WO2020054553A1 - 鋼材およびその製造方法 - Google Patents
鋼材およびその製造方法 Download PDFInfo
- Publication number
- WO2020054553A1 WO2020054553A1 PCT/JP2019/034830 JP2019034830W WO2020054553A1 WO 2020054553 A1 WO2020054553 A1 WO 2020054553A1 JP 2019034830 W JP2019034830 W JP 2019034830W WO 2020054553 A1 WO2020054553 A1 WO 2020054553A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- less
- steel material
- steel
- wear resistance
- content
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/001—Heat treatment of ferrous alloys containing Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/002—Heat treatment of ferrous alloys containing Cr
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/004—Heat treatment of ferrous alloys containing Cr and Ni
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/005—Heat treatment of ferrous alloys containing Mn
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/021—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips involving a particular fabrication or treatment of ingot or slab
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0221—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
- C21D8/0226—Hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D8/00—Modifying the physical properties by deformation combined with, or followed by, heat treatment
- C21D8/02—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
- C21D8/0247—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
- C21D8/0263—Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/46—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C30/00—Alloys containing less than 50% by weight of each constituent
- C22C30/02—Alloys containing less than 50% by weight of each constituent containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C37/00—Cast-iron alloys
- C22C37/06—Cast-iron alloys containing chromium
- C22C37/08—Cast-iron alloys containing chromium with nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/001—Ferrous alloys, e.g. steel alloys containing N
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/002—Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/005—Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/06—Ferrous alloys, e.g. steel alloys containing aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/14—Ferrous alloys, e.g. steel alloys containing titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/36—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.7% by weight of carbon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/38—Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/42—Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/44—Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/46—Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/48—Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/50—Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/54—Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/40—Ferrous alloys, e.g. steel alloys containing chromium with nickel
- C22C38/58—Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/60—Ferrous alloys, e.g. steel alloys containing lead, selenium, tellurium, or antimony, or more than 0.04% by weight of sulfur
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/001—Austenite
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D2211/00—Microstructure comprising significant phases
- C21D2211/004—Dispersions; Precipitations
Definitions
- the present invention relates to a steel material and a method for producing the same, and more particularly to improvement in wear resistance of an austenitic steel material.
- industrial machines such as power shovels, bulldozers, hoppers, bucket conveyors, rock crushers, and transportation equipment, sliding wear, impact wear, etc. due to rock, sand, ore, etc. Exposed to wear. Therefore, members such as industrial machines and transport equipment are required to have excellent wear resistance from the viewpoint of improving the life of the machines and equipment.
- the wear resistance of steel materials improves as the hardness of steel materials increases.
- the austenite phase has a large hardening amount when strain is applied, that is, a large work hardening property. Therefore, the austenitic steel material hardens in the vicinity of the worn surface during use in an impact wear environment in which an impact force such as a collision of a rock is applied, and exhibits extremely excellent wear resistance. Further, the austenite phase has better ductility and toughness as compared with structures such as a ferrite phase and a martensite phase.
- austenitic steel materials such as Hadfield steel, which provide an austenitic structure due to high manganese content, have been widely used as inexpensive wear-resistant steel materials.
- Patent Literature 1 describes "Abrasion resistant austenitic steel material and a method for producing the same".
- the technique described in Patent Literature 1 is based on a method of using copper (%) in which manganese (Mn): 15 to 25%, carbon (C): 0.8 to 1.8%, and 0.7C-0.56 (%) ⁇ Cu ⁇ 5%.
- It is a wear-resistant austenitic steel material consisting of Cu), the balance Fe and other unavoidable impurities, and having a Charpy impact value at ⁇ 40 ° C. of 100 J or more and having excellent toughness in the heat affected zone.
- an austenite structure can be obtained stably due to the high manganese content, and further, the generation of carbides in the heat-affected zone after welding can be suppressed, and a decrease in toughness of the welded heat-affected zone can be prevented. I can do it.
- Patent Document 2 describes “abrasion-resistant austenitic steel material and a method for producing the same”.
- the wear-resistant austenitic steel material described in Patent Document 2 is 8 to 15% by weight of manganese (Mn), 23% ⁇ 33.5C-Mn ⁇ 37%, carbon (C) satisfying the relationship of 37%, 1.6C- Abrasion-resistant austenitic steel material with excellent ductility, containing copper (Cu) satisfying 1.4 (%) ⁇ Cu ⁇ 5%, the balance being Fe and other unavoidable impurities, and having an area fraction of carbide of 10% or less. It is.
- the high manganese content enables a stable austenite structure to be obtained, and also suppresses the formation of carbides in the steel material, thereby preventing a reduction in the toughness of the steel material.
- the present invention has been made in view of the problems of the related art, and has as its object to provide an austenitic steel material having excellent wear resistance and a method for producing the same.
- excellent in wear resistance refers to a combination of excellent sliding wear resistance and excellent impact wear resistance.
- Step refers to a plate-like steel plate (sheet material) or a rod-like shape. (Bar material), linear wire material, and shaped steel having various cross-sectional shapes.
- the present inventors first conducted intensive studies on various factors affecting the abrasion resistance of austenitic steel materials.
- it is effective to include hard particles in the base phase (austenite phase), and in particular, particles that can be included in the base phase (austenite phase).
- Ti carbide having a very high hardness is effective.
- sliding wear wear progresses as the outermost layer of the steel material is continuously shaved, so hard particles are contained in the base phase (austenite phase). Appears, resistance to the progress of wear is obtained, the wear resistance is improved, and the wear life is prolonged.
- a casting step of smelting molten steel to form a slab a heating step of heating the slab, a hot rolling step of hot-rolling the heated slab to form a steel material, and cooling the steel material.
- a cooling step of sequentially performing The slab in mass%, C: 0.10% to 2.50%, Mn: 8.0% or more and 45.0% or less, P: 0.300% or less, S: 0.1000% or less, Ti: 0.10% or more and 5.00% or less, Al: 0.001% to 5.000%, N: 0.5000% or less, O (oxygen): contains 0.1000% or less, and contains C, Ti, and Mn in a range that satisfies the following formula (1), with the balance being Fe and inevitable impurities,
- the heating temperature in the heating step is 950 ° C or higher and 1300 ° C or lower, A method for producing a steel material, wherein the cooling in the cooling step is more than 1 ° C / s at an average cooling rate in a temperature range of
- the slab further includes, in addition to the component composition, Si: 0.01% or more and 5.00% or less, Cu: 0.1% or more and 10.0% or less, Ni: 0.1% or more and 25.0% or less, Cr: 0.1% or more and 30.0% or less, Mo: 0.1% or more and 10.0% or less, Nb: 0.005% to 2.000%, V: 0.01% or more and 2.00% or less, W: 0.01% or more and 2.00% or less, B: 0.0003% or more and 0.1000% or less, Ca: 0.0003% or more and 0.1000% or less, Mg: 0.0001% or more and 0.1000% or less, REM: The method for producing a steel material according to the above (4), comprising one or more selected from among 0.0005% or more and 0.1000% or less.
- an austenitic steel material having both excellent sliding wear resistance and excellent impact wear resistance and excellent wear resistance, and has a remarkable industrial effect. Further, according to the present invention, there is also an effect that the life of an industrial machine, a transport machine, or the like that operates in various wear environments can be improved.
- % by mass regarding the component composition is simply described as “%” unless otherwise specified.
- C 0.10% to 2.50%
- C is an element that stabilizes the austenite phase and is an important element for obtaining an austenite structure at normal temperature. In order to obtain such effects, a C content of 0.10% or more is required. If C is less than 0.10%, the stability of the austenite phase is insufficient, and a sufficient austenite structure cannot be obtained at room temperature. On the other hand, if it exceeds 2.50%, the hardness increases and the toughness of the weld decreases. Therefore, in the present invention, C is limited to the range of 0.10% to 2.50%. In addition, it is preferably 0.12% or more and 2.00% or less.
- Mn 8.0% or more and 45.0% or less
- Mn is an element that stabilizes the austenite phase and is an important element for obtaining an austenite structure at room temperature. To obtain such an effect, Mn content of 8.0% or more is required. If Mn is less than 8.0%, the stability of the austenite phase is insufficient, and a sufficient austenite structure cannot be obtained. On the other hand, if it exceeds 45.0%, the effect of stabilizing the austenite phase saturates and becomes economically disadvantageous. Therefore, in the present invention, Mn is limited to the range of 8.0% to 45.0%. In addition, it is preferably 10.0% or more and 40.0% or less.
