WO2020078188A1 - 光源系统及显示设备 - Google Patents

光源系统及显示设备 Download PDF

Info

Publication number
WO2020078188A1
WO2020078188A1 PCT/CN2019/108001 CN2019108001W WO2020078188A1 WO 2020078188 A1 WO2020078188 A1 WO 2020078188A1 CN 2019108001 W CN2019108001 W CN 2019108001W WO 2020078188 A1 WO2020078188 A1 WO 2020078188A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
area
light source
reflection
excitation light
Prior art date
Application number
PCT/CN2019/108001
Other languages
English (en)
French (fr)
Inventor
郭祖强
鲁宁
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2020078188A1 publication Critical patent/WO2020078188A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam

Definitions

  • the invention relates to the technical field of optics, in particular to a light source system and a display device.
  • the projector market mainly includes bulb light source, LED light source, laser light source and laser excitation phosphor mixed light source.
  • the laser-excited phosphor hybrid light source uses semiconductor lasers to excite different fluorescent pink segments on the color wheel to form different primary colors of light. Because of its advantages of high brightness, long life, high cost performance, and safe application, it is an ideal choice for projector light sources.
  • Semiconductor red lasers and green lasers can cause speckle effects that affect picture quality. Green lasers are inefficient and thermal stability of red lasers is poor. TEC is required for heat dissipation, which leads to condensation and dew condensation on the laser surface, affecting system stability.
  • Semiconductor blue lasers are used as excitation light sources for projectors due to their advantages of high electro-optical conversion efficiency (WPE 35%), high thermal stability, long service life, and high cost performance.
  • the blue laser excites the segmented color wheel to generate time series of red, green, and blue light, thereby forming the three primary colors of light required by the projection system.
  • the blue laser is used as the blue primary color light after eliminating some coherence through the scattering powder.
  • Green primary color light at the same time, blue laser light excites orange phosphor or yellow phosphor, and then filters to obtain red primary color light.
  • the method of laser excitation of phosphors also has some defects, for example, one: for green fluorescence, its excitation efficiency is high, and there is generally no problem of insufficient brightness, but because of the wide spectrum wavelength range of green fluorescence, its color is not enough Saturation, generally need to filter out the long-wavelength part of the light to improve its color coordinate to reach REC.709 or DCI, which will lead to a reduction in the efficiency of fluorescence utilization;
  • red phosphors usually use orange due to light quenching and light saturation Phosphor or yellow phosphor with the corresponding filter to get the desired red light, this method is less efficient to get red light, and there is a gap between the color coordinates and color gamut standards such as REC.709 or DCI, resulting in a system red light
  • the ratio of brightness to total brightness is low, and the color of red light is not
  • the brightness ratio of red light and the color of red light are very high. If the above laser excitation phosphor is used, the image quality will be seriously degraded . However, if the red light is further processed by the filter, although the color coordinates can meet the requirements of the color gamut standard, the brightness and utilization efficiency of the red light will be further reduced at this time, thereby making the brightness of the red light and the color a contradiction.
  • a laser and fluorescent optical expansion combined light solution which adds a red laser to supplement the brightness of the red light, and uses a regional diaphragm to realize the laser and fluorescent light combination, which can achieve better
  • the color can also achieve high brightness, avoid too much fluorescence repair, and there is no laser speckle problem.
  • the laser is focused on the regional membrane for reflection or transmission, and the fluorescence is only lost in the coating position of the region.
  • the larger the color gamut required by the projection system the greater the proportion of red laser light in the light source.
  • the color coordinates of the green fluorescence can no longer meet the requirements of the color gamut standard, and a green laser module needs to be added.
  • the number of lasers is increased to increase the proportion of lasers in the laser fluorescence combining process.
  • the lasers are arranged in an array. If the number of lasers increases, the larger the area of the laser spot array emitted from the laser, the larger the laser spot corresponding to the position of the regional diaphragm, that is, the coating size of the diaphragm area Get bigger. Then in the process of laser fluorescence combining light, the fluorescence loss also increases as the area increases.
  • the invention provides a light source system, including: an excitation light source for emitting excitation light; a supplementary light source for emitting supplementary light; a color wheel, including a conversion area, a scattering area, a first reflection area and a second reflection area, said The conversion area and the first reflection area are connected to each other to form a first ring, the scattering area and the second reflection area are connected to each other to form a second ring, and the second ring is disposed around the first ring Inside or outside the ring, the position of the first reflection zone is adjacent to the position of the second reflection zone, and the conversion zone is adjacent to the position of the scattering zone, wherein the conversion zone is used to receive
  • the excitation light emits a received laser light
  • the scattering area is used for scattering and emitting the supplementary light
  • the first reflection area and the second reflection area are used for reflecting and emitting the excitation light
  • the first reflection Device the first reflecting device can be switched between a first position and a second position.
  • the first reflecting device In the first position, the first reflecting device is used to reflect part of the excitation light to the first ring.
  • the second position the first reflection The device is used to reflect part of the excitation light to the second ring; the second reflection device is used to reflect the remaining excitation light to the first ring; and the deflection device is used to control the first reflection device at A first time sequence is located at the first position, so that the first reflection device reflects part of the excitation light to the conversion area, and the first reflection device is controlled to be located at the second time sequence at a second time sequence Position so that the first reflecting device reflects part of the excitation light to the second reflecting area.
  • the present invention also provides a display device including the above light source system.
  • the scattering area is arranged around the conversion area, and the received laser light generated by the conversion area and the supplementary light passing through the scattering area are combined on the color wheel, compared with the existing
  • the optical expansion of the combined light mode avoids the loss of the laser.
  • the color gamut range is expanded, and a wide color gamut requirement is realized.
  • the deflection device controls the deflection of the first reflection device, so that the excitation light reflected by the deflected first reflection device irradiates the second reflection area of the color wheel, thereby ensuring that the edge of the color wheel
  • the deflection device controls the deflection of the first reflection device, so that the excitation light reflected by the deflected first reflection device irradiates the second reflection area of the color wheel, thereby ensuring that the edge of the color wheel
  • FIG. 1 is a schematic structural diagram of a light source system provided by a first embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of the color wheel shown in FIG. 1.
  • 3 and 4 are schematic diagrams of the arrangement of laser spots on the color wheel shown in FIG. 2.
  • FIG. 5 is a schematic structural diagram of a light source system provided by a second embodiment of the present invention.
  • FIG. 6 is a schematic structural diagram of the second dichroic light combining element shown in FIG. 5.
  • FIG. 7 is a schematic structural diagram of the color wheel shown in FIG. 5.
  • FIG. 8 is a schematic structural diagram of a light source system according to a third embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of the color wheel shown in FIG. 8.
  • Light source system 100, 200, 300 Excitation light source 110, 210, 310 Supplementary light source 120 First light emitting element 121 Second light emitting element 123 First splitting and combining element 125 Color wheel 130, 230, 330 Transition zone 131 Scattering area 133 First reflection zone 134 Second reflection zone 135 Filter area 136, 236 First reflecting device 140 Second reflection device 150 Deflection device 190 Guiding device 160 Positive lens 161 Negative lens 163 Collection lens 165 Uniform light device 167 Collimating lens 168 Collection device 170, 370 Second splitting and combining element 171, 271 Collection lens group 172, 272
  • Third reflective element 173 Relay lens 174
  • Fourth reflective element 175 Uniform square stick 180, 380 Transmission area 271a, 371 Reflective area 271b, 372
  • FIG. 1 is a schematic structural diagram of a light source system 100 according to a first embodiment of the present invention.
  • the light source system 100 can be applied to display devices, such as LCD, DLP, and LCOS projection display devices. It can be understood that the light source system 100 can also be used in stage lighting systems, vehicle-mounted lighting systems, surgical lighting systems, etc., and is not limited to projection display devices.
  • the light source system 100 includes an excitation light source 110, a supplemental light source 120, a color wheel 130, a first reflection device 140, a second reflection device 150, a deflection device 190, a guide device 160, a collection device 170, and a uniform light square bar 180.
  • the excitation light source 110 is used to emit excitation light, which may be a semiconductor diode or a semiconductor diode array, such as a laser diode (LD) or a light emitting diode (LED).
  • the excitation light may be blue light, purple light or ultraviolet light, but it is not limited to the above.
  • the excitation light source 110 is a blue exciter for emitting blue laser light as the excitation light. It can be understood that the excitation light source 110 may include one, two, or more blue exciters, and the number of specific lasers may be selected according to actual needs.
  • the excitation light source 110 is a blue laser array.
  • the supplementary light source 120 is used to emit supplementary light in a wavelength range different from that of the excitation light.
  • the supplementary light source 120 includes a first light-emitting element 121 and a second light-emitting element 123.
  • the first light emitting element 121 is used to emit supplementary light of a first color
  • the second light emitting element 123 is used to emit supplementary light of a second color.
  • the supplementary light of the first color is a red laser
  • the supplementary light of the second color is a green laser, but it can be understood that in other embodiments, the supplementary light of the first color and
  • the supplementary light of the second color may also be laser of other colors.
  • the supplementary light source 120 further includes a first splitting light combining element 125, and the supplementary light of the first color and the supplementary light of the second color are combined into a single path at the first splitting light combining element 125.
  • the first dichroic light combining element 125 is a translucent blue and yellow reverse dichroic sheet.
  • FIG. 2 is a schematic structural diagram of the color wheel 130 shown in FIG. 1.
  • the color wheel 130 is located on the exit light path of the excitation light source 110 and the supplemental light source 120 and is used to receive the excitation light and the supplementary light.
