WO2020103784A1 - 散射元件、光源系统及显示设备 - Google Patents

散射元件、光源系统及显示设备

Info

Publication number
WO2020103784A1
WO2020103784A1 PCT/CN2019/119154 CN2019119154W WO2020103784A1 WO 2020103784 A1 WO2020103784 A1 WO 2020103784A1 CN 2019119154 W CN2019119154 W CN 2019119154W WO 2020103784 A1 WO2020103784 A1 WO 2020103784A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
scattering layer
scattering
light source
layer
Prior art date
Application number
PCT/CN2019/119154
Other languages
English (en)
French (fr)
Inventor
郭祖强
杜鹏
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2020103784A1 publication Critical patent/WO2020103784A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • G02B5/0205Diffusing elements; Afocal elements characterised by the diffusing properties
    • G02B5/021Diffusing elements; Afocal elements characterised by the diffusing properties the diffusion taking place at the element's surface, e.g. by means of surface roughening or microprismatic structures
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface

Definitions

  • the invention relates to the technical field of optics, in particular to a scattering element, a light source system and a display device.
  • FIG. 1 is a schematic diagram of multiple color gamut ranges in the CIE1931 coordinate system.
  • the range covered by various color gamut triangles represents the color range that can be represented, that is, the color gamut.
  • images with different color gamuts require different color coordinates of the three primary colors provided by the light source, and the color coordinates depend on the spectrum of the three primary colors of the light source.
  • a light source system can only display one color gamut standard.
  • the present invention provides a scattering element that can effectively reduce the phenomenon of laser speckle, and the present invention also provides a light source system and a display device.
  • a scattering element includes a substrate, and a surface of the substrate is provided with:
  • a reflection and scattering layer provided in the first area on the surface of the substrate, for reflecting light scattering
  • a transmission and scattering layer is provided in the second area on the surface of the substrate, and is used to transmit light scattering
  • the first area and the second area do not overlap.
  • the reflective scattering layer at least includes a first scattering layer and a second scattering layer that are both provided on the surface of the substrate and do not overlap each other, and the scattering angles of the first scattering layer and the second scattering layer are different;
  • the transmission scattering layer at least includes a fourth scattering layer and a fifth scattering layer that are both provided on the surface of the substrate and do not overlap each other, and the fourth scattering layer and the fifth scattering layer have different scattering angles.
  • a light source system characterized in that it includes:
  • Light source used to emit illumination light including laser
  • a scattering element as described above, for receiving the illumination light and scattering the illumination light through the reflection scattering layer and the transmission scattering layer, respectively;
  • a guiding device for guiding the illumination light to be transmitted between the first area and the second area A guiding device for guiding the illumination light to be transmitted between the first area and the second area.
  • a light source system including:
  • the scattering element is a scattering element as described above, the first scattering layer and the fourth scattering layer in the scattering element are used to scatter the first light, and the second scattering layer in the scattering element is The fifth scattering layer is used to scatter the second light;
  • the scattering angle of the first scattering layer is smaller than the second scattering layer, and / or the scattering angle of the fourth scattering layer is smaller than the fifth scattering layer, so that the scattered first light emitted from the second region
  • the light has the same optical expansion amount as the second light.
  • a display device includes the light source system described above.
  • the reflection scattering layer and the transmission scattering layer of the scattering element provided by the invention scatter the light, which is beneficial to eliminate the coherence of the incident light and can perfectly eliminate the speckle phenomenon formed by the laser in the incident light.
  • Figure 1 is a schematic diagram of multiple color gamut ranges in the CIE1931 coordinate system.
  • Figure 2 is a schematic diagram of laser speckle phenomenon.
  • FIG. 3 is a schematic structural diagram of a light source system provided by a preferred embodiment of the present invention.
  • FIG. 4 is a schematic structural diagram of the scattering element shown in FIG. 3.
  • FIG. 5 is a timing chart of changes in driving current of each light-emitting body of the light source shown in FIG. 3 in an embodiment.
  • FIG. 6 shows the illuminance distribution at the entrance of the uniform light device when neither the first reflective element nor the second reflective element shown in FIG. 3 is used to scatter light.
  • FIG. 7 shows the illuminance distribution at the entrance of the uniform light device when the first reflective element and / or the second reflective element shown in FIG. 3 are convex mirrors or reflective diffusers.
  • FIG. 8 shows the illuminance distribution at the entrance of the uniform light device when the first reflective element and / or the second reflective element shown in FIG. 3 are reflective microlens arrays.
  • Light source system 20 Uniform light device 215, 270 Guiding device 230 Collection lens group 231 First reflective element 232 Second reflective element 234 Relay lens 233, 235 light source 210 First illuminant 211
  • Second illuminant 212 Third illuminant 213 Heguang components 214 Scattering element 250 Substrate 251 First area 252 Second area 253 First scattering layer R1 Second scattering layer B1 Third scattering layer G1 Fourth scattering layer R2 Fifth scattering layer B2 Sixth scattering layer G2 Drive 260
  • FIG. 3 is a schematic structural diagram of a light source system 20 according to a preferred embodiment of the present invention.
  • the light source system 20 provided by the present invention is a laser light source, which can be applied to display devices such as educational projectors, laser TVs, theater projectors, and mini projectors.
  • the light source system 20 includes a light source 210, a guiding device 230, a scattering element 250, and a uniform light device 270.
  • the light source 210 is used to emit illumination light including laser light
  • the scattering element 250 is used to receive and scatter the illumination light
  • the guiding device 230 is used to guide the illumination light emitted by the scattering element 250 to be transmitted between different regions of the scattering element 250
  • the homogenizing device 270 is used to homogenize the illumination light emitted by the scattering element 250.
  • FIG. 4 is a schematic top view of the scattering element 250 shown in FIG. 3.
  • the scattering element 250 includes a substrate 251, and a surface of the substrate 251 is provided with a first region 252 and a second region 253 that do not overlap each other.
  • the first region 252 is provided with a reflection and scattering layer for reflecting light scattering;
  • the second region 253 is provided with a transmission and scattering layer for transmitting light scattering.
  • the light emitted by the light source 210 is guided by the guiding device 230 to the first region 252 of the scattering element 250, and the illumination light is reflected and scattered by the first region 252 and then enters the scattering element through the guiding device 230 In the second region 253 of 250, the illuminating light enters the light homogenizing device 270 after being transmitted by the second region 253 through scattering.
  • the light emitted from the light source 210 is guided to the second region 253 of the scattering element 250 by the guiding device 230 or other optical devices, and the illumination light is transmitted and scattered by the second region 253 and then enters the scattering element 250 through the guiding device 230 In the first area 252, the illumination light enters the light homogenizing device 270 after being reflected and scattered by the first area 253.
  • the reflection scattering layer and the transmission scattering layer of the scattering element 250 scatter the illumination light twice, which further eliminates the coherence of the laser light, and can perfectly eliminate the speckle phenomenon caused by the laser light in the illumination light.
  • the reflective scattering layer and the transmissive scattering layer of the scattering element 250 extend the angular distribution of the illumination light beam, so that the angle of the illumination light beam entering the uniform light device 270 matches the uniform light device 270, that is, the illumination light at the entrance of the uniform light device 270
  • the divergence angle of the light beam is within a preset range, so that the illumination light can be reflected multiple times in the light homogenizing device 270 to obtain a better light homogenizing effect.
  • the scattering element 250 is used to reflect and scatter the incident illumination light, especially the laser light in the illumination light, to expand its optical expansion.
