WO2020054796A1 - 検出素子、放射線検出装置、およびコンプトンカメラ - Google Patents

検出素子、放射線検出装置、およびコンプトンカメラ Download PDF

Info

Publication number
WO2020054796A1
WO2020054796A1 PCT/JP2019/035867 JP2019035867W WO2020054796A1 WO 2020054796 A1 WO2020054796 A1 WO 2020054796A1 JP 2019035867 W JP2019035867 W JP 2019035867W WO 2020054796 A1 WO2020054796 A1 WO 2020054796A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
exposed
pattern
electrode pattern
detection element
Prior art date
Application number
PCT/JP2019/035867
Other languages
English (en)
French (fr)
Inventor
淳史 高田
達 谷森
浩平 太田
本村 知久
良一 大東
島田 修
Original Assignee
国立大学法人京都大学
大日本印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人京都大学, 大日本印刷株式会社 filed Critical 国立大学法人京都大学
Priority to CN201980057295.7A priority Critical patent/CN112640030A/zh
Priority to EP19859579.5A priority patent/EP3852128A4/en
Publication of WO2020054796A1 publication Critical patent/WO2020054796A1/ja
Priority to US17/193,527 priority patent/US11221420B2/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/18Measuring radiation intensity with counting-tube arrangements, e.g. with Geiger counters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/29Measurement performed on radiation beams, e.g. position or section of the beam; Measurement of spatial distribution of radiation
    • G01T1/2914Measurement of spatial distribution of radiation
    • G01T1/2921Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras
    • G01T1/2935Static instruments for imaging the distribution of radioactivity in one or two dimensions; Radio-isotope cameras using ionisation detectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J47/00Tubes for determining the presence, intensity, density or energy of radiation or particles
    • H01J47/06Proportional counter tubes

