WO2020056546A1 - 表面波激励装置和印制线路板 - Google Patents

表面波激励装置和印制线路板 Download PDF

Info

Publication number
WO2020056546A1
WO2020056546A1 PCT/CN2018/105950 CN2018105950W WO2020056546A1 WO 2020056546 A1 WO2020056546 A1 WO 2020056546A1 CN 2018105950 W CN2018105950 W CN 2018105950W WO 2020056546 A1 WO2020056546 A1 WO 2020056546A1
Authority
WO
WIPO (PCT)
Prior art keywords
pcb
wire
transmission
transmission wire
surface wave
Prior art date
Application number
PCT/CN2018/105950
Other languages
English (en)
French (fr)
Inventor
文玥
王超
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18934201.7A priority Critical patent/EP3823091B1/en
Priority to PCT/CN2018/105950 priority patent/WO2020056546A1/zh
Publication of WO2020056546A1 publication Critical patent/WO2020056546A1/zh
Priority to US17/202,916 priority patent/US11605870B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/085Coaxial-line/strip-line transitions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/10Wire waveguides, i.e. with a single solid longitudinal conductor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • H05K1/0298Multilayer circuits

Definitions

  • the present application relates to communication technology, and in particular, to a surface wave excitation device and a printed wiring board.
  • communication is carried out by transmitting electromagnetic waves through a power line, without the need to lay additional optical fibers, and only the existing high-altitude wires can be used, so that even in remote villages, there is only a wire to communicate.
  • a special electromagnetic wave is needed. This electromagnetic wave is transmitted through the Transverse Magnetic (TEM) mode to the Transverse Magnetic (Transverse Magnetic) mode.
  • TM Transverse Magnetic
  • the surface wave is a wave that the electromagnetic field transmits in a loop shape outside the conductor cable.
  • the transmission mode of the surface wave is the TM mode.
  • the conductor cable only plays a role in guiding the transmission of the electromagnetic field, and there is no current transmission inside it.
  • surface wave transmission has good directivity and is not easy to diffuse and cause radiation loss.
  • surface wave transmission has small conductor loss in free space. It can be seen that the surface wave has the characteristics of large bandwidth and low loss at the same time in the transmission process.
  • the surface wave excitation device uses a cone to achieve the conversion from TEM mode to TM mode, but the cone that meets the communication indicators is too large and cannot be directly interconnected with a printed circuit board (Printed Circuit Board, PCB for short: PCB) to propagate surface waves. .
  • PCB printed Circuit Board
  • the present application provides a surface wave excitation device and a printed wiring board, so as to realize the integration of the surface wave excitation device and the PCB, and facilitate the propagation of the surface wave.
  • the present application provides a surface wave excitation device including a multilayer PCB structure and a transmission wire, wherein the multilayer PCB structure includes at least five layers of PCBs, and the transmission wires are disposed on the conductive layer PCB of the at least five layers of PCBs.
  • the PCBs with the same number of layers are respectively arranged above and below the conductor layer PCB, and copper wires are provided on each layer of the PCB.
  • the copper wires are formed by spraying copper on the PCB board, and the copper wires on each layer of the PCB form a closed area.
  • the closed areas on the PCBs which are respectively arranged above and below the wiring layer PCB and have the same distance from the wiring layer PCB have the same shape, and the farther away from the wiring layer PCB, the larger the occupied area of the closed area.
  • the copper wire provided on each layer of PCB is used to transform the signal from TEM mode propagation to TM mode propagation surface wave, and the transmission wire is used to guide the surface wave propagation.
  • the surface wave excitation device of the present application is adopted to transform a signal from TEM mode propagation to surface mode propagation in TM mode.
  • the characteristics of at least five layers of PCB and copper spray are adopted to realize the integration of surface wave excitation device and PCB, which is easy to integrate and easy
  • the surface wave excitation device is directly interconnected with the PCB to propagate the surface wave.
  • the signal is transmitted from the first end of the transmission wire to the second end of the transmission wire; along the direction of the first end of the transmission wire to the second end of the transmission wire, the two closed on the wire layer PCB The distance between the regions is getting farther and farther.
  • the edges of the two closed areas on the conductor layer PCB that are opposite to each other together form a semi-closed area, and the opening of the semi-closed area faces the second end of the transmission wire.
  • the semi-closed area gradually expands along both sides of the opening direction.
  • the shape of the closed area on the PCB above and below the wire layer PCB is rectangular; the long side of the rectangle is parallel to the transmission wire, and one end of the long side of the rectangle is flush with the first end of the transmission wire;
  • the center line lies in the same plane and parallel to the transmission line in the vertical direction.
  • the lengths of the long sides of the rectangles on the PCBs disposed above and below the wire layer PCB and having the same distance from the wire layer PCB are the same; the farther away the longer sides of the rectangles on the PCB on the wire layer PCB are.
  • the closed area formed on the above-mentioned PCBs with the shape of a square box and a hollow inside structure achieves the effect of gradually increasing the impedance along the direction in which the signal is transmitted on the transmission wire, which can propagate and transform the signal from the TEM mode.
  • the surface wave propagating in TM mode is guided by the transmission wire. It can be seen that the surface wave excitation device of this application uses the characteristics of at least five layers of PCB plus copper spraying to achieve the integration of the surface wave excitation device and the PCB, which is easy to integrate. And it is easy for the surface wave excitation device to directly interconnect with the PCB to propagate the surface wave.
  • the shape of the cross-section of the semi-closed region on the wire layer PCB includes a trapezoid, a triangle, or a circular arc.
  • a signal is transmitted from the first end of the transmission wire to the second end of the transmission wire; in a direction from the first end of the transmission wire to the second end of the transmission wire, the transmission wire Taper.
  • a cable is also connected to the transmission wire; the cable is used to propagate surface waves introduced through the transmission wire.
  • the surface wave propagates in a loop on the outside of the cable.
  • the cable only plays a role in guiding the surface wave transmission. There is no current transmission inside it, which realizes the communication requirements of large bandwidth and low loss.
  • the present application provides a PCB.
  • the surface wave excitation device of the first aspect is provided on the PCB to realize the integration of the surface wave excitation device and the PCB, which is easy to integrate and directly interconnect the surface wave excitation device and the PCB.
  • Spread surface waves are easy to integrate and directly interconnect the surface wave excitation device and the PCB.