  • the reason for expanding the laser optical expansion is that the optical expansion of fluorescence is greater than that of the laser.
  • the scattering element 250 is also used to eliminate the coherence of the laser to eliminate the human eye. Inadequate and speckle phenomenon of laser illumination image.
  • the first region 252 and the second region 253 of the scattering element 250 are used to scatter incident light, respectively, and can direct the incident light to different optical paths, which is beneficial to reduce the number of optical elements in the light source system 20 Quantity, thereby reducing the volume and cost of the light source system 20.
  • the light source 210 includes a first luminous body 211, a second luminous body 212, a third luminous body 213, a light combining component 214 and a uniform light device 215.
  • the first luminous body 211 is used to emit first light
  • the second luminous body 212 is used to emit second light
  • the third luminous body 213 is used to emit third light.
  • the first light is a red laser
  • the second The light is a blue laser
  • the third light is a green laser.
  • the first luminous body 211, the second luminous body 212, and the third luminous body 213 can be lasers or laser arrays.
  • the first light, the second light, and the third light may also be laser light of other colors.
  • the light combining element 214 is used to guide the first light, the second light, and the third light to the same optical path and exit from the light source 210.
  • the light combining component 214 can efficiently combine light by combining wavelengths.
  • the light combining component 214 includes a first light combining element 214a and a second light combining element 214b that are arranged crosswise.
  • the first light combining element 214a is used to guide the first light and the second light to exit along the same optical path, and may be a dichroic film of reverse red and blue.
  • the second light combining element 214b is used to guide the second light and the third light to exit along the same optical path, and may be a reverse green translucent blue dichroic sheet.
  • the uniform light device 215 may be a compound eye or an optical integrator, which is used to uniform the light emitted by the light combining component 214. It can be understood that the uniform light device 215 is not necessary, especially in a downsized light source system.
  • the light source system 20 further includes a driving device 260.
  • the scattering element 250 is periodically rotated around the center of rotation under the drive of the external driving device 260, and the distances between the first area 252 and the second area 253 are different from the center of rotation.
  • the substrate 251 has a circular shape, and the rotation center is the center of the substrate 251.
  • Both the first region 252 and the second region 253 have a ring shape, and the outer diameter of the first region 252 is less than or equal to the inner diameter of the second region 253.
  • the second region 253 is disposed on the edge of the substrate 251, and the first region 252 is disposed between the geometric center of the substrate 251 and the second region 253.
  • the first region 252 and the second region 253 may be disposed adjacent to or spaced apart, the substrate 251
  • the geometric center position (circle center) of the bottom surface is used to connect the driving device 260.
  • the scattering element 250 is a fixed scattering element and does not move or rotate with time.
  • both the reflective scattering layer and / or the transmissive scattering layer are Gaussian scattering layers, that is, the proportion of small-angle light rays emitted from the reflective scattering layer and the transmissive scattering layer is large, and the intensity distribution of the emitted light rays conforms to the Gaussian curve.
  • the reflective scattering layer includes a first scattering layer R1, a second scattering layer B1, and a third scattering layer G1 that are both disposed on the surface of the substrate 251, and the transmissive scattering layer includes a first scattering layer that is disposed on the surface of the substrate 251, and does not overlap each other.
  • the first scattering layer R1 and the fourth scattering layer R2 are arranged at 180 degrees with respect to the geometry of the surface of the substrate 251; the second scattering layer B1 and the fifth scattering layer B2 are arranged at 180 degrees with respect to the geometry of the surface of the substrate 251; The geometry of the third scattering layer G1 and the sixth scattering layer G2 is 180 degrees with respect to the geometry of the surface of the substrate 251. It can be understood that, in other embodiments, the relative positional relationship between the corresponding color segments in the reflective scattering layer and the transmissive scattering layer can be flexibly set according to the positional relationship between the incident light rays of the reflective scattering layer and the transmissive scattering layer.
  • the reflection and scattering layer is used to reflect and scatter the incident light
  • the transmission and scattering layer is used to transmit and scatter the incident light, that is, the scattering element 250 does not reflect the color of the incident light on the reflection and transmission layer.
  • Corresponding sections are provided.
  • the scattering element 250 in this embodiment is used to scatter the incident light, especially the laser light, and then exit.
  • the rotation phase of the scattering element 250 does not need to be synchronized with the color of the incident light.
  • the first scattering layer R1, the second scattering layer B1, and the third scattering layer G1 are alternately located on the optical path of the illumination light.
  • the illumination light emitted from the light source 210 passes through the second region 253 and irradiates the first region 252, the fourth scattering layer R2, the fifth scattering layer B2, and the sixth scattering layer G2 alternately driven by the driving device 260 Located on the light path of the illumination light.
  • the scattering angles of the first scattering layer R1 and the second scattering layer B1 may be different, and the scattering angles of the fourth scattering layer R2 and the fifth scattering layer B2 may be different.
  • the optical expansion of the red laser emitted by the light source 210 is greater than the optical expansion of the green laser and the blue laser.
  • the scattering angle of the different scattering layers can be adjusted in the scattering element 250 to adjust the optics of the incident illumination light The expansion amount enables the illumination lights of different colors emitted from the scattering element 250 to enter the light homogenizing device 270 with the same optical expansion amount to improve the light homogenization effect.
  • the first scattering layer R1 is used to reflect and scatter the first light.
  • the scattered first light emitted from the first scattering layer R1 enters the fourth scattering layer R2, enters the uniform light device after being scattered and transmitted by the fourth scattering layer R2 270.
  • the second scattering layer B1 and the fifth scattering layer B2 are used for reflective scattering and transmission scattering second light, respectively
  • the third scattering layer G1 and the sixth scattering layer G2 are used for reflective scattering and transmission scattering third light, respectively.
  • the scattering angle of the first scattering layer R1 is smaller than the second scattering layer B1; or the scattering angle of the fourth scattering layer R2 is smaller than the fifth scattering layer B2; or, the scattering angle of the first scattering layer R1 is smaller than the second scattering layer B1, And the scattering angle of the fourth scattering layer R2 is smaller than that of the fifth scattering layer B2, so that the scattered light of the scattered first light and the second light emitted by the scattering element 250 have the same optical expansion amount.
  • the second scattering layer B1 can be adjusted according to the relationship between the optical expansion of the second light and the third light The scattering angle with the third scattering layer G1, and / or the scattering angle with the fifth scattering layer B2 and the sixth scattering layer G2.
  • the angle distribution of the beam entering the homogenizing device 270 is different, and This leads to the problem of poor uniformity or low efficiency of the light source system 20.
  • the angular distribution of the light rays emitted from the first region 252 and the second region 253 in the scattering element 250 will directly determine the angular distribution of the incident uniform light device 270.
  • the angular distribution of the illumination light beam can be independently enlarged in two orthogonal directions, and the different scattering layers can be adjusted.
  • the scattering angles of the different illuminants into the homogenizing device 270 are controlled to match, that is, the angular distributions of different illuminants into the homogenizing device 270 are within a preset range to improve the uniformity of the outgoing light.
  • the driving device 260 drives the scattering element 250 to rotate periodically, and the first scattering layer R1, the second scattering layer B1, and the third scattering layer G1 are periodically located on the optical path of the illumination light.