Definitions

  • the present disclosure relates to a detection element, a radiation detection device, and a Compton camera.
  • a radiation detector using this technique emits a very small amount of radiation, such as a positron emission tomography (PET) inspection and a single photon emission tomography (SPECT) inspection. It is used as a nuclear medicine imaging device for diagnosing and treating diseases using (radioisotope) as a mark. In other fields, application as a device for monitoring the radiation dose in the environment is expected.
  • PET positron emission tomography
  • SPECT single photon emission tomography
  • radiation charged particles
  • the electrons are captured by pixel-type electrodes, thereby indirectly detecting radiation.
  • electrons may be captured at a plurality of pixel electrodes at the same time. In such a case, it becomes impossible to specify the pixel-type electrode that has captured the electrons, leading to a decrease in detection efficiency and detection accuracy.
  • One of the objects of the present disclosure is to improve the radiation detection efficiency and the detection accuracy of a radiation detection device.
  • a first electrode pattern including at least a pattern connected to a second exposed electrode by a first through electrode, and a pattern connected to the third exposed electrode and the fourth exposed electrode by a second through electrode;
  • There is a second electrode pattern having one exposed portion A pattern arranged along the second direction corresponding to the first exposed electrode and the third exposed electrode, and a pattern arranged along the second direction corresponding to the second exposed electrode and the fourth exposed electrode
  • a second electrode pattern wherein the first exposed portion is at least including a pattern arranged on the first surface side, and is arranged separately from and separated from the exposed electrode.
  • a third electrode pattern that is disposed along a third direction connecting the first exposed electrode and the fourth exposed electrode, and the third electrode pattern is formed by the first electrode pattern and the second electrode pattern.
  • a second arrangement including at least a pattern arranged to sandwich the three-electrode pattern, wherein the second exposed portion is exposed on the first surface side and is arranged separately from the exposed electrode and the second electrode pattern;
  • the second electrode pattern has a first opening surrounding one of the exposed electrodes
  • the third electrode pattern has a second opening surrounding one of the exposed electrodes.
  • the width of the first opening may be larger than the width of the second opening.
  • the second exposed portion of the third electrode pattern may be arranged on the same layer as the second electrode pattern.
  • the exposed electrode may be arranged on the same layer as the second electrode pattern.
  • At least one of the first electrode pattern, the second electrode pattern, and the third electrode pattern includes the first exposed electrode, the second exposed electrode, and the fourth exposed electrode. Electrical connection may be made in the surrounding area.
  • an insulating layer on the first electrode pattern may be provided on the second surface side.
  • the first exposed electrode and the second exposed electrode are disposed adjacent to each other, the first exposed electrode and the third exposed electrode are disposed adjacent to each other, and the first exposed electrode and the third exposed electrode are disposed adjacent to each other.
  • the fourth exposed electrode may be arranged adjacent to the fourth exposed electrode.
  • a distance between the first exposed electrode and the second exposed electrode, a distance between the first exposed electrode and the third exposed electrode, and a distance between the first exposed electrode and the fourth exposed electrode. May be equal.
  • the center of the first exposed electrode and the first exposed electrode when a first imaginary straight line connecting the first exposed electrode and the third exposed electrode is provided in the second electrode pattern, the center of the first exposed electrode and the first exposed electrode The distance between a first intersection point where a second virtual straight line passing through the center and orthogonal to the first virtual straight line intersects with the edge of the second electrode pattern is a distance between the first exposed electrode and the third exposed electrode.
  • a distance between an intermediate point and a second intersection point at which a third virtual straight line passing through the intermediate point and orthogonal to the first virtual straight line intersects an edge of the second electrode pattern may be larger.
  • the second electrode pattern may have a wavy edge.
  • the exposed electrode further includes a fifth exposed electrode provided in a fourth direction passing through the second exposed electrode and passing between the first exposed electrode and the fourth exposed electrode, A fourth electrode pattern having a third exposed portion, wherein the fourth electrode pattern is arranged along the fourth direction corresponding to the first exposed electrode and the fifth exposed electrode, and the second electrode pattern and the fifth At least a pattern disposed so as to sandwich the fourth electrode pattern with a three-electrode pattern, wherein the third exposed portion is exposed on the first surface side, and the exposed electrode, the second electrode pattern, and
  • the display device may further include a fourth electrode pattern disposed separately from the third electrode pattern.
  • the third electrode pattern includes a first annular pattern surrounding the first exposed electrode, a second annular pattern surrounding the fourth exposed electrode, the first annular pattern, and the second annular pattern. May be connected, and the width of the connection pattern may be smaller than the outer peripheral width of the first annular pattern and the outer peripheral width of the second annular pattern.
  • the third electrode pattern is provided on an insulating surface, the insulating surface has a concave portion, the exposed electrode is provided in the concave portion, and a distance from the surface of the concave portion to the exposed electrode is: The distance may be larger than a distance from the insulating surface to the third electrode pattern.
  • the detection element including the detection element, and a power supply device connected to the exposed electrode, the first electrode pattern, the second electrode pattern, and the third electrode pattern of the detection element.
  • a radiation detection device is provided.
  • a potential difference between the potential of the exposed electrode applied by the power supply device and the potential of the second electrode pattern is determined by a difference between the potential of the exposed electrode applied by the power supply device and the third electrode pattern. May be larger than the potential difference between the two.
  • a Compton camera including a radiation detection device and a detection module provided to surround the radiation detection device and detect light.
  • FIG. 1 is a block diagram illustrating a configuration of a radiation detection system according to a first embodiment of the present disclosure.
  • FIG. 2 is a diagram illustrating a detection element according to the first embodiment of the present disclosure.
  • FIG. 2 is a schematic top view illustrating an electrode pattern of a detection element according to the first embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram illustrating a cross-sectional structure (a cross-sectional structure taken along line A-A ′ in FIG. 3) of the detection element according to the first embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram illustrating a cross-sectional structure (a cross-sectional structure taken along line B-B ′ in FIG. 3) of the detection element according to the first embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram illustrating a cross-sectional structure (a cross-sectional structure taken along a cross-section line C-C ′ in FIG. 3) of the detection element according to the first embodiment of the present disclosure.
  • FIG. 7 is an enlarged schematic diagram of a part of a cross-sectional structure of the detection element in FIG. 6.
  • FIG. 2 is a diagram illustrating a principle of detecting radiation using a detection element according to the first embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating a charge generated at each electrode when an anode electrode captures electrons in the detection element according to the first embodiment of the present disclosure.
  • FIG. 4 is a diagram illustrating a first example of a pattern of a detection signal output from a detection element according to the first embodiment of the present disclosure.
  • FIG. 5 is a diagram illustrating a second example of the pattern of the detection signal output from the detection element according to the first embodiment of the present disclosure.
  • FIG. 11 is a perspective view illustrating an electron capture position calculated from the detection signal pattern illustrated in FIG. 10.
  • FIG. 11 is a schematic diagram illustrating an electron capture position calculated from the detection signal pattern illustrated in FIG. 10.
  • FIG. 3 is a schematic cross-sectional view illustrating the method for manufacturing the detection element according to the first embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view illustrating the method for manufacturing the detection element according to the first embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view illustrating the method for manufacturing the detection element according to the first embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view illustrating the method for manufacturing the detection element according to the first embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view illustrating the method for manufacturing the detection element according to the first embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view illustrating the method for manufacturing the detection element according to the first embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view illustrating the method for manufacturing the detection element according to the first embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view illustrating the method for manufacturing the detection element according to the first embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view illustrating the method for manufacturing the detection element according to the first embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view illustrating the method for manufacturing the detection element according to the first embodiment of the present disclosure.
  • FIG. 3 is a schematic cross-sectional view illustrating the method for manufacturing the detection element according to the first embodiment of the present disclosure.
  • 5 is a modification example of the cross-sectional structure of the detection element according to the first embodiment of the present disclosure.
  • 5 is a modification example of the cross-sectional structure of the detection element according to the first embodiment of the present disclosure.
  • 5 is a modification example of the cross-sectional structure of the detection element according to the first embodiment of the present disclosure.
  • 5 is a modification example of the cross-sectional structure of the detection element according to the first embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a cross-sectional structure of a detection element according to a second embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a cross-sectional structure of a detection element according to a third embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a cross-sectional structure of a detection element according to a third embodiment of the present disclosure.
  • FIG. 13 is a schematic diagram of a cross-sectional structure of a detection element according to a third embodiment of the present disclosure.
  • FIG. 14 is a schematic diagram of a cross-sectional structure of a detection element according to a fourth embodiment of the present disclosure.
  • FIG. 15 is a schematic top view illustrating an electrode pattern of a detection element according to a fifth embodiment of the present disclosure.
  • FIG. 34 is a schematic diagram enlarging a part of FIG. 33.
  • FIG. 15 is a schematic top view illustrating an electrode pattern of a detection element according to a fifth embodiment of the present disclosure.
  • FIG. 16 is a schematic top view illustrating an electrode pattern of a detection element according to a sixth embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram illustrating an electron capture position calculated from a detection signal pattern according to a sixth embodiment of the present disclosure.
  • FIG. 16 is a schematic top view illustrating an electrode pattern of a detection element according to a sixth embodiment of the present disclosure.
  • FIG. 16 is a schematic top view illustrating an electrode pattern of a detection element according to a sixth embodiment of the present disclosure. It is an upper surface schematic diagram explaining the electrode pattern of the detection element in the seventh embodiment of the present disclosure.
  • FIG. 16 is a schematic top view illustrating an electrode pattern of a detection element according to a sixth embodiment of the present disclosure.
  • FIG. 15 is a schematic top view illustrating an electrode pattern of a detection element according to an eighth embodiment of the present disclosure.
  • FIG. 16 is a schematic cross-sectional view illustrating a structure of a detection element according to an eighth embodiment of the present disclosure.
  • 9 is a radiation detection apparatus mounted with the detection element according to the first to eighth embodiments of the present disclosure.
  • 10 is a Compton camera mounted with the radiation detection device according to the first to eighth embodiments of the present disclosure.
  • FIG. 1 is a block diagram illustrating a configuration of the radiation detection system according to the first embodiment of the present disclosure.
  • the radiation detection system 1 includes the radiation detection device 10 including the power supply device 60 and the detection element 100, the encoder 55, and the arithmetic device 90.
  • the detection element 100 outputs detection signals Sx, Sy, Sw.
  • the detection signals Sx, Sy, and Sw are obtained by removing a DC component by a capacitor from an electric signal output from each terminal of the detection element 100 and amplifying the detection signal by an amplifier.
  • the power supply device 60 applies a voltage to each component (such as the detection element 100) included in the radiation detection device 10.
  • the encoder 55 samples the detection signals Sx, Sy, Sw in synchronization with the clock signal Ck, encodes and outputs the sampled signals.
  • the resolution of the detection signal is determined according to the clock signal Ck. This output signal may be referred to as Sd.
  • the arithmetic unit 90 calculates a track of radiation (charged particles) based on the output signal Sd.
  • the radiation detection device 10 has a chamber 50. Inside the chamber 50, a detection element 100, a drift cage 70, and a drift electrode 80 are arranged.
  • the drift electrode 80 is arranged to face the detection element 100, and a negative voltage is applied to the ground voltage (GND).
  • Drift cage 70 is arranged so as to surround a space between detection element 100 and drift electrode 80. The drift cage 70 is used to gradually bring the voltage closer to the ground voltage (GND) from the drift electrode 80 to the detection element 100 so as to make the electric field distribution between the detection element 100 and the drift electrode 80 uniform.
  • a conductor (conductor) is formed.
  • a mixed gas of a rare gas and a quenching gas is sealed in the chamber 50.
  • the rare gas for example, argon or xenon is used.
  • the quenching gas is, for example, an alkane that maintains a gaseous state at room temperature, such as ethane or methane, or a gas having a quenching effect including carbon dioxide.
  • the gas sealed in the chamber 50 may be any single gas or a mixed gas of two or more types.
  • the detection element 100 shows an example in which pixels (anode electrodes) serving as units for capturing electrons are arranged in a hexagonal close-packed manner. This arrangement is an example for describing the arrangement of the anode electrodes. In practice, many hundreds to millions of pixels may be arranged.
  • the configuration appearing on the surface of the detection element 100 on the drift electrode 80 side will be briefly described with reference to FIG. Thereafter, each configuration of the detection element 100 will be described in detail with reference to FIGS.
  • an adjacent anode electrode pattern may not be described. The same applies to the first cathode electrode pattern and the second cathode electrode pattern.
  • FIG. 2 is a diagram illustrating a detection element according to the first embodiment of the present disclosure.
  • the detection element 100 includes a conductive metal pattern disposed on a substrate having an insulating surface (also referred to as an insulating substrate; corresponding to the substrate 110 shown in FIGS. 4 to 7).
  • the anode electrode 101 (exposed electrode) is exposed on the insulating substrate.
  • the anode electrodes 101 are arranged in a matrix along the X direction (second direction) and the Y direction (first direction). In this example, the X direction and the Y direction intersect at 120 degrees.
  • the distance between the anode electrodes 101 adjacent in the X direction, the distance between the anode electrodes 101 adjacent in the Y direction, the distance between the anode electrodes 101 adjacent in the W direction (third direction), are equal.
  • the W direction is a direction other than the X direction and the Y direction, and in this example, both the straight line extending in the X direction and the straight line extending in the Y direction intersect at 60 degrees.
  • the X direction and the Y direction are not limited to the case where they intersect at 120 degrees, and may be arranged, for example, orthogonally (90 degrees). Further, the distance between the adjacent anode electrodes 101 may be different between the X direction and the Y direction.
  • Anode electrode 101 corresponds to a pixel serving as a unit for capturing electrons. As described above, in this example, the anode electrode 101 has 4 to 7 pixels in the X direction and 4 to 7 pixels in the Y direction, for a total of 37 pixels. In the following description, an area where 37 pixels are arranged may be referred to as a detection area. At this time, the outer shape of the detection area shown in FIG. 2 (the shape connecting the centers of the pixels corresponding to the outer peripheral portion of the 37 pixels) is a hexagon.
  • a first cathode electrode pattern 205 (second electrode pattern) is arranged on the insulating substrate along the X direction.
  • the first cathode electrode pattern 205 has openings 202 corresponding to pixels. Each opening 202 is formed so as to surround the anode electrode 101 for each pixel.
  • a first cathode terminal 208 is disposed outside the detection region. Since the first cathode electrode pattern 205 is formed in a strip shape, it is also referred to as a first cathode strip electrode.
  • an anode terminal unit 108 and a second cathode terminal unit 308 are further arranged.
  • the anode terminal section 108, the first cathode terminal section 208, and the second cathode terminal section 308 are terminals for outputting the above-described detection signals Sx, Sy, Sw to the outside of the detection element 100.
  • the anode terminal unit 108 is connected to the anode electrode 101 via the anode electrode pattern 105 (first electrode pattern) arranged along the Y direction.
  • the second cathode terminal 308 is connected to a second cathode electrode pattern 305 (third electrode pattern) arranged along the W direction.
  • FIG. 3 is a diagram illustrating an electrode pattern of the detection element according to the first embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram illustrating a cross-sectional structure (a cross-sectional structure taken along line A-A ′ in FIG. 3) of the detection element according to the first embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram showing a cross-sectional structure (a cross-sectional structure taken along line B-B 'in FIG. 3) of the detection element according to the first embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram illustrating a cross-sectional structure (a cross-sectional structure taken along a cross-sectional line C-C ′ in FIG. 3) of the detection element according to the first embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram illustrating a cross-sectional structure (a cross-sectional structure taken along line A-A ′ in FIG. 3) of the detection element according to the first embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram showing