  • FIG. 1 is a schematic diagram of a surface wave propagation form
  • FIG. 2a is a schematic side structural view of a first embodiment of a surface wave excitation device of the present application
  • FIG. 2b is a schematic top perspective view of a surface wave excitation device according to a first embodiment of the present application.
  • 2c is a schematic structural diagram of a wire layer PCB of the first embodiment of a surface wave excitation device of the present application;
  • 3a is a schematic side structural view of a second embodiment of a surface wave excitation device of the present application.
  • FIG. 3b is a schematic top perspective view of a surface wave excitation device according to a second embodiment of the present application.
  • 3c is a schematic structural diagram of a wire layer PCB of the second embodiment of the surface wave excitation device of the present application.
  • FIG. 4 is a simulation diagram of a surface wave propagation electric field distribution on a copper wire from a surface wave excitation device.
  • Figure 1 is a schematic diagram of the surface wave propagation form. As shown in Figure 1, surface waves can be generated by switching from TEM mode to TM mode. Surface waves are waves in which electromagnetic fields are transmitted in a circle on the outside of a conductor cable. Its transmission mode is TM mode, and the conductor cable only starts here. To guide the electromagnetic field transmission, there is no current transmission inside itself.
  • surface wave transmission Compared with traditional wireless transmission, surface wave transmission has good directivity and is not easy to diffuse and cause radiation loss. Compared with coaxial or metal cavity waveguides, surface wave transmission has small conductor loss in free space. It can be seen that the surface wave has the characteristics of large bandwidth and low loss at the same time in the transmission process.
  • the surface wave exciter uses a cone to achieve the conversion from the TEM mode to the TM mode, but the cone that meets the communication index is too large and cannot directly interconnect with the PCB to propagate the surface wave.
  • the present application provides a surface wave excitation device, which includes a multilayer PCB structure and a transmission wire, wherein the multilayer PCB structure includes at least five layers of PCBs, and the transmission wires are disposed in the conductive layer PCB of the at least five layers of PCBs.
  • the multilayer PCB structure includes at least five layers of PCBs
  • the transmission wires are disposed in the conductive layer PCB of the at least five layers of PCBs.
  • the same number of PCBs are respectively arranged, and each layer of the PCB is provided with copper wires.
  • the copper wires are formed by spraying copper on the PCB board.
  • the copper wires on each layer of the PCB form a closed area. .
  • the closed areas on the PCBs disposed above and below the wire layer PCB and having the same distance from the wire layer PCB have the same shape, and the larger the area occupied by the closed areas on the PCB farther away from the wire layer PCB.
  • the copper wire provided on each layer of PCB is used to transform the signal from TEM mode propagation to TM mode propagation surface wave, and the transmission wire is used to guide the surface wave propagation.
  • the closed areas formed by the copper wires provided on the PCBs of each layer collectively form a structure with a square box shape and a hollow interior
  • the closed area forms a hollow structure.
  • the hollow part still has PCB dielectric.
  • the hollow part shows a gradually increasing opening along the direction of signal transmission on the transmission wire.
  • the side wall of the hollow part is outside the square box. All surfaces are made of copper.
  • the characteristic of surface wave is that its electromagnetic field distribution is mainly concentrated in the medium constituting the waveguide and the area near the surface. The electromagnetic field outside the medium decreases exponentially with increasing distance from the surface.
  • the surface of the waveguide has a large reactance.
  • the closed area formed on the above-mentioned PCBs with the shape of a square box and a hollow inside structure achieves the effect of gradually increasing the impedance along the direction in which the signal is transmitted on the transmission wire, which can propagate and transform the signal from the TEM mode.
  • the surface wave propagating in TM mode is guided by the transmission wire.
  • the surface wave excitation device of this application uses the characteristics of at least five layers of PCB plus copper spraying to achieve the integration of the surface wave excitation device and the PCB, which is easy to integrate. And it is easy for the surface wave excitation device to directly interconnect with the PCB to propagate the surface wave.
  • Fig. 2a is a schematic side structural view of the first embodiment of the surface wave excitation device of the present application
  • Fig. 2b is a schematic top structural perspective view of the first embodiment of the surface wave excitation device of the present application
  • Fig. 2c is a wire of the first embodiment of the surface wave excitation apparatus of the present application
  • Schematic diagram of the multilayer PCB. Figure 2a, Figure 2b, and Figure 2c are combined (the copper wire structure on the PCB is shown in the figure, and the PCB is not shown).
  • the device of this embodiment may include: a five-layer PCB (from top to bottom) (PCB11, PCB12, PCB13, PCB14, and PCB15) and transmission leads 16; among them, the transmission lead 16 is set on the PCB 13 located in the middle, PCB11, PCB12, PCB13, PCB14, and PCB15 Copper wires are respectively provided, and the copper wires on each layer of the PCB form a closed area.
  • PCB11, PCB12, PCB13, PCB14, and PCB15 Copper wires are respectively provided, and the copper wires on each layer of the PCB form a closed area.
  • the closed areas 13a and 13b are respectively disposed on both sides of the transmission line 16, and the closed areas 13a and 13b are based on the transmission line 16 as an axis of symmetry. Symmetric with each other.
  • the signal is transmitted from the first end 16 a to the second end 16 b of the transmission wire 16. In the direction of signal transmission, the distance between the closed areas 13 a and 13 b is getting farther and farther.
  • the closed areas 13a and 13b on the PCB 13 form a semi-closed area 13c at the edges opposite to each other.
  • the opening of the semi-closed area 13c faces the second end 16b of the transmission wire, and the semi-closed area 13c gradually expands along both sides of the opening direction.
  • the shape of the cross-section of the semi-closed region 13c on the PCB 13 in FIG. 2c is triangular.
  • the shape of the cross-section of the semi-closed region 13c on the PCB 13 can also be trapezoidal or circular, as long as it follows the signal.
  • the transmission direction may be gradually enlarged on both sides of the semi-closed region 13c, which is not specifically limited in the embodiment of the present application.
  • the shape of the closed area formed by the copper wire is rectangular, and the long side of the rectangle is parallel to the transmission wire 16, and one end of the long side of the rectangle is the first side of the transmission wire 16.
  • One end 16a is flush, and the center line of the wide side of the rectangle is in the same plane and parallel to the transmission wire 16 in the vertical direction.
  • the lengths of the long sides of the rectangles on PCB11 and PCB15 are the same, and the lengths of the long sides of the rectangles on PCB12 and PCB14 are the same.
