JP6711434B2 - 耐摩耗鋼板およびその製造方法 - Google Patents

耐摩耗鋼板およびその製造方法 Download PDF

Info

Publication number
JP6711434B2
JP6711434B2 JP2019066512A JP2019066512A JP6711434B2 JP 6711434 B2 JP6711434 B2 JP 6711434B2 JP 2019066512 A JP2019066512 A JP 2019066512A JP 2019066512 A JP2019066512 A JP 2019066512A JP 6711434 B2 JP6711434 B2 JP 6711434B2
Authority
JP
Japan
Prior art keywords
less
mass
steel plate
steel sheet
wear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019066512A
Other languages
English (en)
Other versions
JP2019123945A (ja
Inventor
直樹 ▲高▼山
直樹 ▲高▼山
祐介 寺澤
祐介 寺澤
善明 村上
善明 村上
長谷 和邦
和邦 長谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2016181284 priority Critical
Priority to JP2016181284 priority
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2019123945A publication Critical patent/JP2019123945A/ja
Application granted granted Critical
Publication of JP6711434B2 publication Critical patent/JP6711434B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、耐摩耗鋼板に係り、とくに建設、土木および鉱山等の掘削等の分野で使用される産業機械、運搬機器の部材用として好適な、曲げ加工性に優れた耐摩耗鋼板およびその製造方法に関する。
従来から、鋼材の耐摩耗性は、高硬度化することにより向上することが知られている。このため、例えば、土、砂等による摩耗を受け、耐摩耗性が要求される部材には、焼入等の熱処理を施して高硬度化した鋼材が使用されてきた。
例えば、特許文献1には、重量%で、C:0.10〜0.20%、Si:0.03〜0.75%、Mn:0.4〜1.5%、N:0.0025%以下、Al:0.001〜0.080%を含み、あるいは更にCu、Ni、Cr、Mo、Bのうちの1種以上を含有する組成の鋼材に、熱間圧延を施して厚鋼板とした後、直接焼入れするか、あるいは熱間圧延後放冷し、その後γ域に再加熱して焼入れする耐摩耗厚鋼板の製造方法が記載されている。特許文献1に記載された技術によれば、焼入れままで340HB以上の硬さと、高靭性とを有し、溶接低温割れ性が改善された耐摩耗厚鋼板が得られるとしている。
また、特許文献2には、C:0.20〜0.45%、Si:0.10〜1.50%、Mn:0.60〜2.50%、Cr:0.60〜2.00%、Al:0.010〜0.080%、Nb:0.010〜0.100%、B:0.0010〜0.0060%、Ca:0.01%以下を含み、残部Feおよび不可避的不純物からなり、あるいは更にTi、Mo、Vのうち1種または2種以上を含有した鋼を、900℃〜Ar変態点の温度で圧下率15%以上の熱間圧延を行い、Ar変態点以上の温度から焼入れすることを特徴とした耐摩耗鋼の製造方法が記載されている。特許文献2に記載された技術によれば、容易に耐摩耗性に有利な高い硬度の耐摩耗鋼が得られるとしている。
特許文献1〜2に記載された技術は、高硬度化することで、耐摩耗特性を向上させている。一方で、様々な形状の部材への適用や溶接個所の低減のため、耐摩耗鋼板に対して曲げ加工性が重要視されることが少なくない。
曲げ加工性に対しては、例えば特許文献3には、重量%で、C:0.05〜0.20%、Mn:0.50〜2.5%、Al:0.02〜2.00%を含有する鋼を、たとえば熱間圧延後にAcとAcの間のフェライト‐オーステナイト2相域に加熱した後急冷することで、フェライト‐ベイナイト母相中に面積分率で5〜50%のマルテンサイト組織を分散させた加工性および溶接性に優れた耐摩耗鋼が記載されている。
また、特許文献4には、重量%で、C:0.1〜0.35%、Si:0.05〜1.0%、Mn:0.1〜2.0%、P:0.02%以下、S:0.05%以下、Nb:0.005〜0.03%を含有する鋼を、熱間圧延後直ちにMs点±25℃まで冷却後、いったん冷却を中断し、Ms点+50℃以上に復熱させ、その後室温まで冷却する耐摩耗鋼の製造方法が記載されている。特許文献4によると、鋼板表面から深さ5mmまでの温度分布における最低硬度が、さらに内部の硬度分布における最高硬度よりも40HV以上低値となり、曲げ加工性に優れた耐摩耗鋼が得られるとしている。
また、特許文献5には、質量%で、C:0.05〜0.35%、Si:0.05〜1.0%、Mn:0.1〜2.0%、B:0.0003〜0.0030%、Ti:0.10〜1.2%、Al:0.1%以下を含み、さらにCu:0.1〜1.0%、Ni:0.1〜0.2%、Cr:0.1〜1.0%、Mo:0.05〜1.0%、W:0.05〜1.0%から選ばれた1種または2種以上を含有し、あるいは更にNb、Vのうちから選ばれた1種または2種以上を含有し、DIを60以上に限定した鋼を、熱間圧延後平均冷却速度で0.5〜2℃/sの冷却速度で400℃以下の温度域まで冷却する耐摩耗鋼板の製造方法が記載されている。これにより、平均粒径0.5〜50μm以上のTi系の炭化物を400個/mm以上析出させて、過度に高硬度化させることなく耐摩耗性を向上させた耐摩耗鋼が得られるとしている。
特開昭63−169359号公報 特開昭64−31928号公報 特許第2864960号公報 特開2006−104489号公報 特許第4899874号公報
しかしながら、特許文献3〜5に記載された技術では、基地相(マトリクス)の硬度が低くなり、耐摩耗性に問題を残していた。
そこで本発明は、このような従来技術の問題を解決し、曲げ加工性と耐摩耗性を兼備した耐摩耗鋼板およびその製造方法を提供することを目的とする。
本発明者らは、上記した目的を達成するために、耐摩耗鋼板の曲げ加工性に影響する各種要因について、鋭意検討を重ねた。その結果、耐摩耗鋼板の曲げ加工性には表層部の硬度および延性が大きく寄与するということを見出し、鋼板表面の組織をフェライトとし、鋼板内部の組織をマルテンサイトとすることで、耐摩耗性に大きく影響を及ぼす基地相(マトリクス)の硬度を低下させない範囲で、曲げ加工性が向上することを知見した。
まず、本発明の基礎となった実験結果について説明する。