- P 0.300% or less
- P is an element that segregates at crystal grain boundaries to embrittle the grain boundaries and reduce the toughness of the steel material.
- P is an element inevitably contained in steel as an impurity, and it is preferable that the content thereof is small.
- P is 0.001% or more. It is preferable that
- S 0.1000% or less
- S is an element that is dispersed in steel mainly as a sulfide-based inclusion and reduces ductility and toughness of steel. Therefore, in the present invention, it is desirable to reduce as much as possible, but 0.1000% or less is acceptable. In addition, it is preferably 0.0800% or less. Although S is preferably as small as possible, excessively low S leads to an increase in refining time and an increase in refining cost. Therefore, S is preferably set to 0.0001% or more.
- Ti 0.10% or more and 5.00% or less
- Ti is an important element in the present invention, and is an element having a function of forming a hard carbide and improving a sliding wear resistance of an austenitic structure. To obtain such an effect, the content of 0.10% or more is required. On the other hand, when the content exceeds 5.00%, ductility and toughness are reduced. Therefore, Ti is limited to the range of 0.10% to 5.00%. Preferably, it is not less than 0.60% and not more than 4.50%.
- Al 0.001% or more and 5.000% or less
- Al is an element that effectively acts as a deoxidizing agent, and in order to obtain the effect, the content of 0.001% or more is required.
- the content of Al is set to 0.001% to 5.000%. In addition, it is preferably 0.003% or more and 4.500% or less.
- N 0.5000% or less N is an element inevitably contained in steel as an impurity and lowers the ductility and toughness of a welded part. It is desirable to reduce as much as possible, but if it is 0.5000% or less, it is acceptable. Preferably it is 0.3000% or less. Although N is preferably as small as possible, an excessively low N leads to an increase in refining time and an increase in refining cost. Therefore, N is preferably set to 0.0005% or more.
- O oxygen
- O is an element unavoidably contained in steel as an impurity and is present in steel as inclusions such as oxides, and reduces ductility and toughness. Desirable, but 0.1000% or less is acceptable. Preferably it is 0.0500% or less.
- O is preferably as small as possible, excessive oxygen reduction leads to an increase in smelting time and an increase in smelting cost. Therefore, O is preferably set to 0.0005% or more.
- C, Ti, and Mn are set within the respective ranges described above, and the following equation (1): 25 ([C] -12.01 [Ti] /47.87) + [Mn] ⁇ 25 (1) (Where [C], [Ti], [Mn]: content of each element (% by mass)) Is contained so as to satisfy the relational expression.
- the left side of the expression (1) represents the degree of stabilization of the austenite phase, and the larger the left side value, the higher the degree of stabilization of the austenite phase.
- the left side of the equation (1) is the sum of the content of C, which is an element contributing to stabilization of the austenite phase, and the content of Mn.
- the austenitic stabilization ability is considered in consideration of the austenite stabilization ability of each element. Multiplied by the corresponding coefficient.
- C is an effective content obtained by subtracting an amount that is precipitated as Ti carbide and does not contribute to stabilization of the austenite phase.
- the value on the left side of the expression (1) is preferably 30 or more.
- the above-mentioned components are basic components.
- Si 0.01% or more and 5.00% or less
- Cu 0.1% or more and 10.0% or less
- Ni 0.1% to 25.0%
- Cr 0.1% to 30.0%
- Mo 0.1% to 10.0%
- Nb 0.005% to 2.000%
- V 0.01% to 2.00%
- W 0.01% 2.00% or less
- B 0.0003% to 0.1000%
- Ca 0.0003% to 0.1000%
- Mg 0.0001% to 0.1000%
- REM 0.0005% to 0.1000% It can contain more than one species.
- Si, Cu, Ni, Cr, Mo, Nb, V, W, B, Ca, Mg, and REM are all elements that improve the strength of steel (base metal and welded parts). One or two or more can be selected.
- Si 0.01% or more and 5.00% or less
- Si is an element that effectively acts as a deoxidizing agent and also forms a solid solution and contributes to increasing the hardness of steel.
- the content needs to be 0.01% or more. If the content of Si is less than 0.01%, the above effects cannot be sufficiently obtained.
- a content exceeding 5.00% causes problems such as an increase in the amount of inclusions, in addition to a decrease in ductility and toughness. For this reason, when it is contained, the content of Si is preferably in the range of 0.01% or more and 5.00% or less. In addition, more preferably, it is 0.05% or more and 4.50% or less.
- Cu 0.1% or more 10.0%
- Cu is an element that forms a solid solution or precipitates and contributes to improving the strength of the steel material. In order to obtain such an effect, the content needs to be 0.1% or more. On the other hand, if the content exceeds 10.0%, the effect saturates and becomes economically disadvantageous. Therefore, when it is contained, it is preferable that Cu is in the range of 0.1% or more and 10.0% or less. In addition, more preferably, it is 0.5% or more and 8.0% or less.
- Ni 0.1% or more and 25.0% or less
- Ni is an element that contributes to improving the strength of the steel material and has an action of improving the toughness.
- the content needs to be 0.1% or more.
- the content exceeds 25.0%, the effect is saturated and economically disadvantageous. Therefore, when it is contained, it is preferable that the content of Ni is in the range of 0.1% or more and 25.0% or less. In addition, more preferably it is 0.5% or more and 20.0% or less.
- Cr 0.1% or more and 30.0% or less Cr is an element that contributes to improving the strength of steel. In order to obtain such an effect, the content needs to be 0.1% or more. On the other hand, if the content exceeds 30.0%, the effect is saturated and it is economically disadvantageous. Therefore, when it is contained, it is preferable that Cr is in the range of 0.1% or more and 30.0% or less. In addition, more preferably, it is 0.5% or more and 28.0% or less.
- Mo 0.1% or more and 10.0% or less Mo is an element that contributes to improving the strength of steel. In order to obtain such an effect, the content needs to be 0.1% or more. On the other hand, if the content exceeds 10.0%, the effect is saturated and it is economically disadvantageous. Therefore, when Mo is contained, it is preferable that Mo be in the range of 0.1% or more and 10.0% or less. In addition, more preferably it is 0.5% or more and 8.0% or less.
- Nb 0.005% to 2.000%
- Nb is an element that contributes to improving the strength of steel by precipitating as carbonitride. In order to obtain such an effect, the content of 0.005% or more is required. On the other hand, when the content exceeds 2.000%, the toughness is reduced. Therefore, when Nb is contained, it is preferable that Nb is in the range of 0.005% to 2.000%. Note that the content is more preferably 0.007% or more and 1.700% or less.
- V 0.01% or more and 2.00% or less
- V is an element that precipitates as a carbonitride and contributes to improving the strength of steel. In order to obtain such an effect, the content needs to be 0.01% or more. On the other hand, a content exceeding 2.00% lowers toughness. Therefore, when V is contained, V is preferably in the range of 0.01% to 2.00%. In addition, more preferably, it is 0.02% or more and 1.80% or less.
- W 0.01% or more and 2.00% or less W is an element that contributes to improving the strength of steel. In order to obtain such an effect, the content needs to be 0.01% or more. On the other hand, a content exceeding 2.00% lowers toughness. Therefore, when W is contained, W is preferably in the range of 0.01% to 2.00%. In addition, more preferably, it is 0.02% or more and 1.80% or less.
- B 0.0003% or more and 0.1000% or less B is an element that segregates at crystal grain boundaries and contributes to improvement of grain boundary strength. In order to obtain such an effect, the content needs to be 0.0003% or more. On the other hand, if the content exceeds 0.1000%, the toughness is reduced due to grain boundary precipitation of carbonitride. Therefore, when B is contained, it is preferable that B be in the range of 0.0003% or more and 0.1000%. In addition, more preferably, it is 0.0005% or more and 0.0800% or less.
- Ca 0.0003% or more and 0.1000% or less
- Ca forms oxysulfides with high stability at high temperatures to pin the crystal grain boundaries, and to suppress the coarsening of the crystal grains at the weld, and maintain the crystal grains finely. Therefore, it is an element that contributes to the improvement of the strength and toughness of the welded joint. In order to obtain such an effect, the content needs to be 0.0003% or more. On the other hand, if the content exceeds 0.1000%, the cleanliness is reduced and the toughness of the steel is reduced. Therefore, when Ca is contained, the content of Ca is preferably in the range of 0.0003% to 0.1000%. In addition, more preferably, it is 0.0005% or more and 0.0800% or less.