  • the color wheel 130 includes a first part and a second part, wherein the first part includes a conversion region 131 and a scattering region 133, and the second part includes a reflection region B.
  • the conversion area 131 is used to receive the excitation light emitted by the excitation light source 110 and emit a laser beam.
  • the scattering area 133 is used to receive the supplementary light emitted by the supplementary light source 120 and perform scattering and emission.
  • the reflection area B is used to receive the excitation light emitted by the excitation light source 110 and reflect and emit.
  • the reflective area B includes a first reflective area 134 and a second reflective area 135.
  • the conversion area 131 and the first reflection area 134 are connected with each other to form a first ring
  • the scattering area 133 and the second reflection area 135 are connected with each other to form a second ring
  • the second ring is arranged around Inside the first ring. It can be understood that, in other embodiments, the second ring may also be disposed around the outer side of the first ring.
  • the position of the first reflection area 134 is adjacent to the position of the second reflection area 135, and the position of the scattering area 133 is adjacent to the position of the conversion area 131.
  • the center angle of the first reflective area 134 overlaps the center angle of the second reflective area 135.
  • a circular arc of the first reflective area 134 coincides with a circular arc of the second reflective area 135.
  • the center angle of the scattering area 133 overlaps the center angle of the conversion area 131.
  • a circular arc of the scattering area 133 coincides with a circular arc of the conversion area 131.
  • the laser beam and the supplementary light transmitted through the scattering area 133 are combined on the color wheel 130.
  • a fluorescent material is provided on the conversion area 131, and the fluorescent material receives the excitation light and generates the received laser light.
  • the conversion area 131 includes a first segmented region R and a second segmented region G arranged along the circumferential direction.
  • the first segmented region R, the second segmented region G, and the first reflective region 134 are sequentially arranged along the circumferential direction and connected end to end.
  • the first segmented region R is provided with a first fluorescent material and is used to emit a first color laser beam
  • the second segmented region G is provided with a second fluorescent material and is used to emit a second color laser beam.
  • the first fluorescent material is a red fluorescent material
  • the first color is red
  • the second fluorescent material is a green fluorescent material
  • the second color is green.
  • the conversion area 131 is used to reflect and emit the laser beam. It can be understood that, in other embodiments, the conversion region 131 may be used to transmit and exit the laser beam.
  • the scattering area 133 is provided with a scattering material, which is used to scatter and de-coherence the complementary light of the first color and the complementary light of the second color. It can be understood that, in other embodiments, a scattering sheet may be provided on the scattering area 133.
  • the first reflecting area 134 and the second reflecting area 135 are respectively provided with reflecting mirrors for reflecting the laser light irradiated thereon.
  • the color wheel 130 further includes a filter area 136 for receiving and filtering the laser beam.
  • the filter area 136 is a circular ring, and is disposed around the inner side of the second ring. It can be understood that, in other embodiments, the filter area 136 may also be disposed around the outer side of the first ring.
  • the filter region 136 includes a first segmented region R, a second segmented region G, and a third segmented region B arranged along the circumferential direction. The first segmented region R, the second segmented region G, and the third segmented region B are sequentially arranged along the circumferential direction and connected end to end.
  • the first segmented region R is provided with a red filter
  • the second segmented region G is provided with a green filter
  • the third segmented region B is provided with a diffuser.
  • the first segmented region R of the filter region 136 corresponds to the first segmented region R of the conversion region 131, and is used to filter the received laser light of the first color.
  • the second segmented area G of the filter area 136 corresponds to the second segmented area G of the conversion area 131, and is used to filter the second color received laser light.
  • the third segmented area B of the filter area 136 corresponds to the first reflective area 134 and the second reflective area 135, and is used to reflect blue light reflected by the first reflective area 134 and the second reflective area 135.
  • the color excitation light is scattered and de-coherent, and the divergence angle of the blue excitation light is expanded to enhance the uniform light effect of the uniform light square bar 180 on the blue excitation light.
  • the color wheel 130 rotates, the laser light of various colors emitted from the conversion area 131 and the excitation light emitted from the first reflection area 134 and the second reflection area 135 enter the filter in time series On the corresponding segmented area on the area 136, various colors of light are synthesized into white light in time series.
  • the first reflection device 140 is disposed substantially parallel to the second reflection device 150 in the first position, and is located between the excitation light source 110 and the color wheel 130 for The excitation light emitted by the light source 110 is reflected onto the first ring of the color wheel 130.
  • the first reflection device 140 and the second reflection device 150 are inclined at a 45 ° angle to the horizontal plane, and the excitation light is all incident on the first ring of the color wheel 130 , And the spot formed by the excitation light on the color wheel 130 does not generate side lobes.
  • the first reflecting device 140 and the second reflecting device 150 are both reflective sheets.
  • the deflecting device 190 is connected to the first reflecting device 140 for controlling the first reflecting device 140 to switch from the first position to the second position. In the second position, the first reflecting device 140 is opposite to the The second reflection device 150 is inclined, so that the excitation light reflected by the first reflection device 140 is irradiated onto the second ring of the color wheel 130.
  • the deflection device 190 is a deflection drive.
  • the deflecting device 190 drives the first reflecting device 140 to deviate from the position where the inclination angle is 45 °, so that the blue excitation light formed on the color wheel 130 by the excitation light reflected by the first reflecting device 140
  • the position of the spot is deviated from the position of the blue laser spot formed on the first ring by the excitation light reflected by the second reflection device 150, and the excitation light reflected by the first reflection device 140 is in the color wheel
  • a blue laser spot is formed on the second ring of 130.
  • the deflection device 190 drives the first reflection device 140 to perform periodic motion in a time series, so that the tilt angle of the first reflection device 140 periodically changes, wherein the frequency of change of the tilt angle of the first reflection device 140 and The rotation frequency of the color wheel 130 is consistent.
  • the guiding device 160 is used to guide the excitation light emitted by the excitation light source 110 to the color wheel 130.
  • the guide device 160 includes a positive lens 161, a negative lens 163, and a collection lens 165.
  • the positive lens 161 is disposed between the excitation light source 110 and the first reflection device 140 and the second reflection device 150 for condensing the excitation light to the first reflection device 140 and the second reflection device 150.
  • the negative lens 163 is disposed between the collection lens 165 and the first reflection device 140 and the second reflection device 150, and is used to conduct the excitation light reflected by the first reflection device 140 and the second reflection device 150 It diverges and leads to the collection lens 165.
  • the collection lens 165 is used to collect the excitation light onto the color wheel 130.
  • the guiding device 160 further includes a uniform light device 167.
  • the light homogenizing device 167 is used for light homogenizing the excitation light.
  • the uniform light device 167 is disposed between the negative lens 163 and the collection lens 165.
  • the uniform light device 167 is a microlens array.
  • the uniform light device 167 uniformly illuminates the excitation light spot incident on the color wheel 130, which reduces the maximum laser power density of the incident color wheel and avoids the saturation of the fluorescent material on the color wheel 130, thereby improving The excitation efficiency of the fluorescent material is improved, and the light efficiency is improved.
  • the guiding device 160 further includes a plurality of collimating lenses 168.
  • the plurality of collimating lenses 168 are respectively disposed on the optical paths of the excitation light source 110, the first light-emitting element 121, and the second light-emitting element 123, and are used for the excitation light emitted by the excitation light source 110.
  • the complementary light of the first color emitted by the first light emitting element 121 and the complementary light of the second color emitted by the second light emitting element 123 are collimated.
  • the collection device 170 includes a second dichroic light combining element 171, a collection lens group 172, a third reflection element 173, a relay lens 174, and a fourth reflection element 175.
  • the collection lens group 172 is used to collect and condense the excitation light emitted by the excitation light source 110 to the color wheel 130.
  • the second light splitting and combining element 171 is used to transmit the excitation light and reflect the laser light, the supplementary light of the first color, and the supplementary light of the second color.
  • the third reflective element 173 is used to reflect the excitation light emitted from the color wheel 130 and guide the excitation light to the second dichroic light combining element 171.
  • the relay lens 174 is used to collect, collimate, and shape the received laser light, excitation light, supplementary light of the first color, and supplementary light of the second color emitted from the second dichroic light combining element 171.
  • the fourth reflective element 175 is used to guide the received laser light, the excitation light, the supplementary light of the first color, and the supplementary light of the second color to the filter area 136.
  • the collection lens group 172 is disposed adjacent to the color wheel 130, and is located between the second dichroic light combining element 171 and the color wheel 130.
  • the collection lens group 172 may include a plurality of lenses whose curvatures cooperate with each other.
  • the second light splitting and combining element 171 is disposed between the excitation light source 110 and the color wheel 130.
  • the second light splitting and combining element 171 may adopt a wavelength splitting optical structure, that is, combine light according to different wavelength ranges of incident light.
  • the second splitting and combining element 171 is used to transmit the excitation light and reflect the received laser light and supplementary light.
  • the second light splitting and combining element 171 includes a first surface and a second surface that are oppositely arranged, and the excitation light emitted from the excitation light source 110 enters the second light splitting and combining element 171 from the first surface And exit through the second surface to the collection lens group 172.
  • the received laser light, excitation light and supplementary light emitted by the color wheel 130 are collected by the collection lens group 172 and enter the second surface of the second beam splitting and combining element 171, wherein the received laser light and supplementary light are emitted by the first
