WO2020056920A1 - 一种电动体感滑板及运动控制方法 - Google Patents

一种电动体感滑板及运动控制方法 Download PDF

Info

Publication number
WO2020056920A1
WO2020056920A1 PCT/CN2018/117902 CN2018117902W WO2020056920A1 WO 2020056920 A1 WO2020056920 A1 WO 2020056920A1 CN 2018117902 W CN2018117902 W CN 2018117902W WO 2020056920 A1 WO2020056920 A1 WO 2020056920A1
Authority
WO
WIPO (PCT)
Prior art keywords
pedal
deformation
skateboard
elastic member
microcontroller
Prior art date
Application number
PCT/CN2018/117902
Other languages
English (en)
French (fr)
Inventor
刘耀金
Original Assignee
深圳市踏路科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市踏路科技有限公司 filed Critical 深圳市踏路科技有限公司
Publication of WO2020056920A1 publication Critical patent/WO2020056920A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C17/00Roller skates; Skate-boards
    • A63C17/12Roller skates; Skate-boards with driving mechanisms
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C17/00Roller skates; Skate-boards
    • A63C17/0006Accessories
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C17/00Roller skates; Skate-boards
    • A63C17/01Skateboards
    • A63C17/011Skateboards with steering mechanisms
    • AHUMAN NECESSITIES
    • A63SPORTS; GAMES; AMUSEMENTS
    • A63CSKATES; SKIS; ROLLER SKATES; DESIGN OR LAYOUT OF COURTS, RINKS OR THE LIKE
    • A63C17/00Roller skates; Skate-boards
    • A63C17/26Roller skates; Skate-boards with special auxiliary arrangements, e.g. illuminating, marking, or push-off devices

