. or lower, more preferably 160 ° C. or lower, from the viewpoint of achieving adhesion at a low temperature (eg, 150 to 330 ° C.). is there.
  • the sintering temperature of the metal nanoparticles can be a temperature at which the metal nanoparticles cannot maintain the form as the primary particles.
  • solder powder In the case of a metal-based adhesive layer using only metal nanoparticles as a metal material, at the time of bonding, even if the distance between the metal nanoparticles is reduced by applying pressure, the obtained adhesive layer becomes a structure having voids, which is sufficient. It does not become an adhesive layer that provides airtightness.
  • the adhesive layer in order to make the obtained adhesive layer capable of imparting sufficient airtightness, in other words, to fill the above-mentioned voids, the adhesive layer has fluidity at the time of bonding, and preferably has metal nano-particles.
  • Solder powder is included in the adhesive composition as a material capable of forming an alloy with the particles.
  • Such a solder powder preferably contains at least one selected from the group consisting of Sn-Bi solder, Sn-Zn-Bi solder and Sn-Zn solder.
  • the average particle diameter (average primary particle diameter) D 50 (volume average median diameter) of the primary particles of the solder powder is determined from the viewpoint of preventing sintering of the metal nanoparticles before bonding, and efficiently at the time of bonding. From the viewpoint of reacting with the nanoparticles, the thickness is preferably 1 to 100 ⁇ m, more preferably 1 to 50 ⁇ m. Further, the content of the solder powder in the adhesive composition is preferably 30% by mass or more, more preferably 45% by mass or more, preferably 80% by mass or less, more preferably 70% by mass or less.
  • the window material and the housing member are bonded by reacting and alloying the solder nanoparticles with the metal nanoparticles whose surface is exposed by separating the coating agent.
  • the reaction proceeds in a state where the metal nanoparticles and the solder powder flow, that is, the reaction proceeds in the presence of the dispersion medium as a liquid. From this viewpoint, the liquid dispersion medium is bonded. It is contained in the composition.
  • the volatilization starting temperature of the dispersion medium is preferably higher than the sintering temperature of the metal nanoparticles from the viewpoint of completing the reaction between the metal nanoparticles and the solder powder in a liquid phase. From the same viewpoint, the volatilization starting temperature of the dispersion medium is preferably higher than the melting point of the solder powder, more preferably 10 ° C. or more than the melting point of the solder powder, and 50 ° C. higher than the melting point of the solder powder. (The melting point of solder powder + 50 ° C.) or less, and more preferably 30 ° C. or higher (melting point of solder powder + 30 ° C.) or less.
  • the volatilization start temperature of the dispersion medium can be a temperature at which vaporization starts when the dispersion medium receives heat at 25 ° C. and 1 atm.
  • the dispersion medium preferably contains, for example, one or more compounds selected from the group consisting of terpenes, monoterpene alcohols, alkyl alcohols, and naphthenic hydrocarbons.
  • terpenes include prenol, limonene, and 3-methylbutanoic acid, and tersolve THA-90 and tersolve THA-70 (all manufactured by Nippon Terpene Chemical Co., Ltd.) are preferable.
  • Specific examples of monoterpene alcohols include terpineol and dihydroterpineol.
  • alkyl alcohol 1-hexanol, 1-octanol, 1-decanol, lauryl alcohol and the like, preferably an alkyl alcohol having 6 or more carbon atoms, preferably 8 or more carbon atoms and 12 or less carbon atoms, Long-chain (linear) alkyl alcohols are more preferred.
  • the naphthenic hydrocarbon include cyclopentane and cyclohexane.
  • the metal-based adhesive layer is applied at a load of 50 to 500 gf / package (0.49 to 4.9 N / package) and at a low temperature (for example, 150 to 330 Nf / package). C.). Further, the metal-based adhesive layer may be in a semi-cured state (B-Stage) to such an extent that the adhesive composition does not flow out.
  • the lid for an optical element package of the present invention can be manufactured by a method including a step of applying an adhesive composition to a portion of a window material that comes into contact with a housing member to form a metal-based adhesive layer.
  • the metal-based adhesive layer is in a semi-cured state (B-Stage)
  • the metal-based adhesive layer formed by applying the adhesive composition is treated at 100 to 180 ° C., preferably for 5 to 60 minutes. By heating, a semi-cured state (B-Stage) can be obtained.
  • an optical element and a housing member that houses the optical element are provided, and the window material and the housing member are bonded by the metal-based adhesive layer of the optical element package lid.
  • the optical element package in which the optical element is hermetically sealed inside the housing member can be configured. Specifically, for example, as shown in FIG. 2, an optical element package is formed between the window material 1 and the housing member 3 in which the optical element 4 is housed, and the metal element adhesive layer 2 is interposed therebetween.
  • An optical element package that achieves hermetic sealing with a metal seal can be provided.
  • reference numeral 5 denotes a reflection plate.
  • the housing member may be a known member for housing the optical element in the optical element package, and may be formed of an inorganic material such as metal, ceramics, or an organic material such as rubber, elastomer, or resin.
  • a concave portion is used as the housing portion, and its size is appropriately selected according to the use of the optical element, the optical element to be housed, the size of the window material, and the like.
  • the accommodating member is made of an alumina-based material having good heat dissipation.
  • Those formed of ceramics, aluminum nitride-based ceramics, and the like, and those obtained by additionally processing metal plating of gold, copper, or the like, and the like are preferable.
  • the optical element arranged inside the housing member may be a light emitting element or a light receiving element.
  • the optical element package of the present invention is particularly suitable for an optical element capable of emitting or receiving light having a wavelength of 300 nm or less, and specifically, as a light emitting element, a UV-LED (for example, having a peak wavelength of 250 to 290 nm. And a light having a wavelength of 300 nm or less), an ArF excimer laser (wavelength 193 nm), a KrF excimer laser (wavelength 248 nm), a YAG @ FHG (fourth high-frequency) laser (wavelength 266 nm), and the like.
  • the light receiving element include a photodiode capable of detecting ultraviolet light.
  • the housing member and the window material In the area surrounded by the housing member and the window material, in addition to the optical element, there are a lead for electrical conduction between the optical element and the outside of the optical element package, and a reflector for increasing light extraction efficiency.
  • Other members can be provided, and the parts other than these optical elements and other members are in a vacuum state, a state filled with a gas such as air or an inert gas such as nitrogen, or a solid such as a transparent rubber, an elastomer, or a resin.
  • any of the states sealed with a sealing material may be used, but from the viewpoint of heat dissipation of heat generated by the optical element, a state not sealed with a solid sealing material, for example, a vacuum state, or air It is preferable that the gas is filled with a gas such as nitrogen or an inert gas such as nitrogen.
  • the optical element package of the present invention includes a step of mounting the optical element inside the housing member, and a window material of the optical element package lid, and a housing member housing the optical element therein, and a metal of the optical element package lid. It can be manufactured by a method including a step of bonding and integrating with a system adhesive layer.
  • the optical element package lid on which the metal-based adhesive layer has been formed is brought into contact with the housing member in which the optical element is housed and the metal-based adhesive layer, and after determining the bonding position, the optical element package lid and the housing member, By performing the heat treatment, both can be bonded.
  • the temperature of this heat treatment (curing temperature) is preferably 150 or more, more preferably 170 ° C. or more, and preferably 330 ° C. or less, from the viewpoint of heat resistance of the optical element sealed in the optical element package. Is 300 ° C. or less, more preferably 280 ° C. or less, and the time of the heat treatment is preferably 10 seconds to 60 minutes.
  • the atmosphere in this treatment is an air atmosphere, an inert gas atmosphere, a nitrogen gas atmosphere, or the like.