  • the second surface of the dichroic light combining element 171 is reflected, and the excitation light sequentially passes through the second surface and the first surface of the second dichroic light combining element 171 and exits to the third reflective element 173.
  • the second dichroic light combining element 171 is a translucent blue and yellow reverse dichroic sheet.
  • the third reflective element 173 is disposed adjacent to the first surface of the second light splitting and combining element 171 facing away from the color wheel 130, and is used to reflect the excitation light emitted from the first surface of the second light splitting and combining element 171 .
  • the excitation light reflected by the third reflective element 173 sequentially passes through the first surface and the second surface of the second light splitting and combining element 171 and exits.
  • the third reflective element 173 is a flat mirror.
  • the received laser light, excitation light and supplementary light emitted from the second dichroic light combining element 171 are collected by the relay lens 174 and enter the fourth reflecting element 175, and are reflected by the fourth reflecting element 175 and enter
  • the filter area 136 of the color wheel 130 performs filtering, and the received laser light, excitation light, and supplementary light emitted from the filter area 136 are coupled into the uniform light square bar 180 at mutually matching divergence angles.
  • the uniform light square bar 180 is used to uniformly radiate the received laser light, the excitation light, the supplementary light of the first color, and the supplementary light of the second color after passing through the filter area 136.
  • the excitation light source 110 When the light source system 100 is driven, the excitation light source 110 is always on, and the supplementary light source 120 is turned on when the conversion area 131 of the color wheel 130 is located in the exit light path of the excitation light source 110.
  • the first reflection area 134 is closed when it is located in the exit light path of the excitation light source 110.
  • the excitation light source 110 emits blue excitation light, and when the excitation light source 110 illuminates the first segmented region R of the conversion area 131, the first light emitting element 121 is turned on; when the excitation light source 110 When the second segmented area G of the conversion area 131 is illuminated, the second light-emitting element 123 is turned on, and at the same time the first light-emitting element 121 is turned off; when the excitation light source 110 illuminates the first reflection area 134, Both the first light-emitting element 121 and the second light-emitting element 123 are turned off, and at the same time the deflection device 190 is activated and drives the first reflection device 140 to deflect so that the excitation light reflected by the first reflection device 140 illuminates ⁇ ⁇ ⁇ ⁇ 135.
  • FIG. 3 and FIG. 4 are schematic diagrams of the arrangement of the laser spot on the color wheel 130 according to the first embodiment of the present invention, wherein FIG. 3 is the deflection without driving the first reflecting device 140
  • FIG. 4 is a schematic diagram of the arrangement of laser spots on the color wheel 130 after driving the first reflecting device 140 to deflect.
  • the excitation light emitted by the excitation light source 110 sequentially enters the first reflecting device 140 and the second reflecting device 150 through the collimating lens 168 and the positive lens 161, passes through the first reflecting device 140 and the second reflecting device After being reflected by 150, a blue laser spot is formed on the surface of the conversion area 131 of the color wheel 130 after passing through the negative lens 163, the uniform light device 167, the collection lens 165, the second splitting and combining element 171, and the collection lens group 172 .
  • the supplementary light emitted by the supplemental light source 120 passes through the scattering area 133 of the color wheel 130 to form a red / green laser spot on its surface.
  • the supplementary light source 120 When the excitation light source 110 illuminates the conversion area 131, the supplementary light source 120 is turned on, the blue laser spot formed by the excitation light on the conversion area 131 of the color wheel 130, and the supplementary light in the color
  • the red / green laser spots formed on the scattering area 133 of the wheel 130 are arranged side by side, and the blue excitation light irradiates the converted laser light generated by the conversion area 131 and the supplementary light emitted by the supplementary light source 120 on the color wheel 130 Do the light.
  • the supplementary light source 120 When the supplementary light source 120 is turned off, part of the excitation light emitted by the excitation light source 110 is reflected by the second reflection device 150 to form a blue laser spot in the first reflection area 134, and the other emitted by the excitation light source 110 After a part of the excitation light is reflected by the deflected first reflection device 140, a blue laser spot is formed in the second reflection area 135, thereby ensuring that each segmented area provided along the circumference of the color wheel 130 is located at the excitation light source When the output light path of 110 is in the uniformity of the laser spot emitted by the color wheel 130, the problem of uneven display is avoided.
  • the blue laser spot formed by the partial excitation light on the first reflective area 134 and the blue laser spot formed by the other partial excitation light on the second reflective area 135 are combined into one spot.
  • the scattering area 133 is disposed around the conversion area 131, and the light spot formed by the conversion area 131 that is formed by the laser light and the light spot formed by the supplementary light passing through the scattering area 133 are arranged side by side.
  • light combining is performed on the color wheel 130. Compared with the existing optical expansion light combining method, the loss of receiving laser light is avoided.
  • a supplemental light source 120 for emitting supplementary light that is different from the wavelength range of the excitation light the color gamut range is expanded, and a wide color gamut requirement is achieved.
  • the deflection device 190 controls the deflection of the first reflection device 140, so that the excitation light reflected by the deflected first reflection device 140 irradiates the second reflection area 135 of the color wheel 130, thereby ensuring When the segmented regions provided along the circumference of the color wheel 130 are respectively located in the exit light path of the excitation light source 110, the consistency of the laser spot emitted by the color wheel 130 avoids the problem of uneven display.
  • the collection lens group 172 collects the large-angle received laser light and supplementary light emitted from the color wheel 130, and uses the combination of the second splitting light combining element 171 and the third reflecting element 173 to realize excitation The incidence and exit of light effectively reduces the volume of the light source system 100 and improves the light efficiency.
  • FIG. 5 is a schematic structural diagram of a light source system 200 according to a second embodiment of the present invention.
  • the structure of the light source system 200 is basically the same as that of the light source system 100 of the first embodiment, that is to say, the above description of the light source system 100 can be applied to the light source system 200 on a substrate, and the difference between the two lies mainly in:
  • the structure of the second dichroic light combining element 271, the structure of the reflective area of the color wheel 230, and the structure of the third segment area B of the filter area 236 are different.
  • FIG. 6 is a schematic diagram of the structure of the second splitting and combining element 271 shown in FIG. 5.
  • the second dichroic light combining element 271 is an area diaphragm, which includes a transmission area 271a for transmitting the excitation light emitted by the excitation light source 210 and a laser beam reflected by the color wheel 230, The reflection area 271b of the excitation light and the supplementary light.
  • the reflective area 271b is disposed around the transmissive area 271a.
  • FIG. 7 is a schematic structural diagram of the color wheel 230 shown in FIG. 5.
  • a scattering material is provided on the reflection area B of the color wheel 230 for receiving the excitation light emitted by the excitation light source 210 and performing scattering and exiting.
  • a reflective diffuser is provided on the reflective area B.
  • the excitation light scattered by the reflection area B of the color wheel 230 has a larger optical expansion.
  • most of the excitation light emitted by the color wheel 230 irradiates the reflection area 271b With reflection, only a small amount of excitation light is transmitted through the transmission region 271a.
  • no scattering sheet is needed on the third segment area B of the filter area 236 to scatter and decoherent the excitation light reflected by the reflection area B of the color wheel 230.
  • a polarizing plate is provided on the transmission area 271a for transmitting excitation light having a first polarization state and reflecting excitation light having a second polarization state.
  • the transmission area 271a is used to transmit the excitation light emitted by the excitation light source 210 and reflect the excitation light reflected through the color wheel 230.
  • the excitation light received by the color wheel 230 is scattered by the reflection area B, its polarization state is changed, and the excitation light scattered by the color wheel 230 can basically be regarded as unpolarized light. Therefore, part of the excitation light that enters the transmission region 271a after being scattered by the color wheel 230 exits through the polarizer, and the other part reflects and exits through the polarizer, which can further reduce the loss of excitation light.
  • the light source system 200 of the present embodiment adopts a regional diaphragm for the incident and exit of excitation light, omitting the third reflective element, and simplifying the structure.
  • FIG. 8 is a schematic structural diagram of a light source system 300 according to a third embodiment of the present invention.
  • the structure of the light source system 300 is basically the same as that of the light source system 100 of the first embodiment, that is to say, the above description of the light source system 100 can be applied to the light source system 300 on the substrate, and the difference between the two lies mainly in:
  • the structure of the collecting device 370 is different, and the structure of the color wheel 330 is different.
  • the collection device 370 is a bowl-shaped reflection device, including a transmission area 371 and a reflection area 372.
  • the transmission area 371 is used to transmit the excitation light emitted by the excitation light source 310.
  • the reflection area 372 is used to reflect the excited light, the excitation light and the supplementary light emitted from the color wheel 330.
  • the transmission region 371 is a through hole.
  • FIG. 9 is a schematic structural diagram of the color wheel 330 shown in FIG. 8.
  • the color wheel 330 is not provided with a filter area, and the reflection area B is provided with a reflective diffuser for receiving the excitation light emitted by the excitation light source 310 and performing scattering decoherence to reduce the projection display Speckle phenomenon.
  • the excitation light scattered by the reflection area B of the color wheel 330 has a larger optical expansion, and most of the excitation light is irradiated on the reflection area 372 for reflection.
  • the received laser light, excitation light and supplementary light emitted from the color wheel 330 are reflected by the reflection area 372 of the reflection bowl and then enter the uniform light square bar 380.
  • the light source system 300 of this embodiment uses a reflective bowl as a collection device, and omits the second dichroic light combining element, collection lens group, third reflection element, and relay in Embodiment 1.
  • the lens and the fourth reflective element simplify the structure.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Projection Apparatus (AREA)

