WO2020053973A1 - Ferromagnetic material sputtering target - Google Patents

Ferromagnetic material sputtering target Download PDF

Info

Publication number
WO2020053973A1
WO2020053973A1 PCT/JP2018/033698 JP2018033698W WO2020053973A1 WO 2020053973 A1 WO2020053973 A1 WO 2020053973A1 JP 2018033698 W JP2018033698 W JP 2018033698W WO 2020053973 A1 WO2020053973 A1 WO 2020053973A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal
mol
powder
sputtering target
less
Prior art date
Application number
PCT/JP2018/033698
Other languages
French (fr)
Japanese (ja)
Inventor
真一 荻野
Original Assignee
Jx金属株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jx金属株式会社 filed Critical Jx金属株式会社
Priority to CN201880004278.2A priority Critical patent/CN111183244B/en
Priority to PCT/JP2018/033698 priority patent/WO2020053973A1/en
Priority to SG11201906523QA priority patent/SG11201906523QA/en
Priority to JP2019530516A priority patent/JPWO2020053973A1/en
Priority to MYPI2019004199A priority patent/MY191072A/en
Publication of WO2020053973A1 publication Critical patent/WO2020053973A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering

Definitions

  • the present invention relates to a Co—Pt ferromagnetic sputtering target suitable for forming a magnetic thin film in a magnetic recording medium.
  • Magnetic thin films are often produced by sputtering a sputtering target containing the above-mentioned material with a DC magnetron sputtering apparatus because of its high productivity.
  • a ferromagnetic material sputtering target with a magnetron sputtering apparatus most of the magnetic flux from the magnet passes through the inside of the target, which is a ferromagnetic material, so that the leakage magnetic flux decreases and no discharge occurs during sputtering.
  • the discharge is not stable even if the discharge is performed.
  • reducing Co is not an essential solution because a desired magnetic recording film cannot be obtained.
  • it is possible to improve the leakage magnetic flux by reducing the thickness of the target but in this case, the target life is shortened, and frequent replacement of the target is required, which causes an increase in cost.
  • a method has been adopted in which the Cr ratio is increased to make it partially non-magnetic and the leakage magnetic flux is increased.
  • a Co—Cr-based or Co—Cr—Pt-based ferromagnetic alloy containing Co as a main component has been used for a recording layer of a hard disk employing an in-plane magnetic recording system.
  • non-magnetic particles such as oxide and carbon are dispersed in a Co—Cr—Pt-based ferromagnetic alloy containing Co as a main component in a recording layer of a hard disk employing a perpendicular magnetic recording method that has been put into practical use in recent years.
  • Composite materials are often used.
  • the composition that has become the mainstream in recent years is a composition containing little or no Cr, and it is difficult to sufficiently obtain the effect of increasing the leakage magnetic flux by the conventional method.
  • WO2012 / 077665 discloses that in a sputtering target made of a metal having a composition in which Pt is 5 mol% or more, Cr is 20 mol% or less, and the balance is Co, the metal base (A) and the (A) Among them, a ferromagnetic sputtering target characterized by having a Co—Pt alloy phase (B) containing 40 to 76 mol% of Pt has been proposed.
  • the thickness be 10 ⁇ m or more.
  • the diameter of the Co—Pt alloy phase (B) is too large, the problem of particles at the time of sputtering is likely to occur. Therefore, it is preferable that the diameter be 150 ⁇ m or less.
  • a metal base (A) and A ferromagnetic material comprising: a Co—Pt alloy phase (B) containing 40 to 76 mol% of Pt; and Co or a metal or alloy phase (C) containing Co as a main component different from the phase (B).
  • Sputtering targets have been proposed. According to the document, if the diameter of the Co—Pt alloy phase (B) is too small, the diffusion between the metal base (A) and the phase (B) proceeds, and the difference between the constituent elements becomes unclear.
  • the thickness be 10 ⁇ m or more. Further, according to the document, if the diameter of the Co—Pt alloy phase (B) is too large, the problem of particles at the time of sputtering is likely to occur. Therefore, it is preferable that the diameter be 150 ⁇ m or less.