質量%で、0.27%C−0.35%Si−0.75%Mn−0.005%P−0.002%S−0.015%Ti−0.03%Al−0.38%Cr−0.20Moを含有する組成の鋼素材(スラブ)を、1150℃に加熱した後熱間圧延して、板厚:12mmの熱延板とした。熱間圧延後に空冷し、下記の(1)式で示すAc点以上の加熱温度で再加熱後、室温まで水冷する焼入れ処理を施した。
Ac3(℃)=912.0−230.5×C+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(1)
ここで、本発明者らは、鋼板表面の組織をフェライトとし、鋼板内部の組織をマルテンサイトにするために、スラブ加熱を利用して鋼板表面のCを脱炭し、次いで焼入れ処理において、C量が0であるAc点、すなわちAc3(C=0)点以下の温度域で再加熱して焼入れ処理を行うことにより、鋼板表面の組織をフェライトとし、鋼板内部の組織をマルテンサイトに制御できると考えた。そして、再加熱温度について、Ac3(C=0)点以下で再加熱した熱処理材と、Ac3(C=0)点超えで再加熱した熱処理材についてそれぞれ検討した。
得られた鋼板について、圧延方向に垂直な断面が観察面となるようにサンプルを採取した。この観察面を鏡面研磨し、さらにナイタール腐食した後、光学顕微鏡を用いて観察面のミクロ写真を撮影し、撮影された像からフェライトの厚さを測定した。
また、得られた鋼板から、曲げ試験片(幅150mm×300mm長さ)を採取し、JIS Z 2248の規定に準拠して、曲げ角度:180°まで押し曲げ、割れ発生のない曲げ半径R(mm)を板厚t(mm)に対する比率で表した、限界曲げ半径R/tを求めた。
また、鋼板の耐摩耗性は、主に表層部分の硬度によって決まる。そのため、得られた鋼板から硬さ測定用試験片を採取し、表面のスケールの影響を除くために鋼板表面から1mmの部分までを研削除去して、研削後の鋼板表面の硬さを測定した。測定はJIS Z 2243(1998)の規定に準拠した。なお、測定に際しては、直径10mmのタングステン硬球を使用し、荷重は3000kgfとした。
図1(a)は、Ac3(C=0)点超えで再加熱・焼入れした鋼板の、圧延方向に垂直な断面のミクロ写真である。また、図1(b)は、Ac3(C=0)点以下で再加熱・焼入れした鋼板の、圧延方向に垂直な断面のミクロ写真である。図1の結果から、再加熱温度がAc3(C=0)点超えの場合、マルテンサイトのみ存在しており、鋼板表面にフェライトが無いことがわかる。一方、再加熱温度がAc3(C=0)点以下の場合、鋼板表面にフェライトが存在し、かつ鋼板内部にマルテンサイトが存在していることがわかる。
また、図2は鋼板表面のフェライトの厚さと限界曲げ半径との関係を示す図であり、図3は鋼板表面のフェライトの厚さと表面硬さとの関係を示す図である。鋼板表面に0.03mm以上1mm未満の厚さのフェライトを有する場合、限界曲げ半径が小さく曲げ加工性が向上し、かつ硬さを維持していることがわかった。一方、鋼板表面に1mm厚さ以上のフェライトを有する場合、限界曲げ半径が小さく曲げ加工性は向上するものの、硬さは低下していることがわかった。また、鋼板表面にフェライトを有しない場合(0mm)、硬さは維持しているものの、限界曲げ半径が大きく加工性に劣ることがわかった。
以上より、鋼板表面に一定の厚さのフェライトを有し、かつ鋼板内部にマルテンサイトを有することにより、曲げ加工性および耐摩耗性に優れた耐摩耗鋼板を得られるという知見を得た。
本発明は、かかる知見に基づき、さらに検討を加えて完成されたものである。すなわち、本発明の要旨はつぎのとおりである。
[1]質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.10〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.050%以下、Cr:0.05〜2.00%、N:0.010%以下、O:0.010%以下を含み、残部Feおよび不可避的不純物からなる成分組成であり、鋼板表面に0.03mm以上1mm未満の厚さのフェライトを有し、鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%以上であることを特徴とする耐摩耗鋼板。
[2]質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.50〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.04%以下、Cr:0.15〜0.90%、N:0.0050%以下、O:0.0050%以下を含み、残部Feおよび不可避的不純物からなる成分組成であり、鋼板表面に0.03mm以上1mm未満の厚さのフェライトを有し、鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%以上であることを特徴とする耐摩耗鋼板。
[3]前記成分組成に加えて、さらに、質量%で、Nb:0.005〜0.100%、Ti:0.005〜0.100%、B:0.0001〜0.0100%のうちから選ばれた1種または2種以上を含有することを特徴とする[1]または[2]に記載の耐摩耗鋼板。
[4]前記成分組成に加えて、さらに、質量%で、Cu:0.01〜1.0%、Ni:0.01〜5.0%、Mo:0.1〜2.0%、V:0.01〜1.00%、W:0.01〜1.00%、Co:0.01〜1.00%のうちから選ばれた1種または2種以上を含有することを特徴とする[1]〜[3]のいずれかに記載の耐摩耗鋼板。
[5]前記成分組成に加えて、さらに、質量%で、Ca:0.0005〜0.0100%、Mg:0.0005〜0.0100%、REM:0.0005〜0.0100%のうちから選ばれた1種または2種以上を含有することを特徴とする[1]〜[4]のいずれかに記載の耐摩耗鋼板。
[6]表面から1mmの位置における平均粒径が500nm以上の介在物および析出物の密度が3.0個/mm以下であることを特徴とする[1]〜[5]のいずれかに記載の耐摩耗鋼板。
[7]質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.10〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.050%以下、Cr:0.05〜2.00%、N:0.010%以下、O:0.010%を含み、残部Feおよび不可避的不純物からなる成分組成を有する鋼素材を加熱した後、熱間圧延し、前記熱間圧延終了後冷却し、次いで、加熱温度がAc点以上Ac3(C=0)点以下で再加熱する焼入れ処理を行うことを特徴とする耐摩耗鋼板の製造方法。なお、Ac点およびAc3(C=0)点は、それぞれ下記式(1)および式(2)で表される。
Ac(℃)=912.0−230.5×C+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(1)
Ac3(C=0)(℃)=912.0+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(2)
