WO2020057106A1 - 光源系统及显示设备 - Google Patents

光源系统及显示设备 Download PDF

Info

Publication number
WO2020057106A1
WO2020057106A1 PCT/CN2019/081646 CN2019081646W WO2020057106A1 WO 2020057106 A1 WO2020057106 A1 WO 2020057106A1 CN 2019081646 W CN2019081646 W CN 2019081646W WO 2020057106 A1 WO2020057106 A1 WO 2020057106A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
color wheel
light source
source system
spot
Prior art date
Application number
PCT/CN2019/081646
Other languages
English (en)
French (fr)
Inventor
王则钦
杜鹏
鲁宁
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2020057106A1 publication Critical patent/WO2020057106A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light

Definitions

  • the invention relates to the field of projection technology, in particular to a light source system and a display device.
  • the use of laser fluorescence mixed light as a light source in a laser fluorescence projection system not only reduces the cost of the projection equipment, but also reduces the speckle phenomenon compared to a pure laser light source.
  • the temperature problem caused by insufficient heat dissipation of the phosphor in the laser fluorescent light source has always restricted the further improvement of the light efficiency of the light source.
  • a projection system is proposed which uses an inorganic phosphor material and a rotating color wheel with better heat dissipation effect. Under these conditions, the laser-to-fluorescence efficiency is about 30% to 40%. It can be seen that the efficiency of laser conversion into fluorescence is still at a low level, and more research is needed to improve the heat dissipation effect of the fluorescent pink wheel.
  • FIG. 1 is a schematic diagram of the comparison of the center angles corresponding to the fluorescent spots t ′ in the color wheel 150 and the color wheel 250.
  • the spoke angle ⁇ 2 ⁇ 1 of the fluorescent spot on the color wheel is increased.
  • a projection device of a single-chip spatial light modulator that combines light in time
  • there are multiple segments of different color phosphors on the color wheel and the junction of different phosphors must be turned off within the corresponding spoke angle to avoid the occurrence of The mixed light affects the projection screen display results.
  • the larger the color wheel is the smaller the angle of the center of the circle corresponding to the spot of the same size is, and the smaller the angle of the corresponding spoke is, so the light efficiency of the light source can be further improved.
  • the change in the volume of the color wheel causes the overall volume of the projection device to increase, and the thickness of the projection device is often increased according to the installation position of the color wheel in the projection device.
  • the present invention provides a light source system that effectively reduces the overall volume of the light source system when the volume of the color wheel is increased.
  • the present invention also provides A display device including the light source system.
  • a light source system includes:
  • the color wheel whose light-incident side surface includes:
  • a conversion region for converting the first light into the second light A conversion region for converting the first light into the second light
  • a guiding device is disposed between the light source and the color wheel, and is configured to guide the first light to the conversion area to form a first light spot, and to guide the second light emitted from the conversion area to be irradiated to
  • the filter region forms a second light spot, and a connection line between the first light spot and the second light spot is offset from a geometric center of the color wheel.
  • the line passes through the geometric center of the first light spot and the geometric center of the second light spot.
  • the surface of the color wheel includes a first area and a second area outside the first area, the first light spot and the second light spot are located in the first area, and the guiding device corresponds to the The first area is provided, and the light source system further includes a heat dissipation device provided on the light incident side of the color wheel corresponding to the second area.
  • a transmission path of the first light and the light generated by the second light guided by the guiding device is provided corresponding to the first region.
  • the light source system further includes a light homogenizing device for homogenizing the second light emitted from the filter area.
  • the color wheel is circular, and the filter area is arranged in a circular shape on the surface of the color wheel.
  • the filter area includes a first section arranged in sequence along a circumferential direction of the color wheel, The second section and the third section, wherein each section is used for filtering different colors of light in the second light.
  • the second light spot is rectangular, and two sides of the rectangle that are perpendicular to each other are a first side and a second side, respectively, and a dividing line is provided between each section of the filter area.
  • the color wheel is periodically rotated by the driving device. When any boundary line is located at the geometric center of the second light spot, the boundary line is perpendicular to the first side edge and parallel to the second side edge.
  • the angle at which any boundary line passes from entering to leaving the second spot corresponding to the rotation of the color wheel is the spoke angle
  • the vertical distance from the geometric center of the color wheel to the connecting line is the eccentric distance
  • the eccentricity is adjustable.
  • the conversion region includes a plurality of segments respectively for emitting light of different colors, and the second light emitted from each segment of the conversion region is incident on a segment corresponding to the filter region.
  • a period corresponding to the rotation of the color wheel through the spoke angle is a spoke period, and the light source does not emit light during the spoke period.
  • a display device includes the light source system according to any one of the above.
  • the first light spot and the second light spot are eccentrically arranged, and the internal components of the light source system are compactly arranged, which is beneficial to reducing the size of the color wheel on the basis of increasing the color wheel. Reduce the volume of the light source system, or keep the structure of the light source system unchanged.
  • Figure 1 is a schematic diagram of the comparison of the center angles of the fluorescent spots before and after the color wheel increases in volume.
  • FIG. 2 is a schematic structural diagram of a light source system in a first embodiment of the present invention.
  • FIG. 3 is a schematic diagram of a surface structure of a color wheel in a prior art light source system.
  • FIG. 4 is a schematic structural diagram of a light source system provided in a second embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of the color wheel shown in FIG. 4.
  • FIG. 6 is a schematic structural diagram of a color wheel in another embodiment of the light source system shown in FIG. 4.
  • FIG. 7 is a schematic diagram of spoke angles of the color wheel shown in FIG. 6.
  • FIG. 8 is a comparison diagram of spoke angles in FIG. 5 and FIG. 7.
  • Light source system 100 200 light source 110, 210 Guidance device 130, 230 Collection lens 131 Light splitting and combining element 132 Converging lens 133 Guide element 134 Relay lens 135 Color wheel 150, 250, 350 Circle center o First section B1, B2 Second section R1, R2 Third section G1, G2 First spot s Second spot t First area e Second zone f Fluorescent spot t '
  • FIG. 2 is a schematic structural diagram of a light source system 100 according to a first embodiment of the present invention.
  • the light source system 100 includes a light source 110, a guiding device 130, a color wheel 150, and a light uniforming device 170.
  • the light source 110 is used to emit the first light
  • the color wheel 150 is used to perform wavelength conversion on the first light to obtain the second light
  • the second light is filtered and emitted
  • the guiding device 130 is used to guide the first light to the color
  • the surface of the wheel 150 and the second light generated by the color wheel 150 are guided to the surface of the color wheel 150 again for filtering.
  • the light homogenizing device 170 is used to uniformize the second light emitted from the color wheel 150 to obtain a self-light source. Light source light emitted by the system 100.
  • the light source 110 is a blue light source, and is configured to emit a blue first light. It can be understood that the light source 110 may also be a purple light source or an ultraviolet light source, and is configured to emit purple light or ultraviolet light as the first light to excite the color wheel 150 to emit the first light including three primary colors of light with a longer wavelength.
  • the light-emitting body in the light source 110 may be a laser or a light-emitting diode, and the number of the light-emitting body may be flexibly selected according to requirements.