- Mg 0.0001% or more and 0.1000% or less Mg forms oxysulfides with high stability at high temperatures, pinning the crystal grain boundaries, and suppressing the coarsening of the welded grains, and keeping the crystal grains fine. In particular, it is an element that contributes to improving the strength and toughness of the welded joint. In order to obtain such effects, the content of 0.0001% or more is required. On the other hand, if the content exceeds 0.1000%, the cleanliness is reduced and the toughness of the steel material is reduced. Therefore, when contained, Mg is preferably in the range of 0.0001% or more and 0.1000% or less. In addition, more preferably, it is 0.0005% or more and 0.0800% or less.
- REM 0.0005% or more and 0.1000% or less REM (rare earth metal) forms oxysulfides with high stability at high temperatures, pinning the crystal grain boundaries, and especially suppressing the coarsening of the crystal grains in the welded area. Is an element contributing to the improvement of the strength and toughness of the welded joint part by maintaining the fineness. In order to obtain such an effect, the content needs to be 0.0005% or more. On the other hand, if the content exceeds 0.1000%, the cleanliness is reduced and the toughness of the steel material is reduced. Therefore, when it is contained, the REM is preferably in the range of 0.0005% to 0.1000%. Note that the content is more preferably in the range of 0.0010% to 0.0800%.
- the austenitic steel material of the present invention has the above-mentioned composition, and further has a structure containing 90% or more of an austenitic phase and 0.2% or more of Ti carbide in area ratio.
- Austenitic phase in the structure 90% or more
- the structure of the steel material of the present invention mainly comprises the austenitic phase from the viewpoint of improving impact wear resistance.
- the area ratio of the austenite phase is set to 90% or more.
- the austenite phase in the structure may be 90% or more in area ratio, and may be 100%.
- the ratio of the “austenite phase in the structure” indicates the ratio (area ratio) of the austenite phase to the total amount of the structure excluding inclusions and precipitates.
- the structure other than the austenitic phase may be one or more of a ferrite phase, a bainite structure, a martensite structure, and a pearlite structure having a total area ratio of less than 10%.
- the area ratio of the austenite phase in the structure was analyzed by backscattered electron diffraction (EBSP) analysis, and the structure (ferrite phase, bainite structure) excluding inclusions and precipitates from the obtained Inverse Pole Figure map. , Martensite structure, pearlite structure, austenite phase) by calculating the ratio of the austenite phase to the total amount.
- the “ratio of austenite phase” used herein is a value measured at a position 1 mm below the surface of the steel material.
- the hardness of the matrix that is, the hardness of the austenite phase itself.
- the hardness of the austenite phase is preferably set to 200 HV or more. More preferably, it is 250 HV or more.
- the pressure is preferably 400 HV or less, more preferably 380 HV or less.
- the structure contains Ti carbide which is harder than sand or rock components such as Al 2 O 3 and SiO 2 .
- the Ti carbides contained in the structure are hard particles, which are resistant to sliding wear due to sand and rock components, and have an effect of improving the sliding wear resistance.
- it is necessary to include Ti carbide in the structure in an area ratio of 0.2% or more.
- the content of Ti carbide was limited to 0.2% or more in area ratio.
- it is 0.5% or more.
- the upper limit of the content of Ti carbide is not particularly limited, but is preferably not more than 10% in terms of area ratio from the viewpoint of ductility and toughness of the steel material. It is more preferably at most 8.0%.
- a Ti carbide is identified using energy dispersive X-ray spectroscopy (EDS) of a scanning electron microscope (SEM), and the total area of the Ti carbide is measured using image analysis software. The area ratio of Ti carbide was calculated. In the measurement of EDS, precipitates containing 10 at% or more of Ti and 30 at% or more of C in atomic fraction were counted as Ti carbides.
- the “content of Ti carbide” used herein is a value measured at a position 1 mm below the surface of the steel material.
- a preferred method for producing a steel material having the above-described composition and composition will be described.
- a molten steel is smelted by a common smelting furnace such as an electric furnace or a vacuum melting furnace, and then cast to obtain a slab, and the slab is heated.
- the heating step is performed in this order.
- a hot-rolling step hot-working of the heated slab to obtain a steel material
- a cooling step of cooling the obtained steel material following the hot-rolling step are performed.
- the steel material obtained by such a process include a plate-shaped steel plate, a bar-shaped steel bar, a linear wire rod, and a shaped steel having various cross-sectional shapes such as an H shape.
- a casting step of casting molten steel by a conventional melting furnace such as an electric furnace or a vacuum melting furnace to obtain a slab having the above-mentioned predetermined component composition is performed.
- the cooling rate during casting is very slow, so that the contained C may precipitate as carbide other than Ti carbide during casting.
- the stability of the austenite phase decreases. Therefore, it is difficult to stably form an austenite phase after cooling to room temperature.
- a heating step of heating a slab having the above-described component composition is performed.
- the temperature for “heating” here is a temperature range of 950 ° C. or more and 1300 ° C. or less, which is a temperature range in which carbides other than Ti carbides are dissolved.
- Ti carbides are produced during cooling after solidification of molten steel, and the solid solution temperature is very high, close to the melting point of steel. Therefore, in the step of heating to the above-mentioned temperature range, the Ti carbide remains without being dissolved, and carbides other than the Ti carbide are dissolved.
- the heating temperature is lower than 950 ° C., the carbide deposited during casting does not form a solid solution. For this reason, the amount of dissolved C is insufficient, the degree of stabilization of the austenite phase is low, and the austenite phase cannot be obtained after cooling to room temperature.
- the heating temperature exceeds 1300 ° C., the heating temperature becomes too high, which increases the cost for heating and is economically disadvantageous. Therefore, the heating temperature is limited to a temperature in the range of 950 ° C. to 1300 ° C. Preferably, it is 980 ° C or higher and 1270 ° C or lower.
- the above-mentioned temperature is a temperature at a position 1 mm below the surface of the steel material.
- the hot slab is subjected to hot rolling (hot working) to perform a hot rolling process to obtain a steel material having a predetermined shape.
- the rolling (working) conditions such as the temperature and the rolling reduction do not need to be particularly limited as long as they can be rolled (worked) into a steel material having a desired size and shape.
- the wear resistance of a steel material especially the impact wear resistance, it is necessary to increase the hardness of the austenite phase as a matrix.
- r (%) ⁇ (ti ⁇ tf) / ti / ⁇ 100 (Where, ti: thickness (mm) when the temperature of the steel sheet reaches 950 ° C. during rolling, tf: thickness (mm) at the end of rolling) Can be calculated.
- the finish rolling temperature is preferably 930 ° C. or less. Further, in consideration of the operation efficiency, the finish rolling temperature is preferably set to 600 ° C. or higher, more preferably 650 ° C. or higher.
- a cooling step of cooling at an average cooling rate of more than 1 ° C / s in a temperature range of 900 ° C to 500 ° C is performed.
- the cooling process adjust the average cooling rate between 900 ° C and 500 ° C to over 1 ° C / s. If the average cooling rate between 900 ° C and 500 ° C is 1 ° C / s or less, carbides precipitate, the amount of solid solution C decreases, and the degree of stabilization of austenite is insufficient, so that a desired austenite phase is obtained after cooling. I can't. Therefore, the cooling is performed at an average cooling rate of more than 1 ° C./s in a temperature range of 900 ° C. to 500 ° C. In addition, it is preferably at least 2 ° C./s. As the cooling method, any conventional cooling method capable of achieving the above-described cooling rate can be applied.
- the average cooling rate between 900 ° C. and 500 ° C. in cooling is preferably 300 ° C./s or less. More preferably, it is 200 ° C./s or less.
- the above temperature is a temperature at a position 1 mm below the surface of the steel material.
- Example 1 First, molten steel was melted and cast in a vacuum melting furnace to produce a slab (thickness: 100 to 200 mm) having the composition shown in Table 1. Next, a heating step of heating the obtained slab to a heating temperature shown in Table 2 and hot-rolling the heated slab under the conditions shown in Table 2 to obtain a steel plate (steel material having a thickness shown in Table 2) ) And a cooling step of successively cooling the obtained steel sheet at an average cooling rate between 900 ° C. and 500 ° C. shown in Table 2 to obtain a steel material (steel sheet). . In some hot rolling, hot rolling was performed in which the rolling reduction (cumulative rolling reduction) in a temperature range of 950 ° C. or lower was adjusted.