  • the adhesive composition forming the metal-based adhesive layer is a lid for an optical element package in a semi-cured state (B-Stage)
  • the metal-based adhesive layer is crushed by heating, and the metal nano-particles contained in the adhesive composition are crushed.
  • the tight bonding of the particles makes it possible to construct a highly airtight seal.
  • a heat aging step can be provided after the window member and the housing member housing the optical element are bonded and integrated by the metal-based adhesive layer of the lid for the optical element package.
  • the heat aging step is preferable because the bonding between the metal nanoparticles in the metal-based adhesive layer and between the metal nanoparticles and the plating powder becomes stronger and the bonding strength increases.
  • the temperature of the heat aging is preferably 20 ° C. or higher than the curing temperature (the temperature of the heat treatment), and more preferably 100 ° C. or higher than the curing temperature ((curing temperature + 100 ° C.) or lower).
  • the upper limit of the temperature for thermal aging is not particularly limited, but is preferably 350 ° C. or lower from the viewpoint of the heat resistance of the optical element sealed in the optical element package.
  • the heat aging time is preferably 10 to 180 minutes from the viewpoint of heat accumulation in the optical element and productivity.
  • the adhesive composition comprised of lauryl alcohol 8 wt% as a dispersion medium
  • the product was applied on one of the substrate surfaces by screen printing in a window frame shape of 3.4 mm square with a line width of 250 ⁇ m and a thickness of 35 ⁇ m to form a metal-based adhesive layer.
  • the synthetic silica glass wafer substrate on which the adhesive layer was formed was heated at 140 ° C. for 20 minutes to bring the metal-based adhesive layer into a semi-cured state. Thereafter, the synthetic quartz glass wafer substrate is cut by dicing along the outer periphery of a 3.4 mm square window frame-shaped adhesive layer, so that a synthetic quartz glass window material and a metal-based adhesive layer are provided. A lid (synthetic quartz glass lid) was obtained.
  • an SMD package made of gold-plated aluminum nitride having a recess as a housing portion is used as a housing member, and a UV-LED emitting 265 nm light is housed in the recess as an optical element.
  • the synthetic quartz glass lid obtained above is placed on the housing member so as to cover the housed recess, and heated and heated for 3 minutes at 230 ° C. and 200 gf / package (1.96 N / package). After pressing, the window material and the housing member were bonded to each other to obtain an optical element package. The airtightness of the obtained optical element package was evaluated by the following test.
  • ⁇ Red check> The optical element package was immersed in a microcheck permeate JIP143 (manufactured by Ichinen Chemicals Co., Ltd.) for 24 hours, washed with acetone, and observed with a microscope. This red check was performed before and after the evaluation of the resistance to ultraviolet rays described below.
  • ⁇ Fine leak test> A fine leak test using helium was performed according to the U.S. military standard MIL-STD-883 Method 1014. First, the optical element package was allowed to stand in a vacuum for 1 hour, and then in a 0.3 MPa helium gas atmosphere for 6 hours, and then the helium leak rate was measured with a helium leak tester.
  • the adhesive composition composed of 7% by mass is applied on one surface of the substrate in a window frame shape of 3.4 mm square with a line
  • an SMD package made of gold-plated alumina having a recess as a housing portion is used as a housing member, and a UV-LED emitting 280 nm light is housed in the recess as an optical element, and the UV-LED is housed therein.
  • the synthetic quartz glass lid obtained above is placed on the housing member so as to cover the recessed portion, and heated and pressed for 2 minutes at 270 ° C. and 50 gf / package (0.49 N / package). Then, the window member and the housing member were bonded to each other to obtain an optical element package. The airtightness of the obtained optical element package was evaluated in the same manner as in Example 1.
  • the metal-based adhesive layer was semi-cured by heating the sapphire substrate on which the adhesive layer was formed at 120 ° C. for 30 minutes. Thereafter, the sapphire substrate is cut by dicing along the outer periphery of a 5.9 mm square window frame-shaped adhesive layer, whereby an optical element package lid (sapphire lid) including a sapphire window material and a metal-based adhesive layer. I got
  • an SMD package made of gold-plated aluminum nitride having a recess as a housing portion is used as a housing member, and a photodiode for receiving light of 200 to 300 nm is housed in the recess as an optical element.
  • the sapphire lid obtained as described above is placed on the housing member so as to cover the recess in which is housed, and heated and pressed for 30 seconds at 300 ° C. and 300 gf / package (2.94 N / package). Then, the window member and the housing member were bonded to each other to obtain an optical element package.
  • the airtightness of the obtained optical element package was evaluated in the same manner as in Example 1.
  • Example 4 Polyethylene glycol # 400 having a polydispersity of 1.05 as a coating agent is applied to a synthetic quartz glass wafer substrate (4 inches ⁇ , 0.25 mm thick) in which both surfaces of the opposite substrate surface (main surface) are mirror-finished. (Average molecular weight: 380-420, manufactured by Nacalai Tesque, Inc.) Silver nanoparticles A having an average primary particle diameter D 50 of 45 nm (the ratio of the silver nanoparticles to the total of the coating agent and the silver nanoparticles is 87).
  • An adhesive composition composed of 8% by mass of Tersolve THA-90 (manufactured by Nippon Terpene Chemical Co., Ltd.) as a dispersion medium was screen-printed to form a 3.4 mm square window frame on one of the substrate surfaces. It was applied with a width of 280 ⁇ m and a thickness of 40 ⁇ m to form a metal-based adhesive layer.
  • the synthetic silica glass wafer substrate on which the adhesive layer was formed was heated at 150 ° C. for 20 minutes to bring the metal-based adhesive layer into a semi-cured state. Thereafter, the synthetic quartz glass wafer substrate is cut by dicing along the outer periphery of a 3.4 mm square window frame-shaped adhesive layer, so that a synthetic quartz glass window material and a metal-based adhesive layer are provided. A lid (synthetic quartz glass lid) was obtained.
  • an SMD package made of gold-plated aluminum nitride having a recess as a housing portion is used as a housing member, and a UV-LED emitting 285 nm light is housed in the recess as an optical element.
  • the synthetic quartz glass lid obtained above is placed on the housing member so as to cover the housed recess, and heated and heated at 180 ° C. and 200 gf / package (1.96 N / package) for 2 minutes.
  • the window member and the housing member were bonded to each other, and then subjected to thermal aging at 250 ° C. for 10 minutes without load to obtain an optical element package.
  • the airtightness of the obtained optical element package was evaluated in the same manner as in Example 1.
  • thermosetting epoxy adhesive Elephan CS (Hamakawa Paper Co., Ltd.) is applied to a synthetic quartz glass wafer substrate (4 inches ⁇ , 0.5 mm thick) whose both surfaces of the opposing substrate surface (main surface) are mirror-finished. Is applied on one of the substrate surfaces in a window frame shape of 3.4 mm square with a line width of 250 ⁇ m and an adhesive layer thickness of 35 ⁇ m by screen printing to form an adhesive layer made of an epoxy-based adhesive. did.
  • the synthetic quartz glass wafer substrate on which the adhesive layer was formed was heated at 100 ° C. for 20 minutes to make the adhesive layer made of the epoxy-based adhesive semi-cured. Thereafter, the synthetic quartz glass wafer substrate is provided with a synthetic quartz glass window material and an adhesive layer made of an epoxy-based adhesive by dicing and cutting along the outer periphery of a 3.4 mm square window frame-shaped adhesive layer. An optical element package lid (synthetic silica glass lid) was obtained.
  • an SMD package made of gold-plated aluminum nitride having a recess as a housing portion is used as a housing member, and a UV-LED emitting 265 nm light is housed in the recess as an optical element.
  • the synthetic quartz glass lid obtained above is placed on the housing member so as to cover the housed recess, and heated and heated at 180 ° C. and 400 gf / package (3.92 N / package) for 15 minutes. After pressing, the window material and the housing member were bonded to each other to obtain an optical element package. The airtightness of the obtained optical element package was evaluated in the same manner as in Example 1.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Led Device Packages (AREA)
  • Light Receiving Elements (AREA)