ただし、式(1)および式(2)中の元素記号は各元素の含有量(質量%)であり、含有しない場合は0とする。
[8]質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.50〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.04%以下、Cr:0.15〜0.90%、N:0.0050%以下、O:0.0050%以下を含み、残部Feおよび不可避的不純物からなる成分組成を有する鋼素材を加熱した後、熱間圧延し、前記熱間圧延終了後冷却し、次いで、加熱温度がAc点以上Ac3(C=0)点以下で再加熱する焼入れ処理を行うことを特徴とする耐摩耗鋼板の製造方法。なお、Ac点およびAc3(C=0)点は、それぞれ下記式(1)および式(2)で表される。
Ac(℃)=912.0−230.5×C+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(1)
Ac3(C=0)(℃)=912.0+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(2)
ただし、式(1)および式(2)中の元素記号は各元素の含有量(質量%)であり、含有しない場合は0とする。
[9]前記成分組成に加えて、さらに、質量%で、Nb:0.005〜0.100%、Ti:0.005〜0.100%、B:0.0001〜0.0100%のうちから選ばれた1種または2種以上を含有することを特徴とする[7]または[8]に記載の耐摩耗鋼板の製造方法。
[10]記成分組成に加えて、さらに、質量%で、Cu:0.01〜1.0%、Ni:0.01〜5.0%、Mo:0.1〜2.0%、V:0.01〜1.00%、W:0.01〜1.00%、Co:0.01〜1.00%のうちから選ばれた1種または2種以上を含有することを特徴とする[7]〜[9]のいずれかに記載の耐摩耗鋼板の製造方法。
[11]前記成分組成に加えて、さらに、質量%で、Ca:0.0005〜0.0100%、Mg:0.0005〜0.0100%、REM:0.0005〜0.0100%のうちから選ばれた1種または2種以上を含有することを特徴とする[7]〜[10]のいずれかに記載の耐摩耗鋼板の製造方法。
本発明によれば、曲げ加工性と耐摩耗性を兼備した耐摩耗鋼板を、容易に製造することができ、産業上格段の効果を奏する。
図1は、本発明の一実施形態に係る耐摩耗鋼板について、圧延方向に垂直な断面のミクロ写真を示す図であり、(a)は鋼板表面にフェライトが無い場合のミクロ写真、(b)は鋼板表面にフェライトがある場合のミクロ写真を示す図である。 図2は、鋼板表面のフェライトの厚さと限界曲げ半径との関係を示すグラフである。 図3は、鋼板表面のフェライトの厚さと硬さとの関係を示すグラフである。
本発明の耐摩耗鋼板は、質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.10〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.050%以下、Cr:0.05〜2.00%、N:0.010%以下、O:0.010%以下を含み、残部Feおよび不可避的不純物からなる成分組成を有する。
より好ましくは、本発明の耐摩耗鋼板は、質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.50〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.04%以下、Cr:0.15〜0.90%、N:0.0050%以下、O:0.0050%以下を含み、残部Feおよび不可避的不純物からなる成分組成を有する。
先ず、本発明の耐摩耗鋼板の組成限定の理由について説明する。以下、組成における質量%は単に%で記す。
C:0.10〜0.45%
Cは、基地相(マトリクス)硬さを増加させ、耐摩耗性を向上させる有効な元素である。このような効果を得るためには、0.10%以上の含有を必要とする。一方、0.45%を超える含有は、基地相(マトリクス)の硬度が過度に増加し、曲げ加工性が低下する。このため、Cは0.10〜0.45%の範囲に限定する。なお、好ましくは0.13〜0.42%である。
Si:0.05〜1.00%
Siは、脱酸剤として作用するとともに、鋼中に固溶して固溶強化により基地相(マトリクス)硬さを増加させる元素である。このような効果を得るためには、0.05%以上の含有を必要とする。一方、1.00%を超える含有は、延性、靭性を低下させ、さらに介在物量が増加し、曲げ加工性が低下するなどの問題を生じる。このため、Siは0.05〜1.00%の範囲に限定する。なお、好ましくは0.05〜0.40%である。
Mn:0.10〜2.00%
Mnは、基地相(マトリクス)硬さを増加させ、耐摩耗性を向上させる有効な元素である。このような効果を得るためには、0.10%以上の含有を必要とする。一方、2.00%を超える含有は、溶接性を低下させる。このため、Mnは0.10〜2.00%の範囲に限定する。なお、好ましくは0.50〜2.00%、より好ましくは0.60〜1.80%、さらに好ましくは0.70〜1.60%、さらにより好ましくは0.80〜1.40%である。
P:0.020%以下
Pは、粒界に偏析し母材および溶接部の靱性を低下させるなど、悪影響を及ぼす元素であり、不可避的不純物として、本発明ではできるだけ低減することが好ましいが、0.020%以下であれば許容できる。このため、Pは0.020以下に限定する。なお、過剰の低減は、精錬コストの高騰を招くため、0.001%以上とすることが好ましい。
S:0.020%以下
Sは、MnS等の硫化物系介在物として鋼中に存在し、破壊の発生起点となるなど、悪影響を及ぼす元素である。本発明では不可避的不純物として、できるだけ低減することが好ましいが、0.020%以下であれば、許容できる。このため、Sは0.020%以下に限定する。なお、好ましくは、0.010%以下である。なお、過剰の低減は、精錬コストの高騰を招くため、0.0005%以上とすることが好ましい。
Al:0.050%以下
Alは、脱酸剤として作用するとともに、結晶粒を微細化する作用を有する元素であり、このような効果を得るためには、0.01%以上含有することが望ましい。一方、0.050%を超えて多量に含有すると、酸化物系介在物が増加し、清浄度が低下し、表面疵が多発して表面性状が低下するとともに、曲げ加工性が低下する。このため、Alは0.050%以下に限定する。なお、好ましくは0.04%以下、より好ましくは、0.03%以下、さらにより好ましくは0.02%以下である。
Cr:0.05〜2.00%
Crは、基地相(マトリクス)硬さを増加させ、耐摩耗性を向上させる有効な元素である。このような効果を得るためには、0.05%以上の含有を必要とする。一方、2.00%を超える含有は、溶接性を低下させる。このため、Crは0.05〜2.00%の範囲に限定する。なお、好ましくは0.15〜0.90%、より好ましくは0.20〜0.80%、さらに好ましくは0.30〜0.70%である。
