WO2020054574A1 - Procédé d'inspection et dispositif d'inspection - Google Patents

Procédé d'inspection et dispositif d'inspection Download PDF

Info

Publication number
WO2020054574A1
WO2020054574A1 PCT/JP2019/034996 JP2019034996W WO2020054574A1 WO 2020054574 A1 WO2020054574 A1 WO 2020054574A1 JP 2019034996 W JP2019034996 W JP 2019034996W WO 2020054574 A1 WO2020054574 A1 WO 2020054574A1
Authority
WO
WIPO (PCT)
Prior art keywords
crumb
temperature
polymer
excess moisture
detected
Prior art date
Application number
PCT/JP2019/034996
Other languages
English (en)
Japanese (ja)
Inventor
祐介 河津
諒 難波
誠 野瀬
俊文 藤岡
浩之 物部
Original Assignee
宇部興産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宇部興産株式会社 filed Critical 宇部興産株式会社
Priority to KR1020217004833A priority Critical patent/KR102516475B1/ko
Priority to JP2020545970A priority patent/JP6982281B2/ja
Priority to CN201980053751.0A priority patent/CN112585466A/zh
Publication of WO2020054574A1 publication Critical patent/WO2020054574A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/44Resins; Plastics; Rubber; Leather
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N25/00Investigating or analyzing materials by the use of thermal means
    • G01N25/56Investigating or analyzing materials by the use of thermal means by investigating moisture content
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention is a technique for inspecting the presence or absence of moisture in a crumb-like polymer supplied and transferred.
  • a butadiene solution as a raw material is prepared, a catalyst is added, and polymerization is performed to obtain a polymer solution (polymerization step).
  • the obtained polymer solution is subjected to steam treatment, and a polymer in the form of a crumb slurry is recovered (solvent removing step).
  • the polymer containing water is dehydrated by an extruder, and dried by hot air or the like to form a dry crumb (dehydration / drying step).
  • the crumb-shaped polymer is compressed and molded (molding step).
  • grains having a particle size of about 3 to 10 mm generated in the process of producing synthetic rubber are called crumbs.
  • the present invention relates to a molding process.
  • the molding process will be described in more detail.
  • a crumb-shaped or powdered semi-finished product is a press-formed product (usually referred to as a veil, hereinafter referred to as a veil) having a rectangular parallelepiped shape by a press molding machine (usually referred to as a baler, hereinafter referred to as a baler). ).
  • the crumb-shaped polymer is automatically weighed and adjusted to the specified weight range. It is molded into a bale in the specified weight range, the weight is checked, and the rubber veil is covered with a thin film wrapper such as polyethylene film or polystyrene film, and a plurality of containers are stored in storage containers such as containers and shipped to users. You.
  • the bale is melted or dissolved, vulcanized and processed on the user side.
  • Patent Literature 1 by using an infrared transmitting transparent plate having a smooth surface and pressing rubber while irradiating infrared light to the sample rubber through the transparent plate, the water content of the sample rubber can be reduced in a short time, and Techniques that can measure accurately have been proposed.
  • the inventor of the present application has studied the mechanism of excess moisture remaining, and as a result, it is difficult to predict whether excess moisture remains or not, and it is difficult to predict that the moisture content of the sample rubber is equal to or less than a predetermined value. On the basis, it can be difficult to conclude that the product veil does not contain excess moisture.
  • the present invention has been made in view of the above problems, and has as its object to provide an inspection technique capable of detecting excess moisture after a dehydration / drying step and before molding.
  • the present invention for solving the above-mentioned problems is an inspection method for continuously supplying a crumb-like polymer that has been polymerized and dehydrated and dried, and detects crumbs containing excess moisture in the crumb-like polymer.
  • the temperature of the crumb-like polymer is measured, and the crumb containing excess moisture is detected based on the temperature difference.
  • the temperature at each measurement point is measured, the average temperature of a plurality of measurement points is obtained, and the crumb corresponding to the measurement point having a temperature lower than the average temperature is obtained. Is detected.
  • a crumb corresponding to a measurement point having a temperature difference from the average temperature of 9.5 ° C. or more is detected.