  • an object of the present invention is to provide a Co—Pt-based ferromagnetic material sputtering target having a high leakage magnetic flux and capable of suppressing generation of particles during sputtering.
  • Patent Literature 1 and Patent Literature 2 teach that the Co—Pt alloy phase should have a diameter of 10 ⁇ m or more. However, such a coarse Co—Pt alloy phase has a large particle size during sputtering. It was found to be the cause of the outbreak. Therefore, the present inventors have intensively studied effective means for suppressing particles while taking advantage of the Co-Pt alloy phase capable of increasing the leakage magnetic flux, and found that the Co-Pt alloy phase was coarsened while the Co-Pt alloy phase was refined. It has been found that the technique of making is effective. The present invention has been completed based on such findings.
  • This is a ferromagnetic material sputtering target having a particle phase.
  • a total of one or more non-magnetic materials selected from the group consisting of carbon, oxide, nitride, carbide and carbonitride 25 mol% or less is contained.
  • This is a method for producing a ferromagnetic material sputtering target containing:
  • the step of obtaining the mixed powder further includes B, Ti, V, Mn, Zr, Nb, Ru, Mo, Ta, W, Al, This includes mixing one or more powders selected from the group consisting of Si and Zn.
  • the step of obtaining the mixed powder is further selected from the group consisting of carbon, oxide, nitride, carbide and carbonitride. This includes mixing one or more non-magnetic materials.
  • the present invention is a method for producing a magnetic recording film, comprising using the sputtering target according to the present invention.
  • the ferromagnetic material sputtering target of the present invention becomes a target having a large leakage magnetic flux, and when used in a magnetron sputtering apparatus, ionization of an inert gas is efficiently promoted and a stable discharge is obtained. According to the present invention, since the thickness of the target can be increased, there is an advantage that the frequency of replacement of the target is reduced and a magnetic thin film can be manufactured at low cost. Further, the ferromagnetic material sputtering target of the present invention has few particles at the time of sputtering and enables stable sputtering.
  • Metal Cr is contained in an amount of 0 mol% or more and 20 mol% or less.
  • This composition has a high content of metal Co, which is a ferromagnetic material, and a small content of metal Cr, which has an effect of increasing the leakage magnetic flux, so that it is generally difficult to obtain a high leakage magnetic flux.
  • the ferromagnetic material sputtering target according to the present invention can satisfy 70 ⁇ X ⁇ 90 in one embodiment, and can satisfy 80 ⁇ X ⁇ 85 in another embodiment, in consideration of hard disk media manufacturing applications. it can.
  • the ferromagnetic material sputtering target according to the present invention can contain metal Co and metal Pt in a total amount of 75 mol% or more in one embodiment, and can contain metal Co and metal Pt in a total amount of 85 mol% or more in another embodiment. can do.
  • the ferromagnetic material sputtering target according to the present invention can contain metal Co and metal Pt in a total of 95 mol% or less, and in another embodiment, the metal Co and metal Pt in a total of 90 mol%. The following can be contained.
  • a ferromagnetic sputtering target containing a total of 75 to 95 mol% of metal Co and metal Pt is suitable for a perpendicular magnetic recording film.
  • the ferromagnetic material sputtering target according to the present invention can contain 0 to 15 mol% of metal Cr in one embodiment, and can contain 0 to 10 mol% of metal Cr in another embodiment.
  • the metal Cr can be contained in an amount of 0 mol% or more and 5 mol% or less.
  • the metal Cr can be contained in an amount of 0 mol% or more and 1 mol% or less.
  • the form does not contain metallic Cr.
  • the Co—Pt alloy particle phase can be dispersed in the target structure.
  • the Co—Pt alloy particle phase contributes to the improvement of the leakage magnetic flux, but when the average particle size is large, it becomes a factor of increasing particles.