  • a light homogenizing device such as an optical integrator rod or a fly-eye lens, may be provided for homogenizing the emitted first light.
  • the light homogenizing device in the light source 110 can be omitted, especially in a miniaturized light source system.
  • FIG. 3 is a schematic diagram of a surface structure of a color wheel 150 in a prior art light source system.
  • the structure of the color wheel in the present invention is similar to that of the color wheel 150 shown in FIG. 3.
  • the color wheel 150 shown in FIG. 2 includes a base plate 151.
  • the geometric center of the color wheel 150 is the geometric center of the base plate 151. Since the base plate 151 is circular, the above-mentioned geometric center is the center o of the base plate 151.
  • the color wheel 150 includes a conversion region 153 and a filter region 155 disposed on a surface of the substrate 151. Among them, the conversion region 153 and the filter region 155 are in the shape of a circular ring with different inner and outer diameters.
  • the filter region 155 is disposed on the edge of the substrate 151, and the conversion region 153 is disposed along the inner circle of the filter region 155 or the conversion region.
  • the positions of 153 and the filter region 155 are interchangeable.
  • the conversion region 153 and the filter region 155 may be disposed at intervals or adjacently.
  • the conversion region 153 includes a plurality of segments for emitting light of different colors. As shown in FIG. 3, the conversion region 153 is sequentially arranged along the circumferential direction of the color wheel 150 with a first segment B1, a second segment R1, and The third section G1 is the first section B1, the second section R1, and the third section G1 which are sequentially arranged along the circumferential direction of the surface of the substrate 151.
  • the color wheel 150 rotates periodically under the driving of the driving device, and the first section B1, the second section R1, and the third section G1 are periodically located on the optical path of the first light.
  • a first segment B1 for emitting blue first light is provided with a scattering layer formed of a scattering powder for scattering the first light to change the angular distribution of the first light, and the remaining segments are provided in Corresponding color phosphors, for example, a red phosphor is provided in the second segment R1, and a green phosphor is provided in the third segment G1 to perform wavelength conversion on the first blue light and generate red fluorescence and green fluorescence, respectively.
  • the first light is periodically irradiated to each section of the conversion area 153.
  • the first light forms a first light spot s in the conversion area 153.
  • the first light emitted by the conversion area 153 includes red fluorescence, green fluorescence, and scattered blue light.
  • One light, three primary colors of the first light are sequentially combined to obtain white light.
  • the conversion region 153 includes two sections for emitting yellow fluorescence and scattering the first blue light, and combining the yellow fluorescence and the scattered blue first light to obtain white light.
  • the conversion region 153 includes four segments for emitting red fluorescence, green fluorescence, yellow fluorescence, and scattered blue fluorescence, or the conversion region 153 emits orange fluorescence instead of red fluorescence.
  • the conversion region 153 may also There are other implementations, not limited to the ones listed above.
  • the filter region 155 includes three sections corresponding to the three primary colors one by one.
  • the filter region 155 includes a first region provided with a blue filter, a red filter, and a green filter, respectively. Segment B2, second segment R2, and third segment G2.
  • the filter area 155 rotates in synchronization with the conversion area 153.
  • the second light emitted by the conversion area 153 in time sequence is guided by the guide device 130 (FIG. 2) and passes through the corresponding color section in the filter area 155.
  • the color wheel 150 emits light, thereby intercepting a part of the second light to improve the purity of the emitted second light.
  • the second light forms a second light spot t in the filter region 155.
  • the first light is a Gaussian-distributed laser
  • the second light includes Lambertian-distributed fluorescence
  • the second light beam on the surface of the color wheel 150 has a larger beam diameter than the first light, so that the area of the first spot s is smaller than The second light spot t.
  • the guiding device 130 (FIG. 2) is provided corresponding to the conversion region 153 and the filter region 155 on the surface of the color wheel 150, and the geometric center of the first light spot s is connected to the geometric center of the second light spot t to obtain a line x. x passes through the geometric center (circle o) of the color wheel 150.
  • the guiding device 130 is still provided correspondingly to the conversion region 153 and the filter region 155, resulting in color
  • other optical devices cannot be installed on the light-incident side of the color wheel 150, which leads to an increase in the volume of the light source system 100.
  • the present invention improves the relative position of other optical devices relative to the color wheel 150 in the prior art, especially the positions of the first light spot s and the second light spot on the color wheel 150, which is beneficial to reducing the size of the color wheel 150 on the basis of increasing the color wheel 150.
  • the volume of the small light source system 100 or the structure of the light source system 100 remains unchanged.
  • the structure of the color wheel 150 in the prior art is improved to reduce the proportion of the spoke area of the color wheel 150 on the surface of the color wheel 150 to reduce the influence of the spoke area on the light efficiency of the light source system 100. .
  • the light uniforming device 170 and the guiding device 130 are respectively disposed on opposite sides of the color wheel 150.
  • the second light emitted from the filter region 155 in the color wheel 150 is homogenized by the light homogenizing device 170 to emit light source light with uniform color and brightness.
  • the light homogenizing device 170 may be an optical integrator rod or a fly-eye lens.
  • the guiding device 130 includes a collecting lens 131, a light splitting and combining element 132, a condensing lens 133, a guiding element 134, and a relay lens 135.
  • the second light emitted from the conversion area 153 passes through the collection lens 131, the light splitting and combining element 132, the condensing lens 133, the guide element 134, and the relay lens 135 in order and enters the filter area 155.
  • the collection lens 131 is composed of a plurality of lenses with overlapping optical axes.
  • the focal lengths of the lenses are different. The closer the distance to the color wheel 150 is, the smaller the focal length is.
  • the collecting lens is used to collect and collimate the second light of the Lambertian distribution emitted from the conversion region 153, and emit the second light that is substantially parallel.
  • the light splitting and combining element 132 is configured to guide the first light emitted from the light source 110 to pass through the collection lens 131 and enter the conversion area 153, and to guide the second light emitted from the conversion area 153 to the condensing lens 133.
  • the light splitting and combining element 132 includes a coating region for transmitting the first light and an edge region for reflecting the second light.
  • the condensing lens 133 is used for converging the second light emitted from the light splitting and combining element 132 to the guide element 134.
  • the guide element 134 is a reflective element, and the second light emitted by the guide element 134 is relayed by the relay lens 135 After reaching the filter area 155, it enters the light homogenizing device 170.
  • FIG. 4 is a schematic structural diagram of a light source system 200 provided in a second embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of a color wheel 250 shown in FIG. 4.
  • the light source system 200 is used in display devices, especially in projection products with strict volume requirements, such as miniature projectors and laser TVs.
  • the light source system 200 includes a light source 210, a color wheel 250, a uniform light device 270, and a guiding device 230 disposed between the light source 210 and the color wheel 250.
  • the light source 210 is used to emit the first light
  • the color wheel 250 is used to perform wavelength conversion on the first light and obtain the second light
  • the second light is emitted from the color wheel 250 after being filtered by the color wheel 250
  • the guiding device 230 is used for
  • the first light emitted from the light source 210 is guided to the color wheel 250
  • the second light emitted from the color wheel 250 is guided to the color wheel 250 for filtering.