  • the average temperature of the polymer when the dehydrated and dried crumb-like polymer is supplied is 40 to 70 ° C.
  • the crumb containing excess moisture is in a lump.
  • the crumb containing excess moisture has a moisture content of 1% by mass or more.
  • the present invention for solving the above-mentioned problems is a supply means for continuously supplying a polymerized, dehydrated and dried crumb-shaped polymer, a temperature measuring means for measuring the temperature of the crumb-shaped polymer supplied from the supply means, A determination means for calculating a temperature difference from the average temperature using the temperature measurement means and detecting a crumb containing excess moisture based on the temperature difference.
  • the excess moisture inspection means is a thermographic camera.
  • the present invention can detect excess moisture after the dehydration / drying step and before molding.
  • FIG. 1 is a system configuration diagram according to an embodiment of the present invention.
  • 4 is a verification test result that is a basis for the basic concept of the present invention. It is a detection example concerning one embodiment of the present invention.
  • FIG. 1 is a system configuration diagram according to an embodiment of the present invention.
  • the system includes a continuous supply unit, an excess moisture inspection unit, a bale-equivalent weight measuring unit, a bale forming unit, a carrying-out unit, and a control unit, and performs a series of operations.
  • the continuous supply means is, for example, the vibration feeder 1. After the polymerization, the vibration feeder 1 continuously supplies the crumb-shaped polymer 2 that has undergone the dehydration / drying step 8 to the system.
  • the excess moisture inspection means is, for example, a thermographic camera 3.
  • the thermographic camera 3 is provided on the vibrating feeder 1 and detects excess moisture by detecting temperature rise due to insufficiently dried crumbs (described later in detail).
  • the veil-equivalent weight measuring means is, for example, a weighing device 6 having a hopper.
  • the hopper is provided between the continuous feeding means and the bale forming means.
  • the hopper has an upper hopper and a lower hopper. The operations of the upper hopper and the lower hopper are controlled, and the weight of the crumb-like polymer accumulated in the hopper by the weighing device 6 is measured to measure the weight of the crumb-like polymer equivalent to the veil.
  • the bale forming means is, for example, a pressure forming machine (baler) 7.
  • the crumb-shaped polymer measured by the bale-equivalent weight measuring means is supplied and pressed to form a veil.
  • the unloading means is, for example, the conveyor 14.
  • a weight measuring device 15 is provided in the middle of the conveyor 14.
  • the control device 30 inputs the excess moisture inspection information from the excess moisture inspection means 3 and the bale weight information from the weight measuring device 15 and performs sorting control. In other words, no excess moisture is detected, and a bale having a weight in a normal range is carried out to the next step (packing step) 9 as a regular product 12, and a veil in which excess moisture is detected and / or a weight outside the normal range is removed. It is removed as a nonstandard product 13 and sent to another process 10 (reprocessing).
  • FIG. 2 shows verification test results that are the basis of the basic concept of the present invention.
  • the vertical axis in FIG. 2 is the moisture content (mass%) of crumb, and the horizontal axis is a numerical value obtained from [(WP surface temperature) ⁇ (average crumb temperature)].
  • the WP surface temperature is a measured temperature of a portion of the crumb that is assumed to contain excess moisture
  • the crumb average temperature is an average temperature of a plurality of measurement points.
  • the average temperature of the crumb-like polymer continuously supplied to the molding step via the dehydration / drying step is 40 to 70 ° C. More specifically, in a verification test performed in winter, the average temperature of the crumb-shaped polymer was 48.8 ° C., whereas in a verification test performed in summer, the average temperature of the crumb-shaped polymer was 60.80 ° C. 7 ° C.
  • the average outside temperature in winter at the verification test site is around 6 ° C, and the average outside temperature in summer is around 26 ° C.
  • the average temperature of the crumb-like polymer after the dehydration / drying step is affected by the ambient temperature.
  • crumbs containing excess water tended to form lumps.