  • the problem of particles during sputtering by the Co—Pt alloy particle phase occurs when the diameter exceeds 150 ⁇ m, but the Co—Pt alloy particle phase is as fine as possible. It is desirable. Therefore, in the ferromagnetic material sputtering target according to the present invention, the average particle size of the Co—Pt alloy particle phase is preferably 7 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 2 ⁇ m or less. preferable.
  • the average particle diameter of the Co-Pt alloy particles phase since the possibility of L1 0 structure is diffused too small and another phase during sintering is promoted loss increases, at 0.1 ⁇ m or more It is preferably at least 0.2 ⁇ m, more preferably at least 0.5 ⁇ m.
  • the Co—Pt alloy particle phase is preferably at least 20% by mass, more preferably at least 30% by mass, based on the total mass of the sputtering target. , 40% by mass or more.
  • the Co-Pt alloy particle phase is preferably 70% by mass or less, and more preferably 65% by mass or less, based on the total mass of the sputtering target. More preferably, it is even more preferably 60% by mass or less.
  • the Co-rich composition sputtering target according to the present invention has a Co particle phase containing 90 mol% or more of metallic Co in addition to the Co—Pt alloy particle phase.
  • the Co particle phase preferably contains metallic Co in an amount of 95 mol% or more, more preferably 99.9 mol% or more, in order to increase the proportion of the Co—Pt alloy particle phase contained in the target.
  • the Co particle phase can be dispersed in the target structure.
  • the Co particle phase is desirably coarsened.
  • the average particle size of the Co particle phase containing 90 mol% or more of metal Co is preferably 30 ⁇ m or more, more preferably 50 ⁇ m or more, and even more preferably 100 ⁇ m or more.
  • the average particle size of the Co particle phase is preferably 300 ⁇ m or less, more preferably 200 ⁇ m or less, and more preferably 150 ⁇ m or less, since there is a concern that if the average particle size is too large, particles may be generated. Is even more preferred.
  • the Co particle phase is preferably 15% by mass or more based on the total mass of the sputtering target from the viewpoint of increasing the leakage magnetic flux and further suppressing the diffusion of the Co—Pt alloy particle phase during sintering. It is more preferably at least 25% by mass, and even more preferably at least 30% by mass.
  • the Co particle phase is preferably 50% by mass or less, and more preferably 45% by mass, based on the total mass of the sputtering target, from the viewpoint of improving dispersibility with other raw materials during mixing because the Co particle phase is coarse particles. %, More preferably 40% by mass or less.
  • the ferromagnetic material sputtering target according to the present invention includes, as a third element, one selected from the group consisting of B, Ti, V, Mn, Zr, Nb, Ru, Mo, Ta, W, Al, Si, and Zn. Two or more of them may be contained in a total amount of 30 mol% or less, for example, 0.01 to 20 mol%, typically 0.05 to 10 mol% as a single metal or alloy. These are elements added as necessary to improve the characteristics as a magnetic recording medium. The mixing ratio can be variously adjusted within the above range, and any of them can maintain the characteristics as an effective magnetic recording medium.
  • B is also treated as a metal.
  • the third element may be present in the Co—Pt alloy particle phase, may be present in the Co particle phase, and may be a different particle phase distinguishable from the Co—Pt alloy particle phase and the Co particle phase. Can be inside.
  • the other particulate phase can be dispersed in the target tissue.
  • the third element is present in the Co—Pt alloy particle phase or is contained in another fine particle phase because the finely dispersed element is advantageous for particle reduction. Is preferably present.
  • the third element is not a single metal or alloy particle phase but forms a particle phase as an oxide, nitride, carbide or carbonitride
  • the third element is not a third element particle phase but a Handle as the particle phase of the magnetic material.
  • the another particle phase forms a composite phase mutually dispersed with the Co—Pt alloy particle phase.
  • the other particle phase may form a composite phase mutually dispersed with the Co—Pt alloy particle phase and the particle phase of the nonmagnetic material.
  • the average particle diameter of the particle phase of the third element is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and more preferably 5 ⁇ m or less. Is even more preferred.