  • the light homogenizing device 270 is configured to perform homogenization processing on the filtered second light emitted from the color wheel 250.
  • the color wheel 250 is a reflective color wheel and includes a substrate 251, and a conversion region 253 and a filter region 255 provided on a light-incident side surface of the substrate 251.
  • the conversion area 253 is used to convert the first light into the second light
  • the filter area 255 is used to filter the second light emitted from the conversion area 253.
  • the first light forms a first light spot s in the conversion area 253
  • the second light forms a second light spot t in the filter area 255
  • the line x between the first light spot s and the second light spot t deviates from the geometry of the color wheel 250 center. Since the color wheel 250 is circular, the geometric center of the color wheel 250 is its center o.
  • the first light spot s and the second light spot t are located at eccentric positions on the substrate 251. It should be noted that, because the first light and the second light both have a certain divergence angle, the first light spot s and the second light spot t occupy a certain area, so the line x in the present invention refers to the geometry of the first light spot s The line between the center and the geometric center of the second light spot t.
  • the light incident side surface of the substrate 251 includes a first region e and a second region f other than the first region e.
  • the first light spot s and the second light spot t are located in the first area e.
  • the guiding device 230 is provided corresponding to the first area e, and the guiding device 230 is configured to guide the transmission paths of the first light and the second light corresponding to the first area e. That is, the transmission light paths of the first light and the second light are provided corresponding to the first area e. Further, the guide device 230 and its transmission path for guiding the first light and the second light are projected into the first area e, that is, the guide device 230 is eccentrically disposed corresponding to the surface of the color wheel 250 to form a first area e in the first area e.
  • a light spot s and a second light spot t, and the light source system 200 may further arrange other optical components, such as a cooling device such as a fan, on the light-incident side of the color wheel 250 corresponding to the second area f, so that the internal device layout of the light source system 200 is more compact,
  • the large color wheel 250 effectively reduces the overall volume of the light source system 200 or keeps the structure of the light source system 200 unchanged.
  • the light-incident side surface of the substrate 251 is circular, and includes a first region e and a second region f other than the first region e that are respectively arc-shaped.
  • the geometric center (ie, the circle center o) of the color wheel 250 is located in the second region f, that is, the second region f has a superior bow shape, and the first region e has a poor bow shape.
  • the sections of the conversion region 253 and the filter region 255 in the color wheel 250 are set the same as those of the color wheel 150. Specifically, the dividing lines between the respective sections of the conversion region 253 and the filter region 255 are distributed along the radial direction of the color wheel 250.
  • the color wheel 250 rotates periodically driven by the driving device.
  • the angle at which any color line 250 rotates from entering to leaving the second light spot t is the spoke angle ⁇ , and the period corresponding to the time when the color wheel 250 rotates through the spoke angle ⁇ is During the spoke period, the light source 110 does not emit light during the spoke period, so as to avoid the problem that the color wheel 250 emits the mixed light of the two primary color lights during the spoke period and causes the display device to output a poor image quality.
  • the image screen emitted by the display device is rectangular.
  • the display device includes a light modulation device for modulating light emitted from the light source system 200. Accordingly, in order to improve the light efficiency of the light source system 200
  • the modulation area of the light modulation device for modulating light, the entrance and exit of the light homogenizing device 270, the first light spot s and the second light spot t are rectangular to match the shape of the entrance of the light homogenizing device 270.
  • FIG. 6 is a schematic structural diagram of a color wheel 250 in another embodiment of the light source system 200 shown in FIG. 4, and FIG. 7 is a spoke angle ⁇ of the color wheel 350 shown in FIG. 6. schematic diagram.
  • the second light spot t on the color wheel 350 is rectangular, and the rectangle is surrounded by two first side edges t1 and two second side edges t2, where the two first side edges t1 are disposed in parallel and spaced apart, and the two second sides The sides t2 are arranged in parallel and spaced apart.
  • the first side t1 and the second side t2 are perpendicularly connected to each other.
  • the first side t1 and the second side t2 together form the boundary of the second light spot t.
  • the length of the first side t1 is less than The length of the second side t2.
  • the filter area 355 in the color wheel 350 includes a first section B2, a second section R2, and a third section G2.
  • a dividing line is set between the above three sections.
  • the color wheel 350 is periodically driven by the driving device. Rotation, any boundary line from entering to leaving the second light spot t corresponds to the spoke angle ⁇ of the color wheel 350.
  • the boundary line perpendicularly intersects the first side edge t1 of the second light spot t and is parallel to the second side edge t2, which is beneficial to reducing Small wheel angle ⁇ and improve light efficiency.
  • the boundary of each segment is set in the conversion region 353 in the same manner. Specifically, when any boundary line of the conversion area 353 is located at the geometric center of the first light spot s under the driving of the driving device, the boundary line intersects with a pair of sides of the first light spot s and with another side of the first light spot s. Opposite sides are parallel.
  • the eccentric distance L of the second light spot t on the color wheel 350 is adjustable.
  • the eccentric distance L refers to the vertical distance from the geometric center (circle o) of the color wheel 350 to the line x.
  • the spoke angle ⁇ of the color wheel 350 can be determined according to the inner diameter dimension r1 and outer diameter dimension r2 of the filter region 355, the first side t1 dimension a of the second light spot t, the size b of the second side t2, and the second light spot t.
  • the eccentricity distance L can be calculated. Specifically, the calculation formulas of the spoke angles ⁇ and ⁇ are as follows:
  • the color wheel 350 is approximately considered in the calculation process here
  • the distance from the circle center o to the center of the second spot t is equal to the distance to the diagonal apex of the second spot t.
  • the size of the second light spot t is equal to the entrance of the light homogenizing device.
  • the size of the filter region 355 and the second light spot t is determined and can be adjusted by The eccentric distance L is used to reduce the spoke angle ⁇ , so that the spoke angle ⁇ is smaller than the spoke angle ⁇ , which is conducive to improving light efficiency.
  • b 4mm. According to the above formula, when a ⁇ b, compared to the case of b ⁇ a, the spoke angle ⁇ is smaller.
  • the spoke angle ⁇ is about 8 °. Therefore, it can be further calculated that when L is less than about 26mm, the spoke angle ⁇ ⁇ the spoke angle ⁇ , thereby ensuring that the spoke angle ⁇ is reduced to improve the light efficiency on the basis of changing the setting direction of the dividing line.
  • the first light spot s and the second light spot t are eccentrically arranged on the color wheel, and further, the light source system may be provided with other optical devices such as a heat dissipation device corresponding to the second area f on the surface of the color wheel, so that the internal components of the light source system are arranged.
  • the cloth is compact, which is conducive to reducing the volume of the light source system or keeping the structure of the light source system unchanged on the basis of increasing the color wheel. Further, by setting the extending direction of the boundary line of each segment in the filter region 355 to improve the light efficiency of the light source system.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种光源系统(100、200)及显示设备,光源系统(100、200)包括:光源(110、210),用于发出第一光;色轮(150、250、350),其入光侧表面包括:用于将第一光转换为第二光的转换区(153、253、353);及用于对转换区(153、253、353)出射的第一光进行滤光的滤光区(155、255、355);引导装置(130、230),设置于光源(110、210)及色轮(150、250、350)之间,用于引导第一光照射至转换区(153、253、353)形成第一光斑(s),以及用于引导转换区(153、253、353)出射的第二光照射至滤光区(155、255、355)形成第二光斑(t),第一光斑(s)与第二光斑(t)之间的连线(x)偏离色轮(150、250、350)的几何中心(o),连线(x)穿过第一光斑(s)的几何中心及第二光斑(t)的几何中心。第一光斑(s)与第二光斑(t)在色轮(150、250、350)上偏心设置,从而有利于在增大色轮(150、250、350)的基础上减小光源系统(100、200)的体积,或使光源系统(100、200)的结构保持不变。