上記した成分が基本の成分である。なお、本発明では基本の組成に加えてさらに、選択元素として、Nb:0.005〜0.100%、Ti:0.005〜0.100%、B:0.0001〜0.0100のうちから選ばれた1種または2種以上、および/または、Cu:0.01〜1.0%、Ni:0.01〜5.0%、Mo:0.1〜2.0%、V:0.01〜1.00%、W:0.01〜1.00%、Co:0.01〜1.00%のうちから選ばれた1種または2種以上、および/または、Ca:0.0005〜0.0100%、Mg:0.0005〜0.0100%、REM:0.0005〜0.0100%のうちから選ばれた1種または2種以上、を必要に応じて選択して、含有してもよい。
さらに好ましくは、選択元素として、Nb:0.005〜0.020%、Ti:0.005〜0.017%、B:0.0001〜0.0020%のうちから選ばれた1種または2種以上、および/または、Cu:0.01〜0.2%、Ni:0.01〜2.0%、Mo:0.1〜0.5%、V:0.01〜0.05%、W:0.01〜0.05%、Co:0.01〜0.05%のうちから選ばれた1種または2種以上、および/または、Ca:0.0005〜0.0040%、Mg:0.0005〜0.0050%、REM:0.0005〜0.0080%のうちから選ばれた1種または2種以上、を必要に応じて選択して、含有してもよい。
Nb:0.005〜0.100%、Ti:0.005〜0.100%、B:0.0001〜0.0100%のうちから選ばれた1種または2種以上
Nb、Ti、Bはいずれも、基地相(マトリクス)硬さを増加させ、耐摩耗性を向上させる有効な元素であり、必要に応じて選択して1種または2種以上含有できる。
Nbは、基地相(マトリクス)硬さを増加させ、耐摩耗性の向上に寄与する元素であり、このような効果を得るためには、0.005%以上の含有を必要とする。一方、0.100%を超えて含有すると、NbCが多量に析出し、曲げ加工性を低下させる。このようなことから、含有する場合には、Nbは0.005〜0.100%の範囲に限定することが好ましい。なお、好ましくは0.005〜0.020%、より好ましくは0.008〜0.016%、さらに好ましくは0.009〜0.014%である。
Tiは、窒化物形成傾向が強く、Nを固定して固溶Nを低減するため、母材および溶接部の靭性を向上させる。また、Bを添加する場合には、Nを固定して、BNの析出を抑制し、Bの焼入れ性向上効果を助長して、焼入れ性を向上させ、耐摩耗性の向上に寄与する元素である。このような効果を得るためには、0.005%以上の含有が必要である。一方、0.100%を超えて含有すると、TiCが多量に析出し、曲げ加工性を低下させる。このため、含有する場合は、Tiは0.005〜0.100%とすることが好ましい。なお、より好ましくは0.005〜0.017%、さらに好ましくは0.007〜0.015%、さらにより好ましくは0.009〜0.013%である。
Bは、微量な添加でも焼入れ性を著しく向上させ、マルテンサイトの形成を助長し、耐摩耗性の向上に寄与する元素である。このような効果を得るためには、0.0001%以上の含有が必要である。一方、0.0100%を超える含有は、溶接性を低下させる。このため、含有する場合には、Bは0.0001〜0.0100%の範囲に限定することが好ましい。なお、より好ましくは0.0001〜0.0020%、さらに好ましくは0.0005〜0.0015%である。さらにより好ましくは0.0007〜0.0013%である。
Cu:0.01〜1.0%、Ni:0.01〜5.0%、Mo:0.1〜2.0%、V:0.01〜1.00%、W:0.01〜1.00%、Co:0.01〜1.00%のうちから選ばれた1種または2種以上
Cu、Ni、Mo、V、W、Coはいずれも、焼入れ性を向上させ、鋼板内部の硬度を得るために必要に応じて添加する。このような効果を得るためには、Cu:0.01%以上、Ni:0.01%以上、Mo:0.1%以上、V:0.01%以上、W:0.01%以上、Co:0.01%以上含有することが好ましい。一方、Cu:1.0%、Ni:5.0%、Mo:2.0%、V:1.00%、W:1.00%、Co:1.00%、を超えて含有すると、溶接性の劣化、あるいは合金コストの上昇を招く。このようなことから、含有する場合には、Cu:0.01〜1.0%、Ni:0.01〜5.0%、Mo:0.1〜2.0%、V:0.01〜.00%、W:0.01〜1.00%、Co:0.01〜1.00%に限定することが好ましい。より好ましくは、Cu:0.01〜0.2%、Ni:0.01〜2.0%、Mo:0.1〜0.5%、V:0.01〜0.05%、W:0.01〜0.05%、Co:0.01〜0.05%である。
Ca:0.0005〜0.0100%、Mg:0.0005〜0.0100%、REM:0.0005〜0.0100%のうちから選ばれた1種または2種以上
Ca、Mg、REMはいずれも、Sと結合し、圧延方向に長く伸びるMnS等の形成を抑制して、硫化物系介在物が球状を呈するように形態制御し、溶接部等の靭性向上に寄与する元素であり、必要に応じて1種または2種以上を選択して含有できる。このような効果を得るためには、Ca:0.0005%以上、Mg:0.0005%以上、REM:0.0005%以上、含有することが好ましい。一方、Ca:0.0100%、Mg:0.0100%、REM:0.0100%、を超えて含有すると、鋼の清浄度が低下し、表面疵が多発し表面性状が低下するとともに、曲げ加工性が低下する。このようなことから、含有する場合には、Ca:0.0005〜0.0100%、Mg:0.0005〜0.0100%、REM:0.0005〜0.0100%、に限定することが好ましい。より好ましくは、Ca:0.0005〜0.0040%、Mg:0.0005〜0.0050%、REM:0.0005〜0.0080%である。
上記した成分以外の残部は、Feおよび不可避的不純物からなる。なお、不可避的不純物としては、O:0.010%以下、N:0.010%以下が許容できる。O:0.010%超え、もしくはN:0.010%超えでは、生成する介在物が多くなることで、介在物を起点として割れが発生しやすくなる。このため、O:0.010%以下、N:0.010%以下、に限定する。なお、好ましくはO:0.0050%以下、N:0.0050%以下である。より好ましくは、O:0.0040%以下、N:0.0040%以下である。
本発明の耐摩耗鋼板は、上記成分組成を有し、鋼板表面に厚さ0.03mm以上1mm未満のフェライトを有し、鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%以上である組織とする。鋼の組織を上記のように限定する理由を以下に説明する。
鋼板表面のフェライトの厚さ:0.03mm以上1mm未満
鋼板表面をフェライトとすることで、曲げ加工性が向上する。このような効果を得るためには0.03mm以上の厚さを必要とする。一方で、1mm以上のフェライトになると、鋼板表面から1mm以降の硬度が低下するため、耐摩耗性が劣化する。そのため、フェライトの厚さは1mm未満とする。なお、より好ましくは0.05mm以上0.5mm未満である。