  • the Z direction is defined as a direction perpendicular to the X direction, the Y direction, and the W direction (the direction perpendicular to the surface on which the anode electrode 101 is arranged).
  • the plurality of anode electrodes 101 are referred to as anode electrodes 101-xy depending on the location where they are arranged.
  • x indicates the coordinates (1 to 7) in the X direction with reference to the anode electrode 101-11 (the lower left pixel in FIG. 3).
  • y indicates the coordinates (1 to 7) in the Y direction with respect to the anode electrode 101-11.
  • the anode electrodes 101-41 correspond to the lower center anode electrode 101
  • the anode electrodes 101-14 correspond to the upper left anode electrode 101
  • the anode electrodes 101-44 correspond to the center anode electrode 101
  • the anode electrodes 101-74 correspond to the lower right anode electrode 101
  • the anode electrodes 101-47 correspond to the upper center anode electrode 101
  • the anode electrodes 101-77 correspond to the upper right anode electrode 101.
  • the position of a pixel may be referred to as a pixel (xy).
  • pixel (11) corresponds to anode electrode 101-11.
  • a plurality of anode electrodes 101 arranged in the X direction are electrically connected to each other via an anode electrode pattern 105 arranged on the second surface 110b of the substrate 110 along the Y direction. Since the anode electrode pattern 105 is formed in a strip shape, it is also called an anode strip pattern.
  • the anode electrode patterns 105 (105-1 to 105-7) are arranged side by side in a direction orthogonal to the Y direction.
  • the anode electrode pattern 105 is connected to the anode terminal section 108 at its end.
  • the anode electrodes 101-11, 101-12, 101-13, and 101-14 are electrically connected to the anode terminal section 108-1 via the anode electrode pattern 105-1.
  • the anode electrode 101 and the anode electrode pattern 105 are connected by a through electrode 112 as shown in FIG.
  • the anode electrode 101 and the through electrode 112 may be integrated.
  • a portion of the through electrode 112 exposed from the substrate 110 may be defined as the anode electrode 101.
  • the anode electrode 101 may or may not protrude from the substrate 110.
  • a via electrode 102 may be provided between the anode electrode 101 and the through electrode 112 together with the insulating layer 120.
  • the width of the via electrode 102 is preferably smaller than the width of the anode electrode 101.
  • the displacement between the through electrode 112 and the anode electrode 101 can be reduced, and a uniform electric field is formed on the surface of the detection element 100.
  • the via electrode 102 is not necessarily provided.
  • an insulating layer 140 and a via electrode 142 may be provided between the through electrode 112 and the anode electrode pattern 105 on the second surface 110b side.
  • the first cathode electrode pattern 205 disposed on the first surface 110a of the substrate 110 so as to be exposed along the X direction surrounds the anode electrodes 101 arranged in the X direction with openings 202 (first openings), respectively. It is arranged separately from the anode electrode 101. In this example, the first cathode electrode pattern 205 is entirely exposed on the upper surface and the side surface, but may be partially exposed. Accordingly, it can be said that the first cathode electrode pattern 205 has an exposed part.
  • the first cathode electrode pattern 205 is connected at its end to the first cathode terminal 208.
  • the first cathode electrode patterns 205 (205-1 to 205-7) are arranged side by side in a direction orthogonal to the X direction.
  • the first cathode electrode pattern 205-1 surrounds the anode electrodes 101-11, 101-21, 101-31, and 101-41 with the opening 202, respectively, and is connected to the first cathode terminal 208-1.
  • a relationship between the first cathode electrode pattern 205 and the anode electrode 101 is defined as an arrangement relationship between the first cathode electrode pattern 205 and the anode electrode 101.
  • the first cathode electrode pattern 205-1 is arranged corresponding to the anode electrodes 101-11, 101-21, 101-31, and 101-41.
  • the second cathode electrode patterns 305 (305-1 to 305-7) arranged along the W direction are connected between the anode electrodes 101 arranged in the W direction and the anode electrode patterns 105.
  • the anode electrode pattern 105 and the first cathode electrode pattern 205 are arranged separately so as to be sandwiched between the first electrode pattern 105 and the first cathode electrode pattern 205.
  • the second cathode electrode pattern 305-1 in the Z direction is formed by the first cathode electrode patterns 205-1 to 205-4 and the anode electrode patterns 105-4 to 105-7. Is sandwiched.
  • the second cathode electrode pattern 305 has an exposed part 305a on the first surface 110a side of the substrate 110.
  • the exposed portion 305a surrounds each of the anode electrodes 101 arranged in the W direction with an opening 302 (second opening), and is arranged separately from the anode electrode 101.
  • the width of the opening 302 is smaller than the width of the opening 202. Therefore, the exposed part 305a is arranged between the anode electrode 101 and the first cathode electrode pattern 205.
  • the second cathode electrode pattern 305 is connected at its end to the second cathode terminal 308.
  • the second cathode electrode patterns 305 (305-1 to 305-7) are arranged side by side in a direction orthogonal to the W direction.
  • the second cathode electrode pattern 305-1 surrounds the anode electrodes 101-41, 101-52, 101-63, and 101-74 with the opening 302, respectively, and is connected to the second cathode terminal 308-1.
  • a relationship between the second cathode electrode pattern 305 and the anode electrode 101 is defined as a relationship between the arrangement of the first cathode electrode pattern 205 and the anode electrode 101.
  • the second cathode electrode pattern 305-1 is arranged corresponding to the anode electrodes 101-41 to 101-74.
  • the plurality of anode electrodes 101 corresponding to one second cathode electrode pattern 305 are connected to different anode electrode patterns 105 from each other.
  • the plurality of anode electrodes 101 corresponding to one second cathode electrode pattern 305 correspond to different first cathode electrode patterns 205 from each other.
  • the thickness of the anode electrode 101, the first cathode electrode pattern 205, and the second cathode electrode pattern 305 is preferably 2 ⁇ m or more and 30 ⁇ m or less, and more preferably 5 ⁇ m. Thereby, the wiring resistance can be suppressed.
  • the thickness of the insulating layer 130 is preferably 3 ⁇ m or more and 100 ⁇ m or less, more preferably 20 ⁇ m. Thereby, crosstalk of the detection signal can be suppressed.
  • each configuration of the detection element 100 is exemplified as follows.
  • -Center distance d1 (one pixel length) between adjacent anode electrodes 101: 554.26 ⁇ m ⁇ Diameter d2 of anode electrode 101: 60 ⁇ m ⁇ Line width d3 of first cathode electrode pattern 205: 440 ⁇ m
  • the drift electrode 80 is applied with a negative voltage with respect to the ground voltage (GND).
  • the ground voltage (GND) is applied to the first cathode electrode pattern 205 and the second cathode electrode pattern 305.
  • a positive voltage with respect to the ground voltage (GND) is applied to the anode electrode 101 (anode electrode pattern 105).
  • FIG. 8 is a diagram illustrating the principle of detecting radiation using the detection element according to the first embodiment of the present disclosure.
  • radiation charged particles EP
  • an electron cloud EC is formed by interaction with gas present in the chamber 50. Due to the electric field E generated between the drift electrode 80 and the first cathode electrode pattern 205, each electron of the electron cloud is attracted to the detection element 100 along the Z direction.
  • the electrons attracted to the detection element 100 are accelerated by an electric field formed by the first cathode electrode pattern 205 and the anode electrode 101, and are attracted to the anode electrode 101. At this time, the electrons collide with the gas and ionize the gas. Electrons generated by ionization multiply like avalanches and are captured by the anode electrode 101.
  • FIG. 9 is a diagram for explaining charges generated in each electrode when the anode electrode captures electrons in the detection element according to the first embodiment of the present disclosure.
  • a negative charge is temporarily generated at the anode electrode 101.
  • a cation group which is an ionized gas, adheres to the first cathode electrode pattern 205 and the second cathode electrode pattern 305, and a positive charge is temporarily generated.
  • Pulse signals (voltage fluctuations) generated from these charges due to the influence of the multiplied electrons are transmitted from the anode terminal section 108, the first cathode terminal section 208, and the second cathode terminal section 308 to electric signals (detection signals Sx, Sy, Sw).
  • the detection signals Sx-1 to Sx-7 may be referred to as the detection signals Sx output from the anode terminal units 108-1 to 108-7.
  • the detection signals Sy-1 to Sy-7 may be referred to as the detection signals Sy output from the first cathode terminal units 208-1 to 208-7.
  • the detection signals Sw-1 to Sw-7 may be referred to as the detection signals Sw output from the second cathode terminal units 308-1 to 308-7.
  • the track of the charged particle EP can be calculated.
  • the position in the Z direction of the track is calculated as a relative position.
  • FIG. 10 is a diagram illustrating a first example of a pattern of a detection signal output from the detection element according to the first embodiment of the present disclosure.
  • the detection signal pattern shown in FIG. 10 is based on the assumption that charged particles EP are incident as shown in FIG. In this example, a situation is shown in which electrons are captured by the anode electrodes 101-34 (pixel (34)), and then electrons are captured by the anode electrodes 101-46 (pixel (46)).
  • the arithmetic unit 90 accurately detects the anode electrode 101 from which electrons have been captured from only two types of detection signals. Cannot be identified.
  • FIG. 11 is a diagram illustrating a second example of the pattern of the detection signal output from the detection element according to the first embodiment of the present disclosure.
  • the second example shows a situation in which electrons are simultaneously captured by the anode electrodes 101-34 (pixel (34)) and the anode electrodes 101-46 (pixel (46)).
  • the arithmetic unit 90 determines that the detection signals Sx-3, Sx-4, Sy-4, Sy-6, Sw-5, and Sw-6 have the same time at which the voltage fluctuation occurs. judge. At this time, the anode electrode 101 on which the electrons are captured is accurately specified by using the detection signals Sx, Sy, and Sw.
  • detection signals Sx, Sy, and Sw only two types of detection signals (for example, Sx and Sy) are used as in the related art. Not exactly specified. This situation will be described with reference to FIG.
  • FIG. 12 is a perspective view illustrating an electron capturing position calculated from the pattern of the detection signal shown in FIG.
  • FIG. 13 is a schematic top view illustrating an electron capture position calculated from the pattern of the detection signal shown in FIG.
  • the anode electrodes 101-34 and 101-46 pixels (34) and (46). Therefore, the erroneous detection that occurs when only the detection signals Sx and Sy are used does not occur when the detection signals Sx, Sy, and Sw are used.
  • the radiation detection apparatus 10 uses the three types of detection signals Sx, Sy, and Sw even when electrons are captured at the two anode electrodes 101 at the same time.
  • One anode electrode 101 can be specified. Even when three types of detection signals Sx, Sy, and Sw are used, erroneous detection will occur if electrons are simultaneously captured by the three anode electrodes 101. However, the probability that electrons are simultaneously captured at the three anode electrodes 101 is smaller than the probability that electrons are simultaneously captured at the two anode electrodes 101. Therefore, erroneous detection can be reduced, and as a result, radiation detection efficiency and detection accuracy are improved.
  • the detection element 100 has 37 pixels (anode electrodes 101) in which pixels are arranged in hexagons.
  • at least two anode electrodes arranged in the X direction are used.
  • the configuration can be generalized by having the first electrode 101 and two anode electrodes 101 arranged in the Y direction.
  • Two anode electrodes 101 arranged in the X direction or the Y direction may be defined as adjacent anode electrodes 101 or may be defined as non-adjacent anode electrodes 101.
  • another anode electrode 101 exists between them.
  • the four (2 ⁇ 2) anode electrodes 101 are, for example, anode electrodes 101-22, 101-23, 101-32, and 101-33 (pixels (22), (23), (23) 32) and (33)).
  • the four (2 ⁇ 2) anode electrodes 101 are, for example, anode electrodes 101-11, 101-14, 101-41, 101-44 (pixels (11), (14), ( 41) and (44)).
  • a through hole 111 penetrating from the first surface 110a to the second surface 110b is formed in the substrate 110.
  • an insulating material having high insulating properties is used for the substrate 110.
  • a glass substrate such as a soda glass substrate, an alkali-free glass substrate, and a quartz glass substrate is used as the substrate 110.
  • the thickness of the substrate 110 may be set as appropriate from 100 ⁇ m to 1000 ⁇ m. In this example, the thickness of the substrate 110 is 380 ⁇ m.
  • the through hole 111 is formed by using, for example, a laser irradiation method (which can be called a laser ablation method) on the substrate 110.
  • a laser irradiation method which can be called a laser ablation method
  • An excimer laser, a neodymium: Yag laser (Nd: YAG) laser, a femtosecond laser, or the like is used as the laser.
  • an excimer laser When an excimer laser is used, light in the ultraviolet region is irradiated.
  • light having a wavelength of 308 nm is irradiated.
  • the irradiation diameter of the laser may be not less than 10 ⁇ m and less than 250 ⁇ m.
  • the hole diameter of the through hole 111 can be appropriately set in a range of 10 ⁇ m or more and less than 250 ⁇ m.
  • the diameter of the through hole 111 is constant in the vertical direction of the substrate 110 and is 50 ⁇ m. Note that when the through-holes 111 in the substrate 110 are formed, a dry etching method or a wet etching method may be used instead of the laser irradiation method.
  • a through electrode 112 is formed in the through hole 111.
  • Copper (Cu), nickel (Ni), gold (Au), silver (Ag), tin (Sn), or the like is used for the through electrode 112.
  • the through electrode 112 is formed by a plating method.
  • copper (Cu) formed by a plating method is used as the through electrode 112.
  • the through electrode 112 formed by the plating method is subjected to a planarization process by a chemical mechanical polishing (CMP) method.
  • CMP chemical mechanical polishing
  • an insulating layer 120 is formed on the first surface 110a of the substrate 110.
  • an inorganic insulating material or an organic insulating material, or a material in which an inorganic insulating material and an organic insulating material are mixed is used.
  • the insulating layer 120 is formed by a coating method and a laminating method. Specific examples of the coating method include a spin coating method, a spray coating method, a slit coating method, and a dip coating method. In this example, a polyimide film formed by a spin coating method or the like is used for the insulating layer 120.
  • the thickness of the insulating layer 120 is not particularly limited, but is in a range of 1 ⁇ m or more and 20 ⁇ m or less. In this example, the thickness of the insulating layer 120 is 4 ⁇ m.
  • an opening 121 is provided in the insulating layer 120.
  • the opening 121 is formed using, for example, a photolithography method and an etching method. Note that in FIG. 17, when the insulating layer 120 contains a photosensitive material, the opening 121 may be formed only by photolithography. Thereby, the number of manufacturing steps can be reduced.
  • the anode electrode 101, the via electrode 102, and the second cathode electrode pattern 305 are formed on the through electrode 112 and the insulating layer 120.
  • the anode electrode 101, the via electrode 102, and the second cathode electrode pattern 305 are formed by a plating method, a CVD method, a sputtering method, a printing method, or the like. Copper (Cu) is used for the anode electrode 101, the via electrode 102, and the second cathode electrode pattern 305.
  • tungsten in addition to copper (Cu), aluminum (Al), gold (Au), silver (Ag), nickel (Ni), and tungsten (W) are used for the anode electrode 101, the via electrode 102, and the second cathode electrode pattern 305.
  • Molybdenum (Mo) or a metal material such as titanium (Ti) may be used.
  • the via electrode 102 may be formed before the formation of the anode electrode 101 and the second cathode electrode pattern 305. Good.
  • the insulating layer 130 is formed on the insulating layer 120, the anode electrode 101, and the second cathode electrode pattern 305.
  • a material and a method similar to those of the insulating layer 120 may be used.
  • the anode layer 101, the end of the second cathode electrode pattern 305 on the side of the anode electrode 101 serving as the exposed part 305a, and the insulating layer 120 are exposed, and the opening 202 An opening 302 is formed.
  • the opening 202 and the opening 302 may be formed by a method similar to that of the opening 121.
  • the insulating layer 130 may be removed such that a portion 305b where the first cathode electrode pattern 205 and the second cathode electrode pattern 305, which will be formed later, do not overlap is exposed. This prevents the insulating layer 130 from being charged at the time of radiation detection, and can suppress abnormal discharge.
  • a first cathode electrode pattern 205 is formed on the insulating layer 130.
  • the first cathode electrode pattern 205 is formed of the same material and method as the anode electrode 101, the via electrode 102, and the second cathode electrode pattern 305.
  • an insulating layer 140 is formed on the second surface 110b of the substrate 110.
  • the insulating layer 140 is formed using a material and a method similar to those of the insulating layer 120.
  • a polyimide film formed by a spin coating method is used for the insulating layer 140.
  • the via electrode 142 and the anode electrode pattern 105 are formed on the through electrode 112 and the insulating layer 140.
  • the via electrode 142 and the anode electrode pattern 105 are formed of the same material and method as the via electrode 102, the anode electrode 101, and the second cathode electrode pattern 305. With the above method, the detection element 100 can be manufactured.
  • the through hole 111 has been described as having a columnar shape, but is not limited to this.
  • the diameter of the through-hole may change with respect to the vertical direction of the substrate (in other words, the side surface of the through-hole may not be parallel to the direction perpendicular to the substrate 110 but may have an inclination).
  • a shape in which the diameter of the through hole 111 decreases from the second surface 110b side toward the first surface 110a ie, a truncated cone shape
  • the insulating layer 140 and the anode electrode pattern 105 are formed after forming each element on the first surface side, but the present invention is not limited to this. After forming the insulating layer 140 and the anode electrode pattern 105 first, each element on the first surface side may be formed.
  • the portion 305b of the second cathode electrode pattern is not necessarily exposed (that is, only the exposed portion 305a is exposed in the second cathode electrode pattern 305).
  • the diameter d4 of the opening 202 of the first cathode electrode pattern 205 is larger than the diameter d7 of the opening 302 of the second cathode electrode pattern 305, but the present invention is not limited to this.