Description

光源系统及显示设备 技术领域
本发明涉及投影技术领域,尤其涉及一种光源系统及显示设备。
背景技术
本部分旨在为权利要求书中陈述的本发明的具体实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
激光荧光投影系统中使用激光荧光混合光作为光源不仅降低了投影设备的成本,而且相对于纯激光光源减弱了散斑现象。但是在激光荧光光源中荧光粉散热不足导致的温度问题一直限制着光源光效的进一步提升。为提升荧光粉散热效果,针对投影系统提出了使用散热效果更好的无机荧光粉材料和旋转色轮的方案。在这种条件下,激光转化为荧光效率约为30%~40%。由此可见,激光转换为荧光的效率还处于较低的水平,提升荧光粉色轮散热效果仍需更多研究。
目前,关于无机荧光粉材料的研究还存在一些问题,处于瓶颈阶段,而通过旋转色轮进行散热的方法作为一项成熟的技术已经广泛用于投影设备产品中。在旋转色轮的基础上改进色轮的散热结构是目前增强色轮散热效果较为常用的方法,且能取得较好的散热效果。色轮散热结构的改进往往导致色轮整体体积增大。
请参阅图1,色轮150体积增大后得到色轮250,图1为色轮150与色轮250中荧光光斑t'对应的圆心角对比示意图。在荧光光斑t'面积不变而色轮体积增大的情况下,荧光光斑在色轮上对应的轮辐角θ2<θ1。
在时序合光的单片式空间光调制器的投影设备中,色轮上存在多段不同颜色荧光粉段,不同荧光粉段交界位置必须在对应轮辐(spoke)角范围内关闭光源,以避免产生混合光影响投影画面显示结果。色轮变大后由于相同大小光斑对应的圆心角度变小,相应的轮辐角度也会 变小,因此光源光效可进一步提升。然而,色轮体积变大会导致投影设备整体体积增大,按照投影设备中色轮的安装位置往往导致投影设备厚度增加。对于微投和激光电视这些商务和家用投影设备来说,投影设备的体积往往存在较为严格的限制,体积变大后的投影设备会不符合产品要求。因此,对于体积要求较为严格的投影产品难以通过改进色轮散热结构而提升光效。
发明内容
为解决现有技术由于增大色轮体积导致光源系统体积增大的技术问题,本发明提供一种在增大色轮体积的情况下有效减小光源系统整体体积的光源系统,本发明还提供一种包括所述光源系统的显示设备。
一种光源系统,包括:
光源,用于发出第一光;
色轮,其入光侧表面包括:
用于将所述第一光转换为第二光的转换区;及
用于对所述转换区出射的第一光进行滤光的滤光区;
引导装置,设置于所述光源及所述色轮之间,用于引导所述第一光照射至所述转换区形成第一光斑,以及用于引导所述转换区出射的第二光照射至所述滤光区形成第二光斑,所述第一光斑与所述第二光斑之间的连线偏离所述色轮的几何中心。
进一步地,所述连线穿过所述第一光斑的几何中心及所述第二光斑的几何中心。
进一步地,所述色轮表面包括第一区域及所述第一区域外的第二区域,所述第一光斑与所述第二光斑位于所述第一区域中,所述引导装置对应所述第一区域设置,所述光源系统还包括在所述色轮的入光侧对应所述第二区域设置的散热装置。
进一步地,所述第一光与所述第二光经所述引导装置引导产生的光的传输路径对应所述第一区域设置。
进一步地,所述光源系统还包括用于对所述滤光区出射的第二光进行匀光的匀光装置。
进一步地,所述色轮呈圆形,所述滤光区呈圆环状设置于所述色轮表面,所述滤光区包括沿所述色轮的周向依次排布第一区段、第二区段及第三区段,其中每个区段用于对所述第二光中的不同颜色光进行滤光。
进一步地,所述第二光斑呈矩形,所述矩形相互垂直的两条边分别为第一侧边和第二侧边,所述滤光区的各个区段之间设置有分界线,所述色轮在驱动装置的带动下周期性旋转,任一分界线位于所述第二光斑的几何中心时,所述分界线与所述第一侧边垂直,并与所述第二侧边平行。
进一步地,任一分界线从进入到离开所述第二光斑对应所述色轮旋转过的角度为轮辐角,所述色轮几何中心到所述连线的垂直距离为偏心距离,所述偏心距离是可调节的,在所述滤光区及所述第二光斑的尺寸确定时,通过调节所述偏心距离以减小所述轮辐角。
进一步地,所述转换区包括分别用于出射不同颜色光的多个区段,所述转换区中每个区段出射的第二光入射至所述滤光区对应的区段中。
进一步地,所述色轮转过所述轮辐角对应的时段为轮辐期,所述光源在所述轮辐期不发光。
一种显示设备,包括如上任意一项所述的光源系统。
本发明提供的光源系统中的色轮上,所述第一光斑与所述第二光斑偏心设置,所述光源系统内部元件排布紧凑,从而有利于在增大所述色轮的基础上减小所述光源系统的体积,或使所述光源系统的结构保持不变。
附图说明
为了更清楚地说明本发明实施例/方式技术方案,下面将对实施例/方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例/方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为色轮增大体积前后,荧光光斑对应的圆心角对比示意图。
图2为本发明第一实施方式中光源系统的结构示意图。
图3为现有技术光源系统中的色轮的表面结构示意图。
图4为本发明第二实施方式中提供的光源系统的结构示意图。
图5为图4所示的色轮结构示意图。
图6为图4所示的光源系统中色轮在另一实施方式中的结构示意图。
图7为图6所示的色轮的轮辐角示意图。
图8为图5与图7中的轮辐角的比较示意图。
主要元件符号说明
光源系统 100、200
光源 110、210
引导装置 130、230
收集透镜 131
分光合光元件 132
会聚透镜 133
引导元件 134
中继透镜 135
色轮 150、250、350
圆心 o
第一区段 B1、B2
第二区段 R1、R2
第三区段 G1、G2
第一光斑 s
第二光斑 t
第一区域 e
第二区域 f
荧光光斑 t'
第一侧边 t1
第二侧边 t2
基板 151、251
转换区 153、253、353
滤光区 155、255、355
轮辐角 θ1、θ2、α、β
匀光器件 170、270
连线 x
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施例对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
请参阅图2,为本发明第一实施方式中光源系统100的结构示意图。光源系统100包括光源110、引导装置130、色轮150及匀光器件170。其中光源110用于发出第一光,色轮150用于对第一光进行波长转换得到第二光,并对第二光进行滤光后出射,引导装置130用于将第一光引导至色轮150表面,以及用于将色轮150产生的第二光再次引导至色轮150表面进行滤光,匀光器件170用于对色轮150出射的第二光进行均匀化处理后得到自光源系统100出射的光源光。