Definitions

  • the invention relates to the technical field of skateboards, and in particular to an electric body-sensing skateboard and a motion control method.
  • electric skateboards are generally divided into remote-controlled electric skateboards and non-remote-controlled skateboards.
  • the remote control electric skateboard needs to hold the remote control, and control the remote control of the skateboard to control the forward or stop of the skateboard. This requires the user's hand. On the other hand, when the remote control is lost, the skateboard will be unusable. Increased risk of skateboard use.
  • Most of the slides without remote control currently use pressure sensors. Pressure sensors use strain gauges or strain resistances. The pressure data is used to deform the pressure sensors to obtain sensing data. However, after the pressure sensors are used for a long time, the strain gauges or strain resistances Non-vibration-resistant characteristics are easy to damage, and the deformation unit is fatigued and cannot rebound, which affects the control accuracy and service life of the slide.
  • the control method of the electric skateboard by the Hall sensor on the existing electric skateboard is generally controlled by detecting the inclination of the skateboard or detecting the rotation speed of the motor.
  • the effect of the control method is not good and the structure is relatively complicated.
  • the technical problem to be solved by the present invention is to provide an electric somatosensory skateboard and a motion control method aiming at the above-mentioned shortcomings of the prior art, which aims to solve the poor control effect, complicated structure, and use of the electric skateboard control method in the prior art High obstacle rates.
  • an electric somatosensory skateboard wherein the electric skateboard includes: a pedal; a battery component and a microcontroller arranged below or above the pedal;
  • a bridge provided at both ends of the pedal, and at least one motor provided on the bridge;
  • a sensor assembly provided between the bridge and the pedal and used to obtain the deformation of the elastic member under the pedal when the pedal is pressed, and send the sensor component to the microcontroller, the elastic member is used when the pedal is pressed Deformed to reflect the deformation of the pedal;
  • the microcontroller is connected to a motor and a sensor component, and is configured to receive a deformation variable obtained by the sensor component, convert it into a control signal and send it to the motor to control the motion of the electric body-sensing skateboard.
  • the sensor components are provided in two and are respectively located between the bridge and the pedal, and the two sensor components are respectively used to obtain the deformation of the elastic members at both ends of the pedal and send the shape to the microcontroller.
  • a variable signal so that the microcontroller compares the amount of deformation at both ends and outputs a control signal according to the difference in the amount of deformation to control the two-way movement of the electric somatosensory skateboard.
  • the sensor component is any one of a Hall sensor component, a photoelectric ranging sensor component, and a gyroscope sensor component.
  • the Hall sensor component specifically includes: An upper fixing block, a lower fixing block that cooperates with the upper fixing block and forms an accommodation space, and an elastic member located between the upper fixing block and the lower fixing block and connected to the upper fixing block; A Hall sensor is provided, and a magnet piece is provided on the lower fixed block; the Hall sensor is used to detect the deformation of the elastic member after the pedal is pressed and send it to the microcontroller, so that the microcontroller can The deformation of the elastic member determines the amount of change in the distance between the Hall sensor and the magnet piece, and outputs a corresponding control signal.
  • the elastic member is provided as a cantilevered steel sheet or a spring member having an elastic deformation capability, and one end of the cantilevered steel sheet is fixed on an upper fixing block, and the other end is provided with a hall
  • a magnet piece is provided on the lower fixing block at a position corresponding to directly below the Hall sensor.
  • the photoelectric ranging sensor component specifically includes: An upper fixing block below the pedal, a lower fixing block that cooperates with the upper fixing block and forms a receiving space, and an elastic member located between the upper fixing block and the lower fixing block and connected to the upper fixing block;
  • the elastic member is provided with a photoelectric ranging sensor, and the lower fixing block is provided with a reflecting plane, and the photoelectric ranging sensor is opposite to the reflecting plane; the photoelectric ranging sensor is used to emit to the reflecting plane when the pedal is pressed.
  • the light detects the deformation of the elastic member and sends it to the microcontroller, so that the microcontroller determines the distance variation between the photoelectric distance measuring sensor and the magnet piece according to the deformation of the elastic member, and outputs the corresponding control. signal.
  • a motion control method for an electric somatosensory skateboard wherein the motion control method includes:
  • the sensor component provided under the pedal acquires the deformation of the elastic member under the pedal and sends it to the microcontroller;
  • the microcontroller of the electric somatosensory skateboard When the microcontroller of the electric somatosensory skateboard receives the amount of deformation, it converts the amount of deformation into a control signal and outputs it to the motor below the pedal; after receiving the control signal, the motor controls the control unit according to the control signal.
  • the electric somatosensory skateboarding is described.
  • the method for controlling motion of an electric body-sensing skateboard wherein after the pedal of the electric body-sensing skateboard is pressurized, the step of acquiring the deformation of the elastic member under the pedal and sending it to the microcontroller includes a sensor component disposed below the pedal, including: :
  • the sensor component is set as a Hall sensor component; when the pedal of the electric body-sensing skateboard is pressed, the Hall sensor in the Hall sensor component obtains the deformation of the elastic member provided in the Hall sensor component, and the elastic member The amount of deformation is sent to the microcontroller, so that the microcontroller determines the amount of change in the distance between the Hall sensor and the magnet piece according to the amount of deformation of the elastic member, and outputs a corresponding control signal.
  • the motion control method for an electric somatosensory skateboard wherein the motion control method further includes:
  • Two Hall sensor components are provided, and are respectively located between the bridge and the pedal at both ends;
  • the two sets of Hall sensor components respectively obtain the deformation of the internal elastic parts and send them to the microcontroller;
  • the microcontroller obtains the distance change between the Hall sensor and the magnet piece at both ends according to the deformation of the elastic member in the Hall sensor assembly at both ends, and compares the distance change at both ends to determine the difference and output Corresponding control signals are sent to the motor to control the two-way movement of the electric somatosensory skateboard.
  • the sensor component automatically obtains the deformation of the elastic member under the pedal, and outputs the deformation signal to the microcontroller to control the movement of the electric body-sensing skateboard, and
  • the deformation is transformed into an electric signal output, and the electric somatosensory skateboard of the present invention is more reliable and convenient to use, thereby greatly improving the accuracy of motion control and the service life of the entire skateboard.
  • FIG. 1 is a schematic structural diagram of an electric somatosensory skateboard provided by Embodiment 1 of the present invention.
  • FIG. 2 is a schematic structural diagram of a sensor component in an electric somatosensory skateboard provided by Embodiment 2 of the present invention.
  • FIG. 3 is a schematic structural diagram of an upper fixing plate in an electric somatosensory skateboard provided by Embodiment 2 of the present invention.
  • FIG. 4 is a simplified schematic diagram of a Hall sensor assembly of an electric body-sensing skateboard provided in Embodiment 2 of the present invention.
  • FIG. 5 is a flowchart of a motion control method for an electric somatosensory skateboard according to a fourth embodiment of the present invention.
  • This embodiment provides an electric somatosensory skateboard, as shown in FIG. 1, which includes: a pedal 1; a battery assembly 2 disposed below the pedal 1; and disposed at both ends of the pedal 1 and connected to the battery assembly, respectively. 2 At least one motor connected (the motor in this embodiment uses a hub motor 3); it is arranged between the hub motor 3 and the pedal 1, and is used to obtain the elastic member below the pedal 1 when the pedal 1 is pressed.
  • a sensor assembly 4 is provided on the electric somatosensory skateboard, and the sensor assembly 4 is mainly used to automatically press the elastic member provided under the pedal 1 when the pedal 1 is pressed (a person stands on the pedal) (FIG. (Not shown in 1 and located inside the sensor assembly). Specifically, because when the weight is on the pedal 1, the elastic member disposed below the pedal 1 is deformed, and the deformation of the elastic member is reflected by the pressure value at one end of the pedal 1, that is, the sensor assembly 4 is This pressure value is detected.
  • the microcontroller 5 converts the signal of the amount of deformation It is a control signal, which will control the movement of the in-wheel motor 3 to drive the electric body-sensing slide. It can be seen that the present invention directly converts the mechanical deformation of the pedal 1 due to pressure into an electric signal output in the realization of the induction and driving of the skateboard, the control method is more sensitive, and the structure is simpler.
  • the in-wheel motor 3 may be provided as one (that is, bidirectional movement is achieved by forward rotation and reverse rotation of the in-wheel motor 3), or a set (that is, two in-wheel hubs shown in FIG. 1) may be provided.
  • the motors 3 are respectively arranged at both ends of the pedal 1, and the two hub motors 3 are respectively used to control the movement in different directions.
  • the first hub motor 31 is provided on one bridge and the second hub motor 32 is provided on the other.
  • the sensor component 4 is arranged between the pedal 1 and the bridge, and the bridge supports the sensor component 4.
  • the pedal 1 may further include a support plate 12 and a non-slip layer 11, and the non-slip layer 11 may be non-slip sandpaper.
  • the microcontroller 5 may be a single-board computer with an STM32 single-chip microcomputer as the core, supplemented by an operational amplifier, a driver, or the like, or a single-chip microcomputer with other single-chip microcomputer cores.
  • two in-wheel motors 3 are provided in FIG. 1 as an example, but the number of the sensor assemblies 4 is not limited, and at least one can be set, and two can also be set.
  • the number of sensor assemblies 4 is set to 1, for example, a sensor assembly 4 is provided on the bridge of the first hub motor 31, then when a person stands on the pedal 1, the sensor assembly 4 can only detect the first
  • the deformation amount of the elastic member of the pedal 1 on the in-wheel motor 31 is sent to the microcontroller 5, and the microcontroller 5 outputs a control signal to the first in-wheel motor 31 to control the movement of the first in-wheel motor 31 .