  • the side surface of the first cathode electrode pattern 205 and the side surface of the insulating layer 130 need not be flush.
  • the diameter d4 of the opening 202 of the first cathode electrode pattern 205 may be the same as the diameter d7 of the opening 302 of the second cathode electrode pattern 305. Further, as shown in FIG.
  • the diameter d4 of the opening 202 of the first cathode electrode pattern 205 is smaller than the diameter d7 of the opening 302 of the second cathode electrode pattern 305, and the first cathode electrode pattern 205 is insulated. It may be arranged to cover a part of the side surface 130a of the layer 130. At this time, only the side surface of the second cathode electrode pattern 305 may be exposed. In addition, as shown in FIG. 26, the side surface of the first cathode electrode pattern 205 may be disposed farther from the anode electrode 101 than the side surface 130a of the insulating layer 130.
  • another insulating layer 131 may be provided in addition to the insulating layer 130, and a plurality of insulating layers may be provided between the first cathode electrode pattern 205 and the second cathode electrode pattern 305.
  • the insulating layer 131 may be formed of the same material as the insulating layer 130 or may be formed of a different material. Further, at this time, the side surface of the insulating layer 130 and the side surface of the insulating layer 131 may be arranged continuously as in the case of a single layer, or may be arranged stepwise as shown in FIG.
  • the ground potential is applied to the first cathode electrode pattern 205 and the second cathode electrode pattern 305, but the invention is not limited to this.
  • the potential applied to the first cathode electrode pattern 205 and the potential applied to the second cathode electrode pattern 305 may be different.
  • the applied potential may be changed according to the distance from the anode electrode 101. For example, since the first cathode electrode pattern 205 is farther from the anode electrode 101 than the second cathode electrode pattern 305, -100 V is applied to the first cathode electrode pattern 205 and 0 V is applied to the second cathode electrode pattern 305. You may.
  • the potential difference between the anode electrode 101 and the first cathode electrode pattern 205 becomes larger than the potential difference between the anode electrode 101 and the second cathode electrode pattern 305.
  • the electric field intensity between the anode electrode 101 and the first cathode electrode pattern 205 becomes larger than the electric field intensity between the anode electrode 101 and the second cathode electrode pattern 305.
  • a signal can be sufficiently detected.
  • FIG. 28 shows a schematic cross-sectional view of the detection element 100A.
  • the detection element 100A differs from the detection element 100 shown in the first embodiment, and further has an insulating layer 150 on the substrate 110 and the anode electrode pattern 105.
  • the insulating layer 150 is provided with an inorganic insulating material or an organic insulating material.
  • the thickness of the insulating layer 150 is 1 ⁇ m or more and less than 100 ⁇ m, preferably 10 ⁇ m or more and less than 30 ⁇ m. In this example, the thickness of the insulating layer 150 is 20 ⁇ m.
  • the provision of the insulating layer 150 can suppress the warpage of the substrate 110 generated when the detection element 100 is manufactured.
  • ⁇ Third embodiment> In the first embodiment, an example in which a glass substrate is used as an insulating substrate has been described. In the present embodiment, an example in which a material different from a glass substrate is used is described.
  • a semiconductor substrate such as a silicon substrate, a sapphire substrate, an alumina carbide (Al 2 O 3 ) substrate, an aluminum nitride (AlN) substrate, an inorganic insulating material of a zirconia (ZrO 2 ) substrate, acrylic or A resin substrate containing polycarbonate or the like, or a laminate of these substrates may be used.
  • a semiconductor substrate such as a silicon substrate, a sapphire substrate, an alumina carbide (Al 2 O 3 ) substrate, an aluminum nitride (AlN) substrate, an inorganic insulating material of a zirconia (ZrO 2 ) substrate, acrylic or A resin substrate containing polycarbonate or the like, or a laminate of these substrates may be used.
  • FIG. 29 is a schematic sectional view of a detection element 100B using a silicon substrate as the substrate 110B.
  • an insulating layer 115 is provided on a surface of the substrate 110B.
  • the insulating layer 115 may be a thermal oxide film or an insulating material such as a silicon nitride film (SiNx) or a silicon oxide film (SiOx) formed by a coating method, a CVD method, or a sputtering method. Therefore, by combining the silicon substrate and the insulating layer 115, leakage current does not occur through the substrate, and the substrate can be used as a substrate having an insulating surface.
  • FIG. 30 is a schematic cross-sectional view of a detection element 100C using an organic resin for the substrate 110C.
  • a polyimide resin or an epoxy resin containing glass fiber for increasing strength is used for a substrate 110C.
  • an organic resin such as a polyimide resin or an epoxy resin
  • a sufficient thickness is required to bend.
  • the thickness of the substrate 110C is limited because the through electrode 112 is formed. Therefore, it is desirable to additionally provide the substrate 160 and the substrate 170 on the anode electrode pattern 105. Thereby, the strength of the detection element 100C can be maintained.
  • a polyimide resin containing glass fiber is used for the substrate 160 and the substrate 170.
  • FIG. 31 is a schematic cross-sectional view of the detection element 100D. As shown in FIG. 31, the surface of the substrate 110D may be scratched to provide a recess 110Dc. At this time, the distance d101 from the surface of the recess 110Dc to the upper surface 101a of the anode electrode 101 is larger than the distance d305 from the first surface 110Da of the substrate 110D to the upper surface of the second cathode electrode pattern 305.
  • the concave portion 110Dc By having the concave portion 110Dc, a part of the through electrode 112 is exposed, and the exposed area of the entire anode electrode can be increased in combination with the anode electrode 101. As a result, the electric field can be expanded, and the radiation detection sensitivity can be increased.
  • ⁇ Fourth embodiment> an example of a detection element in which a first cathode electrode pattern, an exposed portion of a second cathode electrode pattern, and an anode electrode are arranged in the same layer will be described.
  • FIG. 32 is a schematic sectional view of the detection element 100E.
  • the exposed portion 305Ea of the second cathode electrode pattern 305E is disposed on the via electrode portion 305Ec and is the same layer as the first cathode electrode pattern 205 (in this example, an insulating layer). 130).
  • the anode electrode 101E is provided to be exposed on the same layer as the first cathode electrode pattern 205 via the electrode 103 and the via electrode 104.
  • the distance from the drift electrode 80 to the first cathode electrode pattern 205 is the same as the distance from the drift electrode 80 to the second cathode electrode pattern 305.
  • the exposed portions 305Ea of the anode electrode 101E, the first cathode electrode pattern 205, and the second cathode electrode pattern 305E are formed on the flat insulating surface formed by the insulating layer 130. Therefore, by processing the conductive film formed on the insulating layer 130, the exposed portions 305Ea of the anode electrode 101E, the first cathode electrode pattern 205, and the second cathode electrode pattern 305E can be formed stably.
  • FIG. 33 is a schematic top view of the detection element 100F.
  • FIG. 34 is a schematic diagram in which a part of FIG. 33 is enlarged.
  • the edge of the first cathode electrode pattern 205 of the present embodiment has a wavy shape
  • the first cathode electrode pattern 205 shown in the first embodiment has a linear shape. Different from the edge.
  • the shape of the edge of the first cathode electrode pattern 205F (205F-1 to 205F-7) is streamlined. At this time, as shown in FIG.
  • a straight line 205Fa is formed from the center of the anode electrode 101-22.
  • a point at which the orthogonal virtual straight line 205Fb intersects with the edge of the first cathode electrode pattern 205F-2 is defined as a point 205Fc.
  • a point between the anode electrodes 101-22 and the anode electrode 32 is defined as an intermediate point 205Fd
  • a virtual straight line 205Fe orthogonal to the straight line 205Fa from the intermediate point 205Fd is formed at the edge of the first cathode electrode pattern 205F-2.
  • a point that intersects with point 205Ff Assuming that the distance from the center of the anode electrode 101-22 to the point 205Fc is a distance d14 and the distance from the intermediate point 205Fd to the point 205Ff is a distance d15, the distance d14 is larger than the distance d15.
  • the lines of electric force are directed to the first cathode electrode pattern closest to the anode electrode 101, so that the radiation detection accuracy can be further improved.
  • the shape of the edge of the first cathode electrode pattern 205 is not limited to a streamline.
  • the shape of the edge of the first cathode electrode pattern 205 may have a zigzag shape.
  • the sixth embodiment differs from the first embodiment in the structure of the second cathode electrode pattern. That is, this is an example of a detection element in which two adjacent second cathode electrode patterns are connected to form a second cathode electrode pattern having a large line width.
  • FIG. 36 is a diagram illustrating a second cathode electrode pattern of the detection element.
  • a plurality of anode electrodes 101 corresponding to one second cathode electrode pattern 305 are connected to different anode electrode patterns 105 from each other.
  • the plurality of anode electrodes 101 corresponding to one second cathode electrode pattern 305 correspond to different first cathode electrode patterns 205 from each other.
  • the plurality of anode electrodes 101 corresponding to one second cathode electrode pattern 305G in the detection element 100B are connected to the same anode electrode pattern 105.
  • the second cathode electrode pattern 305G-4 is arranged in the X direction with respect to the anode electrode 101-12, and in the W direction with respect to the anode electrode 101-12.
  • the disposed anode electrode 101-23 has regions (exposed portions 305Ga-12, 305Ga-22, 305Ga-23).
  • the exposed portions 305Ga-12, 305Ga-22, and 305Ga-23 are electrically connected.
  • the second cathode electrode patterns 305-2 and 305-3 in the first embodiment are electrically connected as the second cathode electrode patterns 305G-2 in the present embodiment.
  • FIG. 37 shows an example in which electrons are simultaneously captured in the anode electrode 101-22 (pixel (22)) and the anode electrode 101-31 (pixel (31)).
  • the detection signals Sx and Sy are used, the portions where the anode electrode patterns 105-2 and 105-3 intersect with the first cathode electrode patterns 205-1 and 205-2 correspond to the anode electrodes 101-21 and 101-. 22, 101-31, 101-32 (pixels (21), (22), (31), (32)). Therefore, the anode electrodes 101-21 and 101-32 (pixels (21) and (32)) from which electrons are not actually captured are erroneously detected.
  • the anode electrode patterns 105-2 and 105-3, the first cathode electrode patterns 205-1 and 205-2, and the second cathode electrode patterns 305G-2 and 305G-4. Can be identified from the intersection of both of them, where the anode electrodes 101-22 and 101-31 (pixels (22) and (31)) are detected.
  • the present invention is not limited to the adjacent second cathode electrode patterns, and the adjacent first cathode electrode patterns may be similarly connected.
  • a first cathode electrode pattern 205G-2 is provided by connecting the first cathode electrode pattern 205-2 and the first cathode electrode pattern 205-3 of the first embodiment.
  • FIG. 38 when the area of the first cathode electrode pattern is increased, an electric field can be formed in a wide area, and ions can be more easily absorbed when detecting radiation. Further, charging of the insulating layer 120 and the insulating layer 130 can be suppressed. Therefore, radiation can be detected stably by using the detection element of the present embodiment.
  • adjacent anode electrode patterns may be connected.
  • the anode electrode pattern 105-2 of the first embodiment is connected to the anode electrode pattern 105-3 to provide an anode electrode pattern 105G-2.
  • FIG. 40 is a schematic top view of the detection element 100H. As shown in FIG. 40, this embodiment has a configuration in which the X direction and the Y direction are arranged orthogonally (90 degrees), unlike the arrangement of the anode electrodes 101 of the first embodiment. At this time, the W direction indicates a direction along a line that intersects at 45 degrees with both the straight line extending in the X direction and the straight line extending in the Y direction.
  • the second cathode electrode pattern 305H (305H-1 to 305H-7) includes an annular pattern 305Hd and a linear connection pattern 305He connecting the adjacent annular patterns.
  • the annular pattern 305Hd is substantially the same as the exposed portion 305a of the first embodiment.
  • the width d16 (equivalent to the diameter of the opening 202) of the outer periphery of the annular pattern 305Hd is preferably larger than the width d17 of the connection pattern 305He. Accordingly, even if the annular pattern is arranged large, it is possible to prevent the adjacent second cathode electrode pattern 305 from being in contact with the second pattern.
  • connection pattern has a linear shape, but is not limited to this. As shown in the fifth embodiment, the connection pattern may have a wavy shape. Thus, crosstalk noise with the first cathode electrode pattern 205 can be suppressed.
  • FIG. 41 is a schematic top view of the detection element 100I.
  • FIG. 41 is a schematic cross-sectional view of a part of the detection element 100I.
  • the detection element 100I has a third cathode electrode pattern 405I in addition to the anode electrode 101, the anode electrode pattern 105, the first cathode electrode pattern 205, and the second cathode electrode pattern 305I.
  • the anode electrode 101 and the first cathode electrode pattern 205 are arranged orthogonally.
  • the second cathode electrode pattern 305I is disposed along the W direction.
  • the second cathode electrode pattern 305I-4 is disposed along the W direction corresponding to the anode electrodes 101-22 and 101-33.
  • the third cathode electrode patterns 405I (405I-1 to 405I-7) are arranged along the V direction, which is a direction orthogonal to the W direction.
  • the third cathode electrode pattern 405I-3 is arranged along the V direction corresponding to the anode electrodes 100-23 and the anode electrodes 101-32.
  • Third cathode electrode pattern 405I is electrically connected to third cathode terminal 408I.
  • the third cathode electrode pattern 405I has a portion sandwiched between the first cathode electrode pattern 205 and the second cathode electrode pattern 305I.
  • the third cathode electrode pattern 405I is sandwiched between the insulating layer 130 on the second cathode electrode pattern 305I and the insulating layer 131 below the first cathode electrode pattern 205.
  • the third cathode electrode pattern 405I has an exposed part 405Ia.
  • the exposed portion 405Ia is exposed on the first surface 110a side of the substrate 110, like the exposed portion 305Ia.
  • the exposed portion 405Ia is disposed separately from the anode electrode 101, the first cathode electrode pattern 205, and the second cathode electrode pattern 305I.
  • the radiation detection efficiency can be increased in a high-dose environment where there is a high possibility of simultaneous detection.
  • the third cathode electrode patterns 405I (405I-1 to 405I-7) are arranged along the V direction which is a direction orthogonal to the W direction
  • the third cathode electrode pattern 405I may be arranged in a direction passing through the anode electrode 101-23 and passing between the anode electrode 101-22 and the anode electrode 101-33.
  • a direction passing through the anode electrodes 101-23 and 101-31 or a direction passing through the anode electrodes 101-23 and 101-42 may be used.
  • the present invention is not limited to this, and may have four or more cathode electrode patterns. Thereby, the radiation detection efficiency can be increased in a high-dose environment where there is a high possibility of simultaneous detection.
  • the radiation detection device 10 in each of the above embodiments is realized as an example of a specific configuration as shown in FIGS.
  • FIG. 43 is a diagram illustrating a specific configuration example of the radiation detection device according to each embodiment of the present disclosure.
  • the radiation detection device 10 includes the power supply device (not shown) and the chamber 50 as described above. Inside the chamber 50, the detection element 100 (in the case of the first embodiment), the drift cage 70, and the drift electrode 80 are arranged. The detection element 100 and the drift electrode 80 are arranged to face each other. When detecting radiation, a mixed gas of a rare gas and a quenching gas as described above is sealed in the chamber 50.
  • FIG. 44 is a schematic configuration diagram of the Compton camera 20 using the radiation detection apparatus 10.
  • the detection module 52 is provided so as to surround the radiation detection apparatus 10 from five directions.
  • reference numerals 52a to 52e are assigned to the five detection modules, respectively.
  • the detection modules 52 may be provided in at least one direction (for example, below the anode electrode 101).
  • the principle of the Compton camera 200 is as follows. First, when ⁇ -rays enter the radiation detection apparatus 10 from the outside, the incident ⁇ -rays collide with the gas in the chamber 50 at a certain probability, and ⁇ -rays are scattered. Symbol A shown in FIG. 44 is a collision position. The scattered ⁇ -ray whose traveling direction has been changed by the collision passes through the radiation detection device 10 and enters the detection module 52. When scattered gamma rays enter the detection module 52, light emission is generated, and the light emission is converted into an electric signal by a photomultiplier tube or the like. The electric signal obtained in this manner is obtained as information indicating the position of the incident scattered ⁇ -rays and the time.
  • the energy of the scattered ⁇ -ray may be acquired.
  • the ⁇ -rays from a predetermined source are scattered a plurality of times by being configured to detect only the energy range assumed when the ⁇ -rays are scattered only once in the chamber. It is possible to remove the influence (noise) due to ⁇ -rays.
  • the gas in the chamber 50 that has collided with the incident ⁇ -ray emits recoil electrons e ⁇ (charged particles) in a predetermined direction from the position of the symbol A. Then, an electron cloud is generated along the track of the recoil electrons.
  • the electrons constituting the electron cloud are attracted to the pixel electrode (anode electrode 101) by the electric field between the drift electrode 80 and the pixel electrode (anode electrode 101).
  • the electrons attracted to the vicinity of the pixel electrode (anode electrode 101) collide with the gas and ionize the gas.
  • the electrons generated by the ionization multiply like an avalanche and are detected by the pixel electrode (anode electrode 101).
  • the electric signal thus obtained corresponds to a detection signal, and the detection signal is a signal capable of specifying the position of a pixel at which electrons have been detected and the time at which electrons have been detected at the pixel.
  • the distance from the pixel electrode (anode electrode 101) to the position where the electron cloud is generated depends on the time from when the scattered ⁇ -rays enter the detection module 52 to when the electrons are detected by the pixel electrode (anode electrode 101). (Position in the Z direction) can be calculated.
  • insulating layer 160 ... substrate, 170 ... substrate, 202 ... Opening, 205: First cathode electrode pattern, 208: First cathode terminal, 302: Opening, 305: Second cathode electrode Pattern, 308 ... second cathode terminal portions