具体地,光源110为蓝色光源,用于发出蓝色第一光。可以理解的是,光源110还可以是紫色光源或紫外光源,用于发出紫色光或紫外光作为第一光以激发色轮150出射波长较长的包括三基色光的第一光。光源110中的发光体可以是激光器,也可以是发光二极管,具体其发光体的数量可以根据需要灵活选择。
在光源110中,可以设置用于对出射的第一光进行匀光的匀光器件,比如光学积分棒或复眼透镜。不过光源110中的匀光器件是可以省略的,特别是在小型化的光源系统中。
请参阅图3,为现有技术光源系统中的色轮150的表面结构示意图。本发明中色轮的结构与图3所示的色轮150结构相似。图2所示的色轮150包括基板151,色轮150的几何中心即是基板151的几何中心,由于基板151呈圆形,故上述几何中心为基板151的圆心o。色轮150包括设置于基板151表面的转换区153与滤光区155。其中,转换区153与滤光区155呈内径及外径均不等的圆环状,滤光区155设置于基板151的边缘,转换区153沿滤光区155的内圈设置,或转换区153与滤光区155的位置互换都是可行的。转换区153与滤光区155可以间隔设置也可以相邻设置。
进一步地,转换区153包括多个用于出射不同颜色光的区段,如图3所示,转换区153沿色轮150周向依次排布有第一区段B1、第二区段R1与第三区段G1,也即是沿基板151表面周向依次排布的第一区段B1、第二区段R1与第三区段G1。色轮150在驱动装置的驱动下周期性旋转,第一区段B1、第二区段R1及第三区段G1周期性位于第一光的光路上。进一步地,用于出射蓝色第一光的第一区段B 1设置有用于对第一光进行散射的由散射粉形成的散射层,以改变第一光的角度分布,其余区段中设置有对应颜色的荧光粉,比如第二区段R1中设置有红色荧光粉,第三区段G1设置有绿色荧光粉,以分别对蓝色第一光进行波长转换并产生红色荧光与绿色荧光。第一光周期性照射至转换区153的各个区段,第一光在转换区153内形成第一光斑s,转换区153出射的第一光包括红色荧光、绿色荧光及散射后的蓝色第一光,第一光中的三基色光时序合光后得到白光。
在一种实施方式中,转换区153包括用于出射黄色荧光与散射蓝色第一光的两个区段,黄色荧光与散射后的蓝色第一光合光后得到白光。在变更实施方式中,转换区153包括用于出射红色荧光、绿色荧光、黄色荧光、散射后的蓝色荧光的四个区段,或者转换区153出射橙色荧光替换红色荧光,转换区153还可以有其他的实现方式,不限于上述列举的几种。
滤光区155包括与三基色一一对应的三个区段,在本实施方式中,滤光区155包括分别设置有蓝色滤光片、红色滤光片及绿色滤光片的第一区段B2、第二区段R2及第三区段G2。在驱动装置的带动下,滤光区155与转换区153同步转动,转换区153时序出射的第二光经过引导装置130(图2)的引导后穿过滤光区155中对应颜色区段后自色轮150出射,从而截留第二光中部分光线以提高出射第二光的纯度。第二光在滤光区155形成第二光斑t。
在激光荧光光源系统中,第一光为高斯分布的激光,第二光包括朗伯分布的荧光,色轮150表面的第二光的光束直径大于第一光,从而第一光斑s的面积小于第二光斑t。现有技术中,引导装置130(图2)对应色轮150表面的转换区153及滤光区155设置,第一光斑s的几何中心连接第二光斑t的几何中心得到连线x,连线x经过色轮150的几何中心(圆心o)。然而,为改善色轮150的散热效果而增大色轮150体积时,特别是增大色轮150的直径时,相应地,引导装置130仍然对应转换区153及滤光区155设置,导致色轮150增大后色轮150的入光侧同样无法设置其他的光学器件,进而导致光源系统100的体积增大,对于体积要求较为严格的投影产品难以通过改进色轮150散热结构而提升光效。本发明通过改进其他光学装置相对于现有技术中的色轮150的相对位置,特别是色轮150上第一光斑s与第二光斑的位置,有利于在增大色轮150的基础上减小光源系统100的体积,或使光源系统100的结构保持不变。在此基础上,对现有技术中的色轮150的结构进行改进,以减小色轮150的轮辐区的在色轮150表面的比例,以减小轮辐区对光源系统100光效的影响。
请再次参阅图2,匀光器件170与引导装置130分别设置于色轮 150的相对两侧。色轮150中滤光区155出射的第二光经过匀光器件170的均匀化后出射颜色及亮度均匀的光源光。匀光器件170可以是光学积分棒或复眼透镜。
进一步地,引导装置130包括收集透镜131、分光合光元件132、会聚透镜133、引导元件134及中继透镜135。转换区153出射的第二光依次经过收集透镜131、分光合光元件132、会聚透镜133、引导元件134及中继透镜135后入射至滤光区155。
收集透镜131由多个光轴重叠的透镜组成,其中的多个透镜的焦距不同,与色轮150之间距离越近的透镜,其焦距越小。收集透镜用于收集转换区153出射的朗伯分布的第二光并将其准直,出射大致平行的第二光。
分光合光元件132用于引导光源110出射的第一光穿过收集透镜131入射至转换区153,以及用于引导转换区153出射的第二光照射至会聚透镜133。具体地,分光合光元件132包括用于透射第一光的镀膜区域以及用于反射第二光的边缘区域。
会聚透镜133用于将分光合光元件132出射的第二光会聚至引导元件134,在本实施方式中,引导元件134为反射元件,引导元件134出射的第二光经中继透镜135中继至滤光区155后进入匀光器件170。
请参阅图4-图5,图4为本发明第二实施方式中提供的光源系统200的结构示意图,图5为图4所示的色轮250结构示意图。光源系统200应用于显示设备中,特别是对于体积要求较为严格的投影产品中,比如微型投影仪与激光电视。
如图4所示,光源系统200包括光源210、色轮250、匀光器件270及设置于光源210及色轮250之间的引导装置230。其中,光源210用于发出第一光,色轮250用于对第一光进行波长转换并得到第二光,第二光经过色轮250的滤光后自色轮250出射,引导装置230用于将光源210出射的第一光引导至色轮250,以及用于将色轮250出射的第二光引导至色轮250进行滤光。匀光器件270用于对色轮250出射的滤光后的第二光进行均匀化处理。