Abstract

一种光源系统(100),包括:激发光源(110),用于发出激发光;补充光源(120),用于发出补充光;色轮(130),包括转换区(131)、散射区(133)、第一反射区(134)以及第二反射区(135),转换区(131)与第一反射区(134)相互连接形成第一圆环,散射区(133)与第二反射区(135)相互连接形成第二圆环,且第二圆环环绕设置于第一圆环的内侧或外侧,第一反射区(134)的位置与第二反射区(135)的位置相邻,转换区(131)与散射区(133)的位置相邻,其中转换区(131)用于接收激发光并发出受激光,散射区(133)用于对补充光进行散射出射,第一反射区(134)以及第二反射区(135)用于对激发光进行反射出射;第一反射装置(140)以及第二反射装置(150),均用于将激发光反射至第一圆环;以及偏转装置(190),用于控制第一反射装置(140)偏转,以将经第一反射装置(140)反射的激发光照射至第二反射区(135)。

Description

光源系统及显示设备 技术领域
本发明涉及光学技术领域,尤其涉及一种光源系统及显示设备。
背景技术
目前投影仪市场主要有灯泡光源、LED光源、激光光源以及激光激发荧光粉混合光源。激光激发荧光粉混合光源利用半导体激光器激发色轮上不同荧光粉色段以形成不同基色光,其因具备高亮度、长寿命、高性价比、应用安全的优势,成为投影仪光源的理想选择。
半导体红激光器和绿激光器会产生散斑效应,影响画面质量,且绿激光效率低,红激光的热稳定性差,需要TEC进行散热,导致激光器表面容易冷凝结露,影响系统的稳定性。半导体蓝激光器因具有高电光转换效率(WPE35%)、高热稳定性、长使用寿命、高性价比的优势,被用作投影仪的激发光源。蓝光激光激发分段色轮产生时序的红、绿、蓝光,从而构成投影系统所需要的三基色光,其中蓝激光经散射粉消除部分相干性后作为蓝基色光,蓝激光激发绿色荧光粉得到绿基色光,同时,蓝激光激发偏橙色荧光粉或者激发黄色荧光粉后再经滤波片处理得到红基色光。但是,激光激发荧光粉的方法也存在一些缺陷,例如,一:对于绿色荧光,其激发效率较高,一般不存在亮度不足的问题,但由于绿色荧光的光谱波长范围比较宽,使得其颜色不够饱和,一般需要滤除长波长部分的光来改善其色坐标达到REC.709或者DCI,这会导致荧光利用效率的降低;二:红色荧光粉由于产生光淬灭和光饱和现象,因此通常用橙色荧光粉或者黄色荧光粉配合对应的滤光片得到想要的红光,这种方法得到红光的效率较低,同时色坐标与色域标准比如REC.709或者DCI存在差距,导致系统红光亮度占总亮度的比例较低,并且红光颜色不够好。在对图像质量要求比较 高的应用场合,例如播放视频、激光电视等,对于红光的亮度比例以及红光颜色要求很高,若采用上述激光激发荧光粉的方案,会造成图像质量的严重下降。但如果将红光进一步经滤波片处理,虽然色坐标可以达到色域标准要求,但是此时红光的亮度和利用效率会进一步降低,由此使得红光的亮度与颜色成为一对矛盾。
为解决上述缺陷,现有一种激光和荧光光学扩展量合光的方案,其增加了红激光以对红光进行亮度补充,并采用区域膜片实现激光和荧光的合光,既能实现较好的颜色,又能实现高亮度,避免荧光修掉的太多,另外也不存在激光的散斑问题。其中,激光聚焦于区域膜片上进行反射或透射,荧光仅在区域镀膜位置存在损失。然而,投影系统要求的色域范围越大,光源中红激光所占的比例就越多,同时绿色荧光的色坐标也不再能够满足色域标准要求,需要再加入绿激光模块。激光比例的提升难以通过增大驱动电流的方式实现,通常增加激光器数量以提升激光荧光合光过程中激光占比。实际光源结构中,激光器排布为阵列形式,如果激光器数量增加,那么从激光器出射的激光光斑阵列面积越大,对应聚焦于区域膜片位置的激光光斑越大,也就是说膜片区域镀膜尺寸变大。那么在激光荧光合光过程中,荧光损失也随着区域的增大而变多。
发明内容
有鉴于此,有必要提供一种避免上述提到的激光荧光损失问题且同时能够实现宽色域要求的光源系统,也有必要提供一种采用上述光源系统的显示设备。
本发明提供一种光源系统,包括:激发光源,用于发出激发光;补充光源,用于发出补充光;色轮,包括转换区、散射区、第一反射区与第二反射区,所述转换区与所述第一反射区相互连接形成第一圆环,所述散射区与所述第二反射区相互连接形成第二圆环,且所述第二圆环环绕设置于所述第一圆环的内侧或外侧,所述第一反射区的位置与所述第二反射区的位置相邻,所述转换区与所述散射区的位置相 邻,其中所述转换区用于接收所述激发光并发出受激光,所述散射区用于对所述补充光进行散射出射,所述第一反射区以及所述第二反射区用于对所述激发光进行反射出射;第一反射装置,所述第一反射装置可在一第一位置与一第二位置切换,在所述第一位置,所述第一反射装置用于将部分激发光反射至所述第一圆环,在所述第二位置,所述第一反射装置用于将部分激发光反射至所述第二圆环;第二反射装置,用于将剩余激发光反射至所述第一圆环;以及偏转装置,用于控制所述第一反射装置在一第一时序时位于所述第一位置,以使所述第一反射装置将部分激发光反射至所述转换区,及控制所述第一反射装置在一第二时序时位于所述第二位置,以使所述第一反射装置将部分激发光反射至所述第二反射区。
本发明还提供一种包括上述光源系统的显示设备。
本发明提供的光源系统,所述散射区环绕所述转换区设置,所述转换区产生的受激光与透过所述散射区的补充光在所述色轮上进行合光,相较现有的光学扩展量合光方式,避免了受激光的损失。同时,通过设置用于发出与激发光波长范围不相同的补充光的补充光源,扩大了色域范围,实现了宽色域要求。另外,通过所述偏转装置控制所述第一反射装置偏转,使得经偏转后的第一反射装置反射的激发光照射于所述色轮的第二反射区,从而保证了在所述色轮沿圆周设置的各个分段区域分别位于所述激发光源的出射光路中时,由所述色轮出射的激光光斑的一致性,避免出现显示不均匀的问题。
附图说明
图1是本发明第一实施方式提供的光源系统的结构示意图。
图2是图1所示色轮的结构示意图。
图3以及图4为激光光斑在图2所示色轮上的排列示意图。
图5为本发明第二实施方式提供的光源系统的结构示意图。
图6为图5所示第二分光合光元件的结构示意图。
图7为图5所示色轮的结构示意图。
图8为本发明第三实施方式提供的光源系统的结构示意图。
图9为图8所示色轮的结构示意图。
主要元件符号说明
光源系统 100、200、300
激发光源 110、210、310
补充光源 120
第一发光元件 121
第二发光元件 123
第一分光合光元件 125
色轮 130、230、330
转换区 131
散射区 133
第一反射区 134
第二反射区 135
滤光区 136、236
第一反射装置 140
第二反射装置 150
偏转装置 190
引导装置 160
正透镜 161
负透镜 163
收集透镜 165
匀光器件 167
准直透镜 168
收集装置 170、370
第二分光合光元件 171、271
收集透镜组 172、272
第三反射元件 173
中继透镜 174
第四反射元件 175
匀光方棒 180、380
透射区域 271a、371
反射区域 271b、372
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
在下面的描述中阐述了很多具体细节以便于充分理解本发明,但是本发明还可以采用其他不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似应用,因此本发明不受下面公开的具体实施方式的限制。在不冲突的情况下,下述的实施方式及实施方式中的特征可以相互组合。
请参阅图1,图1是本发明第一实施方式的光源系统100的结构示意图。所述光源系统100可应用于显示设备,例如LCD、DLP、LCOS投影显示设备。可以理解,所述光源系统100还可以用于舞台灯系统、车载照明系统及手术照明系统等,并不限于投影显示设备。所述光源系统100包括激发光源110、补充光源120、色轮130、第一反射装置140、第二反射装置150、偏转装置190、引导装置160、收集装置170以及匀光方棒180。
所述激发光源110用于发出激发光,其可以为半导体二极管或者半导体二极管阵列,如激光二极管(LD)或者发光二极管(LED)等。所述激发光可以为蓝色光、紫色光或者紫外光等,但并不以上述为限。本实施方式中,所述激发光源110为蓝色激发器,用于发出蓝色激光作为所述激发光。可以理解,所述激发光源110可以包括一个、两个或多个蓝色激发器,具体激光器的数量可以依据实际需要选择。本实施方式中,所述激发光源110为蓝激光器阵列。