  • the lengths of the long sides of the rectangles on PCB12 and PCB14 are shorter than those of PCB11 and PCB15.
  • the transmission wire 16 is gradually tapered. This shape can better improve the accuracy of the impedance generated by matching the closed area formed by the copper wire on the PCB.
  • the transmission mode of the surface wave is the TM mode. This mode is transformed from the TEM mode when the impedance is gradually increased.
  • the embodiment of the present application uses the multilayer structure of the PCB.
  • the transmission wire 16 is disposed on the PCB 13 located in the middle. In order to ensure the symmetry of the field distribution during the surface wave propagation process, the transmission wire 16 is used as the central axis, and copper is sprayed on the PCB 13 to form two symmetrical areas.
  • the upper and lower PCBs (PCB11, PCB12, PCB11) 14 and PCB 15) Copper is sprayed on the closed area to form a rectangular shape.
  • the long side of the rectangle is transmitted along the direction of the first end 16a to the second end 16b of the transmission wire 16 and the direction gradually away from the PCB. Big.
  • the length of the long side of the rectangle increases layer by layer, the greater the impedance generated by the combination of the rectangle on each PCB and the two closed areas on the PCB 13.
  • the distance between the two closed areas on the PCB 13 gradually increases, and it cooperates with the impedance level transformation generated by the rectangles on PCB 11, PCB 12, PCB 14, and PCB 15 to achieve the effect of increasing the output impedance.
  • the rectangles on PCB12 and PCB14 and the two closed areas on PCB13 are combined to produce a 50 ⁇ impedance.
  • Fig. 3a is a schematic side structural view of a second embodiment of a surface wave excitation device of the present application
  • Fig. 3b is a schematic top structural perspective view of a second embodiment of the surface wave excitation device of the present application
  • Fig. 3c is a wire of the second embodiment of the surface wave excitation device of the present application
  • the device of this embodiment may include: a seven-layer PCB (from top to bottom) PCB21, PCB22, PCB23, PCB24, PCB25, PCB26, and PCB27) and transmission leads 28; among them, the transmission lead 28 is set on the PCB 24 in the middle, PCB21, PCB22, PCB23, PCB 24.
  • PCB 25, PCB 26 and PCB 27 are provided with copper wire structures respectively, and the copper wires form closed areas on each layer of PCB.
  • closed areas 24a and 24b there are two closed areas formed by copper wires (closed areas 24a and 24b).
  • the closed areas 24a and 24b are respectively provided on both sides of the transmission line 28, and the closed areas 24a and 24b are based on the transmission line 28 as a symmetry axis. Symmetric with each other.
  • the signal is transmitted from the first end 28a to the second end 28b of the transmission wire 28. In the direction of the signal transmission, the distance between the closed areas 24a and 24b is getting farther and farther.
  • the closed areas 24a and 24b on the PCB 24 form a semi-closed area 24c at the edges opposite to each other.
  • the opening of the semi-closed area 24c faces the second end 28b of the transmission wire, and the semi-closed area 24c gradually expands along the sides of the opening .
  • the shape of the cross-section of the semi-closed area 24c on the PCB 24 in FIG. 3c is triangular.
  • the shape of the cross-section of the semi-closed area 24c on the PCB 24 can also be trapezoidal or circular, as long as it follows the signal.
  • the transmission direction may be gradually enlarged on both sides of the semi-closed region 24c, which is not specifically limited in the embodiment of the present application.
  • the shape of the closed area formed by the copper wire is rectangular, and the long side of the rectangle is parallel to the transmission wire 28, and one end of the long side of the rectangle is It is flush with the first end 28a of the transmission wire 28, and the center line of the wide side of the rectangle is in the same plane and parallel to the transmission wire 28 in the vertical direction.
  • the lengths of the long sides of the rectangles on PCB 21 and PCB 27 are the same, the lengths of the long sides of the rectangles on PCB 22 and PCB 26 are the same, and the lengths of the long sides of the rectangles on PCB 23 and PCB 25 are the same, while PCB 23 and PCB
  • the length of the long side of the rectangle on 25 is smaller than the length of the long side of the rectangle on PCB 22 and PCB 26, and the length of the long side of the rectangle on PCB 22 and PCB 26 is less than the length of the long side of the rectangle on PCB 21 and PCB 27 length.
  • the multilayer PCB structure of the embodiment of the present application includes a seven-layer PCB, so that one-order impedance transformation can be realized, that is, as shown in Fig. 3a, the PCB 23 Combined with the rectangle on PCB 25 and the closest part of the two closed areas on PCB 24 to produce a 50 ⁇ impedance, the rectangles on PCB 22 and PCB 26 and the closer part of the two closed areas on PCB 24 Generates an impedance of 70 ⁇ .
  • the rectangles on PCB21 and PCB27 and the farthest part of the two closed areas on PCB24 combine to produce an impedance of 90 ⁇ .
  • the impedance of the surface wave excitation device used in the embodiment of the present application is increased layer by layer, the reflection is decreased layer by layer, and the performance is improved accordingly.
  • the embodiment of the present application realizes three-layer impedance increase. Compared with the two-layer impedance increase, the surface wave propagation performance is better, and the energy loss of the surface wave is smaller.
  • the spatially symmetrical tapered copper wire structure used in the surface wave excitation device of this application includes at least five PCB layers.
  • the number of PCB layers is not specifically limited.
  • the transmission wire 16 and the transmission wire 28 are both connected with a cable, and the cable is used to propagate the surface wave introduced through the transmission wire.
  • the surface wave propagates on the cable in the form shown in Figure 1.
  • the cable only plays a role in guiding the surface wave transmission. There is no current transmission inside it, which realizes the communication requirements of large bandwidth and low loss.
  • FIG. 4 is a simulation diagram of a surface wave propagation electric field distribution on a copper wire from a surface wave excitation device. As shown in FIG. 4, using the technical solution of the present application, the surface wave is well transferred from the surface wave excitation device to the cable.
  • the surface wave excitation device shown in FIG. 2a to FIG. 3c described above uses the characteristics of at least five layers of PCB plus copper spraying to achieve the integration of the surface wave excitation device and the PCB, which is easy to integrate and facilitates the direct interconnection and propagation of the surface wave excitation device and the PCB.
  • Surface wave Based on this, the embodiment of the present application provides a PCB, which can be used for a signal transmitting device.
  • the surface wave transmission device provided on the PCB to achieve surface wave transmission can have the same technical effect as the above embodiment, and will not be repeated here. To repeat.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Near-Field Transmission Systems (AREA)
  • Structure Of Printed Boards (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Abstract