  • the timing driving of the first luminous body 211, the second luminous body 212, and the third luminous body 213 needs to be synchronized with the scattering element 250.
  • the dominant wavelength of the second light is greater than 460 nm, and its color coordinate can completely match the color gamut standard of Rec. 2020, and there is no need to correct the color coordinate of the second light.
  • the light source 210 when the first scattering layer R1 is located on the optical path of the illumination light, the light source 210 emits the first light; when the second scattering layer B1 is located on the optical path of the illumination light, the light source 210 emits the second light, when the first When the three-scattering layer G1 is located on the optical path of the illumination light, the light source 210 emits the third light, thereby ensuring that only one color light is emitted at a time.
  • the illumination light emitted from the light source 210 passes through the second region 253 and irradiates the first region 252, when the fourth scattering layer R2 is located on the optical path of the illumination light, the light source 210 emits the first light; when the first When the fifth scattering layer B2 is located on the optical path of the illumination light, the light source 210 emits second light, and when the sixth scattering layer G2 is located on the optical path of the illumination light, the light source 210 emits third light.
  • FIG. 5 is a timing diagram of driving current changes of the light sources 210 shown in FIG. 3 in one embodiment.
  • the dominant wavelength of the second light is in the range of 445-455 nm, and its color coordinate cannot fully match the color gamut standard of Rec. 2020. Therefore, when the second scattering layer B1 is located on the optical path of the illumination light, The light source 210 turns on the third light-emitting body 213 to emit third light to correct the color coordinate of the second light.
  • the light source 210 when the first scattering layer R1 is located on the optical path of the illumination light, the light source 210 emits first light; when the second scattering layer B1 is located on the optical path of the illumination light, the light source 210 emits mixed light of the second light and the third light, At this time, the optical power of the second light is greater than the optical power of the third light; when the third scattering layer G1 is located on the optical path of the illumination light, the light source 210 emits the third light. As shown in Fig. 5, the optical power can be adjusted by adjusting the driving current of the luminous body.
  • the illumination light emitted from the light source 210 passes through the second region 253 and irradiates the first region 252, when the fourth scattering layer R2 is located on the optical path of the illumination light, the light source 210 emits the first light; when the first When the fifth scattering layer B2 is located on the optical path of the illumination light, the light source 210 emits the mixed light of the second light and the third light. At this time, the optical power of the second light is greater than the optical power of the third light; when the sixth scattering layer G2 is located On the optical path of the illumination light, the light source 210 emits third light.
  • the guiding device 230 is used to guide the illumination light emitted by the scattering element 250 to be transmitted between the first region 252 and the second region 253, and the illumination light emitted by the light source 210 is irradiated to the scattering element 250 through the guiding device 230 or other optical devices.
  • the guiding device 230 is used to guide the illumination light emitted from the light source 210 to the first area 252 of the scattering element 250 and to guide the light reflected from the first area 252 to the second area 253.
  • the guiding device 230 specifically includes a collection lens group 231, a first reflective element 232, a second reflective element 234, and relay lenses 233, 235.
  • the illumination light emitted by the light source 210 passes through the collection lens group 231 and is focused near the first area 252 on the surface of the scattering element 250. After being reflected by the first area 252, according to the principle of reflection, the incident illumination light and the exit illumination light of the first area 252 At least part of the optical path is separated.
  • the illumination light emitted from the first region 252 passes through the collimation of the collection lens group 231, the reflection of the first reflective element 232, the relay of the relay lens 233, the reflection of the second reflective element 234, and the relay incident of the relay lens 235 To the second region 253 and pass through the second region 253 to enter the uniform light device 270.
  • the illumination light spot converges on the surface of the phosphor powder, and the light spot spreads.
  • the illumination light spot does not expand. Therefore, when coupling into the uniform light device 270, the illumination light spot is small As shown in FIG. 6, it is not conducive to improving the uniformity of light emitted by the light source system 20.
  • the first reflective element 232 and / or the second reflective element can be designed so that the spot of the illumination light at the entrance of the uniform light device 270 matches the shape of the entrance of the uniform light device 270, which is beneficial to make full use of the uniform light device 270
  • the amount of optical expansion, the illumination light can be reflected and scattered more times in the uniform light device 270, thereby improving the uniformity of the light emitted by the uniform light device 270, and can further eliminate the speckle phenomenon of the laser.
  • the illumination light spot exits from the scattering element 250 through the optical path composed of the collection lens group 231 and the relay lenses 233, 235, and finally enters the process of the homogenizing device 270, the first reflection element 232 and / or the second reflection
  • the element 234 is at or near the aperture stop of the optical path, so in terms of the conversion relationship of the optical expansion amount, the angular distribution of the light beam emitted from the first reflecting element 232 and / or the second reflecting element will be converted into the illuminance distribution of the incident uniform light device 270 .
  • the first reflective element 232 is a convex mirror or a reflective diffuser.
  • the first reflective element 232 is a small curvature convex mirror or a small-angle scattering sheet, that is, the curvature of the first reflective element 232 is less than the preset curvature or the scattering angle is less than the preset angle, so that the illumination light beam It plays a certain role of decoherence, and the angular distribution of the first reflective element 232 is obtained in the same increment in all directions, so the illuminance distribution of the illumination light spot entering the uniform light device 270 is diffused as shown in FIG.
  • the uniform light device 270 The proportion of the light filled at the entrance is greater than the preset value, thereby improving the uniformity of the light emitted by the homogenizing device 270, which can further eliminate the speckle phenomenon of the laser.
  • the preset value may be 80%, 90%, 95%, etc., and the light source system 20 may flexibly select the light uniformity requirement.
  • the first reflective element 232 is a reflective microlens array to decoherently and shape the illuminating light beam, and the curvature and aspect ratio of each microlens unit in the microlens array can be set.
  • the angle distribution of the first reflective element 232 is independently enlarged in two orthogonal directions.
  • the proportion of the light filled at the entrance of the uniform light device is greater than the preset value, so that the illumination light spot illuminance distribution entering the uniform light device 270 is as shown in the figure
  • the diffusion in the form of 8 is beneficial to improve the uniformity of the light emitted by the uniform light device 270, and can further eliminate the speckle phenomenon of the laser.
  • the light emitted by the light source 210 is guided to the first region 252 of the scattering element 250, the illumination light is reflected and scattered by the first region 252 and enters the second region 253 of the scattering element 250, and the illumination light passes through the second region 253
  • the transmissive scattering enters the homogenizing device 270.
  • the reflection scattering layer and the transmission scattering layer of the scattering element 250 scatter the illumination light twice, which further eliminates the coherence of the laser light, and can perfectly eliminate the speckle phenomenon caused by the laser light in the illumination light.
  • the reflective scattering layer and the transmissive scattering layer of the scattering element 250 extend the angular distribution of the illumination light beam, so that the angle of the illumination light beam entering the uniform light device 270 matches the uniform light device 270, that is, the illumination light at the entrance of the uniform light device 270
  • the divergence angle of is within a preset angle range, so that the illumination light can be reflected multiple times in the light homogenizing device 270 to obtain a better light homogenizing effect.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Projection Apparatus (AREA)