所述补充光源120用于发出与所述激发光的波长范围不相同的补 充光。具体地,所述补充光源120包括第一发光元件121以及第二发光元件123。所述第一发光元件121用于发出第一颜色的补充光,所述第二发光元件123用于发出第二颜色的补充光。本实施方式中,所述第一颜色的补充光为红色激光,所述第二颜色的补充光为绿色激光,但可以理解的是,在其他实施方式中,所述第一颜色的补充光以及第二颜色的补充光还可以为其他颜色激光。
进一步地,所述补充光源120还包括第一分光合光元件125,所述第一颜色的补充光以及第二颜色的补充光在所述第一分光合光元件125处合为一路。本实施方式中,所述第一分光合光元件125为透蓝反黄二向色片。
请一并参阅图2,图2是图1所示色轮130的结构示意图。所述色轮130位于所述激发光源110以及补充光源120的出射光路上,用于接收所述激发光以及补充光。所述色轮130包括第一部分与第二部分,其中第一部分包括转换区131与散射区133,第二部分包括反射区B。所述转换区131用于接收所述激发光源110发出的激发光并发出受激光。所述散射区133用于接收所述补充光源120发出的补充光并进行散射出射。所述反射区B用于接收所述激发光源110发出的激发光并进行反射出射。所述反射区B包括第一反射区134以及第二反射区135。所述转换区131以及所述第一反射区134相互连接形成第一圆环,所述散射区133以及所述第二反射区135相互连接形成第二圆环,所述第二圆环环绕设置于所述第一圆环的内侧。可以理解的是,在其他实施方式中,所述第二圆环还可以环绕设置于所述第一圆环的外侧。其中,所述第一反射区134的位置与所述第二反射区135的位置相邻,所述散射区133的位置与所述转换区131的位置相邻。可以理解的是,第一反射区134的圆心角与第二反射区135的圆心角相重叠。第一反射区134的一段圆弧与第二反射区135的一段圆弧相重合。散射区133的圆心角与转换区131的圆心角相重叠。散射区133的一段圆弧与转换区131的一段圆弧相重合。所述受激光以及透过所述散射区133的补充光在所述色轮130上进行合光。
具体地,所述转换区131上设置有荧光材料,所述荧光材料接收所述激发光并产生所述受激光。所述转换区131包括沿圆周方向设置的第一分段区域R以及第二分段区域G。所述第一分段区域R、第二分段区域G以及第一反射区134沿圆周方向依序设置且首尾相接。所述第一分段区域R设置有第一荧光材料且用于发出第一颜色的受激光,所述第二分段区域G设置有第二荧光材料且用于发出第二颜色的受激光。本实施方式中,所述第一荧光材料为红色荧光材料,所述第一颜色为红色,所述第二荧光材料为绿色荧光材料,所述第二颜色为绿色。所述转换区131用于反射出射所述受激光。可以理解的是,在其他实施方式中,所述转换区131可用于透射出射所述受激光。所述散射区133上设置有散射材料,用于对所述第一颜色的补充光以及第二颜色的补充光进行散射消相干。可以理解的是,在其他实施方式中,所述散射区133上还可以设置散射片。所述第一反射区134以及第二反射区135分别设置有反射镜,用于反射照射于其上的激光。
进一步地,所述色轮130还包括滤光区136,用于接收并过滤所述受激光。所述滤光区136为圆环形,环绕设置于所述第二圆环的内侧。可以理解的是,在其他实施方式中,所述滤光区136还可环绕设置于所述第一圆环的外侧。具体地,所述滤光区136包括沿圆周方向设置的第一分段区域R、第二分段区域G以及第三分段区域B。所述第一分段区域R、第二分段区域G以及第三分段区域B沿圆周方向依序设置且首尾相接。所述第一分段区域R设置有红色滤光片,所述第二分段区域G设置有绿色滤光片,所述第三分段区域B设置有散射片。所述滤光区136的第一分段区域R与所述转换区131的第一分段区域R相对应,用于对所述第一颜色的受激光进行过滤。所述滤光区136的第二分段区域G与所述转换区131的第二分段区域G相对应,用于对所述第二颜色的受激光进行过滤。所述滤光区136的第三分段区域B与所述第一反射区134和第二反射区135相对应,用于对由所述第一反射区134及第二反射区135反射的蓝色激发光进行散射消相干,并扩大蓝色激发光的发散角,以提升匀光方棒180对蓝色激发光的匀 光效果。当所述色轮130转动时,由所述转换区131出射的各种颜色的受激光以及由所述第一反射区134及第二反射区135出射的激发光时序地入射至所述滤光区136上对应的分段区域上,从而使得各种颜色的光时序地合成白光。
请再次参阅图1,所述第一反射装置140在第一位置时与第二反射装置150大致平行设置,且位于所述激发光源110与所述色轮130之间,用于将所述激发光源110发出的激发光反射至所述色轮130的第一圆环上。本实施方式中,处于第一位置时,所述第一反射装置140与第二反射装置150相对水平面倾斜45°角设置,所述激发光全部入射至所述色轮130的第一圆环上,且所述激发光在所述色轮130上形成的光斑不会产生旁瓣。本实施方式中,所述第一反射装置140以及第二反射装置150均为反射片。
所述偏转装置190与所述第一反射装置140相连接,用于控制所述第一反射装置140从第一位置切换至第二位置,在第二位置,所述第一反射装置140相对所述第二反射装置150倾斜设置,进而使得经所述第一反射装置140反射的激发光照射至所述色轮130的第二圆环上。本实施方式中,所述偏转装置190为偏转驱动件。具体地,所述偏转装置190驱动所述第一反射装置140的倾斜角度偏离45°所在位置,使得经所述第一反射装置140反射的激发光在所述色轮130上形成的蓝激发光光斑位置相较经所述第二反射装置150反射的激发光在所述第一圆环上形成的蓝激光光斑位置发生偏离,经所述第一反射装置140反射的激发光在所述色轮130的第二圆环上形成蓝激光光斑。所述偏转装置190驱动所述第一反射装置140按时序进行周期性运动,使所述第一反射装置140的倾斜角度周期性变化,其中所述第一反射装置140的倾斜角度的变化频率和所述色轮130的转动频率相一致。
所述引导装置160用于将所述激发光源110发出的激发光引导至所述色轮130。所述引导装置160包括正透镜161、负透镜163以及收集透镜165。所述正透镜161设置于所述激发光源110与所述第一反射装置140和第二反射装置150之间,用于将所述激发光汇聚至所述 第一反射装置140以及第二反射装置150。所述负透镜163设置于所述收集透镜165与所述第一反射装置140和第二反射装置150之间,用于将所述第一反射装置140和第二反射装置150反射的激发光进行发散并引导至所述收集透镜165。所述收集透镜165用于将所述激发光汇集至所述色轮130上。
进一步地,所述引导装置160还包括匀光器件167。所述匀光器件167用于对所述激发光进行匀光。具体地,所述匀光器件167设置于所述负透镜163和所述收集透镜165之间。本实施方式中,所述匀光器件167为微透镜阵列。通过所述匀光器件167对入射所述色轮130的激发光光斑进行匀光,降低了入射色轮的最大激光功率密度,避免所述色轮130上的荧光材料出现饱和的情况,从而提升了荧光材料的激发效率,提升了光效。
进一步地,所述引导装置160还包括多个准直透镜168。所述多个准直透镜168分别设置于所述激发光源110、所述第一发光元件121以及所述第二发光元件123的光路上,用于对所述激发光源110发出的激发光,所述第一发光元件121发出的第一颜色的补充光,以及所述第二发光元件123发出的第二颜色的补充光进行准直。
所述收集装置170包括第二分光合光元件171、收集透镜组172、第三反射元件173、中继透镜174以及第四反射元件175。所述收集透镜组172用于将所述激发光源110发出的激发光收集、汇聚至所述色轮130。所述第二分光合光元件171用于透射所述激发光,并反射所述受激光、第一颜色的补充光以及第二颜色的补充光。所述第三反射元件173用于反射所述色轮130出射的激发光,并将所述激发光引导至所述第二分光合光元件171。所述中继透镜174用于对所述第二分光合光元件171出射的受激光、激发光、第一颜色的补充光以及第二颜色的补充光进行收集、准直、整形等处理。所述第四反射元件175用于将由所述中继透镜174出射的所述受激光、激发光、第一颜色的补充光以及第二颜色的补充光引导至所述滤光区136。
所述收集透镜组172邻近所述色轮130设置,并位于所述第二分 光合光元件171与所述色轮130之间。具体地,所述收集透镜组172可包括曲率相互配合的多个透镜。