一种表面波激励装置和印制线路板,包括:多层PCB结构和传输导线(16);其中,多层PCB结构包括至少五层PCB(11,12,13,14,15);传输导线(16)设置于导线层PCB(13)上,在导线层PCB(13)的上下分别设置有相同层数的PCB(11,12,14,15);在各层PCB(11,12,14,15)上均设置有铜线,铜线形成封闭区域;分别设置于导线层PCB(13)上方和下方且与导线层PCB(13)具有相同距离的PCB(11,12,14,15)上的封闭区域的形状相同,越远离导线层PCB(13)的PCB(11,12,14,15)上的封闭区域占用的面积越大;导线层PCB(13)上的封闭区域(13a、13b)有两个,其中一个设置于传输导线(16)的一侧,其中另一个设置于传输导线(16)的另一侧,且两个封闭区域(13a、13b)的形状以传输导线(16)为对称轴相互对称。实现表面波激励装置和PCB的一体化,易于表面波的传播。

Description

表面波激励装置和印制线路板 技术领域
本申请涉及通信技术,尤其涉及一种表面波激励装置和印制线路板。
背景技术
相关技术中,通过电力线传播电磁波实现通信,无需布放额外的光纤,只需利用现有的高空电线即可,这样即使在偏僻的乡村只要有电线就能通信。而既要利用电力线传输,又要具备低损耗、超带宽的性能,就需要采用一种特殊的电磁波,这种电磁波就是通过横电磁(Transverse Electric Magnetic,简称:TEM)模式到横磁场(Transverse Magnetic,简称:TM)模式转换产生的表面波。表面波是电磁场在导体线缆外部呈圈状传输的波,表面波的传输模式即为TM模式,导体线缆只起到引导电磁场传输的作用,其本身内部无电流传输。与传统的无线传输比,表面波传输方向性好、不易扩散造成辐射损耗,与同轴或金属腔波导相比,表面波在自由空间传输具有很小的导体损耗。可见,表面波在传输过程中同时具有大带宽和低损耗的特点。
通常表面波激励装置采用锥形体实现TEM模式到TM模式的转换,但是满足通信指标的锥形体体积偏大,且不能与印制线路板(Printed Circuit Board,简称:PCB)直接互连传播表面波。
发明内容
本申请提供一种表面波激励装置和印制线路板,以实现表面波激励装置和PCB的一体化,易于表面波的传播。
第一方面,本申请提供一种表面波激励装置,包括:多层PCB结构和传输导线,其中,多层PCB结构包括至少五层PCB,传输导线设置于至少五层PCB中的导线层PCB上,在导线层PCB的上下分别设置有相同层数的PCB,每层PCB上均设置有铜线,该铜线通过在PCB板上喷铜形成,每层PCB上的铜线形成一个封闭区域。分别设置于导线层PCB上方和下方且与导 线层PCB具有相同距离的PCB上的封闭区域的形状相同,越远离导线层PCB的PCB上的封闭区域占用的面积越大。导线层PCB上的封闭区域有两个,其中一个设置于传输导线的一侧,其中另一个设置于传输导线的另一侧,且两个封闭区域的形状以传输导线为对称轴相互对称。设置于各层PCB上的铜线用于将信号从TEM模式传播转变成TM模式传播的表面波,传输导线用于引导表面波传播。
采用本申请的表面波激励装置将信号从TEM模式传播转变成TM模式传播的表面波,采用的至少五层PCB加喷铜的特性,实现表面波激励装置和PCB的一体化,容易集成且易于表面波激励装置与PCB直接互连传播表面波。
在一种可能的实现方式中,信号从传输导线的第一端传输至传输导线的第二端;沿传输导线的第一端向传输导线的第二端的方向,导线层PCB上的两个封闭区域之间的距离越来越远。沿传输导线的第一端向传输导线的第二端的方向,导线层PCB上的两个封闭区域在彼此相对处的边沿共同围成半封闭区域,半封闭区域的开口朝向传输导线的第二端,且半封闭区域沿开口方向两侧逐渐张大。设置于导线层PCB上方和下方的PCB上的封闭区域的形状为矩形;矩形的长边与传输导线平行,且矩形的长边的一端与传输导线的第一端平齐;矩形的宽边的中线在竖直方向上与传输导线位于同一平面且平行。分别设置于导线层PCB上方和下方且与导线层PCB具有相同距离的PCB上的矩形的长边的长度相同;越远离导线层PCB的PCB上的矩形的长边越长。
上述各层PCB上的封闭区域共同形成的具备方形盒子的外形且内部中空的结构正是达到了沿着信号在传输导线上传输的方向阻抗逐渐增大的效果,可以将信号从TEM模式传播转变成TM模式传播的表面波,该表面波由传输导线引导传播,可见本申请的表面波激励装置采用了至少五层PCB加喷铜的特性,实现表面波激励装置和PCB的一体化,容易集成且易于表面波激励装置与PCB直接互连传播表面波。
在一种可能的实现方式中,导线层PCB上的半封闭区域的横截面的形状包括梯形、三角形或者圆弧形。
在一种可能的实现方式中,在导线层PCB上,信号从传输导线的第一端传输至传输导线的第二端;沿传输导线的第一端向传输导线的第二端的方向,传输导线逐渐变细。
在一种可能的实现方式中,传输导线上还连接有电缆;电缆用于传播经传输导线导入的表面波。
表面波在电缆外部呈圈状传播,电缆在此只起到引导表面波传输的作用,其本身内部无电流传输,实现大带宽和低损耗的通信需求。
第二方面,本申请提供一种PCB,在PCB上设置有第一方面中的表面波激励装置,实现表面波激励装置和PCB的一体化,容易集成且易于表面波激励装置与PCB直接互连传播表面波。
附图说明
为了更清楚地说明本申请或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为表面波的传播形式示意图;
图2a为本申请表面波激励装置实施例一的侧视结构示意图;