  • the average particle diameter of the particle phase of the third element is preferably 0.5 ⁇ m or more, preferably 1 ⁇ m or more, because if the average particle diameter is too small, oxidation may proceed due to oxygen in the air during the mixed powder preparation step. Is more preferable, and it is still more preferable that it is 2 micrometers or more.
  • Ferromagnetic material sputtering target as an additional material, carbon, oxide, nitride, carbide and one or two or more non-magnetic material selected from the group consisting of carbonitride, 25 mol% or less in total, For example, it may be contained at 5 to 20 mol%, typically 5 to 15 mol%.
  • the sputtering target can have characteristics suitable for a material of a magnetic recording film having a granular structure, particularly a recording film of a hard disk drive employing a perpendicular magnetic recording method.
  • Examples of the carbide include one or more carbides of elements selected from the group consisting of B, Ca, Nb, Si, Ta, Ti, W and Zr.
  • Examples of the oxide include Si, Al, B, Ba, Be, Co, Ca, Ce, Cr, Dy, Er, Eu, Ga, Gd, Ho, Li, Mg, Mn, Nb, Nd, Pr, and Sc. , Sm, Sr, Ta, Tb, Ti, V, Y, Zn, and one or more oxides of elements selected from the group consisting of Zr.
  • SiO 2 has a great effect of increasing the density of a sputtering target, and is therefore preferably added.
  • nitride examples include one or more nitrides of elements selected from the group consisting of Al, Ca, Nb, Si, Ta, Ti, and Zr. These nonmagnetic materials may be appropriately added according to the required magnetic properties of the magnetic thin film.
  • the Cr oxide and the Co oxide are recognized as being different from Cr and Co added as a metal.
  • the non-magnetic material can be dispersed in the target structure as a non-magnetic material particle phase that can be distinguished from the Co—Pt alloy particle phase and the Co particle phase.
  • the average particle size of the particle phase of the nonmagnetic material is preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less, and even more preferably 0.5 ⁇ m or less.
  • the average particle size of the particle phase of the nonmagnetic material is 0.05 ⁇ m or more because if the particle size is too small, there is a concern that the particles may aggregate with each other during the mixed powder preparation step to form a lump (coarse secondary particles). Is preferably 0.1 ⁇ m or more, and more preferably 0.2 ⁇ m or more.
  • each peak is derived from the L1 0 structure, as viewed from the composition of the sputtering target according to the present invention, Co-Pt alloy particles phase L1 0 It is presumed that such a peak is observed when an ordered phase of the structure is formed.
  • each position has a peak.
  • Means that the ratio of the peak intensity to the background intensity (the average value of the intensity at 2 ⁇ 37.0 to 38.0 °) is 2 or more, and generally the ratio can be 2 to 200.
  • the measurement range of 2 ⁇ of XRD measurement strongest peak at 30 ° ⁇ 60 ° 41.52 It preferably exists at ⁇ 2 °. 41.52 ⁇ 2 ° is a strongest peak of L1 0 structure of Co-Pt.
  • the XRD measurement of the sputtering target is performed under the following conditions.
  • An X-ray diffractometer (Ultima IV manufactured by Rigaku Corp. was used in the examples) was used as the measuring device, the tube was Cu, the measuring conditions were a tube voltage of 40 kv, a tube current of 30 mA, a scan speed of 4 ° / min, and a step of 0.02. ° and the measurement is made on the plane parallel to the sputtering surface by the ⁇ / 2 ⁇ method.
  • the surface may be a surface or a cut surface as long as the surface is horizontal to the sputter surface.
  • the ferromagnetic material sputtering target according to the present invention can be manufactured using the powder sintering method, for example, by the following procedure.
  • Co Prepare a Co powder having a purity of 90 mol% or more, preferably 95 mol% or more, more preferably 99.9 mol% or more.
  • the Co powder may be produced by pulverizing a molten cobalt ingot of metal cobalt, or may be produced by a gas atomizing method.