所述第二分光合光元件171设置于所述激发光源110与所述色轮130之间。所述第二分光合光元件171可以采用波长分光的光学结构,即根据入射光的不同波长范围进行合光。作为波长分光的一种实施方式,所述第二分光合光元件171用于透射所述激发光,反射所述受激光及补充光。具体地,所述第二分光合光元件171包括相对设置的第一表面与第二表面,所述激发光源110出射的激发光由所述第一表面射入所述第二分光合光元件171并透过所述第二表面出射至所述收集透镜组172。所述色轮130出射的受激光、激发光以及补充光经所述收集透镜组172收集后射入所述第二分光合光元件171的第二表面,其中受激光以及补充光由所述第二分光合光元件171的第二表面反射,激发光依次透过所述第二分光合光元件171的第二表面与第一表面出射至所述第三反射元件173。本实施方式中,所述第二分光合光元件171为透蓝反黄二向色片。
所述第三反射元件173邻近所述第二分光合光元件171背离所述色轮130的第一表面设置,用于反射由所述第二分光合光元件171的第一表面出射的激发光。经由所述第三反射元件173反射的激发光依次透过所述第二分光合光元件171的第一表面以及第二表面出射。本实施方式中,所述第三反射元件173为平面反射镜。
由所述第二分光合光元件171出射的受激光、激发光以及补充光经过中继透镜174收集后入射至所述第四反射元件175,并经所述第四反射元件175反射后入射至所述色轮130的滤光区136进行滤光,从所述滤光区136出射的受激光、激发光以及补充光以相互匹配的发散角耦合进所述匀光方棒180。
所述匀光方棒180用于将透过所述滤光区136的受激光、激发光、第一颜色的补充光以及第二颜色的补充光进行匀光后出射。
所述光源系统100在驱动时,所述激发光源110一直处于开启状态,所述补充光源120在所述色轮130的转换区131位于所述激发光 源110的出射光路中时打开,在所述第一反射区134位于所述激发光源110的出射光路中时关闭。具体地,所述激发光源110发出蓝色激发光,当所述激发光源110照射所述转换区131的第一分段区域R时,所述第一发光元件121开启;当所述激发光源110照射所述转换区131的第二分段区域G时,所述第二发光元件123开启,同时所述第一发光元件121关闭;当所述激发光源110照射所述第一反射区134时,所述第一发光元件121以及第二发光元件123均关闭,同时所述偏转装置190启动,并驱动所述第一反射装置140偏转,使得经所述第一反射装置140反射的激发光照射所述第二反射区135。
请一并参阅图3及图4,图3及图4是本发明第一实施方式的激光光斑在所述色轮130上的排列示意图,其中图3为未驱动所述第一反射装置140偏转时激光光斑在所述色轮130上的排列示意图,图4为驱动所述第一反射装置140偏转后激光光斑在所述色轮130上的排列示意图。所述激发光源110发出的激发光依次经所述准直透镜168以及正透镜161射入所述第一反射装置140以及第二反射装置150,经所述第一反射装置140以及第二反射装置150反射后再依次经所述负透镜163、匀光器件167、收集透镜165、第二分光合光元件171以及收集透镜组172后在所述色轮130的转换区131的表面形成蓝激光光斑。所述补充光源120发出的补充光透过所述色轮130的散射区133在其表面形成红/绿激光光斑。当所述激发光源110照射所述转换区131时,所述补充光源120开启,所述激发光在所述色轮130的转换区131上形成的蓝激光光斑以及所述补充光在所述色轮130的散射区133上形成的红/绿激光光斑并排排列,且所述蓝激发光照射所述转换区131产生的受激光与所述补充光源120发出的补充光在所述色轮130上进行合光。当所述补充光源120关闭时,所述激发光源110发出的部分激发光经所述第二反射装置150反射后在所述第一反射区134形成蓝激光光斑,所述激发光源110发出的另一部分激发光经偏转后的第一反射装置140反射后在所述第二反射区135形成蓝激光光斑,从而保证了在所述色轮130沿圆周设置的各个分段区域分别位于 所述激发光源110的出射光路中时,由所述色轮130出射的激光光斑的一致性,避免出现显示不均匀的问题。本实施方式中,所述部分激发光在所述第一反射区134上形成的蓝激光光斑与所述另一部分激发光在所述第二反射区135上形成的蓝激光光斑合为一个光斑。
本实施方式的光源系统100,所述散射区133环绕所述转换区131设置,所述转换区131产生的受激光形成的光斑与透过所述散射区133的补充光形成的光斑并列排列,并在所述色轮130上进行合光,相较现有的光学扩展量合光方式,避免了受激光的损失。同时,通过设置用于发出与激发光波长范围不相同的补充光的补充光源120,扩大了色域范围,实现了宽色域要求。另外,通过所述偏转装置190控制所述第一反射装置140偏转,使得经偏转后的第一反射装置140反射的激发光照射于所述色轮130的第二反射区135,从而保证了在所述色轮130沿圆周设置的各个分段区域分别位于所述激发光源110的出射光路中时,由所述色轮130出射的激光光斑的一致性,避免出现显示不均匀的问题。
另外,通过所述收集透镜组172对由所述色轮130出射的大角度受激光及补充光进行收集,并采用所述第二分光合光元件171以及所述第三反射元件173组合实现激发光的入射和出射,有效降低了所述光源系统100的体积并提升了光效。
请参阅图5,图5为本发明第二实施方式提供的光源系统200的结构示意图。所述光源系统200与第一实施方式的光源系统100的结构基本相同,也就是说,上述对所述光源系统100的描述基板上可以应用于所述光源系统200,二者的差别主要在于:第二分光合光元件271的结构、色轮230的反射区的结构以及滤光区236的第三分段区域B的结构不同。
请一并参阅图6,图6为图5所示第二分光合光元件271的结构示意图。具体地,所述第二分光合光元件271为区域膜片,其包括用于透射所述激发光源210发出的激发光的透射区域271a以及用于反射由所述色轮230出射的受激光、激发光以及补充光的反射区域271b。 本实施方式中,所述反射区域271b环绕所述透射区域271a设置。
请一并参阅图7,图7为图5所示色轮230的结构示意图。所述色轮230的反射区B上设置有散射材料,用于接收所述激发光源210发出的激发光并进行散射出射。具体地,所述反射区B上设置有反射式的散射片。经所述色轮230的反射区B散射后的激发光,其光学扩展量变大,经所述收集透镜组272收集后,所述色轮230出射的大部分激发光照射于所述反射区域271b进行反射,仅少量激发光经所述透射区域271a透射。相应的,所述滤光区236的第三分段区域B上无需设置散射片对经由所述色轮230的反射区B反射的激发光进行散射消相干。
进一步地,所述透射区域271a上设置有偏振片,用于透射具有第一偏振态的激发光并反射具有第二偏振态的激发光。具体地,所述透射区域271a用于透射所述激发光源210发出的激发光,并反射经由所述色轮230反射的激发光。所述色轮230接收的激发光经所述反射区B散射后,其偏振状态被改变,经所述色轮230散射后的激发光基本可认为是非偏振光。因此,经所述色轮230散射后射入所述透射区域271a的激发光,其中一部分透过所述偏振片出射,其中另一部分经所述偏振片反射出射,可进一步减少激发光的损失。
本实施方式的光源系统200,除了具有实施方式一中的功效外,采用区域膜片进行激发光的入射和出射,省略了第三反射元件,简化了结构。
请参阅图8,图8为本发明第三实施方式的光源系统300的结构示意图。所述光源系统300与第一实施方式的光源系统100的结构基本相同,也就是说,上述对所述光源系统100的描述基板上可以应用于所述光源系统300,二者的差别主要在于:收集装置370的结构不同,所述色轮330的结构不同。
具体地,所述收集装置370为碗状反射装置,包括透射区域371以及反射区域372。所述透射区域371用于透射所述激发光源310发出的激发光。所述反射区域372用于反射由所述色轮330出射的受激 光、激发光以及补充光。本实施方式中,所述透射区域371为通孔。
请一并参阅图9,图9为图8所示色轮330的结构示意图。所述色轮330上未设置滤光区,且所述反射区B上设置有反射式的散射片,用于接收所述激发光源310发出的激发光并进行散射消相干,以减弱投影显示的散斑现象。经所述色轮330的反射区B散射后的激发光,其光学扩展量变大,大部分照射于所述反射区域372上进行反射。
所述色轮330出射的受激光、激发光以及补充光经过所述反射碗的反射区域372反射后射入所述匀光方棒380。
本实施方式的光源系统300,除了具有实施方式一中的功效外,采用反光碗作为收集装置,省略了实施方式一中的第二分光合光元件、收集透镜组、第三反射元件、中继透镜以及第四反射元件,简化了结构。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (14)