  • the portion of the mass containing excess moisture was defined as WET POINT (WP). While the crumb after the dehydration / drying step is relatively hot, crumbs containing excess moisture take away the heat of the crumb when the moisture evaporates, or the temperature is less likely to rise due to the addition of excess moisture. It is supposed to be.
  • the crumb surface temperature is 48.8 ° C and the WP is 35.4 ° C (the temperature difference between the crumb surface temperature and the WP is 13.4 ° C) in winter, and the crumb surface temperature is 60.7 ° C and WP47. 4 ° C. (13.3 ° C. between the crumb surface temperature and the WP).
  • ⁇ Detection of crumb (WET POINT) containing excess water ⁇ WET POINT is detected based on the temperature difference. More specifically, a WET POINT can be detected by determining an average temperature of a plurality of measurement points of the crumb and setting a measurement point having a temperature lower than the average temperature as a WET POINT.
  • WET POINT By setting a measurement point portion having a difference from the average temperature of 9.5 ° C. or more as WET POINT, WET POINT can be detected with higher accuracy.
  • the average temperature of a pea crumb can be determined, for example, by the following method.
  • Fig. 3 shows an example of temperature measurement.
  • the temperature measuring means is a thermographic camera. Imaging at 30 frames / sec is possible.
  • thermographic camera 3 for example, CPA-L25B manufactured by Chino can be used.
  • the crumb is photographed and imaged by a thermographic camera, and the temperature of each image in each image is measured in a pixel range (dotted line in the drawing) corresponding to a predetermined range (eg, 600 mm ⁇ 500 mm).
  • the average temperature of the crumb can be obtained from the measured temperature of each pixel.
  • the measuring point is preferably 100 to 100,000, more preferably 1,000 to 100,000, and particularly preferably 10,000 to 100,000.
  • WET POINT can be detected with high accuracy.
  • WET @ POINT is detected by extracting a low-temperature pixel having a temperature lower than a predetermined value (for example, 9.5 ° C.) from the average temperature.
  • Small pieces containing water may be peeled off by some kind of cutting, and mixed into crumbs supplied to the next step (molding step).
  • the present application is suitable for detecting WET POINT, the present invention is not limited to crumb lumps but can be applied to crumbs.
  • the general crumb particle size is 3 to 10 mm.
  • a particle size of 20 mm or more is called a crumb lump.
  • the excess moisture can be detected after the dehydration / drying step and before bale molding. As a result, excess moisture inside the bale can also be detected.
  • the crumb-shaped polymer has tackiness, and the particles tend to stick to each other. As a result, the particle size becomes uneven and the behavior is hard to predict. A complicated mechanism is required to remove the crumb-like polymer containing excess moisture in the falling trajectory to the baler. On the other hand, if the veil containing excess moisture is removed after bale molding, it can be easily and reliably removed.
  • thermographic camera no configuration or process other than the thermographic camera and simple control is required. Excess moisture can be easily and reliably detected without adding a new configuration or a new process to an existing manufacturing process. It does not affect product quality.
  • the crumb-like polymer to be veiled is a vulcanizable rubber such as natural rubber (NR), isoprene rubber (IR), styrene butadiene rubber (SBR), butadiene rubber (BR), chloroprene rubber (CR), butyl rubber (IIR), nitrile rubber (NBR), ethylene / propylene rubber (EPM, EPDM), chlorosulfonated polyethylene rubber (CSM), acrylic rubber (ACM), urethane rubber (U), silicone rubber (VMQ) , PVMQ, FVMQ), fluoro rubber (FKM), polysulfide rubber (T) and the like.
  • the present invention is most suitably applied to butadiene rubber (BR). In the verification test, butadiene rubber was used.
  • the average temperature of the crumb-like polymer continuously supplied to the molding step via the dehydration / drying step is 40 to 70 ° C.
  • the average temperature was 48.8 ° C.
  • the average temperature was 60.7 ° C.
  • the water content of the crumb-like polymer was examined. Crumbs near or above average have very low moisture content.
  • the temperature of the crumb was lower than the average, especially when the temperature difference from the average temperature was 9.5 ° C. or more, the water content was remarkably high.
  • the temperature of the mass of the crumb containing excess moisture was 35.4 ° C.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Investigating Or Analyzing Materials Using Thermal Means (AREA)
  • Testing Or Measuring Of Semiconductors Or The Like (AREA)
  • Transplanting Machines (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