Abstract

光学素子が内部に収容された収容部材の光学素子の発光方向前方に設けられる窓材と、窓材が収容部材と接する部分に形成された金属系接着層とを備える光学素子パッケージ用リッドであって、金属系接着層が、被覆剤により被覆された金属ナノ粒子、ハンダ粉末及び分散媒を含む接着組成物で形成されている光学素子パッケージ用リッド。短波長の光による劣化や割れ、発光素子の発熱による接着剤の歪みや崩壊、これらに伴う長期的信頼性の問題を解決することができる。即ち、耐熱性、耐紫外線性等に優れた光学素子パッケージ用リッド及び光学素子パッケージを提供することができる。

Description

光学素子パッケージ用リッド、光学素子パッケージ及びそれらの製造方法
 本発明は、光学素子パッケージ、例えば、UV-LED、短波長で出力の強いレーザー光源等、特に、紫外線領域の光を発光又は受光する光学素子に用いられる光学素子パッケージ用リッド、光学素子パッケージ及びそれらの製造方法に関する。
 LEDをパッケージングする際には、光学素子が発光する光に対して、高い透過性を有する素材を窓材として用いることが必要である。従来、LED用窓材としては、エポキシ樹脂、シリコーン樹脂、変性アクリル樹脂、不飽和ポリエステル等の透光性樹脂が用いられている(特許文献1:特開2001-196644号公報)。
 近年、水銀ランプの規制に伴い、その代替として、短い波長、特に紫外線領域の光を発光するUV-LEDが注目されている。LEDは、任意の波長を取り出すことができることから、用途に応じた波長のLEDが開発されている。例えば、殺菌に有効な波長であるUV領域の265nmの波長の光を発光するUV-LEDが、殺菌用途として開発されている。しかし、265nmの光学素子が安定的に供給されたとしても、光学素子をパッケージングなしで使用することは難しく、UV-LEDからの光の取り出し効率を可能な限り高めて、パッケージングすることが求められている。
 そのため、UV-LEDの場合、パッケージ用の窓材として、一般に、ホウ珪酸ガラス又は石英ガラスが用いられている(特許文献2:特開2006-269678号公報)。しかし、窓材として透光性樹脂やホウ珪酸ガラスを用いる場合、加工はしやすいが、紫外線透過性が低いという欠点がある。一方、窓材として石英ガラスを用いる場合、紫外線透過性は優れるものの、石英ガラスの高い軟化点により、加工性が悪いという欠点がある。また、いずれの材料においても、光の取り出し効率を高めるためには、表面の鏡面加工が有効であるが、鏡面加工により、光の指向性が高い光学素子からの光を、窓材により散乱させることができないため、光を散乱させるためには、別途、光を散乱させるための拡散板フィルター等の部材が必要であった。
 また、UV-LED等の光学素子は、セラミック製等の収容部材に収容され、接着層を介して窓材で気密封止することが求められる。しかし、UV-LEDが発する短波長の光は、エポキシ樹脂やシリコーン樹脂といった樹脂系接着剤を劣化させるため、気密封止ができなくなる不具合が生じることから、収容部材と窓材をレーザーで接合する方法が提案されている(特許文献3:特開2017-191805号公報)。
特開2001-196644号公報 特開2006-269678号公報 特開2017-191805号公報
 本発明は、上記事情に鑑みてなされたものであり、光学素子パッケージ用窓材として、高透過率であり、昨今の高出力LED等の発熱量の大きい発光素子や、UV光を発するUV-LEDや、UV光等の受光素子を封止するにあたり、熱や短波長の光によって影響を受けることなく長時間安定して使用できる、光学素子パッケージ用リッド、光学素子パッケージ及びそれらの製造方法を提供することを目的とする。
 本発明者らは、上記課題を解決するため鋭意検討を行った結果、光学素子が内部に収容された収容部材の光学素子の発光方向前方に設けられる窓材の収容部材と接する部分に形成される金属系接着層として、被覆剤により被覆された金属ナノ粒子、ハンダ粉末及び分散媒を含む接着組成物で形成された金属系接着層を備える光学素子パッケージ用リッドにより、光学素子に関わる熱や短波長の光によるダメージを受けにくく、長時間安定した光学素子パッケージを構築できることを見出し、本発明をなすに至った。
 従って、本発明は、下記の光学素子パッケージ用リッド、光学素子パッケージ及びそれらの製造方法を提供する。
1.光学素子が内部に収容された収容部材の前記光学素子の発光方向前方に設けられる窓材と、該窓材が前記収容部材と接する部分に形成された金属系接着層とを備える光学素子パッケージ用リッドであって、前記金属系接着層が、被覆剤により被覆された金属ナノ粒子、ハンダ粉末及び分散媒を含む接着組成物で形成されていることを特徴とする光学素子パッケージ用リッド。
2.前記金属ナノ粒子を構成する金属が、金、銀及び銅からなる群より選ばれる1つ以上の金属、該金属を含有する合金、又は前記金属と他の金属との混合物であることを特徴とする1記載の光学素子パッケージ用リッド。
3.前記金属ナノ粒子の動的光散乱法による平均1次粒子径が、20~90nmであることを特徴とする1又は2記載の光学素子パッケージ用リッド。
4.前記被覆剤の前記金属ナノ粒子からの分離温度が、前記金属ナノ粒子の焼結温度以上の温度であることを特徴とする1~3のいずれかに記載の光学素子パッケージ用リッド。
5.前記被覆剤が、アミン、脂肪族カルボン酸及びアルコールからなる群から選ばれる1つ以上の化合物を含むことを特徴とする4記載の光学素子パッケージ用リッド。
6.前記被覆剤が、ポリエチレングリコールを含むことを特徴とする4記載の光学素子パッケージ用リッド。
7.前記金属ナノ粒子の焼結温度が、110~180℃であることを特徴とする1~6のいずれかに記載の光学素子パッケージ用リッド。
8.前記ハンダ粉末の融点が、前記金属ナノ粒子の焼結温度より低い温度であることを特徴とする1~7のいずれかに記載の光学素子パッケージ用リッド。
9.前記ハンダ粉末が、Sn-Biハンダ、Sn-Zn-Biハンダ及びSn-Znハンダからなる群から選ばれる1つ以上を含むことを特徴とする8記載の光学素子パッケージ用リッド。
10.前記分散媒の揮発開始温度が、前記金属ナノ粒子の焼結温度より高く、かつハンダ粉末の融点より高い温度であることを特徴とする1~9のいずれかに記載の光学素子パッケージ用リッド。
11.前記分散媒が、テルペン類、モノテルペンアルコール類、アルキルアルコール、ナフテン系炭化水素からなる群から選ばれる1つ以上の化合物を含むことを特徴とする10記載の光学素子パッケージ用リッド。
12.前記金属系接着層が、半硬化状態(B-Stage)であることを特徴とする1~11のいずれかに記載の光学素子パッケージ用リッド。
13.1~12のいずれかに記載の光学素子パッケージ用リッドを製造する方法であって、
前記窓材の前記収容部材と接する部分に、前記接着組成物を塗布して前記金属系接着層を形成する工程を含むことを特徴とする光学素子パッケージ用リッドの製造方法。
14.光学素子と、該光学素子を内部に収容した収容部材とを備え、1~12のいずれかに記載の光学素子パッケージ用リッドの前記金属系接着層により前記窓材と前記収容部材とが接着されて、前記光学素子が前記収容部材の内部に気密封止されてなることを特徴とする光学素子パッケージ。
15.前記光学素子が、発光素子又は受光素子であることを特徴とする14記載の光学素子パッケージ。
16.前記光学素子が、波長300nm以下の光を発光又は受光可能な光学素子であることを特徴とする15記載の光学素子パッケージ。
17.14~16のいずれかに記載の光学素子パッケージを製造する方法であって、
収容部材の内部に光学素子を実装する工程、及び
1~12のいずれかに記載の光学素子パッケージ用リッドの窓材と、光学素子を内部に収容した前記収容部材とを、光学素子パッケージ用リッドの前記金属系接着層により接着して一体化する工程
を含むことを特徴とする光学素子パッケージの製造方法。
 本発明によれば、短波長の光による劣化や割れ、発光素子の発熱による接着剤の歪みや崩壊、これらに伴う長期的信頼性の問題を解決することができる。即ち、耐熱性、耐紫外線性等に優れた光学素子パッケージ用リッド及び光学素子パッケージを提供することができる。
本発明の光学素子パッケージ用リッドの一例を示し、(A)は断面図、(B)は平面図である。 本発明の光学素子パッケージ用リッドを用いて収容部材に光学素子を収容した光学素子パッケージの一例を示す断面図である。
 以下、本発明について詳細に説明する。
 本発明の光学素子パッケージ用リッドは、光学素子が内部に収容された収容部材の光学素子の発光方向前方に設けられる窓材と、この窓材が収容部材と接する部分に形成された金属系接着層とを備える。光学素子パッケージ用リッドは、光学素子を収容する収容部材と共に用いられ、光学素子を保護すると共に、光学素子の取り扱いを容易にするために用いられる。
 光学素子パッケージ用リッドは、例えば、図1(A)及び(B)に、各々断面図及び平面図として示されるように、窓材1の表面上、例えば、窓材が収容部材と接する部分である窓材1の主表面の外周縁部に、金属系接着層2が形成されたものである。この金属系接着層は、窓材の主表面以外に側面に形成されていてもよいが、主表面のみ、特に、光学素子が収容されている収容部材と接する一方の主表面のみに形成されていることが好ましい。また、金属系接着層は、図1(A)及び(B)に示されるように、窓材の中央部から光を取り出せるように、窓材の主表面の外周縁部に形成することが好ましいが、必ずしも窓材の外周縁まで形成されている必要はない。また、金属系接着層は、窓材の中央部に、光を取り出すことができる相応の範囲が確保される位置に、気密封止するのに十分な形状及び面積で形成されていればよい。
 窓材は、合成石英ガラス、サファイア、ホウケイ酸ガラス、無アルカリガラス等のいずれでもよいが、光の透過率、耐熱性、UV耐性等の観点から、合成石英ガラスが好ましい。