Abstract

一种散射元件(250)、光源系统(20)及显示设备,散射元件(250)包括基板(251),基板(251)表面设置有:反射散射层,设置于基板(251)表面的第一区域(252)中,用于对光线进行反射式散射;及透射散射层,设置于基板(251)表面的第二区域(253)中,用于对光线进行透射式散射;其中,第一区域(252)与第二区域(253)不重叠。散射元件(250)的反射散射层及透射散射层对光线进行散射,有利于消除了入射光线的相干性,能极好地消除入射光线中的激光形成的散斑现象。

Description

散射元件、光源系统及显示设备 技术领域
本发明涉及光学技术领域,尤其涉及一种散射元件、光源系统及显示设备。
背景技术
本部分旨在为权利要求书中陈述的本发明的具体实施方式提供背景或上下文。此处的描述不因为包括在本部分中就承认是现有技术。
目前,根据人眼对图像色彩还原的要求,可分为多种色域标准,如Rec709、DCI-P3和Rec2020等色域标准。请参阅图1,为CIE1931坐标系中多个色域范围示意图。如图1所示,在CIE1931坐标系中,各种色域三角形覆盖的范围代表了能够显现的色彩范围,即色域。在图像色彩还原时,不同色域的图像就要求光源提供的三基色的色坐标不同,而色坐标又取决于光源三基色的光谱,通常一种光源系统仅能显示一种色域标准。
在现有的光源技术中,灯泡、LED、荧光粉等光源由于光谱带宽较宽,通常用于Rec709的色域显示;三色纯激光光源由于光谱带宽极窄,通常用于Rec2020的色域显示;但由于激光是一种相干光,纯激光显示的图像存在散斑现象,如图2显示呈条纹状,严重影响人们的视觉观赏体验。
发明内容
为解决现有技术中激光显示的图像出现散斑的技术问题,本发明提供一种可以有效减弱激光散斑现象的散射元件,本发明还提供一种光源系统及显示设备。
一种散射元件,所述散射元件包括基板,所述基板表面设置有:
反射散射层,设置于所述基板表面的第一区域中,用于对光线进 行反射式散射;及
透射散射层,设置于所述基板表面的第二区域中,用于对光线进行透射式散射;
其中,所述第一区域与所述第二区域不重叠。
进一步地,所述反射散射层至少包括均设置于所述基板表面的不相互重叠的第一散射层与第二散射层,所述第一散射层与所述第二散射层的散射角度不同;
所述透射散射层至少包括均设置于所述基板表面的不相互重叠的的第四散射层与第五散射层,所述第四散射层与所述第五散射层的散射角度不同。
一种光源系统,其特征在于,包括:
光源,用于出射包括激光的照明光;
散射元件,为如上所述的散射元件,用于接收所述照明光并分别通过所述反射散射层和所述透射散射层对所述照明光进行散射;及
引导装置,用于引导所述照明光在所述第一区域与所述第二区域之间传输。
一种光源系统,包括:
光源,用于出射包括激光的照明光,所述照明光包括第一光与第二光,所述第一光的光学扩展量大于所述第二光的光学扩展量;及
散射元件,为如上所述的散射元件,所述散射元件中的第一散射层与所述第四散射层用于对所述第一光进行散射,所述散射元件中的第二散射层与所述第五散射层用于对所述第二光进行散射;
所述第一散射层的散射角小于所述第二散射层,和/或所述第四散射层的散射角小于所述第五散射层,使得所述第二区域出射的散射后的第一光与第二光具有相同的光学扩展量。
一种显示设备,包括如上所述的光源系统。
本发明提供的散射元件的反射散射层及透射散射层对光线进行散射,有利于消除了入射光线的相干性,能极好地消除入射光线中的激光形成的散斑现象。
附图说明
为了更清楚地说明本发明实施例/方式技术方案,下面将对实施例/方式描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例/方式,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为CIE1931坐标系中的多个色域范围示意图。
图2为激光散斑现象示意图。
图3为本发明优选实施方式提供的光源系统的结构示意图。
图4为图3所示的散射元件的俯视结构示意图。
图5为图3所示的光源在一种实施方式中的各个发光体的驱动电流变化时序图。
图6为图3所示的第一反射元件与第二反射元件均不用于散射光线时,匀光器件入口处的光照度分布。
图7为图3所示的第一反射元件和/或第二反射元件为凸面反射镜或反射式散射片时,匀光器件入口处的光照度分布。
图8为图3所示的第一反射元件和/或第二反射元件为反射式微透镜阵列时,匀光器件入口处的光照度分布。
主要元件符号说明
光源系统 20
匀光器件 215、270
引导装置 230
收集透镜组 231
第一反射元件 232
第二反射元件 234
中继透镜 233、235
光源 210
第一发光体 211
第二发光体 212
第三发光体 213
合光组件 214
散射元件 250
基板 251
第一区域 252
第二区域 253
第一散射层 R1
第二散射层 B1
第三散射层 G1
第四散射层 R2
第五散射层 B2
第六散射层 G2
驱动装置 260
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
为了能够更清楚地理解本发明的上述目的、特征和优点,下面结合附图和具体实施例对本发明进行详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本发明,所描述的实施例仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
请参阅图3,为本发明优选实施方式提供的光源系统20的结构 示意图。本发明提供的光源系统20为激光光源,其能够应用于教育投影仪、激光电视、影院投影机及微型投影仪等显示设备中。
光源系统20,包括:光源210、引导装置230、散射元件250及匀光器件270。其中,光源210用于出射包括激光的照明光;散射元件250用于接收照明光并对其进行散射;引导装置230用于引导散射元件250出射的照明光在散射元件250的不同区域之间传输;匀光器件270用于对散射元件250出射的照明光进行均匀化处理。
请参阅图4,为图3所示的散射元件250的俯视结构示意图。散射元件250包括基板251,基板251表面设置有:相互不重叠的第一区域252及第二区域253。第一区域252设置有用于对光线进行反射式散射的反射散射层;第二区域253设置有用于对光线进行透射式散射的透射散射层。
如图3所示,本实施方式中,光源210出射的光线被引导装置230引导至散射元件250的第一区域252,照明光被第一区域252反射及散射后经过引导装置230入射至散射元件250的第二区域253,照明光经过第二区域253的透射式散射后进入匀光器件270。在其他实施方式中,光源210出射的光线被引导装置230或其他光学装置引导至散射元件250的第二区域253,照明光被第二区域253透射及散射后经过引导装置230入射至散射元件250的第一区域252,照明光经过第一区域253的反射式散射后进入匀光器件270。