图2b为本申请表面波激励装置实施例一的俯视透视结构示意图;
图2c为本申请表面波激励装置实施例一的导线层PCB的结构示意图;
图3a为本申请表面波激励装置实施例二的侧视结构示意图;
图3b为本申请表面波激励装置实施例二的俯视透视结构示意图;
图3c为本申请表面波激励装置实施例二的导线层PCB的结构示意图;
图4为表面波激励装置到铜线上的表面波传播电场分布仿真图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合本申请中的附图,对本申请中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
相关技术中,通过电力线传播表面波,无需布放额外的光纤,只需利用现有的高空电线即可,这样即使在偏僻的乡村只要有电线就能通信,还可以节省布放光纤回传产生的成本,增加无线覆盖区域,为物联网应用提供便捷场景。图1为表面波的传播形式示意图。如图1所示,通过TEM模式到TM模式转换即可产生的表面波,表面波是电磁场在导体线缆外部呈圈状传输的波,其传输模式为TM模式,导体线缆在此只起到引导电磁场传输的作用,其本身内部无电流传输。与传统的无线传输比,表面波传输方向性好、不易扩散造成辐射损耗,与同轴或金属腔波导相比,表面波在自由空间传输具有很小的导体损耗。可见表面波在传输过程中同时具有大带宽和低损耗的特点。现有技术中表面波激励器采用锥形体实现TEM模式到TM模式的转换,但是满足通信指标的锥形体体积偏大,且不能与PCB直接互连传播表面波。
为了解决上述问题,本申请提供一种表面波激励装置,包括:多层PCB结构和传输导线,其中,多层PCB结构包括至少五层PCB,传输导线设置于至少五层PCB中的导线层PCB上,在导线层PCB的上下分别设置有相同层数的PCB,每层PCB上均设置有铜线,该铜线通过在PCB板上喷铜形成,每层PCB上的铜线形成一个封闭区域。分别设置于导线层PCB上方和下方且与导线层PCB具有相同距离的PCB上的封闭区域的形状相同,越远离导线层PCB的PCB上的封闭区域占用的面积越大。导线层PCB上的封闭区域有两个,其中一个设置于传输导线的一侧,其中另一个设置于传输导线的另一侧,且两个封闭区域的形状以传输导线为对称轴相互对称。设置于各层PCB上的铜线用于将信号从TEM模式传播转变成TM模式传播的表面波,传输导线用于引导表面波传播。可以认为设置于各层PCB上的铜线形成的封闭区域共同形成一个具备方形盒子的外形且内部中空的结构(需要说明的是,此处描述的中空并非真正的中空,而是指各层的封闭区域形成了一中空结构,实际上在中空的部分还是有PCB介质的),中空部分沿着信号在传输导线上传输的方向呈现开口逐渐增大的形状,中空部分的侧壁到方形盒子外 表面之间全部采用铜介质。表面波的特点是其电磁场分布主要集中在构成波导的介质内部及其表面附近的区域中,电磁场在介质外随离开表面距离的增加而呈指数衰减,因此要实现表面波的有效传输,必须使波导表面具有较大的电抗。上述各层PCB上的封闭区域共同形成的具备方形盒子的外形且内部中空的结构正是达到了沿着信号在传输导线上传输的方向阻抗逐渐增大的效果,可以将信号从TEM模式传播转变成TM模式传播的表面波,该表面波由传输导线引导传播,可见本申请的表面波激励装置采用了至少五层PCB加喷铜的特性,实现表面波激励装置和PCB的一体化,容易集成且易于表面波激励装置与PCB直接互连传播表面波。
下面采用几个具体的实施例,对本申请的技术方案进行详细说明。
图2a为本申请表面波激励装置实施例一的侧视结构示意图,图2b为本申请表面波激励装置实施例一的俯视透视结构示意图,图2c为本申请表面波激励装置实施例一的导线层PCB的结构示意图。图2a、图2b和图2c结合来看(附图中呈现的是PCB板上的铜线结构,PCB板未画出),本实施例的装置可以包括:五层PCB(从上到下依次为PCB 11、PCB 12、PCB 13、PCB 14和PCB 15)和传输导线16;其中,传输导线16设置于位于中间的PCB 13上,PCB 11、PCB 12、PCB 13、PCB 14和PCB 15上分别设置有铜线,且在各层PCB上铜线形成封闭区域。
在PCB 13上,铜线形成的封闭区域有两个(封闭区域13a和13b),封闭区域13a和13b分别设置于传输导线16的两侧,且封闭区域13a和13b以传输导线16为对称轴相互对称。信号从传输导线16的第一端16a传输至第二端16b,沿信号传输的方向,封闭区域13a和13b之间的距离越来越远。PCB 13上的封闭区域13a和13b在彼此相对处的边沿共同围成半封闭区域13c,半封闭区域13c的开口朝向传输导线的第二端16b,且半封闭区域13c沿开口方向两侧逐渐张大。图2c中半封闭区域13c在PCB 13上的横截面的形状为三角形,可选的,半封闭区域13c在PCB 13上的横截面的形状还可以是梯形或者圆弧形,只要是沿着信号传输的方向,半封闭区域13c的两侧逐渐张大均可,本申请实施例不做具体限定。
在PCB 11、PCB 12、PCB 14和PCB 15上,铜线形成的封闭区域的形状均为矩形,该矩形的长边与传输导线16平行,且矩形的长边的一端与传输导线16的第一端16a平齐,矩形的宽边的中线在竖直方向上与传输导线16位于同一平面且平行。PCB 11和PCB 15上的矩形的长边的长度相同,PCB 12和PCB 14上的矩形的长边的长度相同,而PCB 12和PCB 14上的矩形的长边的长度小于PCB 11和PCB 15上的矩形的长边的长度。