 窓材の形状としては、例えば、図1(A)に示されるような平形状の窓材1の他、凹凸形状(凹形状、凸形状、凹及び凸双方を有する形状を含む。以下同じ。)を有する球面状、凹凸形状を有する非球面状のいずれでもよい。光学素子が収容されている収容部材を単純に封止する目的であれば、コスト面及び取扱いの簡便さの観点から、平板状のものが好ましい。一方、光学素子から発せられる光を効率よく取り出そうとする場合は、光学計算に基づいて設計された凹凸形状を有する、単純な平凸レンズ形状、平凹レンズ形状、凸メニスカスレンズ形状等の球面状や非球面状のものが好ましい。窓材の厚みは、適宜選択することができるが、接着時に発生する応力等の観点から、好ましくは0.1mm以上、より好ましくは0.2mm以上で、好ましくは5mm以下、より好ましくは4mm以下である。
 窓材は、収容部材内部を密閉できるものが好ましく、その大きさは、光学素子の用途、収容された光学素子、収容部材のサイズ等により適宜選択されるが、密閉性確保の観点から、収容部材の光学素子収容部の開口部のサイズと同等又は若干大きいものが用いられる。水平形状が四角の場合は対角の長さが、水平形状が円形又は楕円形の場合は各々直径又は最大径が、好ましくは1mm以上、より好ましくは2mm以上で、好ましくは3cm以下、より好ましくは2cm以下である。
 また、窓材は、光の取り出し効率の観点から、対向する基板面(主表面)の少なくとも一方の面(即ち、表面のみ又は裏面のみ)が鏡面であることが好ましく、表面及び裏面の両面が鏡面であることがより好ましい。ここで、対向する基板面の表面及び裏面の2面は、例えば、光学素子から発光又は光学素子が受光する光が窓材を透過するときに光が交差する2面とすることができる。鏡面は、算術平均粗さ(Ra)が、好ましくは0.1μm以下、より好ましくは0.05μm以下の面とすることができる。
 窓材の製造方法は特に限定されるものではないが、例えば、原料基板の表面及び裏面から選ばれる一方又は双方の面をラップ加工することにより平形状の窓材を、サンドブラスト加工することにより凹凸形状を有する球面状の窓材、凹凸形状を有する非球面状の窓材を製造することができる。原料基板としては、平板の基板、例えば、対角長100~300mmの矩形又は直径100~300mmの円径、厚み0.2~10mmの平板の基板が好適に用いられる。ラップ加工の場合は、例えばアルミナを主成分とする砥粒(研磨材)を用いて、片面研磨装置又は両面研磨装置により片面又は両面研磨する。一方、サンドブラスト加工の場合は、酸化セリウム、酸化珪素、酸化アルミニウム、炭化珪素等の砥粒を用いて研磨する。更に、鏡面化する場合には、ラップ加工又はサンドブラスト加工の後に、平形状の窓材の場合には、酸化セリウムや酸化ジルコニウムのような砥粒と発泡ポリウレタン系研磨布等を組み合わせた公知の研磨材を用い、両面研磨又は片面研磨法によって研磨すること、凹凸形状を有する球面状の窓材、凹凸形状を有する非球面状の窓材の場合は、フッ化水素酸水溶液等により公知のエッチング加工により鏡面化することができる。
 金属系接着層は、被覆剤により被覆された金属ナノ粒子、ハンダ粉末及び分散媒を含む接着組成物によって形成される。
 [被覆剤により被覆された金属ナノ粒子]
 金属系接着層に含まれる金属ナノ粒子は、非常に細かい粒子であるため、1次粒子相互の連結を防止することができる物質で被覆しておかなければ、金属ナノ粒子が有する自然焼結性により連結してしまい、1次粒子が分散した状態を保てなくなるため、金属ナノ粒子は、被覆剤で表面が被覆された状態(例えば、表面上に液状物質又は固体状物質が薄層状に付着した状態)で用いる。
 金属ナノ粒子を構成する金属としては、金、銀及び銅からなる群より選ばれる1つ以上の金属、この金属を含有する合金、又はこの金属と他の金属との混合物であることが好ましい。合金又は混合物である場合、金、銀及び銅からなる群より選ばれる1つ以上の金属が、金属ナノ粒子全体の80質量%以上であることが好ましい。
 金属ナノ粒子の1次粒子の平均粒子径(平均1次粒子径)D50(体積平均メジアン径)は、金属ナノ粒子とハンダ粉の反応点を多くする観点や、取り扱いを容易にする観点から、好ましくは20nm以上、より好ましくは30nm以上で、好ましくは90nm以下、より好ましくは80nm以下である。この粒子径は、動的光散乱法により測定される値を適用することができる。
 被覆剤は、金属系接着層による窓材と収容部材との接着において、低温(例えば、150~330℃)での接着を達成する観点から、温度応答性をもって金属ナノ粒子表面から分離するものが好ましい。被覆剤が金属ナノ粒子から分離する温度(分離温度)は、好ましくは金属ナノ粒子の焼結温度以上の温度、より好ましくは金属ナノ粒子の焼結温度より10℃以上高い温度、更に好ましくは金属ナノ粒子の焼結温度より25℃以上高い温度である。一方、被覆剤の分離温度は、金属ナノ粒子の焼結温度より50℃高い温度以下((金属ナノ粒子の焼結温度+50℃)以下)であることが好ましい。ここで、被覆剤が金属ナノ粒子から分離する温度(分離温度)とは、金属ナノ粒子同士がネッキングし始める温度とすることができる。ここで、金属ナノ粒子のネッキングとは、被覆剤が金属ナノ粒子表面から分離することにより、金属ナノ粒子同士が結合することをいう。ネッキングが起こると、金属ナノ粒子表面からの被覆剤の消失に伴う重量変化が起こることから、この重量変化をTG-DTA測定(熱重量測定・示差熱分析)により求め、TG-DTA測定により得られたTG曲線の重量変化が起き始める温度を、分離温度とすることができる。なお、TG-DTA測定の測定条件としては、例えば、試料10mgを50℃から毎分5℃の昇温速度にて加熱して測定する条件が好適である。金属ナノ粒子の焼結温度については、後述する。
 被覆剤は、沸点が100℃以上で、300℃以下のものが好ましい。被覆剤の沸点は、120℃以上であることがより好ましく、また、200℃以下であることがより好ましい。被覆剤としては、例えば、アミン、脂肪族カルボン酸及びアルコールからなる群から選ばれる1つ以上の化合物を含むことが好ましい。具体的には、ヘキシルアミン、シクロヘキシルアミン、オクチルアミン等の炭素数が6~12のアミン、ヘキサン酸、オクタン酸、デカン酸、ドデカン酸、ヘキサデカン酸等の炭素数が6~16の脂肪族カルボン酸(飽和脂肪酸)、1-ヘキサノール、1-オクタノール、1-デカノール、1-ドデカノール等の炭素数が6~12のアルコールが挙げられる。また、被覆剤は、好ましくは重量平均分子量が200~500のポリエチレングリコール(好ましくは多分散度が1.00~1.50のもの)等の高分子化合物等であってもよい。被覆剤は、時間差で金属ナノ粒子表面から分離して、金属ナノ粒子同士が爆発的に焼結することなく、ハンダ粉末と反応して合金化する際の反応率を上げるようにするためには、2種類以上用いることが有効である。
 被覆剤が分離した後の金属ナノ粒子は、金属系接着層による窓材と収容部材との接着において、金属ナノ粒子同士で又はハンダ粉末と反応する必要がある。この場合、低温(例えば、150~330℃)での接着を達成する観点から、金属ナノ粒子の焼結温度は、好ましくは110℃以上で、好ましくは180℃以下、より好ましくは160℃以下である。ここで、金属ナノ粒子の焼結温度とは、金属ナノ粒子が1次粒子としての形態を保持できなくなる温度とすることができる。
 接着組成物中、被覆剤により被覆された金属ナノ粒子の含有率は、好ましくは20質量%以上、より好ましくは25質量%以上で、好ましくは70質量%以下、より好ましくは50質量%以下である。この場合、被覆剤と金属ナノ粒子との合計に対する金属ナノ粒子の割合は、好ましくは80質量%以上、より好ましくは85質量%以上で、100質量%未満、好ましくは98質量%以下、より好ましくは95質量%以下である。
 [ハンダ粉末]
 金属材料として金属ナノ粒子のみを用いた金属系接着層の場合、接着時に、加圧により金属ナノ粒子間の距離を縮めても、得られた接着層は、空隙を有する構造体となり、十分な気密性を与える接着層とはならない。本発明においては、得られた接着層を十分な気密性を与えることができるものにするため、換言すれば、上述した空隙を埋めるために、接着時に流動性を有し、かつ好ましくは金属ナノ粒子との合金を形成することができる材料として、ハンダ粉末を接着組成物中に含有させる。
 ハンダ粉末の融点は、金属系接着層による窓材と収容部材との接着において、低温(例えば、150~330℃)での接着を達成する観点から、金属ナノ粒子の焼結温度より低い温度であることが好ましい。このような融点としては、具体的には、好ましくは180℃以下、より好ましくは170℃以下、更に好ましくは160℃以下である。なお、ハンダ粉末の融点の下限は、通常100℃以上である。当該温度域を達成するためには、Snをハンダの成分に含むことが好ましい。更に、窓材として合成石英ガラスを用いる場合、これとの確実な密着性を得るため、合成石英ガラスに対して濡れ性の良いBiを含むことがより好ましい。このようなハンダ粉末としては、Sn-Biハンダ、Sn-Zn-Biハンダ及びSn-Znハンダからなる群から選ばれる1つ以上を含むものが好ましい。
 ハンダ粉末の1次粒子の平均粒子径(平均1次粒子径)D50(体積平均メジアン径)は、接着前には金属ナノ粒子同士の焼結を防ぐ観点から、また、接着時には効率よく金属ナノ粒子と反応させる観点から、好ましくは1~100μm、より好ましくは1~50μmである。また、接着組成物中、ハンダ粉末の含有率は、好ましくは30質量%以上、より好ましくは45質量%以上で、好ましくは80質量%以下、より好ましくは70質量%以下である。
 [分散媒]
 金属系接着層を構成する接着組成物は、被覆剤が分離して表面が露出した金属ナノ粒子とハンダ粉末とが反応して合金化することによって、窓材と収容部材との接着がなされるが、この反応は、金属ナノ粒子とハンダ粉末とが流動する状態において進行すること、即ち、液体として分散媒の存在下で進行することが有効であり、この観点から、液状の分散媒を接着組成物中に含有させる。
 分散媒の揮発開始温度は、金属ナノ粒子とハンダ粉末の反応を液相で完結させる観点から、金属ナノ粒子の焼結温度より高いことが好ましい。また、同様の観点から、分散媒の揮発開始温度は、ハンダ粉末の融点より高いことが好ましく、ハンダ粉末の融点より10℃以上高いことがより好ましく、また、ハンダ粉末の融点より50℃高い温度以下((ハンダ粉末の融点+50℃)以下)であることが好ましく、ハンダ粉末の融点より30℃高い温度以下((ハンダ粉末の融点+30℃)以下)であることがより好ましい。ここで、分散媒の揮発開始温度とは、分散媒が25℃、1気圧下で熱を受けた場合に気化が始まる温度とすることができる。