- the rolling reduction cumulative rolling reduction
- cooling was performed by water cooling, air cooling, or a combination thereof.
- the average cooling rate was calculated based on the temperature measured by a thermocouple attached at a position 1 mm below the surface of the steel sheet.
- the cooling start temperature was lower than 900 ° C.
- the average cooling rate was calculated between the cooling start temperature and 500 ° C.
- the obtained steel sheet was subjected to a hardness measurement test, a structure observation, and an abrasion test, and the hardness of the austenite phase, the area ratio of the austenite phase, and the area ratio of Ti carbide at a portion 1 mm below the surface were determined.
- the sliding wear resistance and impact wear resistance were evaluated.
- the test method was as follows.
- Hardness measurement test A test piece for hardness measurement was sampled from a predetermined position of each of the obtained steel sheets, polished so that the cross section in the thickness direction became a measurement surface, and then subjected to a Vickers hardness tester (test force: The Vickers hardness HV of the austenitic phase at a position 1 mm below the surface at 10 kgf) was measured at 10 points each, and the average value was taken as the hardness of the steel sheet. When no austenite phase was present, the hardness was not measured.
- Austenite phase area ratio Backscattered electron diffraction (EBSP) analysis was performed on the mirror-polished observation surface using the collected specimen for structure observation.
- the EBSP analysis was performed in a 1 mm ⁇ 1 mm range under the conditions of a measurement voltage of 20 kV and a step size of 1 ⁇ m, and a structure (ferrite) excluding inclusions and precipitates from an obtained Inverse Pole Figure map. Phase, bainite structure, martensite structure, pearlite structure, austenite phase). The ratio (area ratio) of the austenite phase to the total amount was calculated.
- Wear test The wear resistance of a steel material is mainly determined by the surface characteristics. Then, a wear test piece 10 (thickness 10 mm ⁇ width 25 mm ⁇ length 75 mm) was sampled so that a position 1 mm below the surface of the obtained steel plate was a test position (test surface). The thickness of the test piece was adjusted to 10 mm by reducing the thickness when the thickness of the steel sheet exceeded 10 mm. When the steel sheet thickness was 10 mm or less, no reduction in thickness beyond the adjustment of the test position (1 mm below the surface) was performed.
- the amount of wear (the amount of weight change (decrease) before and after the test) of each test piece was measured.
- the average value of the wear amount of each of the obtained test pieces was used as a representative value of the wear amount of each steel plate.
- the ratio of the wear amount of the mild steel plate to the wear amount of each steel plate (test steel plate), (wear amount of mild steel plate) / (wear amount of each steel plate (test steel plate)) It was calculated as the sliding wear ratio.
- the greater the sliding wear resistance ratio the better the sliding wear resistance of each steel sheet.
- a steel material having a sliding wear resistance ratio of 3.0 or more was evaluated as having excellent sliding wear resistance and evaluated as acceptable, and the others were evaluated as failed. Table 2 shows the obtained results.
- the structure has a structure containing 90% or more of austenitic phase and 0.2% or more of Ti carbide, and has excellent sliding wear resistance and excellent sliding wear resistance. It is a steel material (steel plate) that has both impact wear resistance.
- the structure was such that the austenite phase was less than 90% or the content of Ti carbide was less than 0.2%, At least one of the sliding wear resistance and the impact wear resistance is reduced.
- the austenitic stability is low and the ratio of the austenite phase is low, so that the impact wear resistance is low.
- steel materials No. 33 and No. 37 having a low Mn content the austenitic stability is low and the ratio of the austenite phase is low, so that the impact wear resistance is reduced.
- steel materials No. 34 and No. 36 which do not satisfy the expression (1) the austenitic stability is low and the ratio of the austenite phase is low, so that the impact wear resistance is reduced.
- steel materials No. 38 and No. 39 having a low Ti content since the content of Ti carbide is low, the sliding wear resistance is reduced.
- Example 2 In a vacuum melting furnace, molten steel was smelted and cast to produce slabs (wall thickness: 100 to 200 mm) having the component compositions shown in Table 3. Next, a heating step of heating the obtained slab to a heating temperature shown in Table 4 and hot-rolling the heated slab under the conditions shown in Table 2 to obtain a steel plate having a thickness shown in Table 4 (steel material) ) And a cooling step of successively cooling the steel sheet at an average cooling rate between 900 ° C. and 500 ° C. shown in Table 4 to obtain a steel material (steel sheet). In the hot rolling step, as shown in Table 4, the rolling reduction (cumulative rolling reduction) in the temperature range of 950 ° C. or lower was adjusted, and hot rolling was performed at the finish rolling temperature shown in Table 4.
- Table 4 the rolling reduction (cumulative rolling reduction) in the temperature range of 950 ° C. or lower was adjusted, and hot rolling was performed at the finish rolling temperature shown in Table 4.
- cooling was performed by water cooling, air cooling, or a combination thereof.
- the average cooling rate was calculated based on the temperature measured by a thermocouple attached at a position 1 mm below the surface of the steel sheet.
- the cooling start temperature was lower than 900 ° C
- the average cooling rate was calculated between the cooling start temperature and 500 ° C.
- the obtained steel sheet was subjected to a hardness measurement test, a structure observation, and a wear test in the same manner as in Example 1.
- the hardness of the austenite phase at a portion 1 mm below the surface, the area ratio of the austenite phase, the area of Ti carbide %, And the sliding wear resistance and impact wear resistance were evaluated in the same manner as in Example 1. Table 4 also shows the obtained results.
- the structure includes an austenite phase having a structure of 90% or more, and the hardness (at a position 1 mm below the surface) of the austenite phase is 200 HV or more, and 0.2% or more. It has a structure containing the above-mentioned Ti carbide, and is a steel material (steel plate) having both excellent sliding wear resistance and excellent impact wear resistance. Compared with the present invention example (steel materials No. 96 to No. 98) in which the hardness of the austenite phase (at a position 1 mm below the surface) is less than 200 HV, the impact wear resistance is particularly improved.
- the structure has an austenite phase of less than 90% or a content of Ti carbide of less than 0.2%, and has a sliding wear resistance. , And at least one of the impact wear resistance is reduced.
- the austenitic stability is low and the ratio of the austenite phase is low, so that the impact wear resistance is low.
- steel materials No. 83 and No. 87 having a low Mn content the austenitic stability is low and the ratio of the austenite phase is low, so that the impact wear resistance is reduced.
- Steel materials No. 84 and No. 86 that do not satisfy the expression (1) have low austenite stability and a low ratio of austenite phase, and thus have low impact wear resistance.