  1. 一种光源系统,其特征在于,包括:
    激发光源,用于发出激发光;
    补充光源,用于发出补充光;
    色轮,包括转换区、散射区、第一反射区与第二反射区,所述转换区与所述第一反射区相互连接形成第一圆环,所述散射区与所述第二反射区相互连接形成第二圆环,且所述第二圆环环绕设置于所述第一圆环的内侧或外侧,所述第一反射区的位置与所述第二反射区的位置相邻,所述转换区与所述散射区的位置相邻,所述转换区用于接收所述激发光并发出受激光,所述散射区用于对所述补充光进行散射出射,所述第一反射区以及所述第二反射区用于对所述激发光进行反射出射;
    第一反射装置,所述第一反射装置可在一第一位置与一第二位置之间切换,在所述第一位置,所述第一反射装置用于将部分激发光反射至所述第一圆环,在所述第二位置,所述第一反射装置用于将部分激发光反射至所述第二圆环;
    第二反射装置,用于将剩余激发光反射至所述第一圆环;以及
    偏转装置,用于控制所述第一反射装置在一第一时序时位于所述第一位置,以使所述第一反射装置将部分激发光反射至所述转换区,及控制所述第一反射装置在一第二时序时位于所述第二位置,以使所述第一反射装置将部分激发光反射至所述第二反射区。
  2. 如权利要求1所述的光源系统,其特征在于,所述激发光在所述转换区上形成的激光光斑以及所述补充光在所述散射区上形成的激光光斑并列排列,所述受激光以及所述补充光在所述色轮上进行合光。
  3. 如权利要求1所述的光源系统,其特征在于,所述光源系统还包括滤光区,所述滤光区为圆环形,并环绕设置于所述第一圆环背离所述第二圆环的一侧,或者环绕设置于所述第二圆环背离所述第一圆环的一侧。
  4. 如权利要求1所述的光源系统,其特征在于,所述光源系统还 包括引导装置,用于将所述激发光引导至所述色轮。
  5. 如权利要求4所述的光源系统,其特征在于,所述引导装置包括:
    正透镜,用于将所述激发光源发出的激发光汇聚至所述第一反射装置和第二反射装置;
    负透镜,用于对所述第一反射装置和第二反射装置的出射光进行发散;以及
    收集透镜,用于将所述负透镜出射光汇聚至所述色轮。
  6. 如权利要求5所述的光源系统,其特征在于,所述引导装置还包括匀光器件,所述匀光器件用于对所述负透镜的出射光进行匀光。
  7. 如权利要求1所述的光源系统,其特征在于,所述光源系统还包括收集装置以及匀光方棒,所述收集装置用于将所述色轮出射的受激光、激发光与补充光进行收集并引导至所述匀光方棒,所述匀光方棒用于将收集后的受激光、激发光与补充光匀光后出射。
  8. 如权利要求7所述的光源系统,其特征在于,所述收集装置包括收集透镜、中继透镜以及第三反射元件,所述收集透镜用于将所述第一反射装置以及第二反射装置出射的激发光汇聚至所述色轮表面并对所述色轮出射的受激光、激发光以及补充光进行汇聚出射,所述第三反射元件用于将受激光、激发光以及补充光反射至所述匀光方棒,所述中继透镜位于所述收集透镜与所述第三反射元件之间。
  9. 如权利要求8所述的光源系统,其特征在于,所述收集装置还包括分光合光元件以及第四反射元件,所述分光合光元件用于透射所述激发光并反射由所述收集透镜出射的受激光与补充光,所述第四反射元件用于将所述色轮出射的激发光反射至所述分光合光元件,其中所述分光合光元件为透蓝反黄二向色片。
  10. 如权利要求8所述的光源系统,其特征在于,所述收集装置还包括分光合光元件,所述分光合光元件包括透射区域以及反射区域,所述透射区域用于透射经由第一反射装置以及第二反射装置反射出射的激发光,所述反射区域用于反射由所述色轮出射的受激光、激发光 以及补充光。
  11. 如权利要求7所述的光源系统,其特征在于,所述收集装置为碗状反光装置,包括透射区域以及环绕所述透射区域设置的反射区域,所述透射区域用于透射经由第一反射装置以及第二反射装置反射出射的激发光,所述反射区域用于将由所述色轮出射的受激光、激发光以及补充光反射至所述匀光方棒。
  12. 如权利要求1所述的光源系统,其特征在于,所述转换区包括沿圆周方向设置的第一分段区域以及第二分段区域,所述第一分段区域设置有第一荧光材料且用于发出第一颜色的受激光,所述第二分段区域设置有第二荧光材料且用于发出第二颜色的受激光,所述补充光源包括第一发光元件以及第二发光元件,所述第一发光元件用于发出第一颜色的补充光,所述第二发光元件用于发出第二颜色的补充光,所述第一发光元件在所述第一分段区域位于所述激发光的光路中时开启,所述第二发光元件在所述第二分段区域位于所述激发光的出射光路中时开启。
  13. 如权利要求12所述的光源系统,其特征在于,所述补充光源还包括分光合光元件,所述第一发光元件发出的第一颜色的补充光以及所述第二发光元件发出的第二颜色的补充光在所述分光合光元件处进行合光。
  14. 一种显示设备,所述显示设备包括光源系统,其特征在于:所述光源系统采用如权利要求1-13项中任意一项所述的光源系统。
PCT/CN2019/108001 2018-10-18 2019-09-26 光源系统及显示设备 WO2020078188A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811218091.0 2018-10-18
CN201811218091.0A CN111077720B (zh) 2018-10-18 2018-10-18 光源系统及显示设备