如图5所示,色轮250为反射式色轮,其包括:基板251、及设 置于基板251入光侧表面的转换区253及滤光区255。其中,转换区253用于将第一光转换为第二光,滤光区255用于对转换区253出射的第二光进行滤光。第一光在转换区253形成第一光斑s,第二光在滤光区255形成第二光斑t,第一光斑s与所述第二光斑t之间的连线x偏离色轮250的几何中心。由于色轮250呈圆形,故色轮250的几何中心为其圆心o。换句话说,第一光斑s与第二光斑t位于基板251上的偏心位置。需要说明的是,由于第一光与第二光均具有一定发散角,故第一光斑s与第二光斑t均占据一定面积,因此本发明中的连线x是指第一光斑s的几何中心与第二光斑t的几何中心之间的连线。
相应地,基板251的入光侧表面包括第一区域e及第一区域e之外的第二区域f,第一光斑s与第二光斑t位于第一区域e中。
如图4所示,引导装置230对应第一区域e设置,并且,引导装置230用于引导第一光与第二光的传输路径对应第一区域e设置。也就是说,第一光与第二光的传输光路对应第一区域e设置。进一步地,引导装置230及其用于引导第一光与第二光的传输路径投影至第一区域e中,即引导装置230对应色轮250表面偏心设置,以在第一区域e中形成第一光斑s及第二光斑t,进而光源系统200可以在色轮250入光侧对应第二区域f设置其他光学部件,比如风扇等散热装置,使得光源系统200内部器件布局更紧凑,以在增大色轮250体积的情况下有效减小光源系统200整体体积,或使光源系统200的结构保持不变。
具体地,如图5所示,基板251的入光侧表面呈圆形,包括分别呈弓形的第一区域e及第一区域e之外的第二区域f。在本实施方式中,色轮250的几何中心(即圆心o)位于第二区域f中,即第二区域f呈优弓形,第一区域e呈劣弓形。
色轮250中的转换区253与滤光区255的各区段设置与色轮150相同。具体地,转换区253与滤光区255的各个区段之间的分界线沿色轮250的径向分布。色轮250在驱动装置的带动下周期性旋转,任一分界线从进入到离开第二光斑t对应色轮250旋转过的角度为轮辐角β,色轮250转过轮辐角β对应的时段为轮辐期,光源110在轮辐 期不发光,以避免色轮250在轮辐期出射两种基色光的混合光导致显示设备出射图像画面质量不佳的问题。
需要说明的是,在本发明的精神或基本特征的范围内,适用于光源系统100中的各具体方案也可以相应的适用于光源系统200中,为节省篇幅及避免重复起见,在此就不再赘述。
当光源系统200应用于显示设备中时,显示设备出射的图像画面呈矩形,显示设备包括用于对光源系统200出射的光线进行调制的光调制装置,相应地,为提高光源系统200的光效,光调制装置的用于调制光线的调制区域、匀光器件270的入口及出口、第一光斑s及第二光斑t均呈矩形,以与匀光器件270入口形状相匹配。
请参阅图6-图7所示,图6为图4所示的光源系统200中色轮250在另一实施方式中的结构示意图,图7为图6所示的色轮350的轮辐角α示意图。
色轮350上第二光斑t呈矩形,该矩形由两个第一侧边t1及两个第二侧边t2围成,其中,两个第一侧边t1平行间隔设置,两个第二侧边t2平行间隔设置,第一侧边t1与第二侧边t2相互垂直连接,第一侧边t1与第二侧边t2共同围成第二光斑t的边界,第一侧边t1的长度小于第二侧边t2的长度。
色轮350中滤光区355包括第一区段B2、第二区段R2及第三区段G2,上述三个区段之间设置有分界线,色轮350在驱动装置的带动下周期性旋转,任一分界线从进入到离开第二光斑t对应色轮350的轮辐角α。任一分界线在驱动装置的带动下位于第二光斑t的几何中心时,该分界线与第二光斑t的第一侧边t1垂直相交,并与第二侧边t2平行,从而有利于减小轮辐角α并提升光效。
由于转换区353中各个区段出射的光线入射至滤光区355中的对应区段,因此,转换区353中以相同的方式设置各个区段的分界线。具体地,转换区353任一分界线在驱动装置的带动下位于第一光斑s的几何中心时,该分界线与第一光斑s的一对侧边相交,并与第一光斑s的另一对侧边平行。
请参阅图8,为图5与图7中的轮辐角的比较示意图。色轮350 上第二光斑t的偏心距离L是可调节的,偏心距离L是指色轮350的几何中心(圆心o)到连线x的垂直距离。色轮350的轮辐角α大小可以根据滤光区355的内径尺寸r1与外径尺寸r2、第二光斑t的第一侧边t1尺寸a、第二侧边t2的尺寸b以及第二光斑t的偏心距离L计算得到,具体地,轮辐角α、β的计算公式如下:
Figure PCTCN2019081646-appb-000001
Figure PCTCN2019081646-appb-000002
其中,
Figure PCTCN2019081646-appb-000003
由于第二光斑t相对于滤光区355的内径和外径足够小,且第二光斑t与滤光区355的圆环宽度r2-r1相差较小,此处计算过程中近似认为色轮350圆心o到第二光斑t中心的距离与到第二光斑t对角顶点距离相等。
在色轮350及匀光器件的形状及尺寸已经选定的情况下,第二光斑t的与匀光器件入口大小相等,滤光区355及第二光斑t的大小是确定的,可以通过调节偏心距离L以减小轮辐角α,使得轮辐角α小于轮辐角β,从而有利于提高光效。具体地,实际的色轮350半径约为30~40mm,第二光斑的第二侧边t2和第一侧边t1分别约为4mm和2mm,取r1=30mm,r2=35mm,a=2mm,b=4mm。根据以上公式可知,当a<b时,相较于b<a的情况,轮辐角α更小。
由于r1=30mm,因此L<30mm,根据以上公式计算可得:轮辐角β约为8°。因此进一步可以计算得到,当L小于约26mm时,轮辐角α<轮辐角β,进而保证在改变分界线的设置方向的基础上,减小轮辐角α以提高光效。
需要说明的是,在本发明的精神或基本特征的范围内,适用于色轮150中的各具体方案也可以相应的适用于色轮250及色轮350中,为节省篇幅及避免重复起见,在此就不再赘述。
本发明实施方式中,第一光斑s与第二光斑t在色轮上偏心设置,进而光源系统可以对应色轮表面上第二区域f设置比如散热装置等其 他光学器件,使得光源系统内部元件排布紧凑,从而有利于在增大色轮的基础上减小光源系统的体积,或使光源系统的结构保持不变。进一步地,通过设置滤光区355中各个区段分界线的延伸方向以提高光源系统的光效。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。装置权利要求中陈述的多个装置也可以由同一个装置或系统通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。