沿传输导线16的第一端16a传输向第二端16b的方向,传输导线16逐渐变细,这样的形状配合PCB上的铜线形成的封闭区域可以更好的提升产生阻抗的精确度。
表面波的传输模式为TM模式,这种模式是由TEM模式逐渐增大阻抗后转变而来的,本申请实施例利用了PCB的多层结构,传输导线16设置于位于中间的PCB 13上,为了保证表面波传播过程中场分布的对称性,以传输导线16为中心轴,在PCB 13上喷铜形成左右对称的两个封闭区域,在PCB 13的上下PCB(PCB 11、PCB 12、PCB 14和PCB 15)上喷铜形成形状为矩形的封闭区域,矩形的长边沿着传输导线16的第一端16a传输向第二端16b的方向和距离PCB 13渐远的方向,逐层长度增大。随着矩形的长边的长度逐层递增,各PCB上的矩形与PCB 13上的两个封闭区域结合产生的阻抗越大。而在PCB 13上的两个封闭区域之间的距离逐渐增大,其与PCB 11、PCB 12、PCB 14和PCB 15上的矩形产生的阻抗层阶变换相配合达到输出阻抗增大的效果。图4a中,PCB 12和PCB 14上的矩形和PCB 13上的两个封闭区域中距离较近的部分结合产生50Ω的阻抗,PCB 11和PCB 15上的矩形和PCB 13上的两个封闭区域中的距离较远的部分结合产生70Ω的阻抗。可见本申请实施例中采用的表面波激励装置阻抗逐层增加,反射逐层减小,性能相应的变好。
图3a为本申请表面波激励装置实施例二的侧视结构示意图,图3b为本申请表面波激励装置实施例二的俯视透视结构示意图,图3c为本申请表面波激励装置实施例二的导线层PCB的结构示意图。图3a、图3b和图3c结合来看(附图中呈现的是PCB板上的铜线结构,PCB板未画出),本实施例的装 置可以包括:七层PCB(从上到下依次为PCB 21、PCB 22、PCB 23、PCB24、PCB 25、PCB 26和PCB 27)和传输导线28;其中,传输导线28设置于位于中间的PCB 24上,PCB 21、PCB 22、PCB 23、PCB 24、PCB 25、PCB26和PCB 27上分别设置有铜线结构,且在各层PCB上铜线形成封闭区域。
在PCB 24上,铜线形成的封闭区域有两个(封闭区域24a和24b),封闭区域24a和24b分别设置于传输导线28的两侧,且封闭区域24a和24b以传输导线28为对称轴相互对称。信号从传输导线28的第一端28a传输至第二端28b,沿信号传输的方向,封闭区域24a和24b之间的距离越来越远。PCB 24上的封闭区域24a和24b在彼此相对处的边沿共同围成半封闭区域24c,半封闭区域24c的开口朝向传输导线的第二端28b,且半封闭区域24c沿开口方向两侧逐渐张大。图3c中半封闭区域24c在PCB 24上的横截面的形状为三角形,可选的,半封闭区域24c在PCB 24上的横截面的形状还可以是梯形或者圆弧形,只要是沿着信号传输的方向,半封闭区域24c的两侧逐渐张大均可,本申请实施例不做具体限定。
在PCB 21、PCB 22、PCB 23、PCB 25、PCB 26和PCB 27上,铜线形成的封闭区域的形状均为矩形,该矩形的长边与传输导线28平行,且矩形的长边的一端与传输导线28的第一端28a平齐,矩形的宽边的中线在竖直方向上与传输导线28位于同一平面且平行。PCB 21和PCB 27上的矩形的长边的长度相同,PCB 22和PCB 26上的矩形的长边的长度相同,PCB 23和PCB 25上的矩形的长边的长度相同,而PCB 23和PCB 25上的矩形的长边的长度小于PCB 22和PCB 26上的矩形的长边的长度,PCB 22和PCB 26上的矩形的长边的长度小于PCB 21和PCB 27上的矩形的长边的长度。
与图2a-2c所示的实施例一的不同之处在于,本申请实施例的多层PCB结构包括七层PCB,因此可实现多一阶的阻抗变换,即如图3a所示,PCB 23和PCB 25上的矩形和PCB 24上的两个封闭区域中距离最近的部分结合产生50Ω的阻抗,PCB 22和PCB 26上的矩形和PCB 24上的两个封闭区域中距离较近的部分结合产生70Ω的阻抗,PCB 21和PCB 27上的矩形和PCB 24上的两个封闭区域中距离最远的部分结合产生90Ω的阻抗。可见本申请实施例中采用的表面波激励装置阻抗逐层增加,反射逐层减小,性能相应的变好。 相较于实施例一中的两层阻抗递增,本申请实施例实现了三层阻抗递增,相较于两层阻抗递增具备更好的表面波传播性能,表面波的能量损耗更小。
需要说明的是,本申请表面波激励装置所采用的空间对称渐张铜线结构包括的PCB层数至少五层,在工艺水平允许、成本可控的基础上,PCB的层数越多,可实现的阻抗的变换阶数越多,从而可达到的表面波传输性能也越好,因此不对PCB层数做具体限定。
在上述实施例中,传输导线16和传输导线28均连接有电缆,该电缆用于传播经传输导线导入的表面波。表面波以图1所示的形式在电缆上传播,电缆在此只起到引导表面波传输的作用,其本身内部无电流传输,实现大带宽和低损耗的通信需求。图4为表面波激励装置到铜线上的表面波传播电场分布仿真图。如图4所示,采用本申请的技术方案表面波很好地由表面波激励装置过渡到电缆上传播。
上述图2a-图3c所示的表面波激励装置采用了至少五层PCB加喷铜的特性,实现表面波激励装置和PCB的一体化,容易集成且易于表面波激励装置与PCB直接互连传播表面波。基于此,本申请实施例提供了一种PCB,该PCB可用于信号发射装置,在PCB上设置上述表面波激励装置实现表面波传输即可具备与上述实施例相同的技术效果,此处不再赘述。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (9)