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Electron Tubes For Measurement (AREA)

Abstract

絶縁基板の第1面側に露出し、第1露出電極、第1露出電極の第1方向に配置された第2露出電極、第1露出電極の第1方向と交差する第2方向に配置された第3露出電極、及び、第2露出電極の第2方向かつ第3露出電極の第1方向に配置された第4露出電極を含む露出電極と、第1面の反対側に配置され、第1露出電極と第2露出電極とに接続されたパターン及び第3露出電極と第4露出電極とに接続されたパターンを含む第1電極パターンと、第1露出部を有し、第2方向に沿って配置されたパターンを含み、第1露出部は、第1面側において露出し、露出電極と分離して分離して配置される第2電極パターンと、第2露出部を有し、第3方向に沿って配置され、第1電極パターンと第2電極パターンとで第3電極パターンを挟むパターンを含み、第2露出部は第1面側において露出し、露出電極及び第2電極パターンと分離して配置される第3電極パターンとを備える検出素子。

Description

検出素子、放射線検出装置、およびコンプトンカメラ
 本開示は、検出素子、放射線検出装置、およびコンプトンカメラに関する。
 ピクセル型電極によるガス電子増幅型の放射線検出装置の研究が進められている。このような放射線検出装置は、ピクセル型電極を用いることによって放射線を検出する。このとき、荷電粒子の飛跡を検出することができる(例えば、特許文献1)。この手法を用いた放射線検出装置は、陽電子放出断層撮影(PET:Positron Emission Tomography)検査、単一光子放射断層撮影(SPECT:Single Photon Emission Computed Tomography)検査といった、ごく微量の放射線をだしている薬(ラジオアイソトープ)を目印として用いて病気の診断や治療を行う核医学用の画像装置として用いられる。また、その他の分野として、環境中の放射線量をモニタリングする装置としての応用が期待されている。
特開2002-6047号公報
 特許文献1に開示された放射線検出装置によれば、放射線(荷電粒子)が気体と相互作用することにより電子を生じ、その電子をピクセル型電極において捕捉することによって、間接的に放射線を検出する。しかしながら、多くの電子が生じると、複数のピクセル型電極において同時に電子が捕捉される場合がある。このような場合には、電子を捕捉したピクセル型電極を特定することができなくなり、検出効率および検出精度を低下させることにつながっていた。
 本開示の目的の一つは、放射線検出装置における放射線の検出効率および検出精度を向上させることにある。
 本開示の実施形態によると、絶縁基板の第1面側に露出して配置された複数の露出電極であって、第1露出電極、前記第1露出電極の第1方向に配置された第2露出電極、前記第1露出電極の第1方向と交差する第2方向に配置された第3露出電極、および、前記第2露出電極の前記第2方向かつ前記第3露出電極の前記第1方向に配置された第4露出電極を、少なくとも含む露出電極と、前記絶縁基板の第1面の反対側の第2面側に配置された第1電極パターンであって、前記第1露出電極と前記第2露出電極とに第1貫通電極により接続されたパターン、および前記第3露出電極と前記第4露出電極とに第2貫通電極により接続されたパターンを、少なくとも含む第1電極パターンと、第1露出部を有する第2電極パターンあって、前記第1露出電極と前記第3露出電極とに対応して前記第2方向に沿って配置されたパターン、および前記第2露出電極と前記第4露出電極とに対応して前記第2方向に沿って配置されたパターンを、少なくとも含み、前記第1露出部は、前記第1面側において露出し、前記露出電極と分離して分離して配置される、第2電極パターンと、第2露出部を有する第3電極パターンであって、前記第1露出電極と前記第4露出電極とを結ぶ第3方向に沿って配置され、かつ、前記第1電極パターンと前記第2電極パターンとで前記第3電極パターンを挟むように配置されたパターンを、少なくとも含み、前記第2露出部は、前記第1面側において露出し、前記露出電極および前記第2電極パターンと分離して配置される、第3電極パターンとを備えることを特徴とする検出素子が提供される。
 上記検出素子において、前記第2電極パターンは、前記露出電極の一つを囲む第1開口部を有し、前記第3電極パターンは、前記露出電極の一つを囲む第2開口部を有し、前記第1開口部の幅は、前記第2開口部の幅よりも大きくてもよい。
 上記検出素子において、前記第3電極パターンの前記第2露出部は、前記第2電極パターンと同一の層に配置されてもよい。
 上記検出素子において、前記露出電極は、前記第2電極パターンと同一の層に配置されてもよい。
 上記検出素子において、前記第1電極パターン、前記第2電極パターン、および前記第3電極パターンの少なくともいずれか一つは、前記第1露出電極、前記第2露出電極、および前記第4露出電極を囲む領域において、電気的に接続されてもよい。
 上記検出素子において、前記第2面側において、前記第1電極パターン上の絶縁層を有してもよい。
 上記検出素子において、前記第1露出電極と前記第2露出電極とは隣接して配置され、前記第1露出電極と前記第3露出電極とは隣接して配置され、前記第1露出電極と前記第4露出電極とは隣接して配置されてもよい。
 上記検出素子において、前記第1露出電極と前記第2露出電極との距離、前記第1露出電極と前記第3露出電極との距離、および前記第1露出電極と前記第4露出電極との距離は等しくてもよい。
 上記検出素子において、前記第2電極パターンに前記第1露出電極と第3露出電極とを結ぶ第1仮想直線を設けたときに、前記第1露出電極の中心と、前記第1露出電極の前記中心を通り前記第1仮想直線に直交する第2仮想直線が前記第2電極パターンの縁部と交差する第1交点との距離は、前記第1露出電極と前記第3露出電極との間の中間点と、前記中間点を通り前記第1仮想直線に直交する第3仮想直線が前記第2電極パターンの縁部と交差する第2交点との距離よりも大きくてもよい。
 上記検出素子において、前記第2電極パターンは、波線形状の縁部を有してもよい。
 上記検出素子において、前記露出電極は、前記第2露出電極を通り、かつ前記第1露出電極と前記第4露出電極との間を通る第4方向に設けられた第5露出電極をさらに含み、第3露出部を有する第4電極パターンであって、前記第1露出電極と前記第5露出電極とに対応して前記第4方向に沿って配置され、かつ、前記第2電極パターンと前記第3電極パターンとで前記第4電極パターンを挟むように配置されたパターンを、少なくとも含み、前記第3露出部は、前記第1面側において露出し、前記露出電極、前記第2電極パターン、および前記第3電極パターンと分離して配置される、第4電極パターンをさらに含んでもよい。
 上記検出素子において、前記第3電極パターンは、前記第1露出電極を囲む第1環状パターンと、前記第4露出電極を囲む第2環状パターンと、前記第1環状パターンと前記第2環状パターンとを接続する接続パターンを有し、前記接続パターンの幅は、前記第1環状パターンの外周幅および前記第2環状パターンの外周幅より狭くてもよい。
 上記検出素子において、前記第3電極パターンは絶縁表面上に設けられ、前記絶縁表面は凹部を有し、前記露出電極は前記凹部に設けられ、前記凹部の表面から前記露出電極までの距離は、前記絶縁表面から前記第3電極パターンまでの距離よりも大きくてもよい。
 本開示の実施形態によると、上記検出素子と、前記検出素子の前記露出電極、前記第1電極パターン、前記第2電極パターンおよび前記第3電極パターンに接続された電源装置と、を含むことを特徴とする、放射線検出装置が提供される。
 上記放射線検出装置において、前記電源装置により印加される前記露出電極の電位と前記第2電極パターンの電位と間の電位差は、前記電源装置により印加される前記露出電極の電位と前記第3電極パターンの電位との間の電位差よりも大きくてもよい。
 本開示の実施形態によると、放射線検出装置と、前記放射線検出装置を取り囲むように設けられた光を検出する検出モジュールとを含むコンプトンカメラが提供される。
 本開示の一実施形態によれば、放射線検出装置における放射線の検出効率および検出精度を向上させることができる。
本開示の第1実施形態における放射線検出システムの構成を示すブロック図である。 本開示の第1実施形態における検出素子を説明する図である。 本開示の第1実施形態における検出素子の電極パターンを説明する上面模式図である。 本開示の第1実施形態における検出素子の断面構造(図3における断面線A-A’の断面構造)を示す模式図である。 本開示の第1実施形態における検出素子の断面構造(図3における断面線B-B’の断面構造)を示す模式図である。 本開示の第1実施形態における検出素子の断面構造(図3における断面線C-C’の断面構造)を示す模式図である。 図6の検出素子の断面構造の一部分の拡大模式図である。 本開示の第1実施形態における検出素子を用いた放射線の検出原理を説明する図である。 本開示の第1実施形態における検出素子において、アノード電極が電子を捕捉したときの各電極に生じる電荷を説明する図である。 本開示の第1実施形態における検出素子から出力される検出信号のパターンの第1の例を説明する図である。 本開示の第1実施形態における検出素子から出力される検出信号のパターンの第2の例を説明する図である。 図10に示す検出信号のパターンから演算される電子捕捉位置を説明する斜視図である。 図10に示す検出信号のパターンから演算される電子捕捉位置を説明する模式図である。 本開示の第1実施形態における検出素子の製造方法を示す断面模式図である。 本開示の第1実施形態における検出素子の製造方法を示す断面模式図である。 本開示の第1実施形態における検出素子の製造方法を示す断面模式図である。 本開示の第1実施形態における検出素子の製造方法を示す断面模式図である。 本開示の第1実施形態における検出素子の製造方法を示す断面模式図である。 本開示の第1実施形態における検出素子の製造方法を示す断面模式図である。 本開示の第1実施形態における検出素子の製造方法を示す断面模式図である。 本開示の第1実施形態における検出素子の製造方法を示す断面模式図である。 本開示の第1実施形態における検出素子の製造方法を示す断面模式図である。 本開示の第1実施形態における検出素子の製造方法を示す断面模式図である。 本開示の第1実施形態における検出素子の断面構造の変形例である。 本開示の第1実施形態における検出素子の断面構造の変形例である。 本開示の第1実施形態における検出素子の断面構造の変形例である。 本開示の第1実施形態における検出素子の断面構造の変形例である。 本開示の第2実施形態における検出素子の断面構造の模式図である。 本開示の第3実施形態における検出素子の断面構造の模式図である。 本開示の第3実施形態における検出素子の断面構造の模式図である。 本開示の第3実施形態における検出素子の断面構造の模式図である。 本開示の第4実施形態における検出素子の断面構造の模式図である。 本開示の第5実施形態における検出素子の電極パターンを説明する上面模式図である。 図33の一部を拡大した模式図である。 本開示の第5実施形態における検出素子の電極パターンを説明する上面模式図である。 本開示の第6実施形態における検出素子の電極パターンを説明する上面模式図である。 本開示の第6実施形態における検出信号のパターンから演算される電子捕捉位置を説明する模式図である。 本開示の第6実施形態における検出素子の電極パターンを説明する上面模式図である。 本開示の第6実施形態における検出素子の電極パターンを説明する上面模式図である。 本開示の第7実施形態における検出素子の電極パターンを説明する上面模式図である。 本開示の第8実施形態における検出素子の電極パターンを説明する上面模式図である。 本開示の第8実施形態における検出素子の構造を説明する断面模式図である。 本開示の第1~第8実施形態における検出素子を実装した放射線検出装置である。 本開示の第1~第8実施形態における放射線検出装置を実装したコンプトンカメラである。
 以下、本開示の一実施形態に係る放射線検出装置について、図面を参照しながら詳細に説明する。なお、以下に示す実施形態は本開示の実施形態の一例であって、本開示はこれらの実施形態に限定して解釈されるものではない。なお、本実施形態で参照する図面において、同一部分または同様な機能を有する部分には同一の符号または類似の符号(数字の後にA、B等を付しただけの符号)を付し、その繰り返しの説明は省略する場合がある。また、図面の寸法比率(各構成間の比率、縦横高さ方向の比率等)は説明の都合上実際の比率とは異なったり、構成の一部が図面から省略されたりする場合がある。
<第1実施形態>
[放射線検出システム]
 図1は、本開示の第1実施形態における放射線検出システムの構成を示すブロック図である。放射線検出システム1は、電源装置60および検出素子100を備えた放射線検出装置10、エンコーダ55、および演算装置90を含む。検出素子100は、検出信号Sx、Sy、Swを出力する。検出信号Sx、Sy、Swは、この例では、検出素子100の各端子から出力される電気信号に対し、コンデンサによって直流成分が除去されて、アンプによって増幅されている。電源装置60は、放射線検出装置10に含まれる各構成(検出素子100等)に電圧を印加する。エンコーダ55は、検出信号Sx、Sy、Swをクロック信号Ckに同期してサンプリングし、エンコードして出力する。検出信号の分解能は、クロック信号Ckに応じて決まる。この出力信号をSdという場合がある。演算装置90は、出力信号Sdに基づいて、放射線(荷電粒子)の飛跡を演算する。
[放射線検出装置]
 放射線検出装置10は、チャンバ50を有している。チャンバ50の内部には、検出素子100、ドリフトケージ70およびドリフト電極80が配置されている。ドリフト電極80は、検出素子100に対向して配置され、接地電圧(GND)に対して負の電圧が印加されている。ドリフトケージ70は、検出素子100とドリフト電極80との間の空間を囲むように配置されている。ドリフトケージ70は、検出素子100とドリフト電極80との間の電界分布を均一化するように、ドリフト電極80から検出素子100に向けて徐々に電圧を接地電圧(GND)に近づけていくための導体(導電体)が形成されている。
 放射線を検出するときには、チャンバ50の内部に、希ガスと、クエンチングガスとの混合ガスが封入される。希ガスは、例えば、アルゴンまたはキセノンが用いられる。クエンチングガスは、例えば、エタン、メタンなどの常温でガスの状態を保つアルカン、または二酸化炭素を含む消光作用を有するガスである。なお、チャンバ50に封入されるガスは、いずれかの単体のガスであってもよいし、二種類以上の混合ガスであってもよい
[検出素子]
 検出素子100の構造について説明する。以下の説明においては、検出素子100は、電子を捕捉する単位となるピクセル(アノード電極)が六方最密で配置されている例を示す。なお、この配置は、アノード電極の配置について説明をするための例示である。実際には、数百~数百万個規模の多くのピクセルが配置されてもよい。まず、図2を用いて、検出素子100のドリフト電極80側の表面に現れている構成を簡単に説明する。その後、図3~図7を用いて、検出素子100の各構成を詳細に説明する。なお、説明の関係上、一つのアノード電極パターンの図面を記載する際に、隣接するアノード電極パターンについては表記しない場合がある。第1カソード電極パターンおよび第2カソード電極パターンについても同様とする。
 図2は、本開示の第1実施形態における検出素子を説明する図である。検出素子100は、詳細は後述するが、絶縁表面を有する基板(絶縁基板ともいう。図4~7に示す基板110に対応)上に配置された導電性金属のパターンを含む。まず、絶縁基板上に露出して、アノード電極101(露出電極)が配置されている。アノード電極101は、この例では、X方向(第2方向)およびY方向(第1方向)に沿って、マトリクス状に配置されている。この例では、X方向とY方向とは120度で交差する。また、この例では、X方向に隣接するアノード電極101間の距離と、Y方向に隣接するアノード電極101間の距離と、W方向(第3方向)に隣接するアノード電極101間の距離と、が等しくなっている。なお、W方向とは、X方向およびY方向以外の方向であって、この例では、X方向に延在した直線とY方向に延在した直線とのいずれに対しても、60度で交わる線に沿った方向に対応する。なお、X方向とY方向とは120度で交差する場合に限られず、例えば、直交(90度)で配置されてもよい。また、X方向とY方向とにおいて、隣接するアノード電極101間の距離が異なっていてもよい。
 アノード電極101は、電子を捕捉する単位となるピクセルに対応する。上述したように、この例では、アノード電極101は、X方向に4~7ピクセル、Y方向に4~7ピクセル、合計37ピクセルが配置されている。以下の説明において、37ピクセルが配置された領域を検出領域という場合がある。このとき、図2に示す検出領域の外形(37ピクセルのうち、外周部に相当するピクセルの中心をつないだ形状)は六角形となっている。
 絶縁基板上には、X方向に沿って、第1カソード電極パターン205(第2電極パターン)が配置されている。第1カソード電極パターン205には、ピクセルに対応して開口部202が設けられている。それぞれの開口部202は、アノード電極101をピクセル毎に囲むように形成されている。第1カソード電極パターン205の端部には、検出領域の外側において、第1カソード端子部208が配置されている。第1カソード電極パターン205は、ストリップ状に形成されているため、第1カソードストリップ電極ともいう。検出領域の外側には、さらに、アノード端子部108および第2カソード端子部308が配置されている。アノード端子部108、第1カソード端子部208および第2カソード端子部308は、上述した検出信号Sx、Sy、Swを検出素子100の外部に出力するための端子である。
 アノード端子部108は、Y方向に沿って配置されたアノード電極パターン105(第1電極パターン)を介してアノード電極101に接続されている。第2カソード端子部308は、W方向に沿って配置された第2カソード電極パターン305(第3電極パターン)と接続されている。
 図3は、本開示の第1実施形態における検出素子の電極パターンを説明する図である。図4は、本開示の第1実施形態における検出素子の断面構造(図3における断面線A-A’の断面構造)を示す模式図である。図5は、本開示の第1実施形態における検出素子の断面構造(図3における断面線B-B’の断面構造)を示す模式図である。図6は、本開示の第1実施形態における検出素子の断面構造(図3における断面線C-C’の断面構造)を示す模式図である。図7は、図6の検出素子の断面構造の一部分の拡大模式図である。なお、図3に示すように、Z方向は、X方向、Y方向およびW方向に垂直な方向(アノード電極101が配置された面に垂直な方向)として定義される。
 以下の説明において、図3に示すように、複数のアノード電極101は、その配置された場所によって、アノード電極101-xyという。ここでのxは、アノード電極101-11(図3において左下のピクセル)を基準としたX方向の座標(1~7)を示す。一方、yは、アノード電極101-11を基準としたY方向の座標(1~7)を示す。この例では、アノード電極101-41は中央下のアノード電極101に対応し、アノード電極101-14は左上のアノード電極101に対応し、アノード電極101-44は中央のアノード電極101に対応し、アノード電極101-74は右下のアノード電極101に対応し、アノード電極101-47は中央上のアノード電極101に対応し、アノード電極101-77は右上のアノード電極101に対応する。また、ピクセルの位置を示すのものとして、ピクセル(xy)という場合もある。例えば、ピクセル(11)は、アノード電極101-11に対応する。
 X方向に並ぶ複数のアノード電極101は、基板110の第2面110bにおいてY方向に沿って配置されたアノード電極パターン105を介して電気的に接続されている。アノード電極パターン105は、ストリップ状に形成されているため、アノードストリップパターンともいう。アノード電極パターン105(105-1~105-7)は、Y方向に直交する方向に並んで配置される。アノード電極パターン105は、その端部においてアノード端子部108と接続されている。例えば、アノード電極101-11、101-12、101-13、101-14は、アノード電極パターン105-1を介してアノード端子部108-1に電気的に接続されている。
 アノード電極101とアノード電極パターン105とは、図4に示すような貫通電極112で接続されている。なお、アノード電極101と貫通電極112とは一体であってもよい。例えば、貫通電極112のうち基板110から露出した部分をアノード電極101と定義してもよい。このとき、アノード電極101は、基板110から突出していても突出していなくてもよい。