- steel materials No. 88 and No. 89 having a low Ti content since the content of Ti carbide is low, the sliding wear resistance is reduced.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
25([C]-12.01[Ti]/47.87)+[Mn]≧ 25 ……(1)
(ここで、[C]、[Ti]、[Mn]:各元素の含有量(質量%))
の関係式を満足するように、C、Mn量を調整することが、優れた耐すべり摩耗性と優れた耐衝撃摩耗性とを兼備させるために、有効であることを新規に見出した。
(1) 質量%で、
C:0.10%以上2.50%以下、
Mn:8.0%以上45.0%以下、
P:0.300%以下、
S:0.1000%以下、
Ti:0.10%以上5.00%以下、
Al:0.001%以上5.000%以下、
N:0.5000%以下、
O(酸素):0.1000%以下
を含み、かつ、C、Ti、Mnを、下記(1)式を満足する範囲にて含有し、残部がFe及び不可避不純物である成分組成と、面積率で、オーステナイト相を90%以上、Ti炭化物を0.2%以上含む組織と、を有する鋼材。
記
25([C]-12.01[Ti]/47.87)+[Mn]≧ 25 ……(1)
ここで、[C]、[Ti]、[Mn]:各元素の含有量(質量%)
Si:0.01%以上5.00%以下、
Cu:0.1%以上10.0%以下、
Ni:0.1%以上25.0%以下、
Cr:0.1%以上30.0%以下、
Mo:0.1%以上10.0%以下、
Nb:0.005%以上2.000%以下、
V:0.01%以上2.00%以下、
W:0.01%以上2.00%以下、
B:0.0003%以上0.1000%以下、
Ca:0.0003%以上0.1000%以下、
Mg:0.0001%以上0.1000%以下、
REM:0.0005%以上0.1000%以下
のうちから選ばれる1種または2種以上を含有する、前記(1)または前記(2)に記載の鋼材。
前記鋳片を、質量%で、
C:0.10%以上2.50%以下、
Mn:8.0%以上45.0%以下、
P:0.300%以下、
S:0.1000%以下、
Ti:0.10%以上5.00%以下、
Al:0.001%以上5.000%以下、
N:0.5000%以下、
O(酸素):0.1000%以下
を含み、かつ、C、Ti、Mnを、下記(1)式を満足する範囲にて含有し、残部がFe及び不可避不純物である成分組成とし、
前記加熱工程における加熱の温度を、950℃以上1300℃以下とし、
前記冷却工程における冷却を、900~500℃の温度範囲における平均冷却速度で、1℃/s超とする、鋼材の製造方法。
記
25([C]-12.01[Ti]/47.87)+[Mn]≧ 25 ……(1)
ここで、[C]、[Ti]、[Mn]:各元素の含有量(質量%)
Si:0.01%以上5.00%以下、
Cu:0.1%以上10.0%以下、
Ni:0.1%以上25.0%以下、
Cr:0.1%以上30.0%以下、
Mo:0.1%以上10.0%以下、
Nb:0.005%以上2.000%以下、
V:0.01%以上2.00%以下、
W:0.01%以上2.00%以下、
B:0.0003%以上0.1000%以下、
Ca:0.0003%以上0.1000%以下、
Mg:0.0001%以上0.1000%以下、
REM:0.0005%以上0.1000%以下
のうちから選ばれた1種または2種以上を含有する、前記(4)に記載の鋼材の製造方法。
25([C]-12.01[Ti]/47.87)+[Mn]≧ 25 ……(1)
(ここで、[C]、[Ti]、[Mn]:各元素の含有量(質量%))
の関係式を満足する範囲にて含有し、残部Fe及び不可避不純物である成分組成を有する。
まず、鋼材の成分組成の限定理由について説明する。なお、以下、成分組成に関する「質量%」は、特に断らない限り、単に「%」で記す。
Cは、オーステナイト相を安定化する元素であり、常温においてオーステナイト組織を得るために重要な元素である。このような効果を得るためには、0.10%以上のC含有を必要とする。Cが0.10%未満では、オーステナイト相の安定度が不足し、常温において、十分なオーステナイト組織を得ることができない。一方、2.50%を超えると、硬度が高くなり、溶接部の靱性が低下する。そのため、本発明では、Cは0.10%以上2.50%以下の範囲に限定した。なお、好ましくは0.12%以上2.00%以下である。
Mnは、オーステナイト相を安定化する元素であり、常温においてオーステナイト組織を得るために重要な元素である。このような効果を得るためには、8.0%以上のMn含有を必要とする。Mnが8.0%未満では、オーステナイト相の安定度が不足し、十分なオーステナイト組織が得られない。一方、45.0%を超えると、オーステナイト相安定化の効果は飽和し、経済的に不利となる。そのため、本発明では、Mnは8.0%以上45.0%以下の範囲に限定した。なお、好ましくは10.0%以上40.0%以下である。
Pは、結晶粒界に偏析して粒界を脆化させ、鋼材の靭性を低下させる作用を有する元素である。本発明では、Pはできる限り低減することが望ましいが、0.300%以下であれば許容できる。好ましくは0.250%以下である。なお、Pは、不純物として鋼中に不可避的に含有される元素であり、少ないほど好ましいが、過度の低P化は、精錬時間の増加や精錬コストの上昇を招くため、Pは0.001%以上とすることが好ましい。
Sは、主として硫化物系介在物として鋼中に分散し、鋼の延性、靭性を低下させる元素である。そのため、本発明ではできるだけ低減することが望ましいが、0.1000%以下であれば許容できる。なお、好ましくは0.0800%以下である。Sは少ないほど好ましいが、過度の低S化は、精錬時間の増加や精錬コストの上昇を招くため、Sは0.0001%以上とすることが好ましい。
Tiは、本発明において重要な元素であり、硬質な炭化物を形成して、オーステナイト組織の耐すべり摩耗性を向上させる作用を有する元素である。このような効果を得るために、0.10%以上の含有を必要とする。一方、5.00%を超える含有は、延性および靭性を低下させる。そのため、Tiは0.10%以上5.00%以下の範囲に限定した。なお、好ましくは、0.60%以上4.50%以下である。
Alは、脱酸剤として有効に作用する元素であり、その効果を得るためには、0.001%以上の含有を必要とする。一方、5.000%を超えて含有すると、鋼の清浄度が低下し、延性および靭性が低下する。そのため、Alは0.001%以上5.000%以下とする。なお、好ましくは0.003%以上4.500%以下である。
Nは、不純物として鋼中に不可避的に含有され、溶接部の延性、靱性を低下させる元素であり、できるだけ低減することが望ましいが、0.5000%以下であれば許容できる。好ましくは0.3000%以下である。Nは、少ないほど好ましいが、過度の低N化は精錬時間の増加や精錬コストの上昇を招く。このため、Nは0.0005%以上とすることが好ましい。
Oは、不純物として鋼中に不可避的に含有され、酸化物等の介在物として鋼中に存在し、延性、靱性を低下させる元素であり、できるだけ低減することが望ましいが、0.1000%以下であれば許容できる。好ましくは0.0500%以下である。Oは、少ないほど好ましいが、過度の低酸素化は、精錬時間の増加や精錬コストの上昇を招くため、Oは0.0005%以上とすることが好ましい。
25([C]-12.01[Ti]/47.87)+[Mn]≧ 25 ……(1)
(ここで、[C]、[Ti]、[Mn]:各元素の含有量(質量%))
の関係式を満足するように含有する。
(1)式の左辺は、オーステナイト相の安定化度を表わし、左辺値が大きいほど、オーステナイト相の安定化度が高いことを意味する。(1)式の左辺は、オーステナイト相の安定化に寄与する元素であるCの含有量とMnの含有量の和であり、各元素のオーステナイト安定化能を考慮して、オーステナイト安定化能に応じた係数を乗じている。なお、Cは、Ti炭化物として析出し、オーステナイト相の安定化に寄与しなくなった量を差し引いた有効含有量としている。
なお、C、Ti、Mn含有量が、(1)式を満足しない場合、オーステナイト安定度が不足し、常温で所望のオーステナイト組織が得られない。
また、オーステナイト相の安定化度の観点から、(1)式の左辺値は30以上であることが好ましい。
Siは、脱酸剤として有効に作用するとともに、固溶して鋼材の高硬度化にも寄与する元素である。このような効果を得るためには、0.01%以上の含有を必要とする。Siが0.01%未満では、上記した効果を充分に得ることができない。一方、5.00%を超える含有は、延性および靭性を低下させることに加えて、介在物量が増加する等の問題を生じる。このようなことから、含有する場合には、Siは0.01%以上5.00%以下の範囲とすることが好ましい。なお、より好ましくは0.05%以上4.50%以下である。
Cuは、固溶してあるいは析出して鋼材の強度向上に寄与する元素である。このような効果を得るためには、0.1%以上の含有を必要とする。一方、10.0%を超えて含有しても、その効果は飽和し、経済的に不利となる。そのため、含有する場合には、Cuは0.1%以上10.0%以下の範囲とすることが好ましい。なお、より好ましくは0.5%以上8.0%以下である。
Niは、鋼材の強度向上に寄与するとともに、靭性を向上させる作用を有する元素である。このような効果を得るためには、0.1%以上の含有を必要とする。一方、25.0%を超えて含有しても、その効果が飽和し経済的に不利となる。そのため、含有する場合には、Niは0.1%以上25.0%以下の範囲とすることが好ましい。なお、より好ましくは0.5%以上20.0%以下である。