散射元件250的反射散射层及透射散射层对照明光进行两次散射,进一步消除了激光的相干性,能极好地消除照明光中的激光形成的散斑现象。散射元件250的反射散射层及透射散射层对照明光光束的角度分布进行扩展,进而使得照明光光束进入匀光器件270的角度与匀光器件270相匹配,即匀光器件270入口处照明光的光束发散角在预设范围内,使得照明光能够在匀光器件270中进行多次反射,获得较好的匀光效果。
散射元件250用于对入射照明光,特别是照明光中的激光进行反射式散射及透射式散射,以扩大其光学扩展量,而扩大激光光学扩展量的原因在于荧光的光学扩展量大于激光,在现有光源中直接使用没 有经过散射的激光时,激光的角度会较小,经过匀光器件270的均匀化效果很差;散射元件250还用于消除激光的相干性,以消除人眼对激光照明图像的不适应及散斑现象。
在变更实施方式中,散射元件250的第一区域252与第二区域253分别用于对入射光线进行散射,并且可以分别将入射光线引导至不同光路,有利于减少光源系统20中的光学元件的数量,进而降低光源系统20的体积与成本。
如图3所示,光源210包括第一发光体211、第二发光体212、第三发光体213、合光组件214及匀光器件215。其中第一发光体211用于发出第一光,第二发光体212用于发出第二光,第三发光体213用于发出第三光,本发明中,第一光为红色激光,第二光为蓝色激光,第三光为绿色激光,可以理解的是,第一发光体211、第二发光体212及第三发光体213可以是激光器或激光器阵列。第一光、第二光及第三光还可以是其他颜色的激光。合光组件214用于将第一光、第二光及第三光引导至同一光路从光源210出射。
由于第一光、第二光及第三光具有极窄的波长带宽,波长之间没有重叠且间隔较大,因此合光组件214可以采用波长合光的方式高效地进行合光。
在波长合光的实施方式中,合光组件214包括交叉设置的第一合光元件214a及第二合光元件214b。第一合光元件214a用于引导第一光与第二光沿同一光路出射,可以是反红透蓝二向色片。第二合光元件214b用于引导第二光与第三光沿同一光路出射,可以是反绿透蓝二向色片。
匀光器件215可以是复眼或是光学积分棒,用于对合光组件214出射的光线进行匀光,可以理解的是,匀光器件215不是必须的,特别是下小型化的光源系统中。
如图3所示,光源系统20还包括驱动装置260,散射元件250在外部驱动装置260的驱动下围绕旋转中心周期性转动,第一区域252与第二区域253与旋转中心的距离不同。如图4所示,基板251呈圆形,旋转中心为基板251的圆心。第一区域252与第二区域253均呈 环形,第一区域252的外径尺寸小于等于第二区域253的内径尺寸。第二区域253设置于基板251的边缘,第一区域252设置于基板251的几何中心与第二区域253之间,第一区域252与第二区域253可以相邻设置也可以间隔设置,基板251底面的几何中心位置(圆心)用于连接驱动装置260。在变更实施方式中,散射元件250为固定式的散射元件,不随时间推移而发生移动或转动。
在一种实施方式中,反射散射层和/或透射散射层均为高斯散射层,即反射散射层与透射散射层的出射光线中小角度光线比例较大,出射光线的光强分布符合高斯曲线。
反射散射层包括均设置于基板251表面的不相互重叠的第一散射层R1、第二散射层B1与第三散射层G1,透射散射层包括均设置于基板251表面的不相互重叠的的第四散射层R2、第五散射层B2及第六散射层G2。本实施方式中,第一散射层R1与第四散射层R2关于基板251表面的几何呈180度设置;第二散射层B1与第五散射层B2关于基板251表面的几何呈180度设置;第三散射层G1与第六散射层G2关于基板251表面的几何呈180度设置。可以理解的是,在其他实施方式中,可以根据反射散射层与透射散射层入射光线的位置关系灵活设置反射散射层与透射散射层中对应颜色区段的相对位置关系。在其他实施方式中,反射散射层用于对入射光线进行反射与散射,透射散射层用于对入射光线进行透射与散射,即散射元件250不根据入射光线的颜色在反射散射层与透射散射层设置对应区段,这种实施方式中的散射元件250用于对入射光线,特别是激光进行两次散射后出射,散射元件250的转动相位不需要与入射光线的颜色同步。
在驱动装置260的驱动下,第一散射层R1、第二散射层B1与第三散射层G1交替位于照明光的光路上。在光源210出射的照明光经过第二区域253后照射至第一区域252的实施方式中,在驱动装置260的驱动下,第四散射层R2、第五散射层B2与第六散射层G2交替位于照明光的光路上。
进一步地,第一散射层R1与第二散射层B1的散射角度可以不同,第四散射层R2与第五散射层B2的散射角度可以不同。本实施方 式中,光源210发出的红色激光的光学扩展量大于绿色激光与蓝色激光的光学扩展量,相应地,散射元件250中可以调节不同散射层的散射角度,以调节入射照明光的光学扩展量,使得散射元件250出射的不同颜色照明光以相同的光学扩展量进入匀光器件270,以提高匀光效果。
第一散射层R1用于反射并散射第一光,第一散射层R1出射的散射后的第一光入射至第四散射层R2,经过第四散射层R2的散射及透射后进入匀光器件270。相应地,第二散射层B1与第五散射层B2分别用于反射散射及透射散射第二光,第三散射层G1与第六散射层G2分别用于反射散射及透射散射第三光。其中,第一散射层R1的散射角度小于第二散射层B1;或者第四散射层R2的散射角度小于第五散射层B2;或者,第一散射层R1的散射角度小于第二散射层B1,并且第四散射层R2的散射角度小于第五散射层B2,从而使得散射元件250出射的散射后的第一光与第二光的光学扩展量相同。
可以理解的是,为减小或消除散射元件250出射的第二光与第三光的光学扩展量的差距,可以根据第二光与第三光的光学扩展量的关系调节第二散射层B1与第三散射层G1的散射角度,和/或第五散射层B2与第六散射层G2的散射角度。
在一种实施方式中,由于第一发光体211、第二发光体212及第三发光体213中的激光器的数量及排列形式的差异,会导致进入匀光器件270的光束角度分布不同,进而导致光源系统20均匀性差或效率低的问题。
在光学扩展量转化关系上,散射元件250中第一区域252和第二区域253出射光线的角度分布将直接决定入射匀光器件270的角度分布。在上述反射散射层和/或透射散射层为椭圆高斯散射层或微透镜阵列的实施方式中,即可对照明光光束角度分布进行正交两个方向上独立的扩大,并且调节不同散射层中的散射角度,进而控制不同发光体进入匀光器件270的角度分布相匹配,即不同发光体进入匀光器件270的角度分布均处于预设范围内,以提高出射光的均匀性。