 また、図7に示すように、アノード電極101と、貫通電極112との間に絶縁層120とともにビア電極102が設けられてもよい。ビア電極102の幅は、アノード電極101の幅よりも狭いことが好ましい。これにより、貫通電極112とアノード電極101との位置ずれを緩和できるとともに、検出素子100の表面において、均一な電場が形成される。なお、ビア電極102は、必ずしも設けられなくてもよい。また、第2面110b側において貫通電極112とアノード電極パターン105との間に絶縁層140およびビア電極142が設けられてもよい。
 基板110の第1面110a上においてX方向に沿って露出して配置された第1カソード電極パターン205は、X方向に並んだアノード電極101をそれぞれ開口部202(第1開口部)で囲み、アノード電極101と分離して配置される。なお、この例では、第1カソード電極パターン205は、上面および側面の全体が露出しているが、一部のみ露出してもよい。したがって、第1カソード電極パターン205は、露出部を有するということができる。第1カソード電極パターン205は、その端部において第1カソード端子部208と接続されている。第1カソード電極パターン205(205-1~205-7)は、X方向に直交する方向に並んで配置されている。例えば、第1カソード電極パターン205-1は、アノード電極101-11、101-21、101-31、101-41をそれぞれ開口部202で囲い、第1カソード端子部208-1に接続されている。以下、このような第1カソード電極パターン205とアノード電極101との関係を、第1カソード電極パターン205とアノード電極101とが対応する配置の関係として定義する。例えば、第1カソード電極パターン205-1は、アノード電極101-11、101-21、101-31、101-41に対応して配置されている。
 基板110の第1面110aにおいて、W方向に沿って配置された第2カソード電極パターン305(305-1~305-7)は、W方向に並んだアノード電極101との間でアノード電極パターン105と第1カソード電極パターン205とに挟まれるようにアノード電極パターン105と第1カソード電極パターン205とは分離して配置されている。第2カソード電極パターン305-1を例とした場合、第1カソード電極パターン205-1~205-4とアノード電極パターン105-4~105-7とによってZ方向において第2カソード電極パターン305-1が挟まれている。
 第2カソード電極パターン305は、基板110の第1面110a側に露出部305aを有している。露出部305aは、W方向に並んだアノード電極101をそれぞれ開口部302(第2開口部)で囲み、アノード電極101と分離して配置される。開口部302の幅は、開口部202の幅よりも小さい。そのため、露出部305aは、アノード電極101と第1カソード電極パターン205との間に配置されている。第2カソード電極パターン305は、その端部において第2カソード端子部308と接続されている。第2カソード電極パターン305(305-1~305-7)は、W方向に直交する方向に並んで配置されている。例えば、第2カソード電極パターン305-1は、アノード電極101-41、101-52、101-63、101-74をそれぞれ開口部302で囲い、第2カソード端子部308-1に接続されている。以下、このような第2カソード電極パターン305とアノード電極101との関係を、第1カソード電極パターン205とアノード電極101とが対応する配置の関係として定義する。例えば、第2カソード電極パターン305-1は、アノード電極101-41~アノード電極101-74に対応して配置されている。
 上述のように各電極パターンが配置されることで、1つの第2カソード電極パターン305と対応関係にある複数のアノード電極101は、互いに異なるアノード電極パターン105に接続されている。また、1つの第2カソード電極パターン305と対応関係にある複数のアノード電極101は、互いに異なる第1カソード電極パターン205と対応関係にある。
 本実施形態において、アノード電極101、第1カソード電極パターン205および第2カソード電極パターン305の厚さは、2μm以上、30μm以下好ましくは5μmであることが望ましい。これにより配線抵抗を抑えることができる。また、絶縁層130の厚さは、3μm以上、100μm以下好ましくは20μmであることが望ましい。これにより検出信号のクロストークを抑えることができる。
 ここで、検出素子100の各構成の寸法について、以下の通り例示する。
・隣接するアノード電極101の中心間距離d1(1ピクセル長):554.26μm
・アノード電極101の直径d2:60μm
・第1カソード電極パターン205の線幅d3:440μm
・開口部202の直径d4:340μm
・アノード電極パターン105の線幅d5:300μm
・第2カソード電極パターン305の線幅d6:440μm
・開口部302の直径d7:260μm
・貫通電極112の直径d9:50μm
・ビア電極102の直径d10:30μm
・アノード電極パターン105間の距離d11:180μm
・第1カソード電極パターン205間の距離d12:40μm
・第2カソード電極パターン305間の距離d13:40μm
[放射線の検出原理]
 次に、放射線検出装置10における放射線の検出原理について、図8および図9を用いて説明する。なお、ドリフト電極80は、接地電圧(GND)に対して負の電圧が印加されている。第1カソード電極パターン205、第2カソード電極パターン305は、接地電圧(GND)が印加されている。アノード電極101(アノード電極パターン105)は、接地電圧(GND)に対して正の電圧が印加されている。
 図8は、本開示の第1実施形態における検出素子を用いた放射線の検出原理を説明する図である。チャンバ50に放射線(荷電粒子EP)が入射すると、チャンバ50内に存在する気体との相互作用により電子雲ECが形成される。ドリフト電極80と第1カソード電極パターン205との間に発生させた電界Eにより、この電子雲の各電子はZ方向に沿って検出素子100側に引き寄せられる。検出素子100側に引き寄せられた電子は、第1カソード電極パターン205とアノード電極101とで形成される電界によって加速されて、アノード電極101に引き寄せられる。このとき、電子が気体と衝突して、気体を電離させる。電離によって生じた電子は雪崩的に増殖してアノード電極101に捕捉される。
 図9は、本開示の第1実施形態における検出素子において、アノード電極が電子を捕捉したときの各電極に生じる電荷を説明する図である。雪崩的に増殖した電子が、アノード電極101に捕捉されると、アノード電極101において一時的に負電荷が生じる。一方、第1カソード電極パターン205および第2カソード電極パターン305には、電離された気体である陽イオン群が付着し、一時的に正電荷が生じる。増殖した電子の影響によって、これらの電荷から生じるパルス信号(電圧変動)は、アノード端子部108、第1カソード端子部208および第2カソード端子部308から電気信号(検出信号Sx、Sy、Sw)として読み出せる程度に大きくなる。以下の説明において、アノード端子部108-1~108-7から出力される検出信号Sxに対応して、検出信号Sx-1~Sx-7という場合がある。第1カソード端子部208-1~208-7から出力される検出信号Syに対応して、検出信号Sy-1~Sy-7という場合がある。第2カソード端子部308-1~308-7から出力される検出信号Swに対応して、検出信号Sw-1~Sw-7という場合がある。
 これらの検出信号Sx、Sy、Swにおける電圧変動が生じた時刻と、その電圧変動が生じた電気信号を出力する端子の位置とを用いることによって、荷電粒子EPの飛跡を演算することができる。なお、この飛跡のうち、Z方向の位置は相対的な位置として演算される。
 図10は、本開示の第1実施形態における検出素子から出力される検出信号のパターンの第1の例を説明する図である。図10に示す検出信号のパターンは、図8に示すように荷電粒子EPが入射した状況を想定している。この例では、アノード電極101-34(ピクセル(34))に電子が捕捉され、その後アノード電極101-46(ピクセル(46))に電子が捕捉された状況を示している。
 このような状況によれば、まず、アノード電極101-34による電子の捕捉に対応して、検出信号Sx-3、Sy-4、Sw-5に電圧変動が生じる。言い換えれば、演算装置90は、検出信号Sx-3、Sy-4、Sw-5において電圧変動が生じた時刻が同じであると判定すると、検出信号Sx-3、Sy-4、Sw-5に対応するアノード電極パターン105-3、第1カソード電極パターン205-4および第2カソード電極パターン305-5が交差する部分のアノード電極101-34を、電子が捕捉されたアノード電極101として特定する。
 その後、アノード電極101-46による電子の捕捉に対応して、検出信号Sx-4、Sy-6、Sw-6に電圧変動が生じる。言い換えれば、演算装置90は、検出信号Sx-4、Sy-6、Sw-6において電圧変動が生じた時刻が同じであると判定すると、検出信号Sx-4、Sy-6、Sw-6に対応するアノード電極パターン105-4、第1カソード電極パターン205-6および第2カソード電極パターン305-6が交差する部分のアノード電極101-46を、電子が捕捉されたアノード電極101として特定する。
 このような場合には、検出信号Sx、Sy、Swのいずれか1つが存在しなくても、すなわち2種類の検出信号によって、電子が捕捉されたアノード電極を特定することができる。一方、次に説明するように、アノード電極101-34、101-46に同時に電子が捕捉されると、演算装置90は、2種類の検出信号のみから電子が捕捉されたアノード電極101を正確には特定できない。
 図11は、本開示の第1実施形態における検出素子から出力される検出信号のパターンの第2の例を説明する図である。第2の例では、アノード電極101-34(ピクセル(34))およびアノード電極101-46(ピクセル(46))に、同時に電子が捕捉された状況を示している。
 このような状況によれば、演算装置90は、検出信号Sx-3、Sx-4、Sy-4、Sy-6,Sw-5、Sw-6において電圧変動が生じた時刻が同じであると判定する。このとき、電子が捕捉されたアノード電極101は、検出信号Sx、Sy、Swを用いると正確に特定されるが、従来技術のように2種類の検出信号(例えばSx、Sy)のみを用いると正確には特定されない。この事情について、図12を用いて説明する。
 図12は、図11に示す検出信号のパターンから演算される電子捕捉位置を説明する斜視図である。図13は、図11に示す検出信号のパターンから演算される電子捕捉位置を説明する上面模式図である。まず、検出信号Sx、Syを用いた場合、アノード電極パターン105-3、105-4、および第1カソード電極パターン205-4、205-6が交差する部分は、アノード電極101-34、101-44、101-36、101-46(ピクセル(34)、(44)、(36)、(46))となる。したがって、実際には電子が捕捉されていないアノード電極101-44、101-36(ピクセル(44)、(36))については、誤検出されたことになる。
 一方、検出信号Sx、Sy、Swを用いた場合、アノード電極パターン105-3、105-4、第1カソード電極パターン205-4、205-6および第2カソード電極パターン305-5、305-6が交差する部分は、アノード電極101-34、101-46(ピクセル(34)、(46))となる。したがって、検出信号Sx、Syのみを用いたときに発生した誤検出は、検出信号Sx、Sy、Swを用いたときには発生しない。
 このように、本実施形態における放射線検出装置10は、2つのアノード電極101において同時に電子が捕捉された場合であっても、3種類の検出信号Sx、Sy、Swを用いているため、この2つのアノード電極101を特定することができる。なお、3種類の検出信号Sx、Sy、Swを用いた場合であっても、3つのアノード電極101において同時に電子が捕捉されると誤検出をしてしまうことになる。しかし、3つのアノード電極101において同時に電子が捕捉される確率は、2つのアノード電極101において同時に電子が捕捉される確率よりも小さい。したがって、誤検出を低減することができ、その結果として放射線の検出効率および検出精度が向上する。
 なお、この例では、検出素子100は、ピクセルが六方配置された37ピクセル(アノード電極101)を有していたが、1つのアノード電極101を基準として、少なくとも、X方向に並ぶ2つのアノード電極101と、Y方向に並ぶ2つのアノード電極101とを有していることにより、構成を一般化できる。X方向またはY方向に並ぶ2つのアノード電極101は、隣接したアノード電極101として定義されてもよいし、隣接しないアノード電極101として定義されてもよい。隣接しない2つのアノード電極101によって一般化される場合には、その間に他のアノード電極101が存在することになる。
 互いに隣接する場合には、4つ(2×2)のアノード電極101は、例えば、アノード電極101-22、101-23、101-32、101-33(ピクセル(22)、(23)、(32)、(33))が対応する。互いに隣接しない場合には、4つ(2×2)のアノード電極101は、例えば、アノード電極101-11、101-14、101-41、101-44(ピクセル(11)、(14)、(41)、(44))に対応する。
[検出素子の製造方法]
 次に、図14乃至図23を用いて、本実施形態における検出素子100の製造方法について説明する。
 まず、図14に示すように、基板110に第1面110aから第2面110bまで貫通する貫通孔111を形成する。基板110には、高い絶縁性を有する絶縁材料が用いられる。この例では、基板110にソーダガラス基板、無アルカリガラス基板、石英ガラス基板などのガラス基板が用いられる。基板110の厚さは100μm以上1000μm以下において適宜設定すればよい。この例では、基板110の厚さは、380μmである。
 貫通孔111は、例えば、基板110に対してレーザー照射法(レーザーアブレーション法と呼ぶことができる)を用いることにより形成される。レーザーには、エキシマレーザー、ネオジム:ヤグレーザー(Nd:YAG)レーザー、フェムト秒レーザー等が用いられる。エキシマレーザーを用いる場合、紫外領域の光が照射される。例えば、エキシマレーザーにおいて塩化キセノンを用いる場合、波長が308nmの光が照射される。なお、レーザーによる照射径は、10μm以上250μm未満としてもよい。貫通孔111の孔径は、10μm以上250μm未満の範囲で適宜設定することができる。この例では、貫通孔111の孔径は、基板110の垂直方向に対して一定であり、50μmである。なお、基板110の貫通孔111を形成する場合、レーザー照射法以外に、ドライエッチング法やウェットエッチング法を用いて行ってもよい。
 次に、図15に示すように、貫通孔111に対して、貫通電極112を形成する。貫通電極112には、銅(Cu)、ニッケル(Ni)、金(Au)、銀(Ag)、錫(Sn)などが用いられる。貫通電極112は、めっき法により形成される。例えば、貫通電極112は、めっき法により形成された銅(Cu)が用いられる。めっき法により形成された貫通電極112は化学機械研磨(CMP:Chemical Mechanical Polishing)法により平坦化処理される。
 次に、図16に示すように、基板110の第1面110aに絶縁層120を形成する。絶縁層120には無機絶縁材料または有機絶縁材料、あるいは無機絶縁材料および有機絶縁材料を混ぜ合わせた材料が用いられる。絶縁層120は塗布法およびラミネート法により形成される。塗布法の具体例としては、スピンコート法、スプレーコート法、スリットコート法、ディップコート法などが挙げられる。この例では、絶縁層120には、スピンコート法により形成されたポリイミド膜などが用いられる。絶縁層120の厚みは、特に制限されないが、1μm以上20μm以下の範囲である。この例では、絶縁層120の厚みは、4μmである。
 次に、図17に示すように、絶縁層120に開口部121を設ける。開口部121は、例えば、フォトリソグラフィ法及びエッチング法を用いて形成される。なお、図17において、絶縁層120が感光材を含んでいる場合にはフォトリソグラフィ法のみで開口部121を形成してもよい。これにより、製造工程数を削減することができる。
 次に、図18に示すように、貫通電極112および絶縁層120上にアノード電極101、ビア電極102および第2カソード電極パターン305を形成する。アノード電極101、ビア電極102および第2カソード電極パターン305は、めっき法、CVD法、スパッタリング法、または印刷法などにより形成される。アノード電極101、ビア電極102および第2カソード電極パターン305には、銅(Cu)が用いられる。なお、アノード電極101、ビア電極102および第2カソード電極パターン305には、銅(Cu)以外に、アルミニウム(Al)、金(Au)、銀(Ag)、ニッケル(Ni)、タングステン(W)、モリブデン(Mo)、またはチタン(Ti)などの金属材料が用いられてもよい。
 なお、上記の場合、アノード電極101とビア電極102とは一度に形成される例を示したが、ビア電極102は、アノード電極101および第2カソード電極パターン305を形成する前に形成してもよい。
 次に、図19に示すように、絶縁層120、アノード電極101および第2カソード電極パターン305上に絶縁層130を形成する。絶縁層130には、絶縁層120と同様の材料および方法を用いてもよい。
 次に、図20に示すように、アノード電極101と、第2カソード電極パターン305のうち、露出部305aとなるアノード電極101側の端部と、絶縁層120とを露出させ、開口部202および開口部302を形成する。開口部202および開口部302は、開口部121と同様の方法により形成されてもよい。このとき、後に形成される第1カソード電極パターン205と第2カソード電極パターン305とが、重畳しない部分305bが露出するように、絶縁層130を除去してもよい。これにより、放射線検出時に絶縁層130が帯電することが防止され、異常放電を抑制することができる。
 次に、図21に示すように、絶縁層130上に第1カソード電極パターン205を形成する。第1カソード電極パターン205は、アノード電極101、ビア電極102および第2カソード電極パターン305と同様の材料および方法に形成される。
 次に、図22に示すように、基板110の第2面110b上に絶縁層140を形成する。絶縁層140は、絶縁層120と同様の材料および方法に形成される。この例では、絶縁層140には、スピンコート法により形成されたポリイミド膜が用いられる。
 次に、図23に示すように、絶縁層140の一部を除去し、貫通電極112および絶縁層140上にビア電極142およびアノード電極パターン105を形成する。ビア電極142およびアノード電極パターン105は、ビア電極102、アノード電極101および第2カソード電極パターン305と同様の材料および方法に形成される。以上の方法により、検出素子100を製造することができる。
(変形例)
 なお、本実施形態において、貫通孔111は、円柱形状を有するものとして、説明したがこれに限定されない。貫通孔の径が基板の垂直方向に対して変化してもよい(言い換えれば、貫通孔の側面は、基板110に対する垂直方向に対し平行とならずに、傾きを有してもよい)。例えば、図24に示すように、第2面110b側から第1面110aに向かって貫通孔111の径が小さくなっていく形状(すなわち円錐台形状)であってもよい。
 また、本実施形態において、絶縁層140およびアノード電極パターン105は、第1面側の各要素を形成した後で形成されたが、これに限定されない。絶縁層140およびアノード電極パターン105を先に形成してから、第1面側の各要素を形成してもよい。
 また、本実施形態において、第2カソード電極パターンの部分305bは必ずしも露出しなくてもよい(つまり、第2カソード電極パターン305において露出部305aのみが露出する)。
 また、本実施形態において、第1カソード電極パターン205の開口部202の直径d4は、第2カソード電極パターン305の開口部302の直径d7よりも大きい例を示したがこれに限定されない。また、第1カソード電極パターン205の側面と、絶縁層130の側面とが面一でなくてよい。例えば、第1カソード電極パターン205の開口部202の直径d4は、第2カソード電極パターン305の開口部302の直径d7と同じでもよい。また、図25に示すように、第1カソード電極パターン205の開口部202の直径d4が、第2カソード電極パターン305の開口部302の直径d7よりも狭くなり、第1カソード電極パターン205が絶縁層130の側面130aの一部を覆うように配置されてもよい。このとき、第2カソード電極パターン305の側面のみが露出してもよい。また、図26に示すように、第1カソード電極パターン205の側面が絶縁層130の側面130aよりもアノード電極101から離れて配置されてもよい。
 また、図27に示すように、絶縁層130に加えてさらにほかの絶縁層131を設けて、第1カソード電極パターン205と第2カソード電極パターン305との間に複数の絶縁層を設けてもよい。絶縁層131は、絶縁層130と同じ材料でもよいし、異なる材料で形成されてもよい。また、このとき絶縁層130の側面と絶縁層131の側面とは、単層の場合と同様に連続して配置されてもよいし、図27に示すように階段状に配置されてもよい。