  • the number of sensor assemblies 4 is set to two, that is, a sensor assembly 4 is provided on the bridge of the first hub motor 31 and the bridge of the second hub motor 32, then when a person stands on the pedal 1 When the top and center of gravity are tilted, the deformations of the elastic members at both ends of the pedal 1 are different and can be detected by the corresponding sensor assembly 4. Therefore, the two sensor assemblies 4 will respectively detect the deformations and send them to the microcontroller 5 Send a signal with a deformation.
  • the microcontroller 5 compares the amount of deformation at both ends, and outputs a control signal to the corresponding hub motor 3 according to the difference in the amount of deformation, and outputs a control signal to the hub motor 3 at each end (that is, a hub motor 3) It is a driving wheel, and the other hub motor 3 is a driven wheel), so that the electric body-sensing skateboard can be controlled to realize bidirectional movement. Therefore, when a person tilts the center of gravity on the pedal 1, and the forces at the two ends of the pedal 1 are different, the deformation will be different. Therefore, the user can use the body tilt to control the electric body-sensing skateboarding.
  • the hub motor 3 can be used to achieve bidirectional movement.
  • the hub motor is controlled according to the difference between the deformations. 3 can be turned in the corresponding direction, that is, the deformation at which end is large, which direction the hub motor 3 is rotated (forward or reverse).
  • the elastic member in this embodiment is provided between the pedal 1 and the bridge.
  • the elastic member is used to deform when the pedal 1 is pressed.
  • the deformation of the elastic member directly reflects the pedal 1's receiving force.
  • the deformation amount is compressed, so when the sensor assembly 4 detects the deformation amount of the elastic member, the deformation amount is sent to the microcontroller 5 so that the microcontroller converts the deformation amount into a control signal and outputs it to the hub motor 3.
  • the elastic member may be any device that can be elastically deformed, such as a spring.
  • the sensor component 4 in this embodiment may be any one of a Hall sensor component, a photoelectric ranging sensor component, a gyro sensor component, and a current sensor component.
  • the sensor component 4 is a Hall sensor component.
  • the elastic member in this embodiment is set in the Hall sensor assembly.
  • the Hall sensor assembly includes: an upper fixing block 10 disposed below the pedal 1, a lower fixing block 20 that cooperates with the upper fixing block 10 and forms a receiving space, and is located between the upper fixing block 10 and An elastic member 30 between the lower fixing blocks 20 and connected to the upper fixing block 10; a Hall sensor 40 is provided on the elastic member 30; a magnet piece 50 is provided on the lower fixing block 20; It is arranged opposite to the magnet piece 50; the Hall sensor 40 is used to detect the deformation of the elastic member 30 after the pedal 1 is pressed and send it to the microcontroller 5, so that the microcontroller 5 is based on the shape of the elastic member 30 The amount of change in the distance between the Hall sensor 40 and the magnet piece 50 is determined by a variable, and a corresponding control signal is output.
  • the motor of this embodiment is provided with an in-wheel motor 3 as an example.
  • the elastic member 30 is connected to the upper fixing member 10, the Hall sensor 40 is disposed on the elastic member 30, and a magnet piece 50 is disposed below the Hall sensor 40.
  • the pedal 1 is pressed (a person stands on the pedal 1), the elastic member 30 is deformed, so the Hall sensor 40 detects the deformation of the elastic member 30 according to the pressure value at no load and the pressure value at the time of load. , And then output to the microcontroller 5, because the elastic member 30 is deformed, the distance between the Hall sensor 40 and the magnet piece 50 on the elastic member 30 will change.
  • the microcontroller 5 The amount of deformation determines the amount of change in the distance between the Hall sensor 40 and the magnet piece 50, and then converts the amount of change in the distance into a control signal and sends it to the in-wheel motor 3, thereby controlling the in-wheel motor 3 to rotate, thereby realizing the control of the electric body-sensing skateboard.
  • the Hall sensor 40 is located above the magnet piece 50, and when the pedal 1 is unloaded (that is, there is no person on the pedal 1), the Hall sensor 40 and the There is a certain gap between the magnet pieces 50, and this gap is the initial value of the distance, and the gap can be set according to the induction distance between the Hall sensor 40 and the magnet pieces 50. This facilitates the microcontroller 5 to determine the change in the distance between the Hall sensor 40 and the magnet piece 50, and improves the sensing sensitivity.
  • a safety value may be pre-stored in the microcontroller 5 when the microcontroller 5 determines the Hall sensor 40 and the magnet.
  • the microcontroller 5 does not send a control signal, and the skateboard does not move.
  • the electric somatosensory skateboard will only move when the distance change amount reaches a certain value, which effectively guarantees the user's safety in use and reduces the risk of falling.
  • the microcontroller 5 compares the difference between the distance changes determined at both ends and the safety value, and the difference must be greater than the safety value to control the electric body sensation. Skateboarding.
  • corresponding positioning slots can be provided in the upper fixing block 10 and the lower fixing block 20 to place the Hall sensor 40 and the magnet piece 50.
  • a second placement groove 201 is provided on the lower fixing block 20 in FIG. 2, and the second placement groove 201 is used to place the magnet piece 50, so that the magnet piece 50 can be positioned on the one hand, and also on the other hand. The overall weight of the Hall sensor assembly can be reduced.
  • the structure shown in FIG. 3 is the structure of the bottom surface of the upper fixing block 10 in FIG. 1.
  • the upper fixing block 10 in this embodiment is provided with a first placement groove 101.
  • the first placement groove 101 can be mounted with the elastic member 30 and the Hall sensor 40.
  • a Hall sensor bracket is provided in the first placement groove 101, and the Hall sensor 40 is mounted on the Hall sensor bracket, and is fixed to the first placement groove through the Hall sensor bracket. 101 to improve the stability of the Hall sensor 40.
  • the first placement groove 101 may have a “ten” shape formed by the first groove 1011 and the second groove 1012, that is, the first groove 1011 is vertically arranged with the second groove 1012. And some overlap.
  • the Hall sensor 40 is disposed on the overlapping portion of the first groove 1011 and the second groove 1012, that is, at an intermediate position, which is beneficial to increasing the sensing range of the Hall sensor 40, as long as the periphery of the intermediate position is affected by The pressure is detected by the Hall sensor 40.
  • portions of the second groove 1012 located on both sides of the Hall sensor 40 are respectively provided with a third groove 103.
  • a first protrusion corresponding to the third groove 103 is provided on the lower fixing block 20 at a position corresponding to the third groove 103. When the upper fixing block 10 / lower fixing block 20 is not under pressure, the first protrusion does not contact the bottom wall of the third groove 103.
  • the first A protrusion is in contact with the bottom wall of the third groove 103 to activate the limiting effect, thereby avoiding exceeding the maximum deformation of the elastic member 30 and making the elastic member 30 unable to return to the deformation.
  • the upper fixing block 10 is provided with two mounting grooves 102, the two mounting grooves 102 are arranged side by side with the first placement groove 101, and the first placement groove 101 is located at Between the two mounting grooves 102, that is, the two mounting grooves 102 are respectively located at two ends of the Hall sensor bracket.
  • the two mounting grooves 102 are used to fit in the second placement groove 201 of the lower fixing block, so as to fix the magnet piece 50 in the second placement groove 201.
  • a magnet piece 50 (set in the mounting groove 102 on the left or right side) may be provided, so that the Hall sensor 40 on the elastic member 30 can detect the deformation of the elastic member 30 and The microcontroller 5 sends, and the microcontroller 5 determines the amount of change in the distance between the Hall sensor 40 and the magnet piece 50 according to the deformation of the elastic member 30.
  • the magnet pieces 50 can also be provided in the mounting grooves 102 on both sides, which are symmetrically arranged left and right, and two Hall sensors 40 are correspondingly provided to detect the deformation of the elastic member 30 so that the microcontroller 5 can The distance variation between the respective Hall sensor 40 and the corresponding magnet piece 50 is determined, and an average value is taken to obtain a more accurate distance variation value, which effectively improves the detection accuracy.
  • FIG. 4 is a simplified schematic diagram of the Hall sensor assembly in this embodiment.
  • one end of the cantilever-type elastic member 30 is fixed in the first placement groove 101 in the upper fixing block 10
  • the Hall sensor 40 is disposed at the other end of the cantilever-type elastic member 30, and the lower fixing block 20
  • a magnet piece 50 is provided at a position corresponding to directly below the Hall sensor 40.
  • the deformation angle ⁇ appears at the end of the cantilevered elastic member 30 on which the Hall sensor 40 is disposed, that is, the Hall sensor 40 can detect the deformation of the elastic member 30, and then The amount of deformation is sent to the microcontroller 5. Since the elastic member 30 is deformed, the distance between the Hall sensor 40 and the magnet sheet 50 directly below will also change. Therefore, the microcontroller 5 will determine the distance between the Hall sensor 40 and the magnet sheet 50 directly below. The amount of change and output the corresponding control signal. It can also realize the control of the electric body-sensing skateboard, with a simpler structure and more sensitive induction.
  • the elastic member 30 may also adopt other structures, such as a spring, as long as the structure that can achieve the role of the elastic member 30 in this embodiment may be used.
  • the Hall sensor 40 in this embodiment is sent to the microcontroller 5 according to the deformation of the elastic member 30, and the Hall sensor is used in the prior art to detect the inclination of the skateboard or the rotation of the wheel hub. Compared with this method, the structure of this embodiment is simple and the control effect is better.
  • the Hall sensor assembly in this embodiment can also be provided with two, which are located at the left and right ends of the pedal 1, respectively.
  • the two Hall sensors The components will detect the deformations of the elastic members 30 in the respective sensor assemblies, and then send the deformations of the two elastic members 30 to the microcontroller 5, and the microcontroller 5 can detect the deformations of the two elastic members 30 according to the The amount of deformation determines the amount of change in the distance between the Hall sensor 40 at both ends and the corresponding magnet piece 50, and compares the amount of change in the distance at both ends, determines the difference, and compares the difference with the pre-stored safety value to determine Whether to control the movement of the electric body-sensing skateboard.
  • the microcontroller When the difference is greater than the safe value, the microcontroller outputs a control signal to the hub motor 3, and the direction of the hub motor 3 is rotated in either direction (forward or reverse). Two-way movement. Of course, it is also possible to set two hub motors 3 to control the movement in different directions respectively.