Publications (1)

Publication Number Publication Date
WO2020078188A1 true WO2020078188A1 (zh) 2020-04-23

Family

ID=70283545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/108001 WO2020078188A1 (zh) 2018-10-18 2019-09-26 光源系统及显示设备

Country Status (2)

Country Link
CN (1) CN111077720B (zh)
WO (1) WO2020078188A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115951552A (zh) * 2023-03-09 2023-04-11 深圳市橙子数字科技有限公司 一种发光装置及光源系统
CN116430662A (zh) * 2023-06-13 2023-07-14 宜宾市极米光电有限公司 一种光源系统及投影设备
CN116794919A (zh) * 2023-08-28 2023-09-22 宜宾市极米光电有限公司 一种光源系统及投影设备

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113900341A (zh) * 2020-06-22 2022-01-07 青岛海信激光显示股份有限公司 光源组件和投影设备
CN113917778A (zh) * 2020-07-10 2022-01-11 深圳光峰科技股份有限公司 一种光源装置及投影设备
CN115469503B (zh) * 2022-11-14 2023-03-10 深圳市橙子数字科技有限公司 一种激光以及led光源组合的投影系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070230179A1 (en) * 2006-03-29 2007-10-04 Sony Deutschland Gmbh Optical unit, light processing unit, light processing method, illumination unit and image generation unit
CN102692800A (zh) * 2011-03-23 2012-09-26 台达电子工业股份有限公司 光源系统
CN104020633A (zh) * 2013-02-28 2014-09-03 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN204759006U (zh) * 2015-06-08 2015-11-11 深圳市绎立锐光科技开发有限公司 投影系统、光源系统以及光源组件
CN206594438U (zh) * 2017-02-13 2017-10-27 深圳市光峰光电技术有限公司 色轮装置、光源系统及投影设备
CN206863465U (zh) * 2017-05-26 2018-01-09 深圳市光峰光电技术有限公司 波长转换装置与光源系统
CN207067642U (zh) * 2017-05-26 2018-03-02 深圳市光峰光电技术有限公司 光源系统及投影设备

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102566230B (zh) * 2010-12-08 2015-05-27 深圳市绎立锐光科技开发有限公司 投影系统、光源系统以及光源组件
CN102650809B (zh) * 2011-02-25 2014-08-06 台达电子工业股份有限公司 光源系统及包含该光源系统的投影装置
CN102854728B (zh) * 2011-12-18 2016-03-16 深圳市光峰光电技术有限公司 光源系统及投影装置
DE102014202090B4 (de) * 2014-02-05 2024-02-22 Coretronic Corporation Beleuchtungsvorrichtung mit einer Wellenlängenkonversionsanordnung
DE102014222130A1 (de) * 2014-10-29 2016-05-04 Osram Gmbh Beleuchtungsvorrichtung mit einer Wellenlängenkonversionsanordnung
CN105549310B (zh) * 2015-12-11 2017-09-29 海信集团有限公司 一种多色轮同步方法及激光投影装置
CN105549312A (zh) * 2016-02-25 2016-05-04 海信集团有限公司 一种荧光轮及荧光转换系统

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070230179A1 (en) * 2006-03-29 2007-10-04 Sony Deutschland Gmbh Optical unit, light processing unit, light processing method, illumination unit and image generation unit
CN102692800A (zh) * 2011-03-23 2012-09-26 台达电子工业股份有限公司 光源系统
CN104020633A (zh) * 2013-02-28 2014-09-03 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN204759006U (zh) * 2015-06-08 2015-11-11 深圳市绎立锐光科技开发有限公司 投影系统、光源系统以及光源组件
CN206594438U (zh) * 2017-02-13 2017-10-27 深圳市光峰光电技术有限公司 色轮装置、光源系统及投影设备
CN206863465U (zh) * 2017-05-26 2018-01-09 深圳市光峰光电技术有限公司 波长转换装置与光源系统
CN207067642U (zh) * 2017-05-26 2018-03-02 深圳市光峰光电技术有限公司 光源系统及投影设备

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115951552A (zh) * 2023-03-09 2023-04-11 深圳市橙子数字科技有限公司 一种发光装置及光源系统
CN115951552B (zh) * 2023-03-09 2023-06-02 深圳市橙子数字科技有限公司 一种发光装置及光源系统
CN116430662A (zh) * 2023-06-13 2023-07-14 宜宾市极米光电有限公司 一种光源系统及投影设备
CN116430662B (zh) * 2023-06-13 2023-08-15 宜宾市极米光电有限公司 一种光源系统及投影设备
CN116794919A (zh) * 2023-08-28 2023-09-22 宜宾市极米光电有限公司 一种光源系统及投影设备
CN116794919B (zh) * 2023-08-28 2023-12-12 宜宾市极米光电有限公司 一种光源系统及投影设备

Also Published As

Publication number Publication date
CN111077720A (zh) 2020-04-28
CN111077720B (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2020078188A1 (zh) 光源系统及显示设备
US8573779B2 (en) Lighting device with plural light sources illuminating distinct regions of integrator
CN106933012B (zh) 照明系统以及投影装置
US20210033953A1 (en) Light source system and projection device
US20120327374A1 (en) Illumination apparatus and projection display apparatus
US10372028B2 (en) Light source device and projection type display apparatus
CN111722465A (zh) 光源装置、图像投影装置和光源光学系统
TW201327015A (zh) 光源系統及其波長轉換裝置
JP2012027052A (ja) 光源装置およびそれを用いた投写型表示装置
CN110874004B (zh) 光源装置及显示设备
WO2020216263A1 (zh) 光源系统和显示设备
CN110389486B (zh) 光源装置及显示设备
CN112782921A (zh) 光源装置和图像投影装置
CN114563907A (zh) 光源装置、图像投射装置以及光源光学系统
CN108803214B (zh) 光源系统及显示设备
JP2014186080A (ja) 光源装置および投写型映像表示装置
US10634981B2 (en) Light source device and projection type display apparatus
WO2021259276A1 (zh) 光源组件和投影设备
CN114563906A (zh) 光源光学系统,光源单元,光源装置以及图像显示装置
WO2020135299A1 (zh) 波长转换装置、发光装置及投影装置
US8085471B2 (en) Light integrating device for an illumination system and illumination system using the same
US20200066945A1 (en) Light source apparatus and projector
WO2021143438A1 (zh) 波长转换装置、光源装置及投影系统
WO2021143444A1 (zh) 复眼透镜组、光源装置及投影设备
WO2021008330A1 (zh) 光源系统与显示设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19873758

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19873758

Country of ref document: EP

Kind code of ref document: A1