 分散媒としては、例えば、テルペン類、モノテルペンアルコール類、アルキルアルコール、ナフテン系炭化水素からなる群から選ばれる1つ以上の化合物を含むことが好ましい。テルペン類として具体的には、プレノール、リモネン、3-メチルブタン酸が挙げられ、テルソルブTHA-90、テルソルブTHA-70(いずれも日本テルペン化学(株)製)が好ましい。また、モノテルペンアルコール類として具体的には、テルピネオール、ジヒドロターピネオールが挙げられる。アルキルアルコールとして具体的には、1-ヘキサノール、1-オクタノール、1-デカノール、ラウリルアルコール等の炭素数が6以上、好ましくは炭素数が8以上で、炭素数が12以下のアルキルアルコールが好ましく、長鎖(直鎖)のアルキルアルコールがより好ましい。ナフテン系炭化水素として具体的には、シクロペンタン、シクロヘキサンが挙げられる。
 なお、接着組成物中の分散媒の含有率は、好ましくは3質量%以上、より好ましくは5質量%以上で、好ましくは15質量%以下、より好ましくは12質量%以下である。また、接着組成物中、被覆剤により被覆された金属ナノ粒子、ハンダ粉末及び分散媒は、それらの合計として99質量%以上含有されていることが好ましく、接着組成物が、実質的に、被覆剤により被覆された金属ナノ粒子、ハンダ粉末及び分散媒のみからなることがより好ましい。
 分散媒は、窓材と収容部材と金属系接着層により接着する工程において揮発するが、窓材と収容部材とを接着した状態において、強固な接着力を発揮させるためには、接着組成物に含まれる各成分の特性や、接着条件に応じて、それらの量を調整し、金属系接着層により窓材と収容部材とが接着された状態において、ほぼ全ての分散媒が揮発しているようにすることが有効である。
 金属系接着層は、収容部材に収容される光学素子の耐熱性を考慮すると、50~500gf/パッケージ(0.49~4.9N/パッケージ)の荷重をかけながら、低温(例えば、150~330℃)で接着できるものであることが好ましい。また、金属系接着層は、接着組成物が流れ出さない程度に、半硬化状態(B-Stage)としたものであってもよい。
 金属系接着層の厚さは、収容部材の窓材との接合部分に、うねり等の形状があったとしても、それを吸収し得る厚さとする観点から、好ましくは20μm以上、より好ましくは30μm以上で、好ましくは70μm以下、より好ましくは50μm以下である。厚さは、レーザー表面変位計(例えば、KS-1100((株)キーエンス製))等により測定することができる。
 本発明の光学素子パッケージ用リッドは、窓材の収容部材と接する部分に、接着組成物を塗布して金属系接着層を形成する工程を含む方法により製造することができる。また、金属系接着層を半硬化状態(B-Stage)とする場合は、接着組成物を塗布して形成した金属系接着層を、好ましくは100~180℃で、好ましくは5分~60分加熱して、半硬化状態(B-Stage)とすることができる。
 このような光学素子パッケージ用リッドを用いれば、光学素子と、光学素子を内部に収容した収容部材とを備え、光学素子パッケージ用リッドの金属系接着層により窓材と収容部材とが接着されて、光学素子が収容部材の内部に気密封止された光学素子パッケージを構成することができる。具体的には、例えば、図2に示されるように、窓材1と、光学素子4が収容された収容部材3との間で、光学素子パッケージを構成し、金属系接着層2を介したメタルシールによる気密封止を実現した光学素子パッケージとすることができる。なお、図2中、5は反射板である。
 収容部材は、光学素子パッケージにおいて、光学素子を収容する部材として公知のものを用いることができ、金属、セラミックス等の無機材料、又はゴム、エラストマー、樹脂等の有機材料で形成された、光学素子の収容部としての凹陥部を有するものが用いられ、そのサイズは、光学素子の用途、収容される光学素子、窓材のサイズ等により適宜選択される。また、特にUV-LEDにおいて顕著であるが、現在知られているものは、光学素子が発する光の大部分が光ではなく熱となって放出されるため、収容部材は放熱性の良いアルミナ系セラミックス、窒化アルミニウム系セラミックス等で形成されたもの、それらに金や銅等の金属メッキ等を付加加工したもの等が好適である。
 収容部材内部に配置される光学素子は、発光素子であっても、受光素子であってもよい。本発明の光学素子パッケージは、特に、波長300nm以下の光を発光又は受光可能な光学素子において好適であり、発光素子として具体的には、UV-LED(例えば、ピーク波長が250~290nmであり、かつ波長300nm以下の光を含むもの)、ArFエキシマレーザー(波長193nm)、KrFエキシマレーザー(波長248nm)、YAG FHG(第4高周波)レーザー(波長266nm)等が挙げられる。受光素子としては、紫外線を検知できるフォトダイオード等が例示される。
 収容部材と窓材とで囲まれた範囲には、光学素子の他に、光学素子と光学素子パッケージの外部との電気的な導通のためのリードや光の取出し効率を上げるためのリフレクタ等の他の部材を設けることができ、これら光学素子及び他の部材以外の部分は、真空状態、空気や不活性ガスの窒素等の気体が充填された状態、透明なゴム、エラストマー、樹脂等の固体の封止材で封止された状態のいずれでもよいが、光学素子が発する熱の放熱性等の観点からは、固体の封止材で封止されていない状態、例えば、真空状態、又は空気や不活性ガスの窒素等の気体が充填された状態であることが好適である。
 本発明の光学素子パッケージは、収容部材の内部に光学素子を実装する工程、及び光学素子パッケージ用リッドの窓材と、光学素子を内部に収容した収容部材とを、光学素子パッケージ用リッドの金属系接着層により接着して一体化する工程を含む方法により製造することができる。
 金属系接着層を形成した光学素子パッケージ用リッドは、光学素子が収容された収容部材と金属系接着層とを接触させ、接着位置を決めた後、光学素子パッケージ用リッドと収容部材とを、加熱処理することにより、両者を接着することができる。この加熱処理の温度(硬化温度)は、光学素子パッケージ内に封止される光学素子の耐熱性の観点から、好ましくは150以上、より好ましくは170℃以上で、好ましくは330℃以下、より好ましくは300℃以下、更に好ましくは280℃以下であり、加熱処理の時間は、好ましくは10秒~60分間である。この際、加圧も同時に行うことが好ましく、この処理における雰囲気は、大気雰囲気、不活性ガス雰囲気、窒素ガス雰囲気等が適用される。また、金属系接着層を形成する接着組成物が半硬化状態(B-Stage)の光学素子パッケージ用リッドの場合、金属系接着層が加熱によって押しつぶされ、接着組成物に含まれている金属ナノ粒子が密に結合することにより、気密性の高いシールを構築することが可能となる。
 また、窓材と、光学素子を内部に収容した収容部材とを、光学素子パッケージ用リッドの金属系接着層により接着して一体化した後に、熱エージング工程を設けることができる。熱エージング工程により、金属系接着層中の金属ナノ粒子間、及び金属ナノ粒子とメッキ粉末との間の結合がより強固となり、接着強度が増すため好ましい。熱エージングの温度は、硬化温度(上記加熱処理の温度)より20℃以上高い温度が好ましく、硬化温度より100℃高い温度以下((硬化温度+100℃)以下)であることがより好ましい。なお、熱エージングの温度の上限は特に制限はないが、光学素子パッケージ内に封止された光学素子の熱耐性の観点から、350℃以下が好ましい。熱エージングの時間は、光学素子への熱の蓄積や、生産性の観点から、好ましくは10~180分間である。
 以下、実施例及び比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。
  [実施例1]
 対向する基板面(主表面)の両面が鏡面化されている合成石英ガラスウェーハ基板(4インチφ、厚さ0.5mm)に、被覆剤である1-ヘキサノールと1-オクタノールの混合液(1-ヘキサノール:1-オクタノール=1:1(質量比))で表面を被覆した平均一次粒子径D50が53nmの銀ナノ粒子(被覆剤と銀ナノ粒子との合計に対する銀ナノ粒子の割合は90質量%)25質量%、平均一次粒子径D50が3.1μmのSn-Biハンダ粉末(三井金属鉱業(株)製)67質量%、分散媒としてラウリルアルコール8質量%で構成された接着組成物をスクリーン印刷により、基板面の一方の面上に、3.4mm角の窓枠状に線幅250μm、厚さ35μmで塗布し、金属系接着層を形成した。
 次に、140℃で20分間、接着層が形成された合成石英ガラスウェーハ基板を加熱することにより、金属系接着層を半硬化状態とした。その後、合成石英ガラスウェーハ基板を、3.4mm角の窓枠状の接着層の外周に沿ってダイシングカットすることにより、合成石英ガラスの窓材と、金属系接着層とを備える光学素子パッケージ用リッド(合成石英ガラスリッド)を得た。
 次に、収容部としての凹陥部を有する金メッキされた窒化アルミニウムからなるSMDパッケージを収容部材として用い、その凹陥部に、光学素子として265nmの光を発するUV-LEDを収容し、UV-LEDが収容された凹陥部を覆うように、収容部材上に上記で得られた合成石英ガラスリッドを載置し、230℃、200gf/パッケージ(1.96N/パッケージ)の条件で、3分間加熱・加圧し、窓材と収容部材とを接着して、光学素子パッケージを得た。得られた光学素子パッケージについて、以下の試験により気密性を評価した。
 <レッドチェック>
 光学素子パッケージを、ミクロチェック浸透液JIP143((株)イチネンケミカルズ製)に24時間浸漬し、その後、アセトンで洗浄し、顕微鏡で観察した。このレッドチェックは、後述する紫外線に対する耐性評価の前と後に実施した。
 <ファインリークテスト>
 米国軍用規格MIL-STD-883 Method 1014に従い、ヘリウムを用いたファインリークテストを実施した。まず、光学素子パッケージを真空下に1時間静置し、次いで、0.3MPaのヘリウムガス雰囲気下に6時間静置した後、ヘリウムリーク試験機にて、ヘリウムのリーク率を測定した。