Crは、鋼の強度向上に寄与する元素である。このような効果を得るためには、0.1%以上の含有を必要とする。一方、30.0%を超えて含有すると、その効果が飽和し経済的に不利となる。そのため、含有する場合には、Crは0.1%以上30.0%以下の範囲とすることが好ましい。なお、より好ましくは、0.5%以上28.0%以下である。
Moは、鋼の強度向上に寄与する元素である。このような効果を得るためには、0.1%以上の含有を必要とする。一方、10.0%を超えて含有すると、その効果が飽和し経済的に不利となる。そのため、含有する場合には、Moは0.1%以上10.0%以下の範囲とすることが好ましい。なお、より好ましくは0.5%以上8.0%以下である。
Nbは、炭窒化物として析出することで、鋼の強度向上に寄与する元素である。このような効果を得るためには、0.005%以上の含有を必要とする。一方、2.000%を超える含有は、靱性を低下させる。そのため、含有する場合には、Nbは0.005%以上2.000%以下の範囲とすることが好ましい。なお、より好ましくは0.007%以上1.700%以下である。
Vは、炭窒化物として析出し、鋼の強度向上に寄与する元素である。このような効果を得るためには、0.01%以上の含有を必要とする。一方、2.00%を超える含有は、靱性を低下させる。そのため、含有する場合には、Vは0.01%以上2.00%以下の範囲とすることが好ましい。なお、より好ましくは0.02%以上1.80%以下である。
Wは、鋼の強度向上に寄与する元素である。このような効果を得るためには、0.01%以上の含有を必要とする。一方、2.00%を超える含有は、靱性を低下させる。そのため、含有する場合には、Wは0.01%以上2.00%以下の範囲とすることが好ましい。なお、より好ましくは0.02%以上1.80%以下である。
Bは、結晶粒界に偏析し、粒界強度の向上に寄与する元素である。このような効果を得るためには、0.0003%以上の含有を必要とする。一方、0.1000%を超えて含有すると、炭窒化物の粒界析出により靱性が低下する。そのため、含有する場合には、Bは0.0003%以上0.1000%の範囲とすることが好ましい。なお、より好ましくは0.0005%以上0.0800%以下である。
Caは、高温における安定性が高い酸硫化物を形成して、結晶粒界をピンニングし、とくに溶接部の結晶粒の粗大化を抑制し結晶粒を細かく維持して、溶接継手部の強度および靱性の向上に寄与する元素である。このような効果を得るためには、0.0003%以上の含有を必要とする。一方、0.1000%を超えて含有すると、清浄度が低下して鋼の靭性が低下する。そのため、含有する場合には、Caは0.0003%以上0.1000%以下の範囲とすることが好ましい。なお、より好ましくは0.0005%以上0.0800%以下である。
Mgは、高温における安定性が高い酸硫化物を形成して、結晶粒界をピンニングし、とくに溶接部の結晶粒の粗大化を抑制し結晶粒を細かく維持して、とくに、溶接継手部の強度および靱性の向上に寄与する元素である。このような効果を得るためには、0.0001%以上の含有を必要とする。一方、0.1000%を超えて含有すると、清浄度が低下して鋼材の靭性が低下する。そのため、含有する場合には、Mgは0.0001%以上0.1000%以下の範囲とすることが好ましい。なお、より好ましくは0.0005%以上0.0800%以下である。
REM(希土類金属)は、高温における安定性が高い酸硫化物を形成して、結晶粒界をピンニングし、とくに溶接部の結晶粒の粗大化を抑制し結晶粒を細かく維持して、溶接継手部の強度および靱性の向上に寄与する元素である。このような効果を得るためには、0.0005%以上の含有を必要とする。一方、0.1000%を超えて含有すると、清浄度が低下して鋼材の靭性が低下する。そのため、含有する場合には、REMは0.0005%以上0.1000%以下の範囲とすることが好ましい。なお、より好ましくは0.0010%以上0.0800%以下の範囲である。
本発明鋼材の組織は、耐衝撃摩耗性向上の観点からオーステナイト相を主とする。このような効果を得るために、オーステナイト相は、面積率で90%以上とする。オーステナイト相が、面積率で90%未満では、耐衝撃摩耗性が低下し、さらには、延性や靱性、加工性、溶接部(溶接熱影響部)の靱性も低下する。そのため、組織中のオーステナイト相は、面積率で90%以上とし、100%であってもよい。ここでいう「組織中のオーステナイト相」の割合は、介在物や析出物を除いた組織全量に対するオーステナイト相の割合(面積率)を示す。なお、オーステナイト相以外の組織は、面積率で合計10%未満の、フェライト相、ベイナイト組織、マルテンサイト組織、パーライト組織のうちの1種以上であってよい。
本発明では、組織中に、Al2O3、SiO2等の砂や岩石成分より硬質な粒子であるTi炭化物を含む。組織中に含まれるTi炭化物は硬質な粒子であり、砂や岩石成分によるすべり摩耗に対して抵抗となり、耐すべり摩耗性を向上させる作用を有する。このような効果を得るためには、Ti炭化物を、組織中に面積率で0.2%以上含む必要がある。このため、Ti炭化物の含有量は面積率で0.2%以上に限定した。好ましくは0.5%以上である。なお、Ti炭化物の含有量の上限はとくに限定されないが、鋼材の延性、靭性の観点から、面積率で10%以下とすることが好ましい。より好ましくは8.0%以下である。
本発明鋼材の好ましい製造方法では、まず、溶鋼を、電気炉、真空溶解炉等の常用の溶製炉により溶製したのち、鋳造して鋳片を得る鋳造工程と、該鋳片を加熱する加熱工程と、をこの順に実施する。そして、加熱された鋳片を、熱間圧延(熱間加工)して鋼材とする熱延工程と、該熱延工程に引き続き、得られた鋼材に、冷却を施す冷却工程と、を実施する。このような工程により得られる鋼材としては、板状の鋼板、棒状の棒鋼、線状の線材、H形等の種々の断面形状の形鋼等がある。
r(%)={(ti-tf)/ti}×100
(ここで、ti:圧延中に鋼板温度が950℃となった時の板厚(mm)、tf:圧延終了時の板厚(mm))
で算出できる。
以下、実施例に基づき、本発明についてさらに説明する。
まず、真空溶解炉により、溶鋼を溶製し、鋳造して、表1に示す成分組成の鋳片(肉厚:100~200mm)を製造した。ついで、得られた鋳片を、表2に示す加熱温度に加熱する加熱工程と、加熱された鋳片に、表2に示す条件で熱間圧延を施し表2に示す板厚の鋼板(鋼材)とする熱延工程と、引続き、得られた鋼板に、表2に示す、900℃から500℃間の平均冷却速度で冷却を施す冷却工程と、を順次行い、鋼材(鋼板)を得た。なお、一部の熱間圧延では、950℃以下の温度域での圧下率(累積圧下率)を調整した熱間圧延とした。
得られた各鋼板の所定の位置から、硬さ測定用試験片を採取し、板厚方向断面が測定面となるように研磨したのち、ビッカース硬度計(試験力:10kgf)で表面下1mmの位置におけるオーステナイト相のビッカース硬さHVを各10点、測定し、その平均値を当該鋼板の硬さとした。なお、オーステナイト相が存在しない場合には、硬さの測定は行わなかった。
得られた各鋼板の所定の位置から、観察面が、表面下1mmの位置となるように、組織観察用試験片を採取し、観察面を研削、研磨(鏡面)した。
採取した組織観察用試験片を用い、鏡面研磨された観察面について、後方散乱電子回折(EBSP)解析を行った。EBSP解析は、1mm×1mmの範囲を、測定電圧:20kV、ステップサイズ:1μmの条件で行い、得られたInverse Pole Figure(逆極点図)マップから、介在物、析出物を除いた組織(フェライト相、ベイナイト組織、マルテンサイト組織、パーライト組織、オーステナイト相)全量に対するオーステナイト相の割合(面積率)を算出した。
採取した組織観察用試験片を用いて、鏡面研磨された観察面について、走査型電子顕微鏡(SEM)のエネルギー分散型X線分光法(EDS)を用いて、1mm×1mmの範囲を、加速電圧:15kV、ステップサイズ:1μmの条件で、解析し、Ti炭化物を同定し、画像解析ソフトを用いて該Ti炭化物の総面積を測定し、Ti炭化物の面積率を算出した。なお、EDSの測定に際しては、原子分率でTiを10at%以上、Cを30at%以上含む析出物をTi炭化物としてカウントした。
鋼材の耐摩耗性は、主に表面の特性によって決まる。そこで、得られた鋼板の表面下1mmの位置が試験位置(試験面)となるように、摩耗試験片10(厚さ10mm×幅25mm×長さ75mm)を採取した。なお、試験片の厚さは、鋼板厚さが10mmを超える場合には、減厚して厚さ10mmに調整した。鋼板厚さが10mm以下である場合には、試験位置(表面下1mm)の調整以上の減厚は行わなかった。
各鋼板から採取した摩耗試験片10を各3本ずつ同時に、図1に示す摩耗試験装置に装着して、衝撃摩耗試験を実施した。なお、試験片は、試験面が摩耗材2と衝突する向きに装着した。また、摩耗試験の条件は、
ドラム回転速度:45rpm、
試験片回転速度:600rpm
とした。なお、試験片回転数が10000回ごとに、摩耗材を入れ替えて試験し、試験片回転数が合計で50000回に達した時点で、試験を終了した。摩耗材2としては、SiO2を90%以上含む石(円相当直径5~35mm)を使用した。なお、比較として、軟鋼板(SS400)から採取した摩耗試験片について、同様の摩耗試験を実施した。
試験後、各試験片の摩耗量(試験前と試験後の重量変化(減少)量)を測定した。得られた各試験片の摩耗量の平均値を各鋼板の摩耗量の代表値とした。
そして、得られた摩耗量から、軟鋼板の摩耗量と各鋼板(試験鋼板)の摩耗量との比、(軟鋼板の摩耗量)/(各鋼板(試験鋼板)の摩耗量)を、耐衝撃摩耗比として算出した。この耐衝撃摩耗比が大きいほど、各鋼板の耐衝撃摩耗性が優れていることを意味する。ここで、耐衝撃摩耗比が1.7以上である鋼材を優れた耐衝撃摩耗性を有するとして合格と評価し、それ以外を不合格と評価した。