  • the median diameter of the Co powder is preferably 30 ⁇ m or more, more preferably 50 ⁇ m or more, and even more preferably 100 ⁇ m or more.
  • the median diameter of the Co powder is preferably 300 ⁇ m or less, because if it is too large, it is difficult to mix uniformly with other powder materials and there is a concern that particles may be generated during sputtering. It is more preferably 200 ⁇ m or less, and even more preferably 150 ⁇ m or less.
  • the median diameter can be adjusted by grinding or sieving.
  • the total of metal Co and metal Pt is 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol. %, More preferably 99 mol% or more.
  • the median diameter of the Co-Pt alloy powder is 7 ⁇ m or less, more preferably 6 ⁇ m or less, and still more preferably at 5 ⁇ m or less.
  • the median diameter of the Co—Pt alloy powder is preferably 0.1 ⁇ m or more, because if it is too small, it may be oxidized by atmospheric oxygen during the mixing step. It is more preferably at least 1 ⁇ m.
  • the inert atmosphere include a rare gas atmosphere such as a vacuum atmosphere and an Ar gas atmosphere, and a nitrogen gas atmosphere.
  • the median diameter can be adjusted by sieving the powder obtained by crushing the obtained sponge.
  • the powder of the third element is preferably added so that the total concentration in the mixed powder becomes the predetermined concentration in the sputtering target described above.
  • the median diameter of the third element powder is preferably 20 ⁇ m or less, more preferably 10 ⁇ m or less, and even more preferably 5 ⁇ m or less.
  • the median diameter of the powder of the third element is preferably at least 0.5 ⁇ m, more preferably at least 1 ⁇ m, because if the median diameter of the powder of the third element is too small, oxidation may proceed due to oxygen in the atmosphere during the mixed powder preparation step. Is more preferable, and it is still more preferable that it is 2 micrometers or more.
  • the powder of the nonmagnetic material is preferably added so that the total concentration in the mixed powder becomes the predetermined concentration in the sputtering target described above.
  • the median diameter of the non-magnetic material powder is preferably 2 ⁇ m or less, more preferably 1 ⁇ m or less, and even more preferably 0.5 ⁇ m or less.
  • the median diameter of the powder of the nonmagnetic material is preferably at least 0.05 ⁇ m, and more preferably at least 0.1 ⁇ m, since if it is too small, oxidation may proceed due to oxygen in the atmosphere during the mixed powder preparation step. Is more preferable, and even more preferably 0.2 ⁇ m or more.
  • the median diameter of the Cr powder is preferably 10 ⁇ m or less, more preferably 5 ⁇ m or less, and even more preferably 3 ⁇ m or less.
  • the median diameter of the Cr powder is preferably 1 ⁇ m or more, more preferably 1.5 ⁇ m or more, because if the median diameter of the Cr powder is too small, there is a concern that oxidation may proceed due to oxygen in the air during the mixed powder production step. Even more preferably, it is 2 ⁇ m or more.
  • the median diameter in each of the raw material powders described above means a particle diameter at an integrated value of 50% (D50) based on a volume value in a particle size distribution obtained by a laser diffraction / scattering method.
  • the powder was dispersed in a solvent of ethanol and measured by a wet method using a particle size distribution analyzer of model LA-920 manufactured by HORIBA.
  • the refractive index the value of metallic cobalt was used.
  • the above-mentioned raw material powder is weighed so as to have a desired composition, and is mixed using a known method such as a ball mill while also serving as pulverization. At this time, it is desirable that an inert gas be sealed in the pulverizing container to suppress oxidation of the raw material powder as much as possible.
  • the inert gas include Ar and N 2 gases.
  • the mixed powder thus obtained is molded and sintered in a vacuum atmosphere or an inert gas atmosphere by a hot press method.
  • various pressure sintering methods such as a plasma discharge sintering method can be used.
  • hot isostatic pressing HIP is effective in increasing the density of a sintered body, and hot pressing and hot isostatic pressing are performed in this order. It is preferable from the viewpoint of improvement.