驱动装置260驱动散射元件250周期性转动,并且第一散射层R1、 第二散射层B1与第三散射层G1周期性位于照明光的光路上。第一发光体211、第二发光体212和第三发光体213的时序驱动需要与散射元件250同步。在一种实施方式中,第二光主波长大于460nm,其色坐标能够完全匹配Rec.2020的色域标准,不需要对第二光的色坐标进行校正。在本实施方式中,当第一散射层R1位于照明光的光路上时,光源210出射第一光;当第二散射层B1位于照明光的光路上时,光源210出射第二光,当第三散射层G1位于照明光的光路上时,光源210出射第三光,从而保证在一个时刻仅出射一种颜色光。相应地,在光源210出射的照明光经过第二区域253后照射至第一区域252的实施方式中,当第四散射层R2位于照明光的光路上时,光源210出射第一光;当第五散射层B2位于照明光的光路上时,光源210出射第二光,当第六散射层G2位于照明光的光路上时,光源210出射第三光。
请参阅图5,为图3所示的光源210在一种实施方式中的各个发光体的驱动电流变化时序图。在一种实施方式中,第二光主波长在445-455nm的范围内,其色坐标不能够完全匹配Rec.2020的色域标准,故在第二散射层B1位于照明光的光路上时,光源210开启第三发光体213发出第三光以对第二光的色坐标进行校正。即当第一散射层R1位于照明光的光路上时,光源210出射第一光;当第二散射层B1位于照明光的光路上时,光源210出射第二光与第三光的混合光,此时,第二光的光功率大于第三光的光功率;当第三散射层G1位于照明光的光路上时,光源210出射第三光。如图5所示,可以通过调节发光体的驱动电流来调节光功率。相应地,在光源210出射的照明光经过第二区域253后照射至第一区域252的实施方式中,当第四散射层R2位于照明光的光路上时,光源210出射第一光;当第五散射层B2位于照明光的光路上时,光源210出射第二光与第三光的混合光,此时,第二光的光功率大于第三光的光功率;当第六散射层G2位于照明光的光路上时,光源210出射第三光。
引导装置230用于引导散射元件250出射的照明光在第一区域252与第二区域253之间传输,光源210发出的照明光经过引导装置 230或其他光学装置照射至散射元件250。本实施方式中,引导装置230用于将光源210出射的照明光引导至散射元件250的第一区域252,以及用于将第一区域252反射出的光线引导至第二区域253。
如图3所示,引导装置230具体包括收集透镜组231、第一反射元件232,第二反射元件234及中继透镜233,235。光源210发出的照明光经过收集透镜组231后聚焦于散射元件250表面的第一区域252附近,经过第一区域252的反射后,根据反射原理,第一区域252的入射照明光与出射照明光至少部分光路分离。第一区域252出射的照明光依次经过收集透镜组231的准直、第一反射元件232的反射、中继透镜233的中继、第二反射元件234的反射及中继透镜235的中继入射至第二区域253,并穿过第二区域253进入匀光器件270。
光源系统中,照明光光斑会聚于荧光粉表面会产生光斑扩散,然而,照明光光斑会聚于散射元件250表面时光斑不会产生扩展,因此在耦合进入匀光器件270时,照明光光斑较小,如图6所示,不利于提高光源系统20出光的均匀性。因此可以对第一反射元件232和/或第二反射元件进行一些设计,使照明光在匀光器件270入口处的光斑与匀光器件270的入口形状相匹配,有利于充分利用匀光器件270的光学扩展量,照明光在匀光器件270中能够进行更多次的反射与散射,从而提高匀光器件270出射光线的均匀性,同时可以进一步消除激光的散斑现象。
如图3所示,照明光光斑从散射元件250出射经过收集透镜组231以及中继透镜233,235组成的光路,最终入射匀光器件270的过程,第一反射元件232和/或第二反射元件234处于光路的孔径光阑位置或附近,因此在光学扩展量转化关系上,从第一反射元件232和/或第二反射元件出射光束的角度分布将转化为入射匀光器件270的照度分布。
在一种实施方式中,第一反射元件232为凸面反射镜或反射式散射片。在一种优选的实施方式中,第一反射元件232为小曲率凸面镜或小角度散射片,即第一反射元件232的曲率小于预设曲率或者散射角度小于预设角度,以对照明光光束起到一定的消相干作用,并且第 一反射元件232出射的角度分布在各个方向上获得同一增量,因此进入匀光器件270的照明光光斑照度分布如图7的形式扩散,匀光器件270入口处填充光线的比例大于预设值,进而提高匀光器件270出光的均匀性,可以进一步消除激光的散斑现象。可以理解的是,预设值可以是80%、90%、95%等等,可以光源系统20对光线均匀性的要求来灵活选择。
在一种实施方式中,第一反射元件232为反射式微透镜阵列,以对照明光光束进行消相干及整形,可以设置微透镜阵列中每个微透镜单元的曲率及单元的长宽比,进而对第一反射元件232出射的角度分布进行正交两个方向上独立的扩大,匀光器件入口处填充光线的比例大于预设值,进而使进入匀光器件270的照明光光斑照度分布如图8的形式扩散,有利于提高匀光器件270出光的均匀性,可以进一步消除激光的散斑现象。
可以理解的是,在本发明的精神或基本特征的范围内,适用于第一反射元件232的上述技术方案,同样适用于第二反射元件234,为节省篇幅及避免重复起见,在此就不再赘述。
本发明中,光源210出射的光线被引导至散射元件250的第一区域252,照明光被第一区域252反射及散射后入射至散射元件250的第二区域253,照明光经过第二区域253的透射式散射后进入匀光器件270。散射元件250的反射散射层及透射散射层对照明光进行两次散射,进一步消除了激光的相干性,能极好地消除照明光中的激光形成的散斑现象。散射元件250的反射散射层及透射散射层对照明光光束的角度分布进行扩展,进而使得照明光光束进入匀光器件270的角度与匀光器件270相匹配,即匀光器件270入口处照明光的发散角在预设角度范围内,使得照明光能够在匀光器件270中进行多次反射,获得较好的匀光效果。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求 而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化涵括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。此外,显然“包括”一词不排除其他单元或步骤,单数不排除复数。装置权利要求中陈述的多个装置也可以由同一个装置或系统通过软件或者硬件来实现。第一,第二等词语用来表示名称,而并不表示任何特定的顺序。
最后应说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管参照较佳实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或等同替换,而不脱离本发明技术方案的精神和范围。