  • the microcontroller When the microcontroller outputs a control signal to the hub motor 3, whichever end has a large distance change, it controls which hub motor 3 outputs the control signal to which end. Can control the electric somatosensory skateboard to achieve two-way movement.
  • the photoelectric ranging sensor assembly includes: an upper fixing block 10 provided below the pedal 1, a lower fixing block 20 that cooperates with the upper fixing block 10 and forms a receiving space, and is located on the upper fixing block An elastic member 30 between 10 and the lower fixing block 20 and connected to the upper fixing block 10; a photoelectric distance measuring sensor is provided on the elastic member 30; a reflection plane is provided on the lower fixing block 10; The sensor is disposed opposite to the reflection plane; the photoelectric distance measuring sensor is used to emit light to the reflection plane when the pedal 1 is pressed, detect the deformation of the elastic member 30, and then send it to the microcontroller 5 so that the microcontroller 5 The distance variation between the photoelectric ranging sensor and the reflection plane is determined, and a corresponding control signal is output.
  • a photoelectric ranging sensor is used to send light to a reflection plane, and the deformation of the elastic member 30 (that is, the deformation of the pedal 1) is determined by the reflection of the reflection plane, and then the photoelectric measurement is determined by the microcontroller 5.
  • the distance between the sensor and the reflection plane changes, and this distance change amount is converted into a control signal to control the electric body-sensing skateboard movement.
  • only the Hall sensor assembly in the second embodiment is replaced with an electric distance measuring sensor assembly, and other forms are the same.
  • the positional relationship between the upper fixed block 10, the lower fixed block 20, the elastic member 30, the photoelectric ranging sensor and the reflection plane may be the same as the positional relationship between the Hall sensor 40 and the magnet piece 50 in the second embodiment. The same, will not repeat them here.
  • the reflection plane is an opaque reflection plane, so that it can completely reflect the infrared rays generated by the photoelectric ranging sensor back to the photoelectric ranging sensor.
  • the reflecting plane may be a reflecting sheet having a plane, and the size of the reflecting sheet may be matched with the irradiation range of the infrared rays emitted by the photoelectric ranging sensor, that is, the photoelectric ranging sensor All the emitted infrared rays are irradiated on the reflection surface of the reflection sheet.
  • the photoelectric ranging sensor component in this embodiment can also be provided with two as in the above embodiment, so as to realize the two-way movement of the electric body-sensing skateboard.
  • the sensor component 4 in the present invention may also be a gyro sensor component.
  • a gyro sensor component When a gyro sensor component is used, it is also sent to the microcontroller by detecting the deformation of the elastic member, and it can also be in the form of a double gyroscope to realize the two-way movement of the electric somatosensory skateboard.
  • the present invention also provides a motion control method for an electric body-sensing skateboard. As shown in FIG. 5, the method includes:
  • Step S100 When the pedal of the electric somatosensory skateboard is pressed, a sensor component provided below the pedal acquires the deformation of the elastic member below the pedal and sends it to the microcontroller;
  • Step S200 After the microcontroller of the electric somatosensory skateboard receives the deformation amount, the deformation amount is converted into a control signal and output to a wheel hub motor below the pedal;
  • Step S300 After receiving the control signal, the in-wheel motor controls the motion of the electric body-sensing skateboard according to the control signal.
  • the sensor components provided below both ends of the pedal automatically detect the deformation of the elastic member provided below the pedal. Because when the weight is on the pedal, the elastic member is deformed, the deformation of the elastic member directly reflects the deformation of the pedal. After the sensor component detects the deformation of the elastic member, the deformation is sent to the microcontroller, and the microcontroller converts the deformation into a control signal, which will control the movement of the hub motor to drive the electric body-sensing skateboard .
  • the invention directly realizes the induction and driving of the skateboard by directly converting the mechanical deformation of the pedal due to pressure into an electric signal output, the control method is more sensitive, and the structure is simpler.
  • the in-wheel motor in this embodiment may also be provided in two, and the sensor assembly may be provided in two, that is, a sensor assembly is provided on the bridge of the first in-wheel motor and the bridge of the second in-wheel motor.
  • a sensor assembly is provided on the bridge of the first in-wheel motor and the bridge of the second in-wheel motor.
  • This embodiment takes the sensor component as a Hall sensor component as an example.
  • the Hall sensor component includes an elastic member, a Hall sensor, and a magnet piece.
  • the Hall sensor in the Hall sensor assembly obtains the deformation of the elastic member provided in the Hall sensor assembly, and sends the deformation of the elastic member to the microcontroller, so that the microcontroller can
  • the amount of deformation of the elastic member determines the distance variation between the Hall sensor and the magnet piece, and outputs a corresponding control signal, so as to control the motion of the electric body-sensing skateboard.
  • the two Hall sensor assemblies When the two Hall sensor assemblies are arranged between two sets of wheel motors and pedals, the two Hall sensor assemblies will detect the deformation of the elastic members in the respective sensor assemblies, and then The deformation amounts of the two elastic pieces are sent to the microcontroller, and the microcontroller can determine the amount of change in the distance between the Hall sensors at the two ends and the corresponding magnet pieces according to the deformation amounts of the two elastic pieces, and determine the distance between the two ends.
  • the change amounts are compared to determine a difference value, and a control signal is output to the corresponding hub motor according to the difference value (a control signal is output to the hub motor at which end the distance change is large) to control the two-way movement of the electric body-sensing skateboard.
  • the two ends of A and B are the left and right ends of the pedal.
  • the Hall sensor When the pedal is not pressed (no one is standing on the pedal), when the power is turned on, the Hall sensor will detect the change in the elastic members at both ends of A and B. After sending to the microcontroller, the microcontroller can determine that the distance between the Hall sensor at both ends and the corresponding magnet piece is A1, B1 (A1, B1 is the initial distance, that is, the elastic members at both ends of A and B do not exist Deformation).
  • A1, B1 is the initial distance, that is, the elastic members at both ends of A and B do not exist Deformation.
  • the Hall sensor When a person stands on the pedal, the Hall sensor will detect the current amount of change of the elastic member at both ends of A and B and send it to the microcontroller.
  • the microcontroller can determine the current Hall sensor at both ends of A and B and the corresponding The distance between the magnet pieces is A2, B2. Then the microcontroller can determine the distance change between the Hall sensor at both ends of A and B and the corresponding magnet piece, that is, the distance change at the A end is A1-A2, and the distance change at the B end is B1-B2. Then the microcontroller compares A1-A2 and B1-B2 to determine the difference, which determines which end has a large change in distance, and the end with a large change in distance is the one under pressure. Therefore, The microcontroller will send a control signal to the hub motor at the end under pressure to drive the electric body-sensing skateboard.
  • a safety value can be pre-stored in the microcontroller, and the microcontroller will also perform the calculated difference with the safety value. Compare to determine whether to control the electric somatosensory skateboarding. When the difference calculated by the microcontroller is less than the safe value, the microcontroller does not send a control signal and the slide does not move. In other words, the electric somatosensory skateboard will only move when the difference reaches a certain value, which effectively guarantees the user's safety in use and reduces the risk of falling.
  • another comparison method is also provided, as follows: First, the pedal is also not pressed (no one is standing on the pedal). When the power is turned on, the Hall sensor will detect the elastic members at both ends of A and B. The change amount is sent to the microcontroller, and the microcontroller can determine that the distance between the Hall sensor at both ends and the corresponding magnet piece is A1, B1 (A1, B1 is the initial distance, that is, the elasticity at both ends of A and B There is no deformation). When a person stands on the pedal, the Hall sensor will detect the current amount of change of the elastic member at both ends of A and B and send it to the microcontroller.
  • C2 ⁇ 0 (A2 ⁇ B2)
  • the distance between the Hall sensor on the pedal and the magnet piece changes.
  • the amount is greater than the B end, that is, the center of gravity of the person is inclined toward the A end (the A end is under a large pressure).
  • C2> 0 (A2 is greater than B2)
  • the distance between the Hall sensor on the pedal and the magnet piece is greater than The A end, that is, the person leans towards the B end of the center of gravity, and then drives the motor to move in the corresponding direction and brakes.
  • the microcontroller also compares A2-B2 (ie, C2) with a preset safety value, so as to determine whether to control the motion of the electric body-sensing skateboard and reduce the risk of falling.
  • the electric body-sensing skateboard in the present invention can also be provided with an illumination lamp on the pedal, which is convenient for users to use at night.
  • the battery assembly can be set to be detachable, which is convenient for users to charge.
  • a handshake hole can also be provided on the pedal, which is convenient for users to lift.
  • a communication module may also be provided on the electric somatosensory skateboard in the present invention for connecting with the user's mobile terminal, so that the mobile terminal records the trips of the electric somatosensory skateboard.
  • the present invention provides an electric somatosensory skateboard and a motion control method.
  • the electric skateboard includes: a pedal; a battery component and a microcontroller provided below or above the pedal; a bridge provided at both ends of the pedal and provided on the bridge; At least one motor; a sensor component arranged between the motor and the pedal and used to obtain the deformation of the elastic member under the pedal and send it to the microcontroller when the pedal is pressed; the microcontroller, the motor and the sensor component Both are connected, and are used to receive the deformation obtained by the sensor component into a control signal and send it to the motor to control the electric somatosensory skateboard movement.
  • the sensor component in the electric body-sensing skateboard of the present invention automatically obtains the deformation of the elastic member under the pedal, and sends a deformation signal to the microcontroller to control the movement of the electric body-sensing skateboard, convert the mechanical deformation into an electric signal output, and improve the movement. Control accuracy and lifetime of the entire skateboard.