  • the holding temperature during sintering is preferably set to the lowest temperature in the temperature range where the target is sufficiently densified. Although it depends on the composition of the target, in many cases, the temperature may be maintained in a temperature range of 700 to 1200 ° C. Among the temperature range from the viewpoint of increasing the ordered phase of the L1 0 structure, the holding temperature at the time of sintering is preferably set to 1050 ° C. or less, and more preferably set to 1000 ° C. or less, and 950 ° C. or less Is even more preferred.
  • the pressure during sintering is preferably 300 to 500 kg / cm 2 .
  • the holding temperature at the time of hot isostatic pressing depends on the composition of the sintered body, but is often in the range of 700 to 1200 ° C.
  • the temperature range from the viewpoint of increasing the ordered phase of the L1 0 structure preferably set to 1050 ° C. or less, and more preferably set to 1000 ° C. or less, still more preferably it is 950 ° C. or less.
  • the pressing force is preferably set to 100 MPa or more.
  • the sintering time is preferably at least 0.3 hour, more preferably at least 0.5 hour, even more preferably at least 1.0 hour, for improving the density of the sintered body. Further, the sintering time is preferably 3.0 hours or less, more preferably 2.0 hours or less, and further preferably 1.5 hours or less in order to prevent coarsening of crystal grains. Is more preferable.
  • the obtained sintered body is formed into a desired shape using a lathe or the like, whereby the sputtering target according to the present invention can be manufactured.
  • the target shape is not particularly limited, and examples thereof include a flat plate shape (including a disk shape and a rectangular plate shape) and a cylindrical shape.
  • the sputtering target according to the present invention is particularly useful as a sputtering target used for forming a magnetic recording film.
  • Co powders of the respective median diameter shown in Table 1 Pt powder, Co-Pt alloy powder, Cr powder, B 2 O 3 powder, TiO 2 powder, SiO 2 powder, Co 3 O 4 powder, Cr 2 O 3 powder, B powder, Ru powder, Ta powder, Ta 2 O 5 powder, CoO powder, Si 3 N 4 powder, and SiC powder were prepared. Each is a high-purity product and does not contain anything other than inevitable impurities. The median diameter of these powders was appropriately adjusted by sieving.
  • Co-Pt alloy powder was prepared according to the following procedure.
  • the Co powder having a median diameter of 3 ⁇ m and the Pt powder having a median diameter of 2 ⁇ m were rotated using an automatic mortar for 2 hours so that the Co molar ratio (Y) in the Co—Pt alloy powder became the value shown in Table 3.
  • the obtained mixed powder was fired in a vacuum atmosphere for 2 hours at a pre-heat treatment temperature shown in Table 5 according to the test number.
  • the obtained sponge was pulverized, and the obtained powder was sieved to obtain Co-Pt alloy powder having various median diameters shown in Table 1.
  • the Co-Pt powder used in Comparative Example 3 was prepared by a gas atomizing method and used by sieving.
  • the above-mentioned raw material powders were placed in a ball mill pot having a capacity of 10 liters together with a zirconia ball as a grinding medium at a mass ratio shown in Table 2 so as to have a molar ratio described in the composition column of Table 3 according to the test number. Sealed and rotated for 20 hours to mix. Next, the obtained mixed powder was filled in a carbon mold, and hot-pressed at a temperature shown in Table 5 in a vacuum atmosphere under a condition of a holding time of 2 hours and a pressure of 30 MPa to obtain a sintered body. . Next, the sintered body taken out from the hot press was subjected to hot isostatic pressing at the temperatures shown in Table 5. The pressure was set in the range of 100 to 200 MPa.
  • Table 3 shows the target composition in each test number calculated from the mixing ratio of the raw material powders, and the molar ratio (X) (%) of metal Co to the total of metal Co and metal Pt in the target.
  • Table 3 shows the molar ratio of metal Co to the total of metal Co and metal Pt in the Co-Pt alloy particle phase (equal to the composition of the Co-Pt alloy powder) (Y) (%).