Claims (14)

  1. 一种散射元件,其特征在于,所述散射元件包括基板,所述基板表面设置有:
    反射散射层,设置于所述基板表面的第一区域中,用于对光线进行反射式散射;及
    透射散射层,设置于所述基板表面的第二区域中,用于对光线进行透射式散射;
    其中,所述第一区域与所述第二区域不重叠。
  2. 如权利要求1所述的散射元件,其特征在于,所述散射元件在一驱动装置的驱动下围绕旋转中心周期性转动,所述第一区域与所述第二区域与所述旋转中心的距离不同。
  3. 如权利要求1所述的散射元件,其特征在于,所述反射散射层至少包括均设置于所述基板表面的不相互重叠的第一散射层与第二散射层,所述第一散射层与所述第二散射层的散射角度不同;
    所述透射散射层至少包括均设置于所述基板表面的不相互重叠的的第四散射层与第五散射层,所述第四散射层与所述第五散射层的散射角度不同。
  4. 如权利要求3所述的散射元件,其特征在于,所述第一散射层与所述第四散射层关于所述基板表面的几何中心呈180度设置;所述第二散射层与所述第五散射层关于所述基板表面的几何中心呈180度设置。
  5. 如权利要求3所述的散射元件,其特征在于,所述反射散射层还包括与所述第一散射层及所述第二散射层不重叠的第三散射层;所述透射散射层还包括与所述第四散射层及所述第五散射层不重叠的第六散射层。
  6. 如权利要求1-5任意一项所述的散射元件,其特征在于,所述基板呈圆形,所述第一区域与所述第二区域均呈环形,所述第一区域的外径尺寸小于等于所述第二区域的内径尺寸。
  7. 如权利要求1-5任意一项所述的散射元件,其特征在于,所述 反射散射层和/或所述透射散射层为高斯散射层或微透镜阵列。
  8. 一种光源系统,其特征在于,包括:
    光源,用于出射包括激光的照明光;
    散射元件,为如权利要求1-7任意一项所述的散射元件,用于接收所述照明光并分别通过所述反射散射层和所述透射散射层对所述照明光进行散射;及
    引导装置,用于引导所述散射元件出射的照明光在所述第一区域与所述第二区域之间传输。
  9. 如权利要求8所述的光源系统,其特征在于,所述引导装置包括第一反射元件,所述第一反射元件用于散射所述第一区域出射的光线,并将其引导至所述第二区域;
    所述光源系统还包括匀光器件,所述第二区域出射的光线从所述匀光器件的入口进入所述匀光器件。
  10. 如权利要求9所述的光源系统,其特征在于,所述第一反射元件为凸面反射镜、反射式散射片或反射式微透镜阵列。
  11. 一种光源系统,其特征在于,包括:
    光源,用于出射包括激光的照明光,所述照明光至少包括第一光与第二光,所述第一光的光学扩展量大于所述第二光的光学扩展量;及
    散射元件,为如权利要求3所述的散射元件,所述散射元件中的第一散射层与所述第四散射层用于对所述第一光进行散射,所述散射元件中的第二散射层与所述第五散射层用于对所述第二光进行散射;
    所述第一散射层的散射角小于所述第二散射层,和/或所述第四散射层的散射角小于所述第五散射层,使得所述第二区域出射的散射后的第一光与第二光具有相同的光学扩展量。
  12. 如权利要求11所述的光源系统,其特征在于,还包括设置于所述散射元件底面上的驱动装置,所述散射元件在所述驱动装置的驱动下围绕旋转中心周期性转动,所述第一散射层与所述第二散射层周期性位于所述照明光的光路上,或者所述第四散射层与所述第五散射层周期性位于所述照明光的光路上;
    当所述第一散射层或所述第四散射层位于所述照明光的光路上时,所述光源出射第一光;当所述第二散射层或所述第五散射层位于所述照明光的光路上时,所述光源出射所述第二光。
  13. 如权利要求11所述的光源系统,其特征在于,
    所述反射散射层还包括与所述第一散射层及所述第二散射层不重叠的第三散射层;所述透射散射层还包括与所述第四散射层及所述第五散射层不重叠的第六散射层;
    所述光源系统还包括设置于所述散射元件底面上的驱动装置,在所述驱动装置的带动下,所述第一散射层、所述第二散射层及所述第三散射层周期性位于所述照明光的光路上,或者所述第四散射层、所述第五散射层及所述第六散射层周期性位于所述照明光的光路上;
    所述光源还用于出射第三光;
    当所述第一散射层或所述第四散射层位于所述照明光的光路上时,所述光源出射所述第一光;当所述第二散射层或所述第五散射层位于所述照明光的光路上时,所述光源出射所述第二光,或者所述光源出射出射所述第二光与所述第三光的混合光,此时,所述第二光的光功率大于所述第三光的光功率;当所述第三散射层或所述第六散射层位于所述照明光的光路上时,所述光源出射所述第三光。
  14. 一种显示设备,其特征在于,包括如权利要求8-13任意一项所述的光源系统。
PCT/CN2019/119154 2018-11-19 2019-11-18 散射元件、光源系统及显示设备 WO2020103784A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811378318.8A CN111198410B (zh) 2018-11-19 2018-11-19 散射元件、光源系统及显示设备
CN201811378318.8 2018-11-19