 また、本実施形態において、第1カソード電極パターン205および第2カソード電極パターン305には、接地電位(GND)が印加されたが、これに限定されない。例えば、第1カソード電極パターン205に印加される電位と第2カソード電極パターン305に印加される電位とを異ならせてもよい。アノード電極101からの距離に応じて印加される電位を変えてもよい。例えば、第1カソード電極パターン205は第2カソード電極パターン305よりもアノード電極101から離れているため、第1カソード電極パターン205に-100Vを印加させ、第2カソード電極パターン305に0Vを印加させてもよい。このとき、アノード電極101に500Vが印加されれば、アノード電極101と第1カソード電極パターン205との間における電位差はアノード電極101と第2カソード電極パターン305との間の電位差よりも大きくなる。これにより、アノード電極101と第1カソード電極パターン205との間の電界強度はアノード電極101と第2カソード電極パターン305との間の電界強度よりも大きくなり、アノード電極101から離れても、第1カソード電極パターン205において、信号を十分に検出することができる。
<第2実施形態>
 第2実施形態では、アノード電極パターン105上に絶縁層が形成された検出素子について説明する。
 図28に、検出素子100Aの断面模式図を示す。図28に示すように、検出素子100Aは、第1実施形態で示した検出素子100と異なり、さらに基板110およびアノード電極パターン105上に絶縁層150を有している。絶縁層150には、無機絶縁材料または有機絶縁材料が設けられる。絶縁層150の厚さは、1μm以上100μm未満、好ましくは10μm以上30μm未満である。この例では、絶縁層150の厚さは、20μmである。絶縁層150を設けることにより、検出素子100を製造時に生じる基板110の反りを抑えることができる。なお、絶縁層150を形成する場合、絶縁層140、アノード電極パターン105を形成した後に絶縁層150を形成し、その後に第1面110a側の各要素を形成することが望ましい。
<第3実施形態>
 第1実施形態では、絶縁基板として、ガラス基板を用いる例を示したが、本実施形態では、ガラス基板とは異なる材料を用いた例を示す。
 基板110には、ガラス基板のほか、シリコン基板などの半導体基板、サファイア基板、炭化アルミナ(Al23)基板、窒化アルミニウム(AlN)基板、ジルコニア(ZrO2)基板の無機絶縁材料、アクリルまたはポリカーボネートなどを含む樹脂基板、またはこれらの基板が積層されたものが用いられてもよい。
 図29は、基板110Bにシリコン基板を用いた検出素子100Bの断面模式図である。図29に示すように、基板110Bにシリコン基板を用いる場合、基板110Bの表面に絶縁層115が設けられる。絶縁層115は、熱酸化膜でもよいし、塗布法、CVD法またはスパッタリング法によりした窒化シリコン膜(SiNx)や酸化シリコン膜(SiOx)などの絶縁材料が用いられてもよい。したがって、シリコン基板と絶縁層115とを組み合わせることにより、基板を介してリーク電流が生じなくなり、絶縁表面を有する基板として用いることができる。
 図30は、基板110Cに有機樹脂を用いた検出素子100Cの断面模式図である。図30において、基板110Cには、強度を高めるためのガラス繊維を含むポリイミド樹脂またはエポキシ樹脂が用いられる。一方、ポリイミド樹脂やエポキシ樹脂などの有機樹脂を用いた場合、撓んでしまうために十分な厚さが必要となる。しかし、基板110Cには、貫通電極112を形成する関係上、基板の厚さに制限がある。そのため、アノード電極パターン105上に基板160および基板170を追加して設けることが望ましい。これにより、検出素子100Cの強度を保持することができる。基板160および基板170には、ガラス繊維を含むポリイミド樹脂が用いられる。
 なお、基板160および基板170により検出素子100の強度が保持される場合、基板110Cにより強度を保持しなくてもよい。この場合、基板110Cには、ガラス繊維を含まないポリイミド樹脂を用いてもよい。ガラス繊維を含まないことにより、基板110Cを容易に加工することができる。図31は、検出素子100Dの断面模式図である。図31に示すように、基板110Dの表面をけずり、凹部110Dcを設けてもよい。このとき、凹部110Dcの表面からアノード電極101の上面101aまでの距離d101は、基板110Dの第1面110Daから第2カソード電極パターン305の上面までの距離d305よりも大きくなる。凹部110Dcを有することにより、貫通電極112の一部が露出することになり、アノード電極101と合わせてアノード電極全体の露出面積を広くすることができる。これにより、電場を広げることができ、放射線の検出感度を高めることができる。
<第4実施形態>
 本実施形態では、第1カソード電極パターン、第2カソード電極パターンの露出部、アノード電極が同一の層に配置された検出素子の例を示す。
 図32は、検出素子100Eの断面模式図である。図32に示すように、検出素子100Eにおいて、第2カソード電極パターン305Eの露出部305Eaは、ビア電極部305Ec上に配置され、第1カソード電極パターン205と同一の層(この例では、絶縁層130上)に露出して設けられている。同様にアノード電極101Eも電極103およびビア電極104を介して第1カソード電極パターン205と同一の層に露出して設けられている。上記構成を有することにより、ドリフト電極80から第1カソード電極パターン205までの距離と、ドリフト電極80から第2カソード電極パターン305までの距離とが同じとなる。これにより、電離した電子が2つのカソード電極パターンに到達する速度を均一にすることができる。したがって、放射線の検出感度を向上させることができる。また、図32の場合、絶縁層130による平坦な絶縁表面上に、アノード電極101E、第1カソード電極パターン205、および第2カソード電極パターン305Eの露出部305Eaを形成することになる。このため、絶縁層130上に成膜した導電膜を加工して、アノード電極101E、第1カソード電極パターン205、および第2カソード電極パターン305Eの露出部305Eaを安定して形成することができる。
<第5実施形態>
 本実施形態では、第1カソード電極パターンの形状の異なる検出素子の例を示す。
 図33は、検出素子100Fの上面模式図である。図34は、図33の一部を拡大した模式図である。図33および図34に示すように、本実施形態の第1カソード電極パターン205の縁部の形状が波型形状を有し、第1実施形態で示した第1カソード電極パターン205の直線状の縁部と異なっている。この例では、第1カソード電極パターン205F(205F-1~205F-7)の縁部の形状は流線形である。このとき、図34に示すように、アノード電極101-22とX方向において、隣接するアノード電極101-32とを結ぶ仮想の直線205Faを設けた場合、アノード電極101-22の中心から直線205Faに直交する仮想の直線205Fbが第1カソード電極パターン205F-2の縁部と交差する点を点205Fcとする。また、アノード電極101-22とアノード電極32との間の点を中間点205Fdとした場合、中間点205Fdから直線205Faに直交する仮想の直線線205Feが第1カソード電極パターン205F-2の縁部と交差する点を点205Ffとする。アノード電極101-22の中心から点205Fcまでの距離を距離d14とし、中間点205Fdから点205Ffまでの距離を距離d15とすると、距離d14は距離d15よりも大きくなる。上記形状を有することにより、アノード電極101に最も近い第1カソード電極パターンに電気力線が向かうため、放射線の検出精度をさらに高めることができる。
 なお、第1カソード電極パターン205の縁部の形状は、流線形に限定されない。例えば、図35に示すように、第1カソード電極パターン205の縁部の形状は、ジグザグ形状を有してもよい。
<第6実施形態>
 第6実施形態は、第1実施形態と比べて、第2カソード電極パターンの構造が異なっている。すなわち、隣接する2つの第2カソード電極パターンが接続されて、線幅の大きい第2カソード電極パターンを構成している検出素子の例である。
 図36は、検出素子の第2カソード電極パターンを説明する図である。第1実施形態の検出素子100では、1つの第2カソード電極パターン305と対応関係にある複数のアノード電極101は、互いに異なるアノード電極パターン105に接続されている。また、1つの第2カソード電極パターン305と対応関係にある複数のアノード電極101は、互いに異なる第1カソード電極パターン205と対応関係にある。一方、本実施形態の検出素子100Gでは、図36に示すように、検出素子100Bにおいて1つの第2カソード電極パターン305Gに対応する複数のアノード電極101には、同一のアノード電極パターン105に接続された2つのアノード電極101、および同一の第1カソード電極パターン205に対応している2つのアノード電極101が含まれる。この例では、第2カソード電極パターン305G-4は、アノード電極101-12に対してX方向に並んで配置されたアノード電極101-22、およびアノード電極101-12に対してW方向に並んで配置されたアノード電極101-23を領域(露出部305Ga-12、305Ga-22、305Ga-23)を有する。第2カソード電極パターン305G-4において、露出部305Ga-12、305Ga-22、305Ga-23は、電気的に接続されている。
 例えば、第1実施形態における第2カソード電極パターン305-2、305-3は、本実施形態における第2カソード電極パターン305G-2として、電気的に接続されている。アノード電極101-22(ピクセル(22))およびアノード電極101-31(ピクセル(31))に、同時に電子が捕捉された状況を、図37を例に示す。まず、検出信号Sx、Syを用いた場合、アノード電極パターン105-2、105-3、および第1カソード電極パターン205-1、205-2が交差する部分は、アノード電極101-21、101-22、101-31、101-32(ピクセル(21)、(22)、(31)、(32))となる。したがって、実際には電子が捕捉されていないアノード電極101-21、101-32(ピクセル(21)、(32))については、誤検出されたことになる。
 一方、検出信号Sx、Sy、Swを用いた場合、アノード電極パターン105-2、105-3、第1カソード電極パターン205-1、205-2および第2カソード電極パターン305G-2と305G-4の両方が交差する部分から、アノード電極101-22、101-31(ピクセル(22)、(31))と検出された場所を特定できる。
 また、アノード電極101-21(ピクセル21)およびアノード電極101-32(ピクセル(32))に同時に電子が捕捉された場合は、第2カソード電極パターン305G-2のみが交差する部分として検出できる。このように隣接する2つの第2カソード電極パターンが接続されて、線幅の大きい第2カソード電極パターンを構成している検出素子の場合であっても、第2カソード電極パターンが1つ関係しているか、2つ関係しているか識別が可能できるため誤検出を防止することができる。
 また、第2カソード電極パターンの数が減ることにより、放射線の検出信号Swの数を減らすことができる。したがって、本実施形態を用いることにより、検出分解能を下げることなく、消費電力の削減、検出コストの削減が可能となる。
 なお、3種類の検出信号Sx、Sy、Swを用いた場合であっても、3つのアノード電極101において同時に電子が捕捉されると誤検出をしてしまうことになる。しかし、3つのアノード電極101において同時に電子が捕捉される確率は、2つのアノード電極101において同時に電子が捕捉される確率よりも小さい。したがって、誤検出を低減することができ、その結果として放射線の検出精度が向上する。
 なお、本実施形態では、隣接する2つの第2カソード電極パターンが接続されて、線幅の大きい第2カソード電極パターンを構成している例を示したが、3つの第2カソード電極パターンが接続されてもよい。
 また、隣接する第2カソード電極パターンに限定されず、隣接する第1カソード電極パターンが同様に接続されてもよい。図38において、例えば、第1実施形態の第1カソード電極パターン205-2と第1カソード電極パターン205-3とが接続されて、第1カソード電極パターン205G-2が設けられている。図38において、第1カソード電極パターンの面積が大きくなることにより、広い面積で電場を形成することができ、放射線を検出する際によりイオンを吸収しやすくなる。また、絶縁層120および絶縁層130が帯電することを抑えることができる。したがって、本実施形態の検出素子を用いることにより、安定して放射線を検出することができる。
 また、図39に示すように、隣接するアノード電極パターンが接続されてもよい。この例では、第1実施形態のアノード電極パターン105-2とアノード電極パターン105-3とが接続されて、アノード電極パターン105G-2が設けられる。
 <第7実施形態>
 本実施形態では、アノード電極の配置、および第2カソード電極パターンの形状が異なる検出素子の例について説明する。
 図40は、検出素子100Hの上面模式図である。図40に示すように、本実施形態では、第1実施形態のアノード電極101の配置と異なり、X方向とY方向とが直交(90度)で配置された構成を有する。このとき、W方向は、X方向に延在した直線とY方向に延在した直線とのいずれに対しても、45度で交わる線に沿った方向を示す。
 図40において、第2カソード電極パターン305H(305H-1~305H-7)は、環状パターン305Hdおよび隣接する環状パターンを接続する直線形状の接続パターン305Heを含む。環状パターン305Hdは、第1実施形態の露出部305aと実質的に同じである。第2カソード電極パターン305Hにおいて、環状パターン305Hdの外周の幅d16(開口部202の直径と同等)は、接続パターン305Heの幅d17より大きいことが好ましい。これにより、環状パターンを大きく配置しても、隣接する第2カソード電極パターン305と接触することを防止することができる。
 なお、本実施形態において、接続パターンは直線形状を有しているが、これに限定されない。第5実施形態で示したように接続パターンは波線形状を有してもよい。これにより、第1カソード電極パターン205との間のクロストークノイズを抑制することができる。
 <第8実施形態>
 本実施形態では、第3カソード電極パターンを有する検出素子の例について説明する。
 図41は、検出素子100Iの上面模式図である。図41は、検出素子100Iの一部の断面模式図である。図41に示すように、検出素子100Iは、アノード電極101、アノード電極パターン105、第1カソード電極パターン205、および第2カソード電極パターン305Iに加えて第3カソード電極パターン405Iを有している。検出素子100Iにおいて、アノード電極101と第1カソード電極パターン205とは直交して配置される。第2カソード電極パターン305Iは、W方向に沿って配置される。例えば、第2カソード電極パターン305I-4は、アノード電極101-22とアノード電極101-33とに対応してW方向に沿って配置される。第3カソード電極パターン405I(405I-1~405I-7)は、W方向に直交する方向であるV方向に沿って配置される。第3カソード電極パターン405I-3は、アノード電極100-23とアノード電極101-32に対応してV方向に沿って配置される。第3カソード電極パターン405Iは、第3カソード端子408Iと電気的に接続される。
 また、図42に示すように、第3カソード電極パターン405Iは、第1カソード電極パターン205と、第2カソード電極パターン305Iとで挟まれる部分を有する。この例では、第3カソード電極パターン405Iは、第2カソード電極パターン305I上の絶縁層130と第1カソード電極パターン205下の絶縁層131に挟まれている。さらに、第3カソード電極パターン405Iは、露出部405Iaを有する。露出部405Iaは、露出部305Iaと同様に基板110の第1面110a側において露出している。露出部405Iaは、アノード電極101、第1カソード電極パターン205および第2カソード電極パターン305Iと分離して配置される。本実施形態を用いることにより、同時検出する可能性が高い、高線量の環境において、放射線の検出効率を高めることができる。
 なお、本実施形態では、第3カソード電極パターン405I(405I-1~405I-7)は、W方向に直交する方向であるV方向に沿って配置される例を示したがこれに限定されない。第3カソード電極パターン405Iは、アノード電極101-23を通り、かつアノード電極101-22とアノード電極101-33との間を通る方向に配置されてもよい。例えば、アノード電極101-23とアノード電極101-31とを通る方向でもよいし、アノード電極101-23とアノード電極101-42とを通る方向でもよい。
 また、本実施形態では、カソード電極パターンが3つある例を示したが、これに限定されず、4つの以上のカソード電極パターンを有してもよい。これにより、さらに同時検出する可能性が高い、高線量の環境において、放射線の検出効率を高めることができる。
<具体的構成例>
 上記の各実施形態における放射線検出装置10は、図43および図44に示すような具体的な構成の例として実現される。
 図43は、本開示の各実施形態における放射線検出装置の具体的な構成例を説明する図である。この放射線検出装置10は、上述したように、電源装置(図示せず)およびチャンバ50を有している。チャンバ50の内部には、検出素子100(第1実施形態の場合)、ドリフトケージ70およびドリフト電極80が配置されている。検出素子100とドリフト電極80とは対向して配置されている。放射線を検出するときには、チャンバ50の内部に、上述したような希ガスおよびクエンチングガスの混合ガスが封入される。
 図44は、放射線検出装置10を用いたコンプトンカメラ20の概略構成図である。図44に示すように、検出モジュール52は放射線検出装置10を5方向から取り囲むように設けられている。図44においては、5箇所の検出モジュールにそれぞれ符号52a~52eを付している。なお、5方向に検出モジュール52を設けた例を示したが、少なくとも1方向(例えば、アノード電極101の下方向)に設けてあればよい。
 コンプトンカメラ200の原理は次の通りである。まず、外部から放射線検出装置10にγ線が入射すると、ある確率で入射γ線がチャンバ50内の気体と衝突し、γ線の散乱が発生する。図44に示す符号Aは、衝突位置である。衝突により進行方向が変化した散乱γ線は、放射線検出装置10を透過して検出モジュール52に入射する。検出モジュール52に散乱γ線が入射すると発光が生じ、この発光が光電子増倍管等によって電気信号に変換される。このようにして得られた電気信号は、散乱γ線の入射した位置及びその時刻を示す情報として取得される。このとき、散乱γ線のエネルギーを取得してもよい。散乱γ線のエネルギーを取得すると、所定の線源からのγ線がチャンバ内で1回のみ散乱したときに想定されるエネルギー範囲に限定して検出するように構成することにより、複数回散乱したγ線による影響(ノイズ)を除去することが可能となる。
 一方、入射γ線と衝突したチャンバ50内の気体は、符号Aの位置から所定の方向に反跳電子e-(荷電粒子)を放出する。すると、反跳電子の飛跡に沿って電子雲が発生する。電子雲を構成する電子は、ドリフト電極80とピクセル電極(アノード電極101)との間の電場によって、ピクセル電極(アノード電極101)へ引き寄せられる。このとき、ピクセル電極(アノード電極101)の近傍まで引き寄せられた電子は気体と衝突し、気体を電離させる。さらに電離によって生じた電子は雪崩的に増殖し、ピクセル電極(アノード電極101)にて検出される。このようにして得られた電気信号は検出信号に相当し、該検出信号は、電子が検出されたピクセルの位置及び当該ピクセルにおいて電子を検出した時刻を特定可能な信号である。
 なお、散乱γ線が検出モジュール52に入射してからピクセル電極(アノード電極101)で電子が検出されるまでの時間によって、そのピクセル電極(アノード電極101)から電子雲が生じた位置までの距離(Z方向の位置)が算出できる。
1…放射線検出システム、10…放射線検出装置、20…コンプトンカメラ、50…チャンバ、52…検出モジュール、55…エンコーダ、60…電源装置、70…ドリフトケージ、80…ドリフト電極、90…演算装置、100…検出素子、101…アノード電極、102…ビア電極、103…電極、104…ビア電極、105…アノード電極パターン、108…アノード端子部、110…基板、111…貫通孔、112…貫通電極、115…絶縁層、120…絶縁層、121…開口部、130…絶縁層、131…絶縁層、140…絶縁層、142…ビア電極、150…絶縁層、160…基板、170…基板、202…開口部、205…第1カソード電極パターン、208…第1カソード端子部、302…開口部、305…第2カソード電極パターン、308…第2カソード端子部