  • the average particle size of the Co—Pt alloy particle phase is calculated by the following method. Two horizontal cutting lines in a horizontal direction on a 70 ⁇ m ⁇ 95 ⁇ m SEM photograph taken at 3000 ⁇ magnification using a mirror-polished cut surface of a surface which is horizontal to a sputtering surface of a sputtering target. The photograph is divided into three parts at equal intervals in the vertical direction, the cutting length of the Co—Pt alloy particle phase cut along each cutting line is measured, and the average value ( ⁇ m) of the cutting length is determined for each visual field. The thickness of the cutting line is 1/400 of the vertical length of the photograph. This is performed in arbitrary 10 visual fields, and the average value of 10 visual fields is set as a measured value. Note that the Co—Pt alloy particle phase included only partially in the visual field is excluded from the measurement target.
  • the average particle size of the Co particle phase is calculated by the following method.
  • the measurement of the size of the Co particle phase was performed using a mirror-polished cut surface of a surface that is horizontal to the sputtering surface of the sputtering target, and on a SEM photograph of 1120 ⁇ m ⁇ 1500 ⁇ m taken at 220 ⁇ , The photograph is divided into three parts at equal intervals in the vertical direction by two horizontal cutting lines in the horizontal direction, the cutting length of the Co particle phase cut by each cutting line is measured, and the average value of the cutting length ( ⁇ m ) Is determined for each field of view.
  • the thickness of the cutting line is 1/400 of the vertical length of the photograph. This is performed in arbitrary 10 visual fields, and the average value of 10 visual fields is set as a measured value. Note that the Co particle phase included only partially in the visual field is excluded from the measurement target.
  • the average particle size of the particle phase of the third element is calculated by the following method. Using a mirror-polished cut surface of a surface that is horizontal to the sputtering surface of the sputtering target, two horizontal cutting lines in the horizontal direction on a 215 ⁇ m ⁇ 290 ⁇ m SEM photograph taken at 1000 ⁇ magnification. The photograph is divided into three parts at equal intervals in the vertical direction, the cutting length of the particle phase of the third element cut by each cutting line is measured, and the average value ( ⁇ m) of the cutting length is determined for each visual field. The thickness of the cutting line is 1/400 of the vertical length of the photograph. This is performed in arbitrary 10 visual fields, and the average value of 10 visual fields is set as a measured value. The particle phase of the third element contained only partially in the visual field is excluded from the measurement target.
  • the average particle size of the particle phase of the nonmagnetic material is calculated by the following method. Two horizontal cutting lines in a horizontal direction on a 70 ⁇ m ⁇ 95 ⁇ m SEM photograph taken at 3000 ⁇ magnification using a mirror-polished cut surface of a surface which is horizontal to a sputtering surface of a sputtering target. The photograph is divided into three at equal intervals in the vertical direction, the cut length of the particle phase of the nonmagnetic material cut along each cutting line is measured, and the average value ( ⁇ m) of the cut length is determined for each visual field. The thickness of the cutting line is 1/400 of the vertical length of the photograph. This is performed in arbitrary 10 visual fields, and the average value of 10 visual fields is set as a measured value. Note that the particle phase of the nonmagnetic material included only in a part of the visual field is excluded from the measurement target.
  • Each sputtering target obtained by the above procedure was attached to a magnetron sputtering apparatus (C-3010 sputtering system manufactured by Canon Anelva Co., Ltd.) to perform sputtering.
  • the sputtering was performed under the conditions of an input power of 1 kW and an Ar gas pressure of 1.7 Pa. After performing pre-sputtering at 2 kWhr, a film was formed on a 4-inch diameter silicon substrate for 20 seconds. Then, the number of particles having a particle diameter of 0.07 ⁇ m or more adhered to the substrate was measured with a surface foreign matter inspection device (Candela CS920, manufactured by KLA-Tencor). Table 5 shows the results.