Publications (1)

Publication Number Publication Date
WO2020103784A1 true WO2020103784A1 (zh) 2020-05-28

Family

ID=70743949

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/119154 WO2020103784A1 (zh) 2018-11-19 2019-11-18 散射元件、光源系统及显示设备

Country Status (2)

Country Link
CN (1) CN111198410B (zh)
WO (1) WO2020103784A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101176036A (zh) * 2005-05-17 2008-05-07 松下电器产业株式会社 激光图像显示装置和激光图像显示屏幕
US20100328749A1 (en) * 2007-11-26 2010-12-30 Guido Hitschmann Optical system with high contrast
US8004760B2 (en) * 2009-10-28 2011-08-23 Microsoft Corporation Rear-projection display
CN103676444A (zh) * 2012-09-25 2014-03-26 陈政寰 投影屏幕及其投影系统
CN107272310A (zh) * 2016-04-06 2017-10-20 上海蓝湖照明科技有限公司 发光装置及相关投影系统与照明系统
CN107765501A (zh) * 2017-11-15 2018-03-06 四川长虹电器股份有限公司 一种激光光源系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4831395B2 (ja) * 2005-02-10 2011-12-07 ミネベア株式会社 カラーホイールおよびその製造方法
CN102929086B (zh) * 2012-08-22 2015-02-25 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN205608228U (zh) * 2016-01-05 2016-09-28 深圳市光峰光电技术有限公司 一种光源装置
CN108267920A (zh) * 2016-02-26 2018-07-10 海信集团有限公司 一种激光光源装置
CN105549313B (zh) * 2016-02-26 2018-05-18 海信集团有限公司 一种荧光轮及荧光转换系统
JP6932840B2 (ja) * 2017-04-10 2021-09-08 マテリオン プレシジョン オプティクス (シャンハイ) リミテッド 光変換のための組み合わせホイール

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101176036A (zh) * 2005-05-17 2008-05-07 松下电器产业株式会社 激光图像显示装置和激光图像显示屏幕
US20100328749A1 (en) * 2007-11-26 2010-12-30 Guido Hitschmann Optical system with high contrast
US8004760B2 (en) * 2009-10-28 2011-08-23 Microsoft Corporation Rear-projection display
CN103676444A (zh) * 2012-09-25 2014-03-26 陈政寰 投影屏幕及其投影系统
CN107272310A (zh) * 2016-04-06 2017-10-20 上海蓝湖照明科技有限公司 发光装置及相关投影系统与照明系统
CN107765501A (zh) * 2017-11-15 2018-03-06 四川长虹电器股份有限公司 一种激光光源系统

Also Published As

Publication number Publication date
CN111198410A (zh) 2020-05-26
CN111198410B (zh) 2022-08-12

Similar Documents

Publication Publication Date Title
US10732495B2 (en) Illumination system, projection apparatus and method for driving illumination system
TWI504832B (zh) 照明系統及投影裝置
US9348204B2 (en) Light source module with wavelength conversion module and projection apparatus
US9910346B2 (en) Illumination system and projection apparatus
US6962426B2 (en) Recirculation of reflected source light in an image projection system
EP3457687A1 (en) Illumination system and projection apparatus
US20130083294A1 (en) Illumination system and projection apparatus
JP2012042735A (ja) 光源装置、照明装置及び投影表示装置
CN104583864A (zh) 照明光学系统、投影仪和投影仪系统
EP3792690A1 (en) Light source system, projection device and illumination device
CN112782921A (zh) 光源装置和图像投影装置
TW201802568A (zh) 光源及投影儀
CN107193177B (zh) 一种光源系统及其投影装置
TW202201075A (zh) 混合光源系統以及投影顯示設備
WO2016016076A1 (en) Light source apparatus and optical imaging and displaying device using the light source apparatus
WO2020135300A1 (zh) 光源系统及投影装置
WO2021031474A1 (zh) 一种便携式多色激光照明系统
WO2020125300A1 (zh) 色轮、光源系统及显示设备
US20220121093A1 (en) Wavelength conversion device, light-emitting device and projection device
WO2020103784A1 (zh) 散射元件、光源系统及显示设备
WO2021008332A1 (zh) 光源系统与显示设备
WO2020135301A1 (zh) 光源系统及投影设备
CN210266799U (zh) 一种便携式多色激光照明系统
WO2020057106A1 (zh) 光源系统及显示设备
CN111381426B (zh) 光源系统及投影设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886834

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19886834

Country of ref document: EP

Kind code of ref document: A1