鋼板表面から1mmの位置におけるマルテンサイトの体積率:90%以上
鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%未満であると、鋼板の基地組織の硬度が低下するため、耐摩耗性が劣化する。そのため、鋼板表面から1mmの位置におけるマルテンサイトの体積率を90%以上とする。なお、マルテンサイト以外の残部組織は特に限定されないが、フェライト、パーライト、オーステナイト、ベイナイト組織が存在してよい。一方、マルテンサイトの体積率は高いほどよいため、マルテンサイトの体積率の上限は特に限定されず、100%であってよい。また、本発明において、鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%以上であれば、鋼板表面1mm以降の鋼板内部についても、マルテンサイトの体積率が90%以上であることを意味する。
さらに、上記組成および上記組織を有する鋼において、鋼板表面から1mmの位置における平均粒径が500nm以上の介在物および析出物の密度を3.0個/mm以下とすることで、曲げ加工性をさらに向上させることができる。
鋼板表面から1mmの位置における平均粒径が500nm以上の介在物および析出物の密度が3.0個/mm以下であることにより、介在物や析出物を起点とした割れを抑制することができ、曲げ加工性が向上する。介在物や析出物の密度は低いほどよいため、下限は特に限定されないが、過度の低減は精錬コストの高騰を招くため、0.1個/mm以上とすることが好ましい。
つぎに、本発明の耐摩耗鋼板の製造方法について説明する。
上記した成分組成を有する鋼素材を加熱し、熱間圧延して耐摩耗鋼板とする。
鋼素材の製造方法
鋼素材の製造方法は、とくに限定する必要はないが、上記した成分組成を有する溶鋼を、転炉等の公知の溶製方法で溶製し、連続鋳造法等の公知の鋳造方法で、所定寸法のスラブ等の鋼素材とすることが好ましい。なお、造塊−分解圧延法により、所定寸法のスラブ等の鋼素材としてもなんら問題はない。
鋼素材を加熱
得られた鋼素材(スラブ)は、冷却することなく直接、あるいは冷却したのち、加熱炉で好ましくは加熱温度:900〜1200℃に加熱して、さらに熱間圧延し所望板厚(肉厚)の鋼板とする。本発明では、得られた鋼素材(スラブ)を加熱することにより表面から脱炭させ、さらに後述する焼入れ温度で焼入れ処理を行うことにより、鋼板表面に所定厚さのフェライト組織を得ることができる。加熱温度は、900〜1250℃が好ましい。加熱温度が900℃未満では、加熱温度が低すぎて変形抵抗が高くなり、熱間圧延機への負荷が増大し、熱間圧延が困難になる。一方、1250℃を超えて高温となると、酸化が著しくなり、酸化ロスが増大し歩留りが低下する。このようなことから、加熱温度は900〜1250℃が好ましい。なお、より好ましくは950〜1150℃である。
熱間圧延
熱間圧延については、特に限定されず、常法により熱間圧延を行えばよい。
加熱温度がAc点以上Ac3(C=0)点以下で再加熱する焼入れ処理
さらに、熱間圧延終了後冷却したのち、下記式(1)および(2)式で示されるAc点以上Ac3(C=0)点以下の加熱温度で再加熱する焼入れ処理を行う。これは、オーステナイト状態からの焼入れによってマルテンサイト組織を得るためである。Ac点未満からの焼入れでは十分に焼きが入らず、硬度が低下し、耐摩耗性が高いミクロ組織は得られない。また、加熱温度がAc3(C=0)点超えでは、鋼板表面がマルテンサイト組織となり、所望のフェライト組織を得ることができない。
Ac(℃)=912.0−230.5×C+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(1)
Ac3(C=0)(℃)=912.0+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(2)
ただし、式(1)および式(2)中の元素記号は各元素の含有量(質量%)であり、含有しない場合は0とする。
なお、焼入れ処理の冷却速度は、マルテンサイト組織が形成される冷却速度であればとくに限定されない。また、冷却停止温度は、Mf点以下の温度、好ましくは200℃以下まで水冷することが好ましい。
表1に示す組成の溶鋼を溶製し、鋼素材(スラブ)とした。これら鋼素材(スラブ)に、表2に示す条件で加熱および熱間圧延を施し、表2に示す板厚の熱延板とした。その後、放冷し、再加熱したのち焼入れる再加熱焼入れ処理を施した。なお、表1中のMf、Arは、以下の式により求めた。
Mf(℃)=410.5−407.3×C−7.3×Si−37.8×Mn−20.5×Cu−19.5×Ni−19.8×Cr−4.5×Mo
Ar(℃)=910−273×C−74×Mn−57×Ni−16×Cr−9×Mo−5×Cu
得られた鋼板について、鋼板表面のフェライトの厚さの測定、マルテンサイトの体積率測定、表層部の硬さ試験、曲げ試験をそれぞれ実施した。試験方法は次の通りである。
(1)フェライトの厚さの測定
圧延方向に垂直な断面が観察面となるよう、各鋼板からサンプルを採取した。前記サンプルを鏡面研磨し、さらにナイタール腐食した後、光学顕微鏡を用いて×400倍にて各3視野写真撮影を行った。1視野につき任意の5ヶ所のフェライト厚さを測定して平均値を求め、3視野分の平均値をフェライト厚さとした。
(2)マルテンサイトの体積率測定
鋼板表面から1mmの位置が観察位置となるよう、各鋼板からサンプルを採取した。前記サンプルの表面を鏡面研磨し、さらにナイタール腐食した後、走査型電子顕微鏡(SEM)を用いて10mm×10mmの範囲を撮影した。撮影された像を、画像解析装置を用いて解析し、マルテンサイトの面積分率を求めた。任意の3ヶ所の画像について、マルテンサイトの面積分率を求め、その平均値を本発明におけるマルテンサイトの体積率とした。
(3)介在物および析出物測定
鋼板表面から1mmの位置が観察位置となるよう、各鋼板からサンプルを採取した。前記サンプルの表面を鏡面研磨しSEMを用いて10mm×10mmの範囲を撮影した。撮影された像を、画像解析装置を用いて解析することによって介在物や析出物の粒径と個数を求め、平均粒径500nm以上の介在物および析出物について個数を測定し、密度を求めた。任意の3ヶ所の画像について、介在物および析出物の密度を求め、その平均値を本発明における介在物および析出物の密度とした。
(4)表面硬さ試験
鋼板の耐摩耗性は、主に表層部分の硬度によって決まる。そのため、得られた鋼板から、硬さ測定用試験片を採取し、JIS Z 2243(1998)の規定に準拠して、表面から板厚方向に1mm位置の硬さを測定した。表面のスケールおよび脱炭層の影響を除くため表面から1mmを研削除去して、表面から1mmの面で表面硬さを測定した。なお、測定に際しては、直径10mmのタングステン硬球を使用し、荷重は3000kgfとした。硬さが360以上を合格とした。
(5)曲げ試験