Claims (10)

  1. 一种光源系统,其特征在于,包括:
    光源,用于发出第一光;
    色轮,其入光侧表面包括:
    用于将所述第一光转换为第二光的转换区;及
    用于对所述转换区出射的第二光进行滤光的滤光区;
    引导装置,设置于所述光源及所述色轮之间,用于引导所述第一光照射至所述转换区形成第一光斑,以及用于引导所述转换区出射的第二光照射至所述滤光区形成第二光斑,所述第一光斑与所述第二光斑之间的连线偏离所述色轮的几何中心,所述连线穿过所述第一光斑的几何中心及所述第二光斑的几何中心。
  2. 如权利要求1所述的光源系统,其特征在于,所述色轮表面包括第一区域及所述第一区域外的第二区域,所述第一光斑与所述第二光斑位于所述第一区域中,所述引导装置对应所述第一区域设置,所述光源系统还包括在所述色轮的入光侧对应所述第二区域设置的散热装置。
  3. 如权利要求2所述的光源系统,其特征在于,所述第一光与所述第二光经所述引导装置引导产生的光的传输路径对应所述第一区域设置。
  4. 如权利要求2所述的光源系统,其特征在于,所述光源系统还包括用于对所述滤光区出射的第二光进行匀光的匀光装置。
  5. 如权利要求1-4任意一项所述的光源系统,其特征在于,所述色轮呈圆形,所述滤光区呈圆环状设置于所述色轮表面,所述滤光区包括沿所述色轮的周向依次排布第一区段、第二区段及第三区段,其中每个区段用于对所述第二光中的不同颜色光进行滤光。
  6. 如权利要求5所述的光源系统,其特征在于,所述第二光斑呈矩形,所述矩形相互垂直的两条边分别为第一侧边和第二侧边,所述滤光区的各个区段之间设置有分界线,所述色轮在驱动装置的带动下周期性旋转,任一分界线位于所述第二光斑的几何中心时,所述分界 线与所述第一侧边垂直,并与所述第二侧边平行。
  7. 如权利要求6所述的光源系统,其特征在于,任一分界线从进入到离开所述第二光斑对应所述色轮旋转过的角度为轮辐角,所述色轮几何中心到所述连线的垂直距离为偏心距离,所述偏心距离是可调节的,在所述滤光区及所述第二光斑的尺寸确定时,通过调节所述偏心距离以减小所述轮辐角。
  8. 如权利要求5任意一项所述的光源系统,其特征在于,所述转换区包括分别用于出射不同颜色光的多个区段,所述转换区中每个区段出射的第二光入射至所述滤光区对应的区段中。
  9. 如权利要求7所述的光源系统,其特征在于,所述色轮转过所述轮辐角对应的时段为轮辐期,所述光源在所述轮辐期不发光。
  10. 一种显示设备,其特征在于,包括如权利要求1-9任意一项所述的光源系统。
PCT/CN2019/081646 2018-09-20 2019-04-08 光源系统及显示设备 WO2020057106A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811103400.XA CN110928122A (zh) 2018-09-20 2018-09-20 光源系统及显示设备
CN201811103400.X 2018-09-20