  1. 一种表面波激励装置,其特征在于,包括:多层印制线路板PCB结构和传输导线;其中,
    所述多层PCB结构包括至少五层PCB;所述传输导线设置于所述至少五层PCB中的导线层PCB上,在所述导线层PCB的上下分别设置有相同层数的PCB;在所述至少五层PCB中的各层PCB上均设置有铜线,在各层PCB上所述铜线形成封闭区域;分别设置于所述导线层PCB上方和下方且与所述导线层PCB具有相同距离的PCB上的所述封闭区域的形状相同,越远离所述导线层PCB的PCB上的所述封闭区域占用的面积越大;所述导线层PCB上的所述封闭区域有两个,其中一个设置于所述传输导线的一侧,其中另一个设置于所述传输导线的另一侧,且所述两个封闭区域的形状以所述传输导线为对称轴相互对称;
    设置于各层PCB上的铜线用于将信号从横电磁TEM模式传播转变成横磁场TM模式传播的表面波,所述传输导线用于引导所述表面波传播。
  2. 根据权利要求1所述的装置,其特征在于,在所述导线层PCB上,信号从所述传输导线的第一端传输至所述传输导线的第二端;
    沿所述传输导线的第一端向所述传输导线的第二端的方向,所述导线层PCB上的所述两个封闭区域之间的距离越来越远。
  3. 根据权利要求2所述的装置,其特征在于,沿所述传输导线的第一端向所述传输导线的第二端的方向,所述导线层PCB上的所述两个封闭区域在彼此相对处的边沿共同围成半封闭区域,所述半封闭区域的开口朝向所述传输导线的第二端,且所述半封闭区域沿开口方向两侧逐渐张大。
  4. 根据权利要求1-3中任一项所述的装置,其特征在于,在所述导线层PCB上,信号从所述传输导线的第一端传输至所述传输导线的第二端;
    设置于所述导线层PCB上方和下方的PCB上的所述封闭区域的形状为矩形;所述矩形的长边与所述传输导线平行,且所述矩形的长边的一端与所述传输导线的第一端平齐;所述矩形的宽边的中线在竖直方向上与所述传输导线位于同一平面且平行。
  5. 根据权利要求4所述的装置,其特征在于,分别设置于所述导线层 PCB上方和下方且与所述导线层PCB具有相同距离的PCB上的所述矩形的长边的长度相同;越远离所述导线层PCB的PCB上的所述矩形的长边越长。
  6. 根据权利要求3所述的装置,其特征在于,所述导线层PCB上的所述半封闭区域的横截面的形状包括梯形、三角形或者圆弧形。
  7. 根据权利要求1-6中任一项所述的装置,其特征在于,在所述导线层PCB上,信号从所述传输导线的第一端传输至所述传输导线的第二端;
    沿所述传输导线的第一端向所述传输导线的第二端的方向,所述传输导线逐渐变细。
  8. 根据权利要求1-7中任一项所述的装置,其特征在于,所述传输导线上还连接有电缆;所述电缆用于传播经所述传输导线导入的表面波。
  9. 一种印制线路板PCB,其特征在于,在所述PCB上设置有权利要求1-8中任一项所述表面波激励装置。
PCT/CN2018/105950 2018-09-17 2018-09-17 表面波激励装置和印制线路板 WO2020056546A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18934201.7A EP3823091B1 (en) 2018-09-17 2018-09-17 Surface wave excitation device and printed circuit board
PCT/CN2018/105950 WO2020056546A1 (zh) 2018-09-17 2018-09-17 表面波激励装置和印制线路板
US17/202,916 US11605870B2 (en) 2018-09-17 2021-03-16 Surface wave excitation device having a multi-layer PCB construction with closed regions therein