Abstract

本发明公开了一种电动体感滑板及运动控制方法,电动滑板包括:踏板;设置在踏板下方或上方的电池组件及微控制器;设置在踏板两端的桥架,设置在桥架上的至少一个电机;设置在电机与踏板之间,且用于在踏板受压时,获取踏板下方的弹性件的形变量,并向微控制器发送的传感器组件;微控制器与电机及与传感器组件连接,且用于接收传感器组件获取的形变量转化为控制信号并向电机发送,以控制电动体感滑板运动。本发明的电动体感滑板中的传感器组件自动获取踏板下方的弹性件的形变量,并输出形变信号向微控制器发送,以控制电动体感滑板运动,将机械变形转化为电信号输出,提高了运动的控制精度和整个滑板的使用寿命。

Description

一种电动体感滑板及运动控制方法 技术领域
本发明涉及滑板技术领域,具体涉及一种电动体感滑板及运动控制方法。
背景技术
目前,电动滑板普遍分为遥控电动滑板以及不带遥控滑板。遥控电动滑板需要手握遥控器,通过手部控制所述遥控器而控制滑板的前行或者停止,这一方面需要占用用户的手,另一方面当遥控器丢失时,滑板将无法使用,从而增加了滑板使用的风险。不带遥控滑板目前多数采用压力传感器,压力传感器使用了应变片或者应变电阻,通过对压力传感器施加压力使其发生形变来获取感应数据,但是,压力传感器长时间使用后,应变片或者应变电阻由于不抗震动的特性易损坏,同时形变单元产生疲劳而无法回弹,从而影响滑板的控制精度和使用寿命。
虽然现有专利技术中也存在采用霍尔传感器的电动滑板,但是现有的电动滑板上的霍尔传感器对电动滑板的控制方式一般都是通过检测滑板的倾斜或者检测电机的转速来进行控制,控制方式效果不佳,且在结构上也比较复杂,甚至有的专利技术并未对其控制方式进行公开。
因此,现有技术还有待于改进和发展。
发明内容
本发明要解决的技术问题在于,针对现有技术的上述缺陷,提供一种电动体感滑板及运动控制方式,旨在解决现有技术中的的电动滑板的控制方式效果不佳、结构复杂、使用障碍率高等问题。
本发明解决技术问题所采用的技术方案如下:
一种电动体感滑板,其中,所述电动滑板包括:踏板;设置在所述踏板下方或者上方的电池组件及微控制器;
设置在所述踏板下两端的桥架,设置在桥架上的至少一个电机;
设置在桥架与踏板之间,且用于在踏板受压时,获取所述踏板下方的弹性件的形变量,并向微控制器发送的传感器组件,所述弹性件用于当踏板受压时发生 变形,以体现所述踏板的形变;
所述微控制器与电机及传感器组件均连接,用于接收所述传感器组件获取的形变量,转化为控制信号并向电机发送,以控制所述电动体感滑板的运动。
所述的电动体感滑板,其中,所述传感器组件设置为两个,且分别位于桥架与踏板之间,两个传感器组件用于分别获取踏板两端弹性件的形变量并向微控制器发送形变量信号,以使微控制器对两端的形变量进行比较,并根据形变量差值输出控制信号,以控制所述电动体感滑板双向运动。
所述的电动体感滑板,其中,所述传感器组件为霍尔传感器组件、光电测距传感器组件、陀螺仪传感器组件中的任意一种。
所述的电动体感滑板,其中,当所述传感器组件为霍尔传感器组件时,弹性件就设置在所述霍尔传感器组件中,所述霍尔传感器组件具体包括:设置在所述踏板下方的上固定块,与所述上固定块相配合且形成一容纳空间的下固定块,以及位于所述上固定块与下固定块之间且与上固定块连接的弹性件;所述弹性件上设置有霍尔传感器,所述下固定块上设置有磁铁片;所述霍尔传感器用于当踏板受压后检测弹性件的形变量并向微控制器发送,以使微控制器根据所述弹性件的形变量确定霍尔传感器与磁铁片之间的距离变化量,并输出对应的控制信号。
所述的电动体感滑板,其中,所述踏板上空载时,所述霍尔传感器与所述磁铁片之间具有一定的间隙。
所述的电动体感滑板,其中,所述弹性件设置为悬臂式钢片或者具有弹性变形能力的弹簧件,且所述悬臂式钢片的一端固定在上固定块上,另一端上设置霍尔传感器,所述下固定块上与霍尔传感器的正下方对应的位置处设置磁铁片。
所述的电动体感滑板,其中,当所述传感器组件为光电测距传感器组件时,弹性件就设置在所述光电测距传感器组件中,所述光电测距传感器组件具体包括:设置在所述踏板下方的上固定块,与所述上固定块相配合且形成一容纳空间的下固定块,以及位于所述上固定块与下固定块之间且与上固定块连接的弹性件;所述弹性件上设置有光电测距传感器,所述下固定块上设置有反射平面,所述光电测距传感器与反射平面相对设置;所述光电测距传感器用于当踏板受压时向反射平面发出光线,检测出弹性件的形变量,并向微控制器发送,以使微控制器根据所述弹性件的形变量确定光电测距传感器与磁铁片之间的距离变化量,并 输出对应的控制信号。
一种电动体感滑板的运动控制方法,其中,所述运动控制方法包括:
当电动体感滑板的踏板受压后,设置在踏板下方的传感器组件获取踏板下方弹性件的形变量并向微控制器发送;
当电动体感滑板的微控制器接收到形变量后,将所述形变量转化为控制信号,并向踏板下方的电机输出;所述电机接收到所述控制信号后,根据所述控制信号控制所述电动体感滑板运动。
所述的电动体感滑板的运动控制方法,其中,所述当电动体感滑板的踏板受压后,设置在踏板下方的传感器组件获取踏板下方弹性件的形变量并向微控制器发送的步骤,包括:
所述传感器组件设置为霍尔传感器组件;当电动体感滑板的踏板受压后,霍尔传感器组件中的霍尔传感器获取设置在所述霍尔传感器组件中弹性件的形变量,并将弹性件的形变量发送至微控制器,以使微控制器根据所述弹性件的形变量来确定霍尔传感器与磁铁片之间的距离变化量,并输出对应的控制信号。
所述的电动体感滑板的运动控制方法,其中,所述运动控制方法还包括:
所述霍尔传感器组件设置为两个,且分别位于两端的桥架与踏板之间;
两组霍尔传感器组件分别获取内部弹性件的形变量,并向微控制器发送;
所述微控制器根据两端的霍尔传感器组件内弹性件的形变量得到两端霍尔传感器与磁铁片之间的距离变化量,并将两端的距离变化量进行比较,确定出差值,输出相应的控制信号并向电机发送,以控制所述电动体感滑板双向运动。
本发明的有益效果:本发明的电动体感滑板在踏板受压时,传感器组件自动获取踏板下方的弹性件的形变量,并输出形变信号向微控制器发送,以控制电动体感滑板运动,将机械变形转化为电信号输出,本发明的电动体感滑板使用更加牢靠方便,从而大大提高了运动的控制精度和整个滑板的使用寿命。
附图说明
图1是本发明实施例一提供的电动体感滑板的结构示意图。
图2是本发明实施例二提供的电动体感滑板中的传感器组件的结构示意图。
图3是本发明实施例二提供的电动体感滑板中的上固定板的结构示意图。
图4是本发明实施例二中提供的电动体感滑板的霍尔传感器组件的简易结构示意图。
图5是本发明实施例四提供的电动体感滑板的运动控制方法的流程图。
具体实施方式
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
下面结合附图,通过对实施例的描述,对本发明的内容作进一步说明。
实施例一
本实施例提供一种电动体感滑板,如图1所示,其包括:踏板1;设置在所述踏板1下方的电池组件2;分别设置在所述踏板1两端,且与所述电池组件2连接的至少一个电机(本实施例中的电机采用轮毂电机3);设置在轮毂电机3与踏板1之间,且用于在踏板1受压时,获取所述踏板1下方的弹性件的形变量,并向微控制器5发送的传感器组件4;与所述传感器组件4连接的微控制器5;所述微控制器5与轮毂电机3连接,且用于接收所述传感器组件4获取的形变量转化为控制信号并向轮毂电机3发送,以控制所述电动体感滑板运动。
在本实施例中,电动体感滑板上设置有一传感器组件4,该传感器组件4主要用于当踏板1上受压(人站在踏板上)时,自动对踏板1下方所设置的弹性件(图1中没有标出,位于传感器组件的内部)的形变量进行检测。具体地,由于当有重量在踏板1上,设置在踏板1下方的弹性件就会有变形,而弹性件的形变量是由踏板1一端的压力值来体现的,也就是说传感器组件4就会检测到该压力值。当传感器组件4检测压力值(即弹性件的形变量)之后,并发送至微控制器5中(发送的是带有形变量(即压力值)的信号),微控制器5将形变量信号转化为一个控制信号,该控制信号就会控制轮毂电机3运动,从而驱动电动体感滑板。可见,本发明在实现滑板的感应以及驱动上是直接将踏板1因受压而产生的机械变形转变为电信号输出,控制方式更为灵敏,且结构上也更为简单。
优选地,在本实施例中,轮毂电机3可以设置为一个(即通过轮毂电机3的正转与反转来实现双向运动),也可以设置有一组(即图1中所示的两个轮毂 电机3分别设置在踏板1的两端,通过两个轮毂电机3来分别控制向不同的方向运动),其中第一个轮毂电机31设置在一个桥架上,第二个轮毂电机32设置在另一个桥架上,传感器组件4设置在踏板1与桥架之间,桥架就对传感器组件4起支撑作用。此外,踏板1还可以包括支撑板12和防滑层11,所述防滑层11可以采用防滑砂纸。进一步地,所述微控制器5可以采用以STM32单片机为核心,辅以运放、驱动等构成的单板机,或者采用其他单片机核心的单片机等。