 <紫外線に対する耐性評価>
 光学素子がUV-LEDである場合は、光学素子パッケージ中のUV-LEDを5,000時間点灯させた後、接着状態を観察し、レッドチェックを実施した。一方、光学素子がフォトダイオードである場合は、光学素子パッケージの窓材の上方から、265nmの光を発するUV-LEDから紫外線を5,000時間照射した後、接着状態を観察し、レッドチェックを実施した。
 紫外線に対する耐性評価の前と後のいずれのレッドチェックにおいても、光学素子パッケージ内への浸透液の浸潤は見られず、十分な気密性を保持していることが確認された。また、ファインリークテストにおけるヘリウムのリーク率は5.4×10-9Pa・m3/sであり、十分な気密性があることが示された。更に、紫外線に対する耐性評価では、窓材と収容部材との分離はなく、顕微鏡による接着部の観察でも、金属系接着層が硬化した部分にクラック等の亀裂はなかった。
  [実施例2]
 対向する基板面(主表面)の両面が鏡面化されている合成石英ガラスウェーハ基板(6インチφ、厚さ0.3mm)に、被覆剤である1-ヘキサノールとヘキシルアミンの混合液(1-ヘキサノール:ヘキシルアミン=1:1(質量比))で表面を被覆した平均一次粒子径D50が78nmの銀ナノ粒子(被覆剤と銀ナノ粒子との合計に対する銀ナノ粒子の割合は83質量%)60質量%、平均一次粒子径D50が3.9μmのSn-Znハンダ粉末(佐々木半田工業(株)製)33質量%、分散媒としてテルソルブTHA-90(日本テルペン化学(株)製)7質量%で構成された接着組成物をスクリーン印刷により、基板面の一方の面上に、3.4mm角の窓枠状に線幅350μm、厚さ40μmで塗布し、金属系接着層を形成した。
 次に、170℃で45分間、接着層が形成された合成石英ガラスウェーハ基板を加熱することにより、金属系接着層を半硬化状態とした。その後、合成石英ガラスウェーハ基板を、3.4mm角の窓枠状の接着層の外周に沿ってダイシングカットすることにより、合成石英ガラスの窓材と、金属系接着層とを備える光学素子パッケージ用リッド(合成石英ガラスリッド)を得た。
 次に、収容部としての凹陥部を有する金メッキされたアルミナからなるSMDパッケージを収容部材として用い、その凹陥部に、光学素子として280nmの光を発するUV-LEDを収容し、UV-LEDが収容された凹陥部を覆うように、収容部材上に上記で得られた合成石英ガラスリッドを載置し、270℃、50gf/パッケージ(0.49N/パッケージ)の条件で、2分間加熱・加圧し、窓材と収容部材とを接着して、光学素子パッケージを得た。得られた光学素子パッケージについて、実施例1と同様にして気密性を評価した。
 紫外線に対する耐性評価の前と後のいずれのレッドチェックにおいても、光学素子パッケージ内への浸透液の浸潤は見られず、十分な気密性を保持していることが確認された。また、ファインリークテストにおけるヘリウムのリーク率は5.2×10-9Pa・m3/sであり、十分な気密性があることが示された。更に、紫外線に対する耐性評価では、窓材と収容部材との分離はなく、顕微鏡による接着部の観察でも、金属系接着層が硬化した部分にクラック等の亀裂はなかった。
  [実施例3]
 対向する基板面(主表面)の両面が鏡面化されているサファイア基板(3インチφ、厚さ0.5mm)に、被覆剤であるヘキサン酸とデカン酸の混合液(ヘキサン酸:デカン酸=1:1(質量比))で表面を被覆した平均一次粒子径D50が32nmの銀ナノ粒子(被覆剤と銀ナノ粒子との合計に対する銀ナノ粒子の割合は93質量%)23質量%、平均一次粒子径D50が2.9μmのSn-Biハンダ粉末(三井金属鉱業(株)製)67質量%、分散媒としてテルソルブTHA-70(日本テルペン化学(株)製)10質量%で構成された接着組成物をスクリーン印刷により、基板面の一方の面上に、5.9mm角の窓枠状に線幅200μm、厚さ30μmで塗布し、金属系接着層を形成した。
 次に、120℃で30分間、接着層が形成されたサファイア基板を加熱することにより、金属系接着層を半硬化状態とした。その後、サファイア基板を、5.9mm角の窓枠状の接着層の外周に沿ってダイシングカットすることにより、サファイアの窓材と、金属系接着層とを備える光学素子パッケージ用リッド(サファイアリッド)を得た。
 次に、収容部としての凹陥部を有する金メッキされた窒化アルミニウムからなるSMDパッケージを収容部材として用い、その凹陥部に、光学素子として200~300nmの光を受光するフォトダイオードを収容し、フォトダイオードが収容された凹陥部を覆うように、収容部材上に上記で得られたサファイアリッドを載置し、300℃、300gf/パッケージ(2.94N/パッケージ)の条件で、30秒間加熱・加圧し、窓材と収容部材とを接着して、光学素子パッケージを得た。得られた光学素子パッケージについて、実施例1と同様にして気密性を評価した。
 紫外線に対する耐性評価の前と後のいずれのレッドチェックにおいても、光学素子パッケージ内への浸透液の浸潤は見られず、十分な気密性を保持していることが確認された。また、ファインリークテストにおけるヘリウムのリーク率は4.7×10-9Pa・m3/sであり、十分な気密性があることが示された。更に、紫外線に対する耐性評価では、窓材と収容部材との分離はなく、顕微鏡による接着部の観察でも、金属系接着層が硬化した部分にクラック等の亀裂はなかった。
  [実施例4]
 対向する基板面(主表面)の両面が鏡面化されている合成石英ガラスウェーハ基板(4インチφ、厚さ0.25mm)に、被覆剤である多分散度が1.05のポリエチレングリコール#400(ナカライテスク(株)製、平均分子量380~420)で表面を被覆した平均一次粒子径D50が45nmの銀ナノ粒子A(被覆剤と銀ナノ粒子との合計に対する銀ナノ粒子の割合は87質量%)22.5質量%、同被覆剤で表面を被覆した平均一次粒子径D50が53nmの銀ナノ粒子B(被覆剤と銀ナノ粒子との合計に対する銀ナノ粒子の割合は91質量%)7.5質量%(銀ナノ粒子A:銀ナノ粒子B=3:1(質量比)で、合計で30質量%)、平均一次粒子径D50が2.2μmのSn-Biハンダ粉末(三井金属鉱業(株)製)62質量%、分散媒としてテルソルブTHA-90(日本テルペン化学(株)製)8質量%で構成された接着組成物をスクリーン印刷により、基板面の一方の面上に、3.4mm角の窓枠状に線幅280μm、厚さ40μmで塗布し、金属系接着層を形成した。
 次に、150℃で20分間、接着層が形成された合成石英ガラスウェーハ基板を加熱することにより、金属系接着層を半硬化状態とした。その後、合成石英ガラスウェーハ基板を、3.4mm角の窓枠状の接着層の外周に沿ってダイシングカットすることにより、合成石英ガラスの窓材と、金属系接着層とを備える光学素子パッケージ用リッド(合成石英ガラスリッド)を得た。
 次に、収容部としての凹陥部を有する金メッキされた窒化アルミニウムからなるSMDパッケージを収容部材として用い、その凹陥部に、光学素子として285nmの光を発するUV-LEDを収容し、UV-LEDが収容された凹陥部を覆うように、収容部材上に上記で得られた合成石英ガラスリッドを載置し、180℃、200gf/パッケージ(1.96N/パッケージ)の条件で、2分間加熱・加圧して、窓材と収容部材とを接着し、次いで、無荷重で250℃、10分間の熱エージングを実施して、光学素子パッケージを得た。得られた光学素子パッケージについて、実施例1と同様にして気密性を評価した。
 紫外線に対する耐性評価の前と後のいずれのレッドチェックにおいても、光学素子パッケージ内への浸透液の浸潤は見られず、十分な気密性を保持していることが確認された。また、ファインリークテストにおけるヘリウムのリーク率は5.0×10-9Pa・m3/sであり、十分な気密性があることが示された。更に、紫外線に対する耐性評価では、窓材と収容部材との分離はなく、顕微鏡による接着部の観察でも、金属系接着層が硬化した部分にクラック等の亀裂はなかった。
  [比較例1]
 対向する基板面(主表面)の両面が鏡面化されている合成石英ガラスウェーハ基板(4インチφ、厚さ0.5mm)に、熱硬化型のエポキシ系接着剤エレファンCS((株)巴川製紙所製)をスクリーン印刷により、基板面の一方の面上に、3.4mm角の窓枠状に線幅250μm、接着層の厚さ35μmで塗布し、エポキシ系接着剤からなる接着層を形成した。
 次に、100℃で20分間、接着層が形成された合成石英ガラスウェーハ基板を加熱することにより、エポキシ系接着剤からなる接着層を半硬化状態とした。その後、合成石英ガラスウェーハ基板を、3.4mm角の窓枠状の接着層の外周に沿ってダイシングカットすることにより、合成石英ガラスの窓材と、エポキシ系接着剤からなる接着層とを備える光学素子パッケージ用リッド(合成石英ガラスリッド)を得た。
 次に、収容部としての凹陥部を有する金メッキされた窒化アルミニウムからなるSMDパッケージを収容部材として用い、その凹陥部に、光学素子として265nmの光を発するUV-LEDを収容し、UV-LEDが収容された凹陥部を覆うように、収容部材上に上記で得られた合成石英ガラスリッドを載置し、180℃、400gf/パッケージ(3.92N/パッケージ)の条件で、15分間加熱・加圧し、窓材と収容部材とを接着して、光学素子パッケージを得た。得られた光学素子パッケージについて、実施例1と同様にして気密性を評価した。
 紫外線に対する耐性評価の前のレッドチェックにおいては、光学素子パッケージ内への浸透液の浸潤は見られず、十分な気密性を保持していることが確認された。また、ファインリークテストにおけるヘリウムのリーク率は5.0×10-9Pa・m3/sであり、十分な気密性があることが示された。しかし、紫外線に対する耐性評価の後は、レッドチェックにおいては、光学素子パッケージ内への浸透液の浸潤が見られ、また、顕微鏡による接着部の観察でも、エポキシ系接着剤からなる接着層が硬化した部分に、紫外線によるダメージにより生じたクラックが見られ、窓材と収容部材とが、部分的に分離していた。
1 窓材
2 金属系接着層
3 収容部材
4 光学素子
5 反射板