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/105950 WO2020056546A1 (zh) 2018-09-17 2018-09-17 表面波激励装置和印制线路板

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/202,916 Continuation US11605870B2 (en) 2018-09-17 2021-03-16 Surface wave excitation device having a multi-layer PCB construction with closed regions therein

Publications (1)

Publication Number Publication Date
WO2020056546A1 true WO2020056546A1 (zh) 2020-03-26

Family

ID=69886911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/105950 WO2020056546A1 (zh) 2018-09-17 2018-09-17 表面波激励装置和印制线路板

Country Status (3)

Country Link
US (1) US11605870B2 (zh)
EP (1) EP3823091B1 (zh)
WO (1) WO2020056546A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113097675A (zh) * 2021-04-09 2021-07-09 全球能源互联网研究院有限公司 一种表面波传输装置
EP4199243A4 (en) * 2020-08-31 2024-02-21 Huawei Tech Co Ltd SPOOF SURFACE PLASMON POLARITON TRANSMISSION LINE STRUCTURE, CIRCUIT BOARD AND ELECTRONIC DEVICE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2852753A (en) * 1953-03-20 1958-09-16 Int Standard Electric Corp High frequency transmission line systems
US8497749B2 (en) * 2004-05-21 2013-07-30 Corridor Systems, Inc. Single conductor surface wave transmission line system for terminating E field lines at points along the single conductor
CN104124211A (zh) * 2013-04-29 2014-10-29 英飞凌科技股份有限公司 具有波导转换元件的集成电路模块
WO2018129156A1 (en) * 2017-01-05 2018-07-12 Intel Corporation Process technology for embedded horn structures with printed circuit boards

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NL89862C (zh) 1950-03-21
US2852275A (en) 1956-04-25 1958-09-16 Wire O Corp Contents indicator for binder covers
US4743916A (en) 1985-12-24 1988-05-10 The Boeing Company Method and apparatus for proportional RF radiation from surface wave transmission line
US4897663A (en) 1985-12-25 1990-01-30 Nec Corporation Horn antenna with a choke surface-wave structure on the outer surface thereof
US4730172A (en) 1986-09-30 1988-03-08 The Boeing Company Launcher for surface wave transmission lines
US7009471B2 (en) 2002-12-09 2006-03-07 Corridor Systems, Inc. Method and apparatus for launching a surfacewave onto a single conductor transmission line using a slohed flared cone
SG172511A1 (en) * 2010-01-04 2011-07-28 Sony Corp A waveguide
US9113347B2 (en) 2012-12-05 2015-08-18 At&T Intellectual Property I, Lp Backhaul link for distributed antenna system
US8897697B1 (en) 2013-11-06 2014-11-25 At&T Intellectual Property I, Lp Millimeter-wave surface-wave communications
US10847859B2 (en) * 2017-02-23 2020-11-24 Intel Corporation Single wire communication arrangement

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2852753A (en) * 1953-03-20 1958-09-16 Int Standard Electric Corp High frequency transmission line systems
US8497749B2 (en) * 2004-05-21 2013-07-30 Corridor Systems, Inc. Single conductor surface wave transmission line system for terminating E field lines at points along the single conductor
CN104124211A (zh) * 2013-04-29 2014-10-29 英飞凌科技股份有限公司 具有波导转换元件的集成电路模块
WO2018129156A1 (en) * 2017-01-05 2018-07-12 Intel Corporation Process technology for embedded horn structures with printed circuit boards

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3823091A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4199243A4 (en) * 2020-08-31 2024-02-21 Huawei Tech Co Ltd SPOOF SURFACE PLASMON POLARITON TRANSMISSION LINE STRUCTURE, CIRCUIT BOARD AND ELECTRONIC DEVICE
CN113097675A (zh) * 2021-04-09 2021-07-09 全球能源互联网研究院有限公司 一种表面波传输装置

Also Published As

Publication number Publication date
US11605870B2 (en) 2023-03-14
US20210204392A1 (en) 2021-07-01
EP3823091B1 (en) 2023-08-02
EP3823091A4 (en) 2021-06-23
EP3823091A1 (en) 2021-05-19

Similar Documents

Publication Publication Date Title
CN104241794B (zh) 一种组合波导
US11605870B2 (en) Surface wave excitation device having a multi-layer PCB construction with closed regions therein
JP5566169B2 (ja) アンテナ装置
JPWO2009004729A1 (ja) 伝送線路変換器
JP2002500840A (ja) マイクロ波伝送装置
JP2010141644A (ja) 誘電体導波管‐マイクロストリップ変換構造
KR20120082362A (ko) 유전체 도파관의 입출력 접속 구조
JP6200613B1 (ja) ダイプレクサ及び送受信システム
JP6143971B2 (ja) 同軸マイクロストリップ線路変換回路
JP2012213146A (ja) 高周波変換回路
JP4995174B2 (ja) 無線通信装置
WO2024046276A1 (zh) 三模介质谐振器及介质滤波器
JP2010074790A (ja) 通信体及びカプラ
JP2005318360A (ja) 導波管型導波路および高周波モジュール
JP2011024176A (ja) 誘電体導波路の電磁波伝達部
JP4722097B2 (ja) 分岐導波管線路とこれを有する多層配線基板およびアンテナ基板
JP5697797B2 (ja) 平面回路−導波管変換器
US20150102870A1 (en) Directional coupler arrangement and method
JP5558225B2 (ja) 方向性結合器
CN110299583B (zh) 模式转换装置及信号传输系统
JP2010074793A (ja) カプラ
JP5157780B2 (ja) カプラ
JP2000174515A (ja) コプレーナウェーブガイド−導波管変換装置
US10840576B2 (en) Magnetic rings as feeds and for impedance adjustment
JP2010074792A (ja) 通信体及びカプラ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18934201

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018934201

Country of ref document: EP

Effective date: 20210209

NENP Non-entry into the national phase

Ref country code: DE