各鋼板から採取した摩耗試験片10を、図2に示す摩耗試験装置に装着して、AMTM G-65の規定に準拠して、すべり摩耗試験を実施した。摩耗試験は、各鋼板で各3本とした。摩耗材は、SiO2を90%以上含む砂(円相当直径210~300μm)を使用した。なお、比較として、軟鋼板(SS400)から採取した摩耗試験片について、同様の摩耗試験を実施した。試験条件は、下記のとおり、
摩耗材(砂)の流量:300g/min、
ラバーホイール回転数:200±10rpm、
荷重:130±3.9N
とした。ラバーホイールの回転数が2000回に達した時点で、試験を終了した。
試験後、各試験片の摩耗量(試験前と試験後の重量変化(減少)量)を測定した。得られた各試験片の摩耗量の平均値を各鋼板の摩耗量の代表値とした。
そして、得られた摩耗量から、軟鋼板の摩耗量と各鋼板(試験鋼板)の摩耗量との比、(軟鋼板の摩耗量)/(各鋼板(試験鋼板)の摩耗量)を、耐すべり摩耗比として算出した。この耐すべり摩耗比が大きいほど、各鋼板の耐すべり摩耗性が優れていることを意味する。ここで、耐すべり摩耗比が、3.0以上である鋼材を優れた耐すべり摩耗性を有するとして合格と評価し、それ以外を不合格と評価した。
得られた結果を表2に示す。
真空溶解炉により、溶鋼を溶製し、鋳造して、表3に示す成分組成の鋳片(肉厚:100~200mm)を製造した。ついで、得られた鋳片を、表4に示す加熱温度に加熱する加熱工程と、加熱された鋳片に、表2に示す条件で熱間圧延を施し表4に示す板厚の鋼板(鋼材)とする熱延工程と、引続き、鋼板に、表4に示す、900℃から500℃間の平均冷却速度で冷却を施す冷却工程と、を順次行い、鋼材(鋼板)を得た。なお、熱延工程では、表4に示すように、950℃以下の温度域での圧下率(累積圧下率)を調整し、表4に示す仕上圧延温度とする熱間圧延を施した。
得られた結果を表4に併記した。
2 摩耗材(石)
10 摩耗試験片
21 ラバーホイール
22 錘
23 ホッパー
24 摩耗材(砂)
Claims (6)
- 質量%で、
C:0.10%以上2.50%以下、
Mn:8.0%以上45.0%以下、
P:0.300%以下、
S:0.1000%以下、
Ti:0.10%以上5.00%以下、
Al:0.001%以上5.000%以下、
N:0.5000%以下、
O(酸素):0.1000%以下
を含み、かつ、C、Ti、Mnを、下記(1)式を満足する範囲にて含有し、残部がFe及び不可避不純物である成分組成と、面積率で、オーステナイト相を90%以上、Ti炭化物を0.2%以上含む組織と、を有する鋼材。
記
25([C]-12.01[Ti]/47.87)+[Mn]≧ 25 ……(1)
ここで、[C]、[Ti]、[Mn]:各元素の含有量(質量%) - 前記オーステナイト相は、ビッカース硬さが200HV以上である、請求項1に記載の鋼材。
- 前記成分組成に加えてさらに、質量%で、
Si:0.01%以上5.00%以下、
Cu:0.1%以上10.0%以下、
Ni:0.1%以上25.0%以下、
Cr:0.1%以上30.0%以下、
Mo:0.1%以上10.0%以下、
Nb:0.005%以上2.000%以下、
V:0.01%以上2.00%以下、
W:0.01%以上2.00%以下、
B:0.0003%以上0.1000%以下、
Ca:0.0003%以上0.1000%以下、
Mg:0.0001%以上0.1000%以下、
REM:0.0005%以上0.1000%以下
のうちから選ばれる1種または2種以上を含有する、請求項1または2に記載の鋼材。 - 溶鋼を溶製し、鋳片とする鋳造工程と、該鋳片を加熱する加熱工程と、前記加熱した鋳片を熱間圧延して鋼材とする熱延工程と、前記鋼材に冷却を施す冷却工程と、を順次施す鋼材の製造方法であって、
前記鋳片を、質量%で、
C:0.10%以上2.50%以下、
Mn:8.0%以上45.0%以下、
P:0.300%以下、
S:0.1000%以下、
Ti:0.10%以上5.00%以下、
Al:0.001%以上5.000%以下、
N:0.5000%以下、
O(酸素):0.1000%以下
を含み、かつ、C、Ti、Mnを、下記(1)式を満足する範囲にて含有し、残部がFe及び不可避不純物である成分組成とし、
前記加熱工程における加熱の温度を、950℃以上1300℃以下とし、
前記冷却工程における冷却を、900~500℃の温度範囲における平均冷却速度で、1℃/s超とする、鋼材の製造方法。
記
25([C]-12.01[Ti]/47.87)+[Mn]≧ 25 ……(1)
ここで、[C]、[Ti]、[Mn]:各元素の含有量(質量%) - 前記鋳片は、前記成分組成に加えてさらに、質量%で、
Si:0.01%以上5.00%以下、
Cu:0.1%以上10.0%以下、
Ni:0.1%以上25.0%以下、
Cr:0.1%以上30.0%以下、
Mo:0.1%以上10.0%以下、
Nb:0.005%以上2.000%以下、
V:0.01%以上2.00%以下、
W:0.01%以上2.00%以下、
B:0.0003%以上0.1000%以下、
Ca:0.0003%以上0.1000%以下、
Mg:0.0001%以上0.1000%以下、
REM:0.0005%以上0.1000%以下
のうちから選ばれた1種または2種以上を含有する、請求項4に記載の鋼材の製造方法。 - 前記熱間圧延は、950℃以下の温度域での総圧下率が25%以上である、請求項4または5に記載の鋼材の製造方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019571567A JP6750748B1 (ja) | 2018-09-12 | 2019-09-04 | 鋼材およびその製造方法 |
CN201980058764.7A CN112703263B (zh) | 2018-09-12 | 2019-09-04 | 钢材及其制造方法 |
AU2019340624A AU2019340624B2 (en) | 2018-09-12 | 2019-09-04 | Steel material and method of producing same |
KR1020217010134A KR102507276B1 (ko) | 2018-09-12 | 2019-09-04 | 강재 및 그의 제조 방법 |
EP19859087.9A EP3835446A4 (en) | 2018-09-12 | 2019-09-04 | STEEL MATERIAL AND MANUFACTURING PROCESS FOR IT |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018170656 | 2018-09-12 | ||
JP2018-170656 | 2018-09-12 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020054553A1 true WO2020054553A1 (ja) | 2020-03-19 |
Family
ID=69777028
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/034830 WO2020054553A1 (ja) | 2018-09-12 | 2019-09-04 | 鋼材およびその製造方法 |
Country Status (6)
Country | Link |
---|---|
EP (1) | EP3835446A4 (ja) |
JP (1) | JP6750748B1 (ja) |
KR (1) | KR102507276B1 (ja) |
CN (1) | CN112703263B (ja) |
AU (1) | AU2019340624B2 (ja) |
WO (1) | WO2020054553A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111321339A (zh) * | 2020-04-21 | 2020-06-23 | 衢州东方特钢有限公司 | 一种半自磨机的分料口铸件及其使用的高铬铸铁 |
JP2022031163A (ja) * | 2020-08-07 | 2022-02-18 | Jfeスチール株式会社 | 鋼材およびその製造方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114103304A (zh) * | 2021-11-04 | 2022-03-01 | 安徽九牛塑业科技有限公司 | 一种耐老化钢塑复合材料及其制备方法 |
CN115044832A (zh) * | 2022-06-14 | 2022-09-13 | 太原科技大学 | 一种中锰耐磨钢及其制备方法 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6014682B2 (ja) | 1980-04-08 | 1985-04-15 | 倉真木材株式会社 | 中空状合成角材の製造方法 |
JPS6227557A (ja) * | 1985-07-27 | 1987-02-05 | Kobe Steel Ltd | 電子ビ−ム溶接性にすぐれた極低温用高Mn非磁性鋼 |
JP2007154295A (ja) * | 2005-12-08 | 2007-06-21 | Kobe Steel Ltd | 耐摩耗性鋳鋼およびその製造方法 |
JP5879448B2 (ja) | 2011-12-28 | 2016-03-08 | ポスコ | 溶接熱影響部の靱性に優れた耐磨耗オーステナイト系鋼材及びその製造方法 |
CN105483539A (zh) * | 2015-12-10 | 2016-04-13 | 钢铁研究总院 | 一种超硬粒子增强型奥氏体耐磨钢板及其制造方法 |