Claims (16)

  1.  絶縁基板の第1面側に露出して配置された複数の露出電極であって、第1露出電極、前記第1露出電極の第1方向に配置された第2露出電極、前記第1露出電極の第1方向と交差する第2方向に配置された第3露出電極、および、前記第2露出電極の前記第2方向かつ前記第3露出電極の前記第1方向に配置された第4露出電極を、少なくとも含む露出電極と、
     前記絶縁基板の第1面の反対側の第2面側に配置された第1電極パターンであって、前記第1露出電極と前記第2露出電極とに第1貫通電極により接続されたパターン、および前記第3露出電極と前記第4露出電極とに第2貫通電極により接続されたパターンを、少なくとも含む第1電極パターンと、
     第1露出部を有する第2電極パターンあって、前記第1露出電極と前記第3露出電極とに対応して前記第2方向に沿って配置されたパターン、および前記第2露出電極と前記第4露出電極とに対応して前記第2方向に沿って配置されたパターンを、少なくとも含み、前記第1露出部は、前記第1面側において露出し、前記露出電極と分離して配置される、第2電極パターンと、
     第2露出部を有する第3電極パターンであって、前記第1露出電極と前記第4露出電極とを結ぶ第3方向に沿って配置され、かつ、前記第1電極パターンと前記第2電極パターンとで前記第3電極パターンを挟むように配置されたパターンを、少なくとも含み、前記第2露出部は、前記第1面側において露出し、前記露出電極および前記第2電極パターンと分離して配置される、第3電極パターンと、
     を備えることを特徴とする検出素子。
  2.  前記第2電極パターンは、前記露出電極の一つを囲む第1開口部を有し、
     前記第3電極パターンは、前記露出電極の一つを囲む第2開口部を有し、
     前記第1開口部の幅は、前記第2開口部の幅よりも大きいことを特徴とする、
     請求項1に記載の検出素子。
  3.  前記第3電極パターンの前記第2露出部は、前記第2電極パターンと同一の層に配置されることを特徴とする、
     請求項1に記載の検出素子。
  4.  前記露出電極は、前記第2電極パターンと同一の層に配置されることを特徴とする、
     請求項3に記載の検出素子。
  5.  前記第1電極パターン、前記第2電極パターン、および前記第3電極パターンの少なくともいずれか一つは、前記第1露出電極、前記第2露出電極、および前記第4露出電極を囲む領域において、電気的に接続されていることを特徴とする、
     請求項1に記載の検出素子。
  6.  前記第2面側において、前記第1電極パターン上の絶縁層を有する、
     請求項1に記載の検出素子。
  7.  前記第1露出電極と前記第2露出電極とは隣接して配置され、
     前記第1露出電極と前記第3露出電極とは隣接して配置され、
     前記第1露出電極と前記第4露出電極とは隣接して配置されていることを特徴とする、
     請求項1に記載の検出素子。
  8.  前記第1露出電極と前記第2露出電極との距離、前記第1露出電極と前記第3露出電極との距離、および前記第1露出電極と前記第4露出電極との距離は等しいことを特徴とする、
     請求項7に記載の検出素子。
  9.  前記第2電極パターンに前記第1露出電極と第3露出電極とを結ぶ第1仮想直線を設けたときに、前記第1露出電極の中心と、前記第1露出電極の前記中心を通り前記第1仮想直線に直交する第2仮想直線が前記第2電極パターンの縁部と交差する第1交点との距離は、前記第1露出電極と前記第3露出電極との間の中間点と、前記中間点を通り前記第1仮想直線に直交する第3仮想直線が前記第2電極パターンの縁部と交差する第2交点との距離よりも大きいことを特徴とする、
     請求項8に記載の検出素子。
  10.  前記第2電極パターンは、波線形状の縁部を有することを特徴とする、
     請求項9に記載の検出素子。
  11.  前記露出電極は、前記第2露出電極を通り、かつ前記第1露出電極と前記第4露出電極との間を通る第4方向に設けられた第5露出電極をさらに含み、
     第3露出部を有する第4電極パターンであって、前記第1露出電極と前記第5露出電極とに対応して前記第4方向に沿って配置され、かつ、前記第2電極パターンと前記第3電極パターンとで前記第4電極パターンを挟むように配置されたパターンを、少なくとも含み、前記第3露出部は、前記第1面側において露出し、前記露出電極、前記第2電極パターン、および前記第3電極パターンと分離して配置される、第4電極パターンをさらに含む、
     請求項1に記載の検出素子。
  12.  前記第3電極パターンは、前記第1露出電極を囲む第1環状パターンと、前記第4露出電極を囲む第2環状パターンと、前記第1環状パターンと前記第2環状パターンとを接続する接続パターンを有し、
     前記接続パターンの幅は、前記第1環状パターンの外周幅および前記第2環状パターンの外周幅より狭いことを特徴とする、
     請求項7に記載の検出素子。
  13.  前記第3電極パターンは絶縁表面上に設けられ、
     前記絶縁表面は凹部を有し、
     前記露出電極は前記凹部に設けられ、
     前記凹部の表面から前記露出電極の上面までの距離は、前記絶縁表面から前記第3電極パターンの上面までの距離よりも大きいことを特徴とする、
     請求項1に記載の検出素子。
  14.  請求項1乃至13のいずれか一項に記載の検出素子と、前記検出素子の前記露出電極、前記第1電極パターン、前記第2電極パターンおよび前記第3電極パターンに接続された電源装置と、を含むことを特徴とする、
     放射線検出装置。
  15.  前記電源装置により印加される前記露出電極の電位と前記第2電極パターンの電位と間の電位差は、前記電源装置により印加される前記露出電極の電位と前記第3電極パターンの電位との間の電位差よりも大きいことを特徴とする、
     請求項14に記載の放射線検出装置。
  16.  請求項14に記載の放射線検出装置と、前記放射線検出装置を取り囲むように設けられた光を検出する検出モジュールとを含むことを特徴とする、コンプトンカメラ。
PCT/JP2019/035867 2018-09-13 2019-09-12 検出素子、放射線検出装置、およびコンプトンカメラ WO2020054796A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201980057295.7A CN112640030A (zh) 2018-09-13 2019-09-12 检测元件、放射线检测装置以及康普顿相机
EP19859579.5A EP3852128A4 (en) 2018-09-13 2019-09-12 DETECTION ELEMENT, RADIATION DETECTION DEVICE AND COMPTON CAMERA
US17/193,527 US11221420B2 (en) 2018-09-13 2021-03-05 Detection element, radiation detection device, and compton camera

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-171646 2018-09-13
JP2018171646A JP7032738B2 (ja) 2018-09-13 2018-09-13 検出素子、放射線検出装置、およびコンプトンカメラ

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/193,527 Continuation US11221420B2 (en) 2018-09-13 2021-03-05 Detection element, radiation detection device, and compton camera

Publications (1)

Publication Number Publication Date
WO2020054796A1 true WO2020054796A1 (ja) 2020-03-19

Family

ID=69777886

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/035867 WO2020054796A1 (ja) 2018-09-13 2019-09-12 検出素子、放射線検出装置、およびコンプトンカメラ

Country Status (5)

Country Link
US (1) US11221420B2 (ja)
EP (1) EP3852128A4 (ja)
JP (1) JP7032738B2 (ja)
CN (1) CN112640030A (ja)
WO (1) WO2020054796A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006047A (ja) 2000-06-27 2002-01-09 Japan Science & Technology Corp ピクセル型電極によるガス増幅を用いた粒子線画像検出器
JP2007520865A (ja) * 2004-02-03 2007-07-26 オルガニゼイション ユーロピエンヌ プール ラ レシェルシェ ニュークリエル 放射線検出器
JP2008243634A (ja) * 2007-03-28 2008-10-09 High Energy Accelerator Research Organization ガス放射線検出器
JP2013506850A (ja) * 2009-10-01 2013-02-28 ローマ リンダ ユニヴァーシティ メディカル センター イオン誘起衝突電離検出器及びその使用
WO2017077942A1 (ja) * 2015-11-05 2017-05-11 大日本印刷株式会社 検出素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3900992B2 (ja) * 2002-04-02 2007-04-04 株式会社日立製作所 放射線検出器及び放射線検査装置
JP6187436B2 (ja) * 2014-11-19 2017-08-30 株式会社豊田中央研究所 電子放出装置及びそれを備えるトランジスタ
WO2017061336A1 (ja) * 2015-10-08 2017-04-13 大日本印刷株式会社 検出素子
CN108352287B (zh) * 2015-12-02 2020-04-28 株式会社藤仓 离子过滤器以及离子过滤器的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002006047A (ja) 2000-06-27 2002-01-09 Japan Science & Technology Corp ピクセル型電極によるガス増幅を用いた粒子線画像検出器
JP2007520865A (ja) * 2004-02-03 2007-07-26 オルガニゼイション ユーロピエンヌ プール ラ レシェルシェ ニュークリエル 放射線検出器
JP2008243634A (ja) * 2007-03-28 2008-10-09 High Energy Accelerator Research Organization ガス放射線検出器
JP2013506850A (ja) * 2009-10-01 2013-02-28 ローマ リンダ ユニヴァーシティ メディカル センター イオン誘起衝突電離検出器及びその使用
WO2017077942A1 (ja) * 2015-11-05 2017-05-11 大日本印刷株式会社 検出素子

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3852128A4

Also Published As

Publication number Publication date
US11221420B2 (en) 2022-01-11
JP2020043033A (ja) 2020-03-19
EP3852128A1 (en) 2021-07-21
CN112640030A (zh) 2021-04-09
EP3852128A4 (en) 2022-07-20
US20210208291A1 (en) 2021-07-08
JP7032738B2 (ja) 2022-03-09

Similar Documents

Publication Publication Date Title
JP3822239B2 (ja) 比例マイクロカウンタを有する電離放射線検出器
US10191180B2 (en) Large scale gas electron multiplier and detection method
US9529099B2 (en) Microcavity plasma panel radiation detector
JP2002006047A (ja) ピクセル型電極によるガス増幅を用いた粒子線画像検出器
US9923115B2 (en) Particle detector and method of making the same
Titov New developments and future perspectives of gaseous detectors
JP5855577B2 (ja) 電子増幅器用基板の製造方法、電子増幅器の製造方法及び放射線検出器の製造方法
JP7420208B2 (ja) 検出装置
JP2009139346A (ja) 放射線検出センサおよび放射線検出センサユニット
Pinto Micropattern gas detector technologies and applications the work of the RD51 collaboration
JP4570132B2 (ja) X線画像のサブピクセル分解能のための中心点装置及び方法
WO2020054796A1 (ja) 検出素子、放射線検出装置、およびコンプトンカメラ
CN108415059A (zh) 具有多层结构单膜的厚型气体电子倍增器
WO2017077942A1 (ja) 検出素子
JP6623900B2 (ja) 検出素子及び放射線検出装置
JP2017181285A (ja) 検出素子及び放射線検出装置
JPWO2017057674A1 (ja) 放射線画像形成装置
JP3785501B2 (ja) ガス増幅型x線イメージング検出器及びガス増幅型x線イメージング検出方法
Gongadze Micromegas chambers for the experiment ATLAS at the LHC (A Brief Overview)
US12078765B2 (en) Radiation detection element
US12092773B2 (en) X-ray detector with interdigitated network
JP2013044732A (ja) 検出器
Czasch et al. Position and time sensitive photon counting detector with image charge delay-line readout
US20210373185A1 (en) Detecting position of ionizing radiation
KR20180034585A (ko) 이온 필터 및 이온 필터의 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859579

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019859579

Country of ref document: EP

Effective date: 20210413