得られた鋼板から曲げ試験片(幅150mm×300mm長さ)を採取し、JIS Z 2248の規定に準拠して、曲げ角度:180°まで押し曲げ、割れ発生のない曲げ半径R(mm)を板厚t(mm)に対する比率で表した限界曲げ半径R/tを求めた。R/tが1.5以下を合格とした。
得られた結果を表2に示す。
発明例は、曲げ加工性と耐摩耗性を具備した耐摩耗鋼板となっている。一方、比較例は、硬度が同等でかつ曲げ半径が大きい、あるいは硬度が低く曲げ半径が小さくなっており、曲げ加工性もしくは耐摩耗性に劣っている。
表3に示す組成の溶鋼を溶製し、鋼素材(スラブ)とした。これら鋼素材(スラブ)に、表4に示す条件で加熱および熱間圧延を施し、表4に示す板厚の熱延板とした。その後、放冷し、再加熱したのち焼入れる再加熱焼入れ処理を施した。なお、表3中のMs、Mf、Arは、以下の式により求めた。
Mf(℃)=410.5−407.3×C−7.3×Si−37.8×Mn−20.5×Cu−19.5×Ni−19.8×Cr−4.5×Mo
Ar(℃)=910−273×C−74×Mn−57×Ni−16×Cr−9×Mo−5×Cu
得られた鋼板について、鋼板表面のフェライトの厚さの測定、マルテンサイトの体積率測定、表層部の硬さ試験、曲げ試験をそれぞれ実施した。試験方法は次の通りである。
(1)フェライトの厚さの測定
圧延方向に垂直な断面が観察面となるよう、各鋼板からサンプルを採取した。前記サンプルを鏡面研磨し、さらにナイタール腐食した後、光学顕微鏡を用いて×400倍にて各3視野写真撮影を行った。1視野につき任意の5ヶ所のフェライト厚さを測定して平均値を求め、3視野分の平均値をフェライト厚さとした。
(2)マルテンサイトの体積率測定
鋼板表面から1mmの位置が観察位置となるよう、各鋼板からサンプルを採取した。前記サンプルの表面を鏡面研磨し、さらにナイタール腐食した後、走査型電子顕微鏡(SEM)を用いて10mm×10mmの範囲を撮影した。撮影された像を、画像解析装置を用いて解析し、マルテンサイトの面積分率を求めた。任意の3ヶ所の画像について、マルテンサイトの面積分率を求め、その平均値を本発明におけるマルテンサイトの体積率とした。
(3)介在物および析出物測定
鋼板表面から1mmの位置が観察位置となるよう、各鋼板からサンプルを採取した。前記サンプルの表面を鏡面研磨しSEMを用いて10mm×10mmの範囲を撮影した。撮影された像を、画像解析装置を用いて解析することによって介在物や析出物の粒径と個数を求め、平均粒径500nm以上の介在物および析出物について個数を測定し、密度を求めた。任意の3ヶ所の画像について、介在物および析出物の密度を求め、その平均値を本発明における介在物および析出物の密度とした。
(4)表面硬さ試験
鋼板の耐摩耗性は、主に表層部分の硬度によって決まる。そのため、得られた鋼板から、硬さ測定用試験片を採取し、JIS Z 2243(1998)の規定に準拠して、表面から板厚方向に1mm位置の硬さを測定した。表面のスケールおよび脱炭層の影響を除くため表面から1mmを研削除去して、表面から1mmの面で表面硬さを測定した。なお、測定に際しては、直径10mmのタングステン硬球を使用し、荷重は3000kgfとした。硬さが490以上を合格とした。
(5)曲げ試験
得られた鋼板から曲げ試験片(幅150mm×300mm長さ)を採取し、JIS Z 2248の規定に準拠して、曲げ角度:180°まで押し曲げ、割れ発生のない曲げ半径R(mm)を板厚t(mm)に対する比率で表した限界曲げ半径R/tを求めた。R/tが2.5以下を合格とした。
得られた結果を表4に示す。
発明例は、曲げ加工性と耐摩耗性を具備した耐摩耗鋼板となっている。一方、比較例は、硬度が同等でかつ曲げ半径が大きい、あるいは硬度が低く曲げ半径が小さくなっており、曲げ加工性もしくは耐摩耗性に劣っている。
表5に示す組成の溶鋼を溶製し、鋼素材(スラブ)とした。これら鋼素材(スラブ)に、表6に示す条件で加熱および熱間圧延を施し、表6に示す板厚の熱延板とした。その後、放冷し、再加熱したのち焼入れる再加熱焼入れ処理を施した。なお、表5中のMs、Mf、Arは、以下の式により求めた。
Mf(℃)=410.5−407.3×C−7.3×Si−37.8×Mn−20.5×Cu−19.5×Ni−19.8×Cr−4.5×Mo
Ar(℃)=910−273×C−74×Mn−57×Ni−16×Cr−9×Mo−5×Cu
得られた鋼板について、鋼板表面のフェライトの厚さの測定、マルテンサイトの体積率測定、表層部の硬さ試験、曲げ試験をそれぞれ実施した。試験方法は次の通りである。
(1)フェライトの厚さの測定
圧延方向に垂直な断面が観察面となるよう、各鋼板からサンプルを採取した。前記サンプルを鏡面研磨し、さらにナイタール腐食した後、光学顕微鏡を用いて×400倍にて各3視野写真撮影を行った。1視野につき任意の5ヶ所のフェライト厚さを測定して平均値を求め、3視野分の平均値をフェライト厚さとした。
(2)マルテンサイトの体積率測定
鋼板表面から1mmの位置が観察位置となるよう、各鋼板からサンプルを採取した。前記サンプルの表面を鏡面研磨し、さらにナイタール腐食した後、走査型電子顕微鏡(SEM)を用いて10mm×10mmの範囲を撮影した。撮影された像を、画像解析装置を用いて解析し、マルテンサイトの面積分率を求めた。任意の3ヶ所の画像について、マルテンサイトの面積分率を求め、その平均値を本発明におけるマルテンサイトの体積率とした。
(3)介在物および析出物測定
鋼板表面から1mmの位置が観察位置となるよう、各鋼板からサンプルを採取した。前記サンプルの表面を鏡面研磨しSEMを用いて10mm×10mmの範囲を撮影した。撮影された像を、画像解析装置を用いて解析することによって介在物や析出物の粒径と個数を求め、平均粒径500nm以上の介在物および析出物について個数を測定し、密度を求めた。任意の3ヶ所の画像について、介在物および析出物の密度を求め、その平均値を本発明における介在物および析出物の密度とした。
(4)表面硬さ試験
鋼板の耐摩耗性は、主に表層部分の硬度によって決まる。そのため、得られた鋼板から、硬さ測定用試験片を採取し、JIS Z 2243(1998)の規定に準拠して、表面から板厚方向に1mm位置の硬さを測定した。表面のスケールおよび脱炭層の影響を除くため表面から1mmを研削除去して、表面から1mmの面で表面硬さを測定した。なお、測定に際しては、直径10mmのタングステン硬球を使用し、荷重は3000kgfとした。硬さが560以上を合格とした。
(5)曲げ試験
得られた鋼板から曲げ試験片(幅150mm×300mm長さ)を採取し、JIS Z 2248の規定に準拠して、曲げ角度:180°まで押し曲げ、割れ発生のない曲げ半径R(mm)を板厚t(mm)に対する比率で表した限界曲げ半径R/tを求めた。R/tが3.5以下を合格とした。
得られた結果を表6に示す。
発明例は、曲げ加工性と耐摩耗性を具備した耐摩耗鋼板となっている。一方、比較例は、硬度が同等でかつ曲げ半径が大きい、あるいは硬度が低く曲げ半径が小さくなっており、曲げ加工性もしくは耐摩耗性に劣っている。