较佳地,本实施例以图1中设置两个轮毂电机3为例,但并不对传感器组件4的个数进行限定,至少设置为1个,也可以设置为2个。当传感器组件4的个数设置为1个时,例如在第一个轮毂电机31的桥架上设置一传感器组件4,那此时当人站在踏板1上,传感器组件4就只能检测到第一个轮毂电机31上踏板1的弹性件的形变量,并将形变量发送至微控制器5,微控制器5输出控制信号至第一个轮毂电机31上,控制第一个轮毂电机31运动。当传感器组件4的个数设置为2个时,即在第一个轮毂电机31的桥架上以及第二个轮毂电机32的桥架上均设置一传感器组件4,那此时当人站在踏板1上且重心发生倾斜时,踏板1两端的弹性件的形变量不相同且均可被对应的传感器组件4检测到,因此,两个传感器组件4就会各自检测形变量,并向微控制器5发送带有形变量的信号。微控制器5对两端的形变量进行比较,并根据形变量差值向对应的轮毂电机3输出控制信号,哪端的形变量大就往哪端的轮毂电机3输出控制信号(也就是一个轮毂电机3为主动轮,另一个轮毂电机3为从动轮),从而控制电动体感滑板可以实现双向运动。因此,当人在踏板1上重心出现倾斜现象,踏板1两端的受力也就不一样,则形变量就会出现差异,因此用户可以利用身体倾斜来控制电动体感滑板运动。值得说明的是,用户在使用时,双脚站在踏板1上与传感器组件4对应的位置处,保证传感器组件4可以感应到踏板1是否受压,便于对电动体感滑板进行控制。
当然,当传感器组件4的个数设置为2个时,仅设置一个轮毂电机3也是可以实现双向运动的,微控制器5对两端的形变量进行比较后,并根据形变量差值控制轮毂电机3向相应的方向转动即可,即哪端的形变量大就控制轮毂电机3往哪个方向转动(正转或者反转)。
值得说明的是,本实施中的弹性件是设置在踏板1与桥架之间的,弹性件是 用于当踏板1受压时发生变形,该弹性件的形变量直接反应的是踏板1的受压形变量,因此当传感器组件4检测到该弹性件的形变量之后就将该形变量发送至微控制器5中,以使微控制器将形变量转化为控制信号对轮毂电机3输出。优选地,所述弹性件可为弹簧等一切可发生弹性变形的器件。
较佳地,本实施例中的传感器组件4可以为霍尔传感器组件、光电测距传感器组件、陀螺仪传感器组件以及电流感应器组件中的任意一种。
实施例二
在本实施例中,传感器组件4为霍尔传感器组件。当将传感器组件4设置为霍尔传感器组件时,本实施例中的弹性件就设置在霍尔传感器组件中。具体地,如图2所示。其中,霍尔传感器组件包括:设置在所述踏板1下方的上固定块10,与所述上固定块10相配合且形成一容纳空间的下固定块20,以及位于所述上固定块10与下固定块20之间且与上固定块10连接的弹性件30;所述弹性件30上设置有霍尔传感器40,所述下固定块20上设置有磁铁片50,所述霍尔传感器40与磁铁片50相对设置;所述霍尔传感器40用于当踏板1受压后检测弹性件30的形变量并向微控制器5发送,以使微控制器5根据所述弹性件30的形变量来确定出霍尔传感器40与磁铁片50之间的距离变化量,并输出对应的控制信号。
本实施例的电机是以设置一个轮毂电机3为例,弹性件30是与上固定件10连接的,霍尔传感器40设置在弹性件30上,霍尔传感器40的下方设置磁铁片50。当踏板1受压(人站在踏板1上)时,弹性件30就会变形,因此霍尔传感器40就会根据空载的压力值与受载时的压力值检测出弹性件30的形变量,然后输出至微控制器5中,由于弹性件30发生变形,因此弹性件30上的霍尔传感器40与磁铁片50之间的距离就会发生变化,因此微控制器5根据弹性件30的形变量确定出霍尔传感器40与磁铁片50之间的距离变化量进而将该距离变化量转化为控制信号发送至轮毂电机3,从而控制轮毂电机3转动,实现电动体感滑板的控制。
优选地,在本实施例中,霍尔传感器40位于所述磁铁片50的上方,且当所述踏板1上空载(即踏板1上没有人)时,所述霍尔传感器40与所述磁铁片50之间具有一定的间隙,该间隙即为距离初始值,且该间隙是可以根据霍尔传感器 40与磁铁片50之间的感应距离而设定。这样方便微控制器5确定霍尔传感器40与磁铁片50之间的距离变化,提高感应灵敏度。进一步地,为了防止踏板1一受压,电动体感滑板就开始运动的情况,本实施例中可以预先在微控制器5中预存一个安全值,当微控制器5确定出霍尔传感器40与磁铁片50之间的距离变化量小于安全值时,则微控制器5不发送控制信号,滑板不运动。也就是说,只有距离变化量达到一定值时,电动体感滑板才会运动,这样有效地保证了用户的使用安全性,降低了摔倒的风险。而当霍尔传感器组件设置有两个时,则微控制器5就会将两端所确定的距离变化值对比后的差值与安全值比较,同样是差值要大于安全值才控制电动体感滑板运动。
当然,在实际应用中,上固定块10以及下固定块20中可以设置相应的放置槽来放置霍尔传感器40以及磁铁片50。例如,图2中的下固定块20上设置第二放置槽201,该第二放置槽201是用来放置磁铁片50的,这样一方面可以对所述磁铁片50进行定位,另一方面也可以降低所述霍尔传感器组件的整体重量。
优选地,如图3中所示,图3中所呈现的结构为图1中的上固定块10底面的结构。本实施例中的上固定块10上设置有第一放置槽101,该第一放置槽101可以安装弹性件30以及霍尔传感器40的。在本实施例中,第一放置槽101内设有霍尔传感器支架,所述霍尔传感器40装配于所述霍尔传感器支架上,通过所述霍尔传感器支架固定于所述第一放置槽101内,以提高所述霍尔传感器40的稳定性。此外,在实际应用中,第一放置槽101可以有第一凹槽1011和第二凹槽1012形成的“十”字型结构,即所述第一凹槽1011与第二凹槽1012垂直布置并有部分重合。所述霍尔传感器40就设置在第一凹槽1011内和第二凹槽1012的重合部分上,即中间位置处,有利于增大霍尔传感器40的感应范围,只要该中间位置的四周受压就会被霍尔传感器40检测到。此外,所述第二凹槽1012位于霍尔传感器40两侧的部分分别设置有第三凹槽103。所述下固定块20与所述第三凹槽103相对应的位置设置有与第三凹槽103相配合第一凸起。当所述上固定块10/下固定块20未受到压力时,所述第一凸起与所述第三凹槽103底壁不接触,当所述弹性件30达到最大形变时,所述第一凸起与所述第三凹槽103的底壁相接触,以启动限位作用,进而避免超过弹性件30的最大形变而使得弹性件30无法回复形变。
如图3中所示,所述上固定块10上设置有两个安装槽102,所述两个安装槽102与所述第一放置槽101并排布置,并且所述第一放置槽101位于所述两个安装槽102之间,即所述两个安装槽102分别位于所述霍尔传感器支架的两端。在本实施例中,所述两个安装槽102用于与下固定块的第二放置槽201中配合的,从而将第二放置槽201中的磁铁片50固定住。优选地,本实施例可以在设置一个磁铁片50(设置在左边或者右边的安装槽102中),这样位于弹性件30上的霍尔传感器40就可以检测出弹性件30的形变量,并向微控制器5发送,微控制5就会根据弹性件30的形变量确定出霍尔传感器40与磁铁片50之间的距离变化量。当然,本实施例也可在两边的安装槽102中均设置磁铁片50,且左右对称设置,同时也对应设置两个霍尔传感器40来检测弹性件30的形变量,以便微控制器5能够确定各自霍尔传感器40与对应的磁铁片50之间的距离变化量,并取一个平均值,进而得出更为准确的距离变化值,有效提高了检测精度。
较佳地,为了确保霍尔传感器40可以灵敏地检测到弹性件30的形变量,因此,本实施例中将弹性件30设置成悬臂式,具体可为悬臂式钢片或者具有弹性变形的弹簧件。如图4中所示,图4为本实施例中霍尔传感器组件的简易结构示意图。本实施例中将悬臂式的弹性件30一端固定在上固定块10中第一放置槽101中,而霍尔传感器40就设置在悬臂式的弹性件30的另一端,所述下固定块20上与霍尔传感器40的正下方对应的位置处设置磁铁片50。这样当踏板1上站有人时,悬臂式的弹性件30上设置霍尔传感器40的一端就会出现形变角α,即此时霍尔传感器40就可以检测出弹性件30的形变量,然后将形变量向微控制器5发送。由于弹性件30发生变形,因此霍尔传感器40与正下方的磁铁片50之间的距离也会发生变化,因此微控制器5就会确定出霍尔传感器40与正下方的磁铁片50的距离变化量,并输出对应的控制信号。同样可以实现电动体感滑板的控制,结构更为简单,感应更加灵敏。
当然,在本实施例的变形实施例,所述弹性件30还可以采用其它结构,例如弹簧,只要可以实现本实施例中弹性件30的作用的结构均可以。值得说明的是,本实施例中的霍尔传感器40是根据检测弹性件30的形变量来向微控制器5发送,与现有技术中的利用霍尔传感器来检测滑板的倾斜或者轮毂的转动的方式相比,本实施例的结构简单,且控制效果更好。
值得说明的是,本实施例中的霍尔传感器组件也同样可以设置有两个,分别位于踏板1的左右两端,当人站在踏板1上,并重心往一端倾斜,两个霍尔传感器组件就会将检测到各自传感器组件中的弹性件30的形变量,然后将这两个弹性件30的形变量发送出微控制器5中,微控制器5就可以根据两个弹性件30的形变量确定两端的霍尔传感器40与对应的磁铁片50之间的距离变化量,并对两端的距离变化量进行比较,确定出差值,将差值与预存的安全值进行比较,以判断是否控制电动体感滑板运动,当差值大于安全值时,微控制器向轮毂电机3输出控制信号,哪端的距离变化量大就控制轮毂电机3往哪个方向转动(正转或者反转),实现双向运动。当然,还可以设置两个轮毂电机3来分别控制不同方向的运动,微控制器向轮毂电机3输出控制信号时,哪端的距离变化量大就控制往哪端的轮毂电机3输出控制信号,从而也可以控制电动体感滑板可以实现双向运动。