Claims (17)

  1.  光学素子が内部に収容された収容部材の前記光学素子の発光方向前方に設けられる窓材と、該窓材が前記収容部材と接する部分に形成された金属系接着層とを備える光学素子パッケージ用リッドであって、前記金属系接着層が、被覆剤により被覆された金属ナノ粒子、ハンダ粉末及び分散媒を含む接着組成物で形成されていることを特徴とする光学素子パッケージ用リッド。
  2.  前記金属ナノ粒子を構成する金属が、金、銀及び銅からなる群より選ばれる1つ以上の金属、該金属を含有する合金、又は前記金属と他の金属との混合物であることを特徴とする請求項1記載の光学素子パッケージ用リッド。
  3.  前記金属ナノ粒子の動的光散乱法による平均1次粒子径が、20~90nmであることを特徴とする請求項1又は2記載の光学素子パッケージ用リッド。
  4.  前記被覆剤の前記金属ナノ粒子からの分離温度が、前記金属ナノ粒子の焼結温度以上の温度であることを特徴とする請求項1~3のいずれか1項記載の光学素子パッケージ用リッド。
  5.  前記被覆剤が、アミン、脂肪族カルボン酸及びアルコールからなる群から選ばれる1つ以上の化合物を含むことを特徴とする請求項4記載の光学素子パッケージ用リッド。
  6.  前記被覆剤が、ポリエチレングリコールを含むことを特徴とする請求項4記載の光学素子パッケージ用リッド。
  7.  前記金属ナノ粒子の焼結温度が、110~180℃であることを特徴とする請求項1~6のいずれか1項記載の光学素子パッケージ用リッド。
  8.  前記ハンダ粉末の融点が、前記金属ナノ粒子の焼結温度より低い温度であることを特徴とする請求項1~7のいずれか1項記載の光学素子パッケージ用リッド。
  9.  前記ハンダ粉末が、Sn-Biハンダ、Sn-Zn-Biハンダ及びSn-Znハンダからなる群から選ばれる1つ以上を含むことを特徴とする請求項8記載の光学素子パッケージ用リッド。
  10.  前記分散媒の揮発開始温度が、前記金属ナノ粒子の焼結温度より高く、かつハンダ粉末の融点より高い温度であることを特徴とする請求項1~9のいずれか1項記載の光学素子パッケージ用リッド。
  11.  前記分散媒が、テルペン類、モノテルペンアルコール類、アルキルアルコール、ナフテン系炭化水素からなる群から選ばれる1つ以上の化合物を含むことを特徴とする請求項10記載の光学素子パッケージ用リッド。
  12.  前記金属系接着層が、半硬化状態(B-Stage)であることを特徴とする請求項1~11のいずれか1項記載の光学素子パッケージ用リッド。
  13.  請求項1~12のいずれか1項記載の光学素子パッケージ用リッドを製造する方法であって、
    前記窓材の前記収容部材と接する部分に、前記接着組成物を塗布して前記金属系接着層を形成する工程を含むことを特徴とする光学素子パッケージ用リッドの製造方法。
  14.  光学素子と、該光学素子を内部に収容した収容部材とを備え、請求項1~12のいずれか1項記載の光学素子パッケージ用リッドの前記金属系接着層により前記窓材と前記収容部材とが接着されて、前記光学素子が前記収容部材の内部に気密封止されてなることを特徴とする光学素子パッケージ。
  15.  前記光学素子が、発光素子又は受光素子であることを特徴とする請求項14記載の光学素子パッケージ。
  16.  前記光学素子が、波長300nm以下の光を発光又は受光可能な光学素子であることを特徴とする請求項15記載の光学素子パッケージ。
  17.  請求項14~16のいずれか1項記載の光学素子パッケージを製造する方法であって、
    収容部材の内部に光学素子を実装する工程、及び
    請求項1~12のいずれか1項記載の光学素子パッケージ用リッドの窓材と、光学素子を内部に収容した前記収容部材とを、光学素子パッケージ用リッドの前記金属系接着層により接着して一体化する工程
    を含むことを特徴とする光学素子パッケージの製造方法。
PCT/JP2019/034358 2018-09-20 2019-09-02 光学素子パッケージ用リッド、光学素子パッケージ及びそれらの製造方法 WO2020059468A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980060164.4A CN112673485A (zh) 2018-09-20 2019-09-02 光学元件封装用盖、光学元件封装件及它们的制造方法
US17/277,531 US20210351326A1 (en) 2018-09-20 2019-09-02 Lid for optical element package, optical element package, and manufacturing method for lid for optical element package and optical element package
KR1020217010925A KR20210060532A (ko) 2018-09-20 2019-09-02 광학 소자 패키지용 리드, 광학 소자 패키지 및 그것들의 제조 방법
EP19863570.8A EP3855514A4 (en) 2018-09-20 2019-09-02 LID FOR OPTICAL ELEMENT HOUSING, OPTICAL ELEMENT HOUSING AND MANUFACTURING METHOD FOR LID FOR OPTICAL ELEMENT HOUSING AND FOR OPTICAL ELEMENT HOUSING