Claims (9)

  1. 質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.10〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.050%以下、Cr:0.37〜2.00%、N:0.010%以下、O:0.010%以下を含み、さらに、質量%で、Nb:0.005〜0.019%、Ti:0.005〜0.100%、B:0.0001〜0.0100%のうちから選ばれた1種または2種以上を含有し、残部Feおよび不可避的不純物からなる成分組成であり、鋼板表面に0.03mm以上1mm未満の厚さのフェライトを有し、鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%以上であることを特徴とする耐摩耗鋼板。
  2. 質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.50〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.04%以下、Cr:0.37〜2.00%、N:0.0050%以下、O:0.0050%以下を含み、さらに、質量%で、Nb:0.005〜0.019%、Ti:0.005〜0.100%、B:0.0001〜0.0100%のうちから選ばれた1種または2種以上を含有し、残部Feおよび不可避的不純物からなる成分組成であり、鋼板表面に0.03mm以上1mm未満の厚さのフェライトを有し、鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%以上であることを特徴とする耐摩耗鋼板。
  3. 前記成分組成に加えて、さらに、質量%で、Cu:0.01〜1.0%、Ni:0.01〜5.0%、Mo:0.1〜2.0%、V:0.01〜1.00%、W:0.01〜1.00%、Co:0.01〜1.00%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1または2に記載の耐摩耗鋼板。
  4. 前記成分組成に加えて、さらに、質量%で、Ca:0.0005〜0.0100%、Mg:0.0005〜0.0100%、REM:0.0005〜0.0100%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項1〜3のいずれかに記載の耐摩耗鋼板。
  5. 表面から1mmの位置における平均粒径が500nm以上の介在物および析出物の密度が3.0個/mm以下であることを特徴とする請求項1〜4のいずれかに記載の耐摩耗鋼板。
  6. 質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.10〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.050%以下、Cr:0.37〜2.00%、N:0.010%以下、O:0.010%を含み、さらに、質量%で、Nb:0.005〜0.019%、Ti:0.005〜0.100%、B:0.0001〜0.0100%のうちから選ばれた1種または2種以上を含有し、残部Feおよび不可避的不純物からなる成分組成を有する鋼素材を加熱した後、熱間圧延し、前記熱間圧延終了後冷却し、次いで、加熱温度がAc点以上Ac3(C=0)点以下および保持時間が10min以上で再加熱する焼入れ処理を行うことを特徴とする、鋼板表面に0.03mm以上1mm未満の厚さのフェライトを有し、鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%以上である耐摩耗鋼板の製造方法。なお、Ac点およびAc3(C=0)点は、それぞれ下記式(1)および式(2)で表される。
    Ac(℃)=912.0−230.5×C+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(1)
    Ac3(C=0)(℃)=912.0+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(2)
    ただし、式(1)および式(2)中の元素記号は各元素の含有量(質量%)であり、含有しない場合は0とする。
  7. 質量%で、C:0.10〜0.45%、Si:0.05〜1.00%、Mn:0.50〜2.00%、P:0.020%以下、S:0.020%以下、Al:0.04%以下、Cr:0.37〜2.00%、N:0.0050%以下、O:0.0050%以下を含み、さらに、質量%で、Nb:0.005〜0.019%、Ti:0.005〜0.100%、B:0.0001〜0.0100%のうちから選ばれた1種または2種以上を含有し、残部Feおよび不可避的不純物からなる成分組成を有する鋼素材を加熱した後、熱間圧延し、前記熱間圧延終了後冷却し、次いで、加熱温度がAc点以上Ac3(C=0)点以下および保持時間が10min以上で再加熱する焼入れ処理を行うことを特徴とする、鋼板表面に0.03mm以上1mm未満の厚さのフェライトを有し、鋼板表面から1mmの位置におけるマルテンサイトの体積率が90%以上である耐摩耗鋼板の製造方法。なお、Ac点およびAc3(C=0)点は、それぞれ下記式(1)および式(2)で表される。
    Ac(℃)=912.0−230.5×C+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(1)
    Ac3(C=0)(℃)=912.0+31.6×Si−20.4×Mn−39.8×Cu−18.1×Ni−14.8×Cr+16.8×Mo・・・(2)
    ただし、式(1)および式(2)中の元素記号は各元素の含有量(質量%)であり、含有しない場合は0とする。
  8. 前記成分組成に加えて、さらに、質量%で、Cu:0.01〜1.0%、Ni:0.01〜5.0%、Mo:0.1〜2.0%、V:0.01〜1.00%、W:0.01〜1.00%、Co:0.01〜1.00%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項6または7に記載の耐摩耗鋼板の製造方法。
  9. 前記成分組成に加えて、さらに、質量%で、Ca:0.0005〜0.0100%、Mg:0.0005〜0.0100%、REM:0.0005〜0.0100%のうちから選ばれた1種または2種以上を含有することを特徴とする請求項6〜8のいずれかに記載の耐摩耗鋼板の製造方法。
JP2019066512A 2016-09-16 2019-03-29 耐摩耗鋼板およびその製造方法 Active JP6711434B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2016181284 2016-09-16
JP2016181284 2016-09-16