L'invention concerne une technologie d'inspection permettant de détecter une humidité excessive avant le moulage après une étape de déshydratation/séchage. Ce procédé d'inspection de polymères de type granulaire est caractérisé en ce qu'il consiste à : fournir en continu un polymère de type granulaire qui a été polymérisé, déshydraté et séché ; et détecter des granules contenant de l'humidité excessive dans le polymère de type granulaire.
PCT/JP2019/034996 2018-09-10 2019-09-05 Procédé d'inspection et dispositif d'inspection WO2020054574A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217004833A KR102516475B1 (ko) 2018-09-10 2019-09-05 검사 방법 및 검사 장치
JP2020545970A JP6982281B2 (ja) 2018-09-10 2019-09-05 検査方法および検査装置
CN201980053751.0A CN112585466A (zh) 2018-09-10 2019-09-05 检查方法及检查装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018-169191 2018-09-10
JP2018169191 2018-09-10

Publications (1)

Publication Number Publication Date
WO2020054574A1 true WO2020054574A1 (fr) 2020-03-19

Family

ID=69777602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034996 WO2020054574A1 (fr) 2018-09-10 2019-09-05 Procédé d'inspection et dispositif d'inspection

Country Status (5)

Country Link
JP (1) JP6982281B2 (fr)
KR (1) KR102516475B1 (fr)
CN (1) CN112585466A (fr)
TW (1) TWI774987B (fr)
WO (1) WO2020054574A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912339A (ja) * 1982-07-13 1984-01-23 Japan Synthetic Rubber Co Ltd 高水分含有部分の検出方法及び装置
JP2004020192A (ja) * 2002-06-12 2004-01-22 Nippon Zeon Co Ltd ゴムの水分含有率測定方法
JP2009031099A (ja) * 2007-07-26 2009-02-12 Nippon Zeon Co Ltd 粒状エラストマー重合体の検査方法および検査装置
WO2018181199A1 (fr) * 2017-03-30 2018-10-04 日本ゼオン株式会社 Dispositif de détection d'une substance contenant de l'eau, procédé de détection d'une substance contenant de l'eau et procédé de fabrication d'un polymère caoutchouteux

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4408482A (en) * 1981-12-18 1983-10-11 Tsentralny Nauchno-Issledovatelsky Institut Kozhevenno-Obuvnoi Promyshlennosti Method and apparatus for the determination of moisture content of fibrous and granular materials
JP2873367B2 (ja) 1996-06-27 1999-03-24 日清紡績株式会社 熱及び水分移動特性測定装置
US7579385B1 (en) * 1998-04-28 2009-08-25 Asahi Kasei Kabushiki Kaisha Dried porous crumbs of hydrogenated block copolymer
CN101055248B (zh) 2007-04-28 2010-12-15 吉林燃料乙醇有限责任公司 用近红外光谱技术分析高水分玉米及冻玉米水分的方法
JP2010070707A (ja) * 2008-09-22 2010-04-02 Nippon Shokubai Co Ltd 重合体乾燥物の製造方法
JP5883948B2 (ja) * 2012-11-27 2016-03-15 株式会社日本触媒 ポリアクリル酸(塩)系吸水性樹脂の製造方法
JP6302193B2 (ja) * 2013-09-06 2018-03-28 三菱ケミカルエンジニアリング株式会社 木質ペレット製造用生木の乾燥方法及びこの乾燥方法を適用した乾燥工程を備える木質ペレット製造装置
TW201615668A (zh) * 2014-09-04 2016-05-01 Zeon Corp 移位聚合觸媒液的評估方法及環狀烯烴聚合物的製造方法
CN105987915A (zh) * 2015-02-16 2016-10-05 中国石油天然气股份有限公司 一种乙烯丙烯聚合物溶液水相的测定方法
US9983171B2 (en) * 2015-07-28 2018-05-29 Ppg Industries Ohio, Inc. Aerospace transparency having moisture sensors
DE102015119267A1 (de) * 2015-11-09 2017-05-11 Brabender Messtechnik Gmbh & Co. Kg Vorrichtung und Verfahren zur Bestimmung der Feuchtigkeit einer Probe
US9709443B2 (en) * 2015-12-07 2017-07-18 The Boeing Company Detecting inclusions and disbonds in green material repairs with thermography
CN109508832A (zh) * 2018-11-22 2019-03-22 李东峰 基于变量压缩bp神经网络的电厂so2排放软测量方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5912339A (ja) * 1982-07-13 1984-01-23 Japan Synthetic Rubber Co Ltd 高水分含有部分の検出方法及び装置
JP2004020192A (ja) * 2002-06-12 2004-01-22 Nippon Zeon Co Ltd ゴムの水分含有率測定方法
JP2009031099A (ja) * 2007-07-26 2009-02-12 Nippon Zeon Co Ltd 粒状エラストマー重合体の検査方法および検査装置
WO2018181199A1 (fr) * 2017-03-30 2018-10-04 日本ゼオン株式会社 Dispositif de détection d'une substance contenant de l'eau, procédé de détection d'une substance contenant de l'eau et procédé de fabrication d'un polymère caoutchouteux