WO2017169811A1 (ja) * | 2016-03-30 | 2017-10-05 | 新日鐵住金株式会社 | 高強度鋼材およびその製造方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4130418A (en) * | 1977-10-03 | 1978-12-19 | Raufoss Ammunisjonsfabrikker A/S | Austenitic wear-resistant steel |
NO146959C (no) * | 1980-07-07 | 1984-05-08 | Raufoss Ammunisjonsfabrikker | Austenitisk slitebestandig staal |
DD295195A5 (de) * | 1990-06-11 | 1991-10-24 | Gisag Ag,Giesserei Und Maschinenbau Leipzig,De | Verschleissfeste stahllegierung |
EP0692548B1 (en) * | 1992-06-26 | 1999-03-24 | Shinhokoku Steel Corporation | Wear-resisting high-manganese cast steel |
JP3497944B2 (ja) * | 1996-03-06 | 2004-02-16 | 日本冶金工業株式会社 | オーステナイト系耐衝撃用鋳鋼 |
FR2847270B1 (fr) * | 2002-11-19 | 2004-12-24 | Usinor | Procede pour fabriquer une tole en acier resistant a l'abrasion et tole obtenue |
JP4317499B2 (ja) * | 2003-10-03 | 2009-08-19 | 新日本製鐵株式会社 | 音響異方性が小さく溶接性に優れる引張強さ570MPa級以上の高張力鋼板およびその製造方法 |
CN104204262B (zh) * | 2011-12-28 | 2018-02-02 | Posco公司 | 具有优异的机械加工性及延展性的耐磨奥氏体钢及其生产方法 |
CN102912246B (zh) * | 2012-10-25 | 2015-07-08 | 武汉钢铁(集团)公司 | 用于圆锥破碎机衬套上的高锰钢复合材料 |
EP2940173B1 (en) | 2012-12-26 | 2019-11-06 | Posco | High strength austenitic-based steel with remarkable toughness of welding heat-affected zone and preparation method therefor |
CA3017282C (en) * | 2016-04-19 | 2021-01-05 | Jfe Steel Corporation | Abrasion-resistant steel plate and method of producing abrasion-resistant steel plate |
WO2018104984A1 (ja) * | 2016-12-08 | 2018-06-14 | Jfeスチール株式会社 | 高Mn鋼板およびその製造方法 |
-
2019
- 2019-09-04 AU AU2019340624A patent/AU2019340624B2/en active Active
- 2019-09-04 JP JP2019571567A patent/JP6750748B1/ja active Active
- 2019-09-04 WO PCT/JP2019/034830 patent/WO2020054553A1/ja unknown
- 2019-09-04 EP EP19859087.9A patent/EP3835446A4/en active Pending
- 2019-09-04 CN CN201980058764.7A patent/CN112703263B/zh active Active
- 2019-09-04 KR KR1020217010134A patent/KR102507276B1/ko active IP Right Grant
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6014682B2 (ja) | 1980-04-08 | 1985-04-15 | 倉真木材株式会社 | 中空状合成角材の製造方法 |
JPS6227557A (ja) * | 1985-07-27 | 1987-02-05 | Kobe Steel Ltd | 電子ビ−ム溶接性にすぐれた極低温用高Mn非磁性鋼 |
JP2007154295A (ja) * | 2005-12-08 | 2007-06-21 | Kobe Steel Ltd | 耐摩耗性鋳鋼およびその製造方法 |
JP5879448B2 (ja) | 2011-12-28 | 2016-03-08 | ポスコ | 溶接熱影響部の靱性に優れた耐磨耗オーステナイト系鋼材及びその製造方法 |
CN105483539A (zh) * | 2015-12-10 | 2016-04-13 | 钢铁研究总院 | 一种超硬粒子增强型奥氏体耐磨钢板及其制造方法 |
WO2017169811A1 (ja) * | 2016-03-30 | 2017-10-05 | 新日鐵住金株式会社 | 高強度鋼材およびその製造方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3835446A4 |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111321339A (zh) * | 2020-04-21 | 2020-06-23 | 衢州东方特钢有限公司 | 一种半自磨机的分料口铸件及其使用的高铬铸铁 |
CN111321339B (zh) * | 2020-04-21 | 2021-08-13 | 衢州东方特钢有限公司 | 一种半自磨机的分料口铸件及其使用的高铬铸铁 |
JP2022031163A (ja) * | 2020-08-07 | 2022-02-18 | Jfeスチール株式会社 | 鋼材およびその製造方法 |
JP7380655B2 (ja) | 2020-08-07 | 2023-11-15 | Jfeスチール株式会社 | 鋼材およびその製造方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2020054553A1 (ja) | 2020-10-22 |
EP3835446A1 (en) | 2021-06-16 |
JP6750748B1 (ja) | 2020-09-02 |
KR20210057089A (ko) | 2021-05-20 |
EP3835446A4 (en) | 2021-10-13 |
AU2019340624A1 (en) | 2021-02-25 |
KR102507276B1 (ko) | 2023-03-07 |
CN112703263A (zh) | 2021-04-23 |
AU2019340624B2 (en) | 2021-11-11 |
CN112703263B (zh) | 2022-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110546290B (zh) | 奥氏体系耐磨钢板 | |
WO2020054553A1 (ja) | 鋼材およびその製造方法 | |
CN111727267B (zh) | 奥氏体耐磨钢板 | |
JP5186809B2 (ja) | 加工性に優れた耐磨耗鋼板およびその製造方法 | |
JP6711434B2 (ja) | 耐摩耗鋼板およびその製造方法 | |
JPWO2014045553A1 (ja) | 低温靱性および耐腐食摩耗性に優れた耐摩耗鋼板 | |
JP7135464B2 (ja) | 耐摩耗厚鋼板 | |
JP7135465B2 (ja) | 耐摩耗厚鋼板 | |
TWI744952B (zh) | 耐磨耗薄鋼板及其製造方法 | |
JP5217191B2 (ja) | 加工性に優れた耐磨耗鋼板およびその製造方法 | |
JP7088235B2 (ja) | 耐摩耗鋼板およびその製造方法 | |
JP7380655B2 (ja) | 鋼材およびその製造方法 | |
JP7239056B1 (ja) | 耐摩耗鋼板 | |
JP6771429B2 (ja) | 厚鋼板およびその製造方法 | |
JP2004181530A (ja) | 疲労強度特性に優れた溶接継手 | |
JP2021066940A (ja) | 耐摩耗鋼板およびその製造方法 | |
JP2020193380A (ja) | 耐摩耗鋼板およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2019571567 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19859087 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019340624 Country of ref document: AU Date of ref document: 20190904 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2019859087 Country of ref document: EP Effective date: 20210309 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 20217010134 Country of ref document: KR Kind code of ref document: A |