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2017174653A Division JP6540764B2 (ja) 2016-09-16 2017-09-12 耐摩耗鋼板およびその製造方法

Publications (2)

Publication Number Publication Date
JP2019123945A JP2019123945A (ja) 2019-07-25
JP6711434B2 true JP6711434B2 (ja) 2020-06-17

Family

ID=61766038

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2017174653A Active JP6540764B2 (ja) 2016-09-16 2017-09-12 耐摩耗鋼板およびその製造方法
JP2019066512A Active JP6711434B2 (ja) 2016-09-16 2019-03-29 耐摩耗鋼板およびその製造方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2017174653A Active JP6540764B2 (ja) 2016-09-16 2017-09-12 耐摩耗鋼板およびその製造方法

Country Status (1)

Country Link
JP (2) JP6540764B2 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102119959B1 (ko) * 2018-09-27 2020-06-05 주식회사 포스코 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
KR102175570B1 (ko) * 2018-09-27 2020-11-06 주식회사 포스코 우수한 경도와 충격인성을 갖는 내마모강 및 그 제조방법
JP2021031709A (ja) * 2019-08-21 2021-03-01 Jfeスチール株式会社 耐疲労特性に優れた耐摩耗鋼材の製造方法
JP2021031708A (ja) * 2019-08-21 2021-03-01 Jfeスチール株式会社 耐疲労特性に優れた耐摩耗鋼材
CA3153769A1 (en) * 2019-09-17 2021-03-25 Jfe Steel Corporation Wear-resistant steel plate and method for producing same
CN111187984A (zh) * 2020-02-17 2020-05-22 本钢板材股份有限公司 蜗轮蜗杆传动装置用钢材及其制备方法
CN113699437A (zh) * 2021-06-25 2021-11-26 武汉钢铁有限公司 车厢板用热连轧双相耐磨钢及生产方法
CN114318155A (zh) * 2022-01-05 2022-04-12 河北普阳钢铁有限公司 一种含铬astm a36钢板及其生产方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4119676B2 (ja) * 2002-05-01 2008-07-16 株式会社神戸製鋼所 曲げ加工性に優れた低降伏比型高張力鋼板およびその製造方法
JP5683327B2 (ja) * 2011-03-07 2015-03-11 Jfeスチール株式会社 低温靭性に優れた耐摩耗鋼板
JP6235221B2 (ja) * 2013-03-28 2017-11-22 Jfeスチール株式会社 低温靭性および耐水素脆性を有する耐磨耗厚鋼板およびその製造方法
JP6007847B2 (ja) * 2013-03-28 2016-10-12 Jfeスチール株式会社 低温靭性を有する耐磨耗厚鋼板およびその製造方法

Also Published As

Publication number Publication date
JP2018048399A (ja) 2018-03-29
JP6540764B2 (ja) 2019-07-10
JP2019123945A (ja) 2019-07-25

Similar Documents

Publication Publication Date Title
JP6711434B2 (ja) 耐摩耗鋼板およびその製造方法
JP6721077B2 (ja) 耐摩耗鋼板および耐摩耗鋼板の製造方法
JP5034308B2 (ja) 耐遅れ破壊特性に優れた高強度厚鋼板およびその製造方法
JP5655356B2 (ja) 低温焼戻脆化割れ性に優れた耐摩耗鋼板
JP5186809B2 (ja) 加工性に優れた耐磨耗鋼板およびその製造方法
KR101635008B1 (ko) 용접 열영향부 ctod 특성이 우수한 후육 고장력강 및 그의 제조 방법
US20130160904A1 (en) High strength hot rolled steel sheet having excellent toughness and method for manufacturing the same
JP6572952B2 (ja) 耐摩耗鋼板および耐摩耗鋼板の製造方法
JP6583374B2 (ja) 耐摩耗鋼板および耐摩耗鋼板の製造方法
JP4899874B2 (ja) 加工性に優れた耐摩耗鋼板およびその製造方法
JP5458624B2 (ja) 加工性に優れた耐磨耗鋼板およびその製造方法
JP2022050705A (ja) 耐摩耗鋼板およびその製造方法
JP6583375B2 (ja) 耐摩耗鋼板および耐摩耗鋼板の製造方法
JP2010180443A (ja) 高炭素パーライト系レールの熱処理方法
JP6737208B2 (ja) 耐摩耗鋼板
JP2008214736A (ja) 加工性に優れた耐磨耗鋼板およびその製造方法
JP6217586B2 (ja) 曲げ加工性及び耐衝撃摩耗性に優れた耐摩耗鋼板およびその製造方法
JP6673320B2 (ja) 厚鋼板および厚鋼板の製造方法
JP5053187B2 (ja) 延性に優れたパーライト系高炭素鋼レール
JP6164193B2 (ja) 曲げ加工性及び耐衝撃摩耗特性に優れた耐摩耗鋼板およびその製造方法
JP7088235B2 (ja) 耐摩耗鋼板およびその製造方法
JP7063419B1 (ja) 耐摩耗鋼板および耐摩耗鋼板の製造方法
JP7063420B1 (ja) 耐摩耗鋼板および耐摩耗鋼板の製造方法
WO2021241606A1 (ja) 耐摩耗鋼板および耐摩耗鋼板の製造方法
JP2020193380A (ja) 耐摩耗鋼板およびその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200511

R150 Certificate of patent or registration of utility model

Ref document number: 6711434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150