Also Published As

Publication number Publication date
TW202033957A (zh) 2020-09-16
CN112585466A (zh) 2021-03-30
JPWO2020054574A1 (ja) 2021-08-30
KR20210034043A (ko) 2021-03-29
JP6982281B2 (ja) 2021-12-17
TWI774987B (zh) 2022-08-21
KR102516475B1 (ko) 2023-04-03

Similar Documents

Publication Publication Date Title
KR20090034920A (ko) X선 검사 장치, 및 x선 검사 프로그램
JP2009031099A (ja) 粒状エラストマー重合体の検査方法および検査装置
JP6656326B2 (ja) 空化を監視するためのユニットを備えた、凍結血液製剤を収容したボトルを重力で空にするための装置および空にする方法
WO2020054574A1 (fr) Procédé d'inspection et dispositif d'inspection
WO2018084477A3 (fr) Système de détection, d'élimination, de transfert et de récupération d'une matière première incomplètement séchée
JP6619643B2 (ja) 粉粒体質量検査装置及び検査方法、並びに粉粒体含有物品の製造装置及び製造方法
US11397157B2 (en) Water-containing substance detection device, water-containing substance detection method, and method of manufacturing rubbery polymer
CN205192978U (zh) 一种粉料食品水分在线检测装置
US20010009561A1 (en) Method and apparatus for detecting mouldings in a package
CN114929380A (zh) 吸收体、吸水性树脂、及吸收性物品
CN107702656A (zh) 一种矿石水膜厚度的检测方法
EP3128323B1 (fr) Procédé et système pour détecter des défauts dans des récipients en plastique
TWI777088B (zh) 異物除去方法及分揀系統
JP6438428B2 (ja) 射出成形システム
Kandala et al. RF impedance method for nondestructive moisture content determination for in-shell peanuts
US20100008396A1 (en) Method For Determining Internal Temperature of Meat Products
JP2017194298A (ja) ピンホール検査装置
CN105572132B (zh) 一种块状固体产品外观质量检测装置及方法
US20220379533A1 (en) Injection Molding Machine Management System
US20170252989A1 (en) Method for the Determination of Residual Moisture on and/or Within a Lens Forming Surface
JPS5912339A (ja) 高水分含有部分の検出方法及び装置
JPH0547A (ja) 茶葉水分測定装置
JPH03110443A (ja) 含水量測定装置
JP2015083966A (ja) 検査装置
CN205624283U (zh) 保持营养粉熟化度均匀的辊筒干燥机的控制系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19860797

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020545970

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217004833

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860797

Country of ref document: EP

Kind code of ref document: A1