实施例三
在本实施例中,提供另一种传感器组件4,即光电测距传感器组件。当将传感器组件4设置为光电测距传感器组件时,上述实施例中的弹性件同样设置在光电测距传感器组件中。具体地,光电测距传感器组件包括:设置在所述踏板1下方的上固定块10,与所述上固定块10相配合且形成一容纳空间的下固定块20,以及位于所述上固定块10与下固定块20之间且与上固定块10连接的弹性件30;所述弹性件30上设置有光电测距传感器,所述下固定块10上设置有反射平面,所述光电测距传感器与反射平面相对设置;所述光电测距传感器用于当踏板1受压后向反射平面发出光线,检测出弹性件30的形变量,然后向微控制器5发送,以使微控制器5确定出光电测距传感器与反射平面之间的距离变化量,并输出对应的控制信号。本实施例中是通过光电测距传感器发送光线至反射平面上,且经反射平面反射来确定弹性件30的形变量(即踏板1的形变量),进而由微控制器5确定出光电测距传感器于反射平面之间的距离变化,将该距离变化量转化为控制信号控制电动体感滑板运动。本实施例中仅对上述实施例二中的霍尔传感器组件替换为关电测距传感器组件,其他形式相同。
本实施例中上固定块10、下固定块20、弹性件30以及光电测距传感器与反射平面之间的位置关系均可以与实施例二中霍尔传感器40与磁铁片50之间的位 置关系相同,这里就不在赘述。本实施例与实施例二的不同之处在于,所述反射平面采用不透明的反射平面,以使得其可以将光电测距传感器产生的红外线完全反射回光电测距传感器。当然,在本实施例中,所述反射平面可以采用具有平面的反射片,所述反射片的尺寸可以与所述光电测距传感器发射的红外线的照射范围相配合,即所述光电测距传感器发射的红外线全部照射于所述反射片的反射面上。
当然,本实施例中的光电测距传感器组件也同样是可以像上述实施例中的设置有两个的,以实现电动体感滑板的双向运动。
本发明中的传感器组件4还可以采用陀螺仪传感器组件。当采用陀螺仪传感器组件时,同样是通过检测到弹性件的形变量来向微控制器发送,并且同样可以采用双陀螺仪形式,以实现电动体感滑板的双向运动。
实施例四
基于上述实施例,本发明还提供一种电动体感滑板的运动控制方法,如图5所示,所述方法包括:
步骤S100、当电动体感滑板的踏板受压后,设置在踏板下方的传感器组件获取踏板下方弹性件的形变量并向微控制器发送;
步骤S200、当电动体感滑板的微控制器接收到形变量后,将所述形变量转化为控制信号,并向踏板下方的轮毂电机输出;
步骤S300、所述轮毂电机接收到所述控制信号后,根据所述控制信号控制所述电动体感滑板运动。
在本实施例中,当踏板上受压(人站在踏板上)时,设置在踏板两端下方的传感器组件自动对踏板下方所设置的弹性件的形变量进行检测。由于当有重量在踏板上,弹性件就会有变形,因此,弹性件的形变量直接反应了踏板的形变量。当传感器组件检测到弹性件的形变量之后,将该形变量发送至微控制器中,微控制器将形变量转化为一个控制信号,该控制信号就会控制轮毂电机运动,从而驱动电动体感滑板。本发明在实现滑板的感应以及驱动上是直接将踏板因受压而产生的机械变形转变为电信号输出,控制方式更为灵敏,且结构上也更为简单。
当然,本实施例中的轮毂电机也可设置为两个,传感器组件可以设置为两个,即在第一个轮毂电机的桥架上以及第二个轮毂电机的桥架上均设置一传感器组 件,那此时当人站在踏板上且重心发生倾斜时,踏板两端的弹性件的形变量不相同且均可被对应的传感器组件检测到,因此,两个传感器组件就会将给自检测到的形变量向微控制器发送,微控制器对两端的形变量进行比较,并根据形变量差值向对应的轮毂电机输出控制信号,哪端的形变量大就往哪端的轮毂电机输出控制信号,从而控制电动体感滑板可以实现双向运动。因此,当人在踏板上重心出现倾斜现象,踏板两端所受压力也就不一样,则弹性件的形变量就会出现差异,因此用户可以利用身体倾斜来控制电动体感滑板运动。值得说明的是,用户在使用时,双脚站在踏板上与传感器组件对应的位置处,保证传感器组件可以感应到踏板是否受压,便于对电动体感滑板进行控制。
本实施例以传感器组件设置为霍尔传感器组件为例,霍尔传感器组件中包括弹性件、霍尔传感器以及磁铁片。当踏板受压时,霍尔传感器组件中的霍尔传感器获取设置在所述霍尔传感器组件中弹性件的形变量,并将弹性件的形变量发送至微控制器,以使微控制器根据所述弹性件的形变量来确定霍尔传感器与磁铁片之间的距离变化量,并输出对应的控制信号,从而控制电动体感滑板运动。当所述霍尔传感器组件设置为两个,且分别位于两组轮毂电机与踏板之间时,两个霍尔传感器组件就会将检测到各自传感器组件中的弹性件的形变量,然后将这两个弹性件的形变量发送出微控制器中,微控制器就可以根据两个弹性件的形变量确定两端的霍尔传感器与对应的磁铁片之间的距离变化量,并对两端的距离变化量进行比较,确定出差值,并根据差值向对应的轮毂电机输出控制信号(哪端的距离变化量大就往哪端的轮毂电机输出控制信号),以控制所述电动体感滑板双向运动。
例如,A、B两端为踏板的左右两端,当踏板上不受压(没有人站在踏板上),上电时,霍尔传感器就会检测到A、B两端的弹性件的变化量之后向微控制器发送,微控制器可以确定出两端的霍尔传感器与对应的磁铁片之间的距离为A1、B1(A1、B1即为初始距离,即A、B两端的弹性件不存在变形)。当人站上踏板之后,霍尔传感器就会检测到当前A、B两端的弹性件的变化量,并向微控制器发送,微控制器可以确定出当前A、B两端的霍尔传感器与对应的磁铁片之间的距离为A2、B2。那么此时微控制器就可以确定出A、B两端的霍尔传感器与对应的磁铁片之间的距离变化量,即A端的距离变化量为A1-A2,B端的距离 变化为B1-B2,然后微控制器将A1-A2与B1-B2进行比较,确定出差值,也就确定出哪一端的距离变化量大,而距离变化量大的那一端就是受压大的那一端,因此,微控制器就会向受压大的那一端的轮毂电机发送控制信号,驱动电动体感滑板运动。当然,为了防止踏板一受压,电动体感滑板就开始运动的情况,本实施例中可以预先在微控制器中预存一个安全值,微控制器还会将计算出的差值与该安全值进行比较,从而确定出是否控制电动体感滑板运动。当微控制器计算出的差值小于安全值时,则微控制器不发送控制信号,滑板不运动。也就是说,只有差值达到一定值时,电动体感滑板才会运动,这样有效地保证了用户的使用安全性,降低了摔倒的风险。
本实施例中,还提供另一种比较方式,如下:首先同样是踏板上不受压(没有人站在踏板上),上电时,霍尔传感器就会检测到A、B两端的弹性件的变化量之后向微控制器发送,微控制器可以确定出两端的霍尔传感器与对应的磁铁片之间的距离为A1、B1(A1、B1即为初始距离,即A、B两端的弹性件不存在变形)。当人站上踏板之后,霍尔传感器就会检测到当前A、B两端的弹性件的变化量,并向微控制器发送,微控制器可以确定出当前A、B两端的霍尔传感器与对应的磁铁片之间的距离为A2、B2。那此时微控制器就会计算出在空载情况下A、B两端之间的距离差值为C1=A1-B1,以及在受载情况下A、B两端之间的距离差值为C2=A2-B2。因为人站在踏板上面才有实际的用处,而C1是不受压所检测到的距离,所以C1是无效值即C1=0(A1=B1),只需要关注C2即可。因此,当C2<0(A2<B2),则认为此时踏板上A端的霍尔传感器与磁铁片之间的距离小于B端,则踏板上A端的霍尔传感器与磁铁片之间的距离变化量就大于B端,即人重心往A端倾斜(A端受压大),反之,C2>0(A2大于B2)则认为踏板上B端的霍尔传感器与磁铁片之间的距离变化量大于A端,即人往重心B端倾斜,进而驱动电机往相应方向运动、刹车即可。当然,此实施例中微控制器也同样会将A2-B2(即C2)与预设的安全值进行比较,从而确定出是否控制电动体感滑板运动,降低摔倒的风险。
本发明中的电动体感滑板还可以在踏板上设置照明灯,方便用户在夜间使用。并且还可以将电池组件设置成可拆卸式,方便用户充电。优选地,踏板上还可以设置握手孔,方便用户提拿。并且还可以设置音频设备以供用户娱乐。当然, 本发明中的电动体感滑板上还可以设置通讯模块,用于与用户的移动终端连接,以实现移动终端记录电动体感滑板的出行。
综上所述,本发明提供了一种电动体感滑板及运动控制方法,电动滑板包括:踏板;设置在踏板下方或上方的电池组件及微控制器;设置在踏板两端的桥架,设置在桥架上的至少一个电机;设置在电机与踏板之间,且用于在踏板受压时,获取踏板下方的弹性件的形变量,并向微控制器发送的传感器组件;微控制器与电机及传感器组件均连接,且用于接收传感器组件获取的形变量转化为控制信号并向电机发送,以控制所述电动体感滑板运动。本发明的电动体感滑板中的传感器组件自动获取踏板下方的弹性件的形变量,并输出形变信号向微控制器发送,以控制电动体感滑板运动,将机械变形转化为电信号输出,提高了运动的控制精度和整个滑板的使用寿命。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。