Publications (1)

Publication Number Publication Date
WO2020057106A1 true WO2020057106A1 (zh) 2020-03-26

Family

ID=69856448

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/081646 WO2020057106A1 (zh) 2018-09-20 2019-04-08 光源系统及显示设备

Country Status (2)

Country Link
CN (1) CN110928122A (zh)
WO (1) WO2020057106A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064269A (ja) * 2018-10-12 2020-04-23 パナソニックIpマネジメント株式会社 ホイール装置、光源装置、及び投写型映像表示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024157834A1 (ja) * 2023-01-24 2024-08-02 パナソニックIpマネジメント株式会社 波長変換ホイール、光源装置、及び投写型映像表示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329922A (ja) * 1999-05-21 2000-11-30 Hitachi Ltd カラーホイール
TWM325521U (en) * 2007-06-11 2008-01-11 Young Optics Inc Projection apparatus
CN102929086A (zh) * 2012-08-22 2013-02-13 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
US20130114049A1 (en) * 2011-11-04 2013-05-09 Appotronics (China) Corporation Light source device and projection display method
CN204759006U (zh) * 2015-06-08 2015-11-11 深圳市绎立锐光科技开发有限公司 投影系统、光源系统以及光源组件
CN106842790A (zh) * 2012-09-28 2017-06-13 深圳市绎立锐光科技开发有限公司 光源系统及相关投影系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6324006B1 (en) * 1999-05-17 2001-11-27 Texas Instruments Incorporated Spoke light recapture in sequential color imaging systems
WO2009069010A1 (en) * 2007-11-28 2009-06-04 Koninklijke Philips Electronics N.V. Illumination system, method and projection device for controlling light emitted during a spoke time period
CN101929637A (zh) * 2009-06-22 2010-12-29 中强光电股份有限公司 照明系统及照明控制方法
CN103076712B (zh) * 2011-10-26 2015-05-27 深圳市光峰光电技术有限公司 投影光源及应用该投影光源的投影装置
CN206819041U (zh) * 2017-05-04 2017-12-29 深圳市光峰光电技术有限公司 色轮模组、光源模组和投影系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000329922A (ja) * 1999-05-21 2000-11-30 Hitachi Ltd カラーホイール
TWM325521U (en) * 2007-06-11 2008-01-11 Young Optics Inc Projection apparatus
US20130114049A1 (en) * 2011-11-04 2013-05-09 Appotronics (China) Corporation Light source device and projection display method
CN102929086A (zh) * 2012-08-22 2013-02-13 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN106842790A (zh) * 2012-09-28 2017-06-13 深圳市绎立锐光科技开发有限公司 光源系统及相关投影系统
CN204759006U (zh) * 2015-06-08 2015-11-11 深圳市绎立锐光科技开发有限公司 投影系统、光源系统以及光源组件

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020064269A (ja) * 2018-10-12 2020-04-23 パナソニックIpマネジメント株式会社 ホイール装置、光源装置、及び投写型映像表示装置
JP7365595B2 (ja) 2018-10-12 2023-10-20 パナソニックIpマネジメント株式会社 光源装置及び投写型映像表示装置

Also Published As

Publication number Publication date
CN110928122A (zh) 2020-03-27

Similar Documents

Publication Publication Date Title
US9249949B2 (en) Lighting device and projection-type display device using the same including a color-combining prism
TWI494595B (zh) Projection display device
JP2024023800A (ja) 光源装置、画像投射装置及び光源光学系
US10394110B2 (en) Phosphor wheel module, light source device, and projection display apparatus
KR20150123064A (ko) 조명장치 및 이를 구비한 투사형 영상표시장치
JP7543819B2 (ja) 光源装置及び画像投射装置
CN114995035B (zh) 光源装置和图像投影装置
CN110874005B (zh) 光源系统、提高其光效的方法及显示设备
WO2020078188A1 (zh) 光源系统及显示设备
JP2020086261A (ja) 光源光学系、光源装置及び画像投射装置
EP3792690A1 (en) Light source system, projection device and illumination device
CN107479313A (zh) 一种激光光源及投影显示设备
WO2020134785A1 (zh) 激光光源及激光投影设备
WO2020057106A1 (zh) 光源系统及显示设备
JP7413740B2 (ja) 光源装置、画像投射装置及び光源光学系
US8733944B2 (en) Illumination system and projection apparatus comprising the same
WO2021093563A1 (zh) 光源装置及照明系统
WO2020135299A1 (zh) 波长转换装置、发光装置及投影装置
WO2020135300A1 (zh) 光源系统及投影装置
CN116880119A (zh) 光源装置和投影设备
CN210835555U (zh) 光源装置以及投影型显示装置
WO2021008332A1 (zh) 光源系统与显示设备
WO2021143444A1 (zh) 复眼透镜组、光源装置及投影设备
JP7342624B2 (ja) 光源装置、画像投射装置及び光源光学系
WO2020103784A1 (zh) 散射元件、光源系统及显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19862259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19862259

Country of ref document: EP

Kind code of ref document: A1