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018175824A JP6773093B2 (ja) 2018-09-20 2018-09-20 光学素子パッケージ用リッド、光学素子パッケージ及びそれらの製造方法
JP2018-175824 2018-09-20

Publications (1)

Publication Number Publication Date
WO2020059468A1 true WO2020059468A1 (ja) 2020-03-26

Family

ID=69888722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034358 WO2020059468A1 (ja) 2018-09-20 2019-09-02 光学素子パッケージ用リッド、光学素子パッケージ及びそれらの製造方法

Country Status (7)

Country Link
US (1) US20210351326A1 (ja)
EP (1) EP3855514A4 (ja)
JP (1) JP6773093B2 (ja)
KR (1) KR20210060532A (ja)
CN (1) CN112673485A (ja)
TW (1) TW202034542A (ja)
WO (1) WO2020059468A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4002499A1 (en) * 2020-11-12 2022-05-25 Shin-Etsu Chemical Co., Ltd. Bonding and sealing material, and lid for optical device package

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7510810B2 (ja) 2020-07-20 2024-07-04 スタンレー電気株式会社 半導体発光装置

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196644A (ja) 2000-01-11 2001-07-19 Nichia Chem Ind Ltd 光半導体装置及びその製造方法
JP2004174574A (ja) * 2002-11-28 2004-06-24 Sumitomo Bakelite Co Ltd 半田ペースト及びそれを用いた半導体装置の組立方法
JP2005183903A (ja) * 2003-12-22 2005-07-07 Rohm & Haas Electronic Materials Llc 電子デバイスおよび電子デバイスを形成する方法
JP2006269678A (ja) 2005-03-23 2006-10-05 Matsushita Electric Ind Co Ltd 発光モジュール
US20070295456A1 (en) * 2006-03-28 2007-12-27 Innovative Micro Technology Wafer bonding material with embedded conductive particles
JP2014049646A (ja) * 2012-08-31 2014-03-17 Panasonic Corp 部品実装方法および部品実装システム
WO2017007011A1 (ja) * 2015-07-09 2017-01-12 古河電気工業株式会社 金属微粒子含有組成物
JP2017073489A (ja) * 2015-10-08 2017-04-13 エヌイーシー ショット コンポーネンツ株式会社 メタル−ガラスリッドおよびそれを利用したduv−led装置
JP2017101313A (ja) * 2015-03-20 2017-06-08 株式会社豊田中央研究所 接合材料、それを用いた接合方法、接合材料ペースト及び半導体装置
JP2017191805A (ja) 2016-04-11 2017-10-19 日本電気硝子株式会社 気密パッケージの製造方法及び気密パッケージ
WO2018025798A1 (ja) * 2016-08-03 2018-02-08 古河電気工業株式会社 金属粒子含有組成物
JP2018125368A (ja) * 2017-01-31 2018-08-09 スタンレー電気株式会社 紫外線発光装置及び紫外線照射装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1889683B1 (en) * 2005-05-25 2016-02-03 Senju Metal Industry Co., Ltd. Lead-free solder paste
EP2132782B1 (en) * 2007-02-15 2012-07-11 Transform Solar Pty Ltd. A substrate assembly, an assembly process, and an assembly apparatus
JP4766273B2 (ja) * 2007-05-14 2011-09-07 トヨタ自動車株式会社 接合方法及び接合構造
JP2011041955A (ja) * 2009-08-19 2011-03-03 Honda Motor Co Ltd 接合体の製造方法及び接合体
KR101789825B1 (ko) * 2011-04-20 2017-11-20 엘지이노텍 주식회사 자외선 발광 다이오드를 이용한 발광소자 패키지
JP2012124497A (ja) * 2011-12-26 2012-06-28 Hitachi Metals Ltd 半導体装置
JP6176224B2 (ja) * 2013-12-25 2017-08-09 日亜化学工業株式会社 半導体素子及びそれを備える半導体装置、並びに半導体素子の製造方法
JP6702213B2 (ja) * 2017-01-31 2020-05-27 信越化学工業株式会社 合成石英ガラスリッド用基材及び合成石英ガラスリッド並びにそれらの製造方法

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001196644A (ja) 2000-01-11 2001-07-19 Nichia Chem Ind Ltd 光半導体装置及びその製造方法
JP2004174574A (ja) * 2002-11-28 2004-06-24 Sumitomo Bakelite Co Ltd 半田ペースト及びそれを用いた半導体装置の組立方法
JP2005183903A (ja) * 2003-12-22 2005-07-07 Rohm & Haas Electronic Materials Llc 電子デバイスおよび電子デバイスを形成する方法
JP2006269678A (ja) 2005-03-23 2006-10-05 Matsushita Electric Ind Co Ltd 発光モジュール
US20070295456A1 (en) * 2006-03-28 2007-12-27 Innovative Micro Technology Wafer bonding material with embedded conductive particles
JP2014049646A (ja) * 2012-08-31 2014-03-17 Panasonic Corp 部品実装方法および部品実装システム
JP2017101313A (ja) * 2015-03-20 2017-06-08 株式会社豊田中央研究所 接合材料、それを用いた接合方法、接合材料ペースト及び半導体装置
WO2017007011A1 (ja) * 2015-07-09 2017-01-12 古河電気工業株式会社 金属微粒子含有組成物
JP2017073489A (ja) * 2015-10-08 2017-04-13 エヌイーシー ショット コンポーネンツ株式会社 メタル−ガラスリッドおよびそれを利用したduv−led装置
JP2017191805A (ja) 2016-04-11 2017-10-19 日本電気硝子株式会社 気密パッケージの製造方法及び気密パッケージ
WO2018025798A1 (ja) * 2016-08-03 2018-02-08 古河電気工業株式会社 金属粒子含有組成物
JP2018125368A (ja) * 2017-01-31 2018-08-09 スタンレー電気株式会社 紫外線発光装置及び紫外線照射装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3855514A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4002499A1 (en) * 2020-11-12 2022-05-25 Shin-Etsu Chemical Co., Ltd. Bonding and sealing material, and lid for optical device package

Also Published As

Publication number Publication date
US20210351326A1 (en) 2021-11-11
EP3855514A4 (en) 2022-06-22
JP6773093B2 (ja) 2020-10-21
JP2020047817A (ja) 2020-03-26
TW202034542A (zh) 2020-09-16
KR20210060532A (ko) 2021-05-26
EP3855514A1 (en) 2021-07-28
CN112673485A (zh) 2021-04-16

Similar Documents

Publication Publication Date Title
WO2020059468A1 (ja) 光学素子パッケージ用リッド、光学素子パッケージ及びそれらの製造方法
US10756239B2 (en) Synthetic quartz glass lid and optical device package
TWI752991B (zh) 光學元件封裝用窗口材料、光學元件封裝、該等之製造方法、及光學元件用封裝
JP2020021937A (ja) 合成石英ガラスキャビティ、合成石英ガラスキャビティリッド、光学素子パッケージ及びこれらの製造方法
KR102421332B1 (ko) 합성 석영 유리 리드용 기재 및 합성 석영 유리 리드, 그리고 그것들의 제조 방법
TW202232787A (zh) 密封用接合材及光學元件封裝用蓋
US20070221326A1 (en) Silicon Carbide Bonding
TW201519329A (zh) 電子元件之密封方法、電子元件封裝體之製造方法及密封片
JP2014531393A (ja) 縁部が特殊に形成されたガラスフィルム
EP4180856A1 (en) Window material for optical element, lid for optical element package, optical element package, and optical device
JP2023127000A (ja) 積層体の製造方法、積層体および半導体パッケージの製造方法
TW201521163A (zh) 電子裝置封裝體之製造方法及電子裝置之封裝方法
TW202139489A (zh) 照明裝置
TW202003418A (zh) 雷射密封超薄玻璃

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19863570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217010925

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019863570

Country of ref document: EP

Effective date: 20210420