Claims (10)

  1. 一种电动体感滑板,其特征在于,所述电动滑板包括:踏板;设置在所述踏板下方或者上方的电池组件及微控制器;
    设置在所述踏板下两端的桥架,设置在桥架上的至少一个电机;
    设置在桥架与踏板之间,且用于在踏板受压时,获取所述踏板下方的弹性件的形变量,并向微控制器发送的传感器组件,所述弹性件用于当踏板受压时发生变形,以体现所述踏板的形变;
    所述微控制器与电机及传感器组件均连接,用于接收所述传感器组件获取的形变量,转化为控制信号并向电机发送,以控制所述电动体感滑板的运动。
  2. 根据权利要求1所述的电动体感滑板,其特征在于,所述传感器组件设置为两个,且分别位于桥架与踏板之间,两个传感器组件用于分别获取踏板两端弹性件的形变量并向微控制器发送形变量信号,以使微控制器对两端的形变量进行比较,并根据形变量差值输出控制信号,以控制所述电动体感滑板双向运动。
  3. 根据权利要求2所述的电动体感滑板,其特征在于,所述传感器组件为霍尔传感器组件、光电测距传感器组件、陀螺仪传感器组件中的任意一种。
  4. 根据权利要求3所述的电动体感滑板,其特征在于,当所述传感器组件为霍尔传感器组件时,弹性件就设置在所述霍尔传感器组件中,所述霍尔传感器组件具体包括:设置在踏板下方的上固定块,与所述上固定块相配合且形成一容纳空间的下固定块,以及位于所述上固定块与下固定块之间且与上固定块连接的弹性件;所述弹性件上设置有霍尔传感器,所述下固定块上设置有磁铁片;所述霍尔传感器用于当踏板受压后检测弹性件的形变量并向微控制器发送,以使微控制器根据所述弹性件的形变量确定霍尔传感器与磁铁片之间的距离变化量,并输出对应的控制信号。
  5. 根据权利要求4所述的电动体感滑板,其特征在于,当所述踏板上空载时,所述霍尔传感器与所述磁铁片之间具有一定的间隙。
  6. 根据权利要求4所述的电动体感滑板,其特征在于,所述弹性件设置为悬臂式钢片或者具有弹性变形能力的弹簧件,且所述悬臂式钢片的一端固定在上固定块上,另一端上设置霍尔传感器,所述下固定块上与霍尔传感器的正下方对应的位置处设置磁铁片。
  7. 根据权利要求3所述的电动体感滑板,其特征在于,当所述传感器组件为光 电测距传感器组件时,弹性件就设置在所述光电测距传感器组件中,所述光电测距传感器组件具体包括:设置在所述踏板下方的上固定块,与所述上固定块相配合且形成一容纳空间的下固定块,以及位于所述上固定块与下固定块之间且与上固定块连接的弹性件;所述弹性件上设置有光电测距传感器,所述下固定块上设置有反射平面,所述光电测距传感器与反射平面相对设置;所述光电测距传感器用于当踏板受压时向反射平面发出光线,检测出弹性件的形变量,并向微控制器发送,以使微控制器根据所述弹性件的形变量确定光电测距传感器与磁铁片之间的距离变化量,并输出对应的控制信号。
  8. 一种电动体感滑板的运动控制方法,其特征在于,所述运动控制方法包括:当电动体感滑板的踏板受压后,设置在踏板下方的传感器组件获取踏板下方弹性件的形变量并向微控制器发送;
    当电动体感滑板的微控制器接收到形变量后,将所述形变量转化为控制信号,并向设置在踏板下方的电机输出;
    所述电机接收到所述控制信号后,根据所述控制信号控制所述电动体感滑板运动。
  9. 根据权利要求8所述的电动体感滑板的运动控制方法,其特征在于,所述当电动体感滑板的踏板受压后,设置在踏板下方的传感器组件获取踏板下方弹性件的形变量并向微控制器发送的步骤,包括:
    所述传感器组件设置为霍尔传感器组件;当电动体感滑板的踏板受压后,霍尔传感器组件中的霍尔传感器获取设置在所述霍尔传感器组件中弹性件的形变量,并将弹性件的形变量发送至微控制器,以使微控制器根据所述弹性件的形变量来确定霍尔传感器与磁铁片之间的距离变化量,并输出对应的控制信号。
  10. 根据权利要求9所述的电动体感滑板的运动控制方法,其特征在于,所述运动控制方法还包括:
    所述霍尔传感器组件设置为两个,且分别位于两端的桥架与踏板之间;
    两组霍尔传感器组件分别获取内部弹性件的形变量,并向微控制器发送;
    所述微控制器根据两端的霍尔传感器组件内弹性件的形变量得到两端霍尔传感器与磁铁片之间的距离变化量,并将两端的距离变化量进行比较,确定出差值,输出相应的控制信号并向电机发送,以控制所述电动体感滑板双向运动。
PCT/CN2018/117902 2018-09-17 2018-11-28 一种电动体感滑板及运动控制方法 WO2020056920A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811083598.XA CN109173228B (zh) 2018-09-17 2018-09-17 一种电动体感滑板及运动控制方法
CN201811083598.X 2018-09-17

Publications (1)

Publication Number Publication Date
WO2020056920A1 true WO2020056920A1 (zh) 2020-03-26

Family

ID=64911948

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117902 WO2020056920A1 (zh) 2018-09-17 2018-11-28 一种电动体感滑板及运动控制方法

Country Status (2)

Country Link
CN (1) CN109173228B (zh)
WO (1) WO2020056920A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292299A (zh) * 1998-11-11 2001-04-25 崔重威 动力滑板
US6828916B2 (en) * 2001-05-10 2004-12-07 Mark A. Rains Truck assembly with internally housed effect modules
CN105920830A (zh) * 2016-05-12 2016-09-07 金华杰夫体育用品有限公司 一种基于重量传感的电动滑板安全防护方法
CN206240033U (zh) * 2016-12-09 2017-06-13 胡耀起 电动滑板

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060170174A1 (en) * 2003-08-07 2006-08-03 Yuji Hiramatsu Skate board
CN106020181A (zh) * 2016-03-21 2016-10-12 深圳市踏路科技有限公司 一种基于重力重心检测的四轮平衡车
CN206171652U (zh) * 2016-07-29 2017-05-17 小刀科技股份有限公司 一种前双后单电动轮滑车
CN206276010U (zh) * 2016-10-19 2017-06-27 朱剑青 一种两轮滑板车
CN206265217U (zh) * 2016-11-09 2017-06-20 深圳市鳄鱼平衡车有限公司 体感滑板车
WO2018120534A1 (zh) * 2016-12-29 2018-07-05 蔡优飞 电动助力滑板及其控制方法
CN206914520U (zh) * 2017-06-15 2018-01-23 浙江伟迅电子科技有限公司 一种智能电动代步车
CN207562319U (zh) * 2017-10-16 2018-07-03 深圳市高斯拓普科技有限公司 一种电动滑板车
CN207545789U (zh) * 2017-11-30 2018-06-29 北京小米移动软件有限公司 滑板及其驱动系统

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1292299A (zh) * 1998-11-11 2001-04-25 崔重威 动力滑板
US6828916B2 (en) * 2001-05-10 2004-12-07 Mark A. Rains Truck assembly with internally housed effect modules
CN105920830A (zh) * 2016-05-12 2016-09-07 金华杰夫体育用品有限公司 一种基于重量传感的电动滑板安全防护方法
CN206240033U (zh) * 2016-12-09 2017-06-13 胡耀起 电动滑板

Also Published As

Publication number Publication date
CN109173228A (zh) 2019-01-11
CN109173228B (zh) 2020-09-29

Similar Documents

Publication Publication Date Title
US11731725B2 (en) Electric vehicle
RU2180618C2 (ru) Колесное транспортное средство
WO2018040714A1 (zh) 姿态车
CN105172959B (zh) 平衡车
US20170259163A1 (en) Four-wheel sensor controlled vehicle
BR112021002066A2 (pt) sistemas e métodos de frenagem para equipamentos de exercícios
CN212865537U (zh) 一种公路路面平整度检测装置
WO2020056920A1 (zh) 一种电动体感滑板及运动控制方法
EP3418106A1 (en) Electric vehicle and method for controlling electric vehicle
KR20150068598A (ko) 전동 보행보조장치
KR20140134095A (ko) 자가균형 이륜 이동차
KR20140147618A (ko) 자가균형 이륜 이동차
TWI608946B (zh) 輪胎運動參數偵測系統
CN211223722U (zh) 一种平衡车
CN203255334U (zh) 电动自行车中轴用非接触式扭矩传感器
CN110538031A (zh) 一种智能电动轮椅
CN107413038B (zh) 传感器保护装置及电动滑板车
CN216546514U (zh) 一种带压力触发装置的两轮电动平衡车
CN213629772U (zh) 一种移动定位底座及adas校准设备
KR101626975B1 (ko) 인체유도장치를 구비한 이륜차
CN110530789B (zh) 一种摩擦系数检测装置
CN110530481A (zh) 一种角度式车辆载重传感器
CN218349468U (zh) 一种用于立杆倾角测量的检测设备
CN217125014U (zh) 一种带红外反射触发装置的两轮电动平衡车
CN208926981U (zh) 一种导盲手杖

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13.08.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18934205

Country of ref document: EP

Kind code of ref document: A1