Abstract

Provided is a Co-Pt-based ferromagnetic material sputtering target which has a high magnetic leakage flux and can be prevented from the formation of particles during sputtering. A ferromagnetic material sputtering target which contains metal Co and metal Pt in a total amount of 70 mol% or more at a Co:Pt molar ratio of X:(100-X) (59 ≤ X < 100) and also contains metal Cr in an amount of 0 to 20 mol% inclusive, and which has a Co particle phase containing metal Co in an amount of 90 mol% or more and having an average particle diameter of 30 to 300 μm and a Co-Pt alloy particle phase containing metal Co and metal Pt in a total amount of 70 mol% or more at a Co:Pt molar ratio of Y:(100-Y) (20 ≤ Y ≤ 60.5) and having an average particle diameter of 7 μm or less.

Description

強磁性材スパッタリングターゲットFerromagnetic material sputtering target
 本発明は磁気記録媒体中の磁性薄膜の形成に適したCo-Pt系の強磁性材スパッタリングターゲットに関する。 The present invention relates to a Co—Pt ferromagnetic sputtering target suitable for forming a magnetic thin film in a magnetic recording medium.
 ハードディスクドライブに代表される磁気記録の分野では、記録を担う磁性薄膜の材料として、強磁性金属であるCoをベースとした材料が用いられている。 In the field of magnetic recording represented by hard disk drives, materials based on Co, which is a ferromagnetic metal, are used as the material of the magnetic thin film responsible for recording.
 磁性薄膜は、生産性の高さから、上記材料を成分とするスパッタリングターゲットをDCマグネトロンスパッタ装置でスパッタして作製されることが多い。ところが、マグネトロンスパッタ装置で強磁性材スパッタリングターゲットをスパッタしようとすると、磁石からの磁束の多くは強磁性体であるターゲット内部を通過してしまうため、漏洩磁束が少なくなり、スパッタ時に放電が立たない、あるいは放電しても放電が安定しないという問題が生じる。この問題を解決するには、強磁性金属であるCoの含有割合を減らすことが考えられる。しかし、Coを減少させると、所望の磁気記録膜を得ることができないため本質的な解決策ではない。また、ターゲットの厚みを薄くすることで漏洩磁束を向上させることは可能だが、この場合はターゲットライフが短くなり、頻繁にターゲットを交換する必要が生じるのでコストアップの要因になる。 Magnetic thin films are often produced by sputtering a sputtering target containing the above-mentioned material with a DC magnetron sputtering apparatus because of its high productivity. However, when trying to sputter a ferromagnetic material sputtering target with a magnetron sputtering apparatus, most of the magnetic flux from the magnet passes through the inside of the target, which is a ferromagnetic material, so that the leakage magnetic flux decreases and no discharge occurs during sputtering. Also, there is a problem that the discharge is not stable even if the discharge is performed. To solve this problem, it is conceivable to reduce the content ratio of Co, which is a ferromagnetic metal. However, reducing Co is not an essential solution because a desired magnetic recording film cannot be obtained. In addition, it is possible to improve the leakage magnetic flux by reducing the thickness of the target, but in this case, the target life is shortened, and frequent replacement of the target is required, which causes an increase in cost.
 そこで、従来はCr比率を高めて部分的に非磁性にし、漏洩磁束を高めるという手法が採用されてきた。例えば、面内磁気記録方式を採用するハードディスクの記録層にはCoを主成分とするCo-Cr系やCo-Cr-Pt系の強磁性合金が用いられてきた。また、近年実用化された垂直磁気記録方式を採用するハードディスクの記録層には、Coを主成分とするCo-Cr-Pt系の強磁性合金に酸化物や炭素等の非磁性粒子を分散させた複合材料が多く用いられている。しかし、最近の主流となっている組成は、Crが少ない、もしくは全く含まない組成であり、従来の方法では漏洩磁束を高める効果を十分に得ることが難しい。 Therefore, conventionally, a method has been adopted in which the Cr ratio is increased to make it partially non-magnetic and the leakage magnetic flux is increased. For example, a Co—Cr-based or Co—Cr—Pt-based ferromagnetic alloy containing Co as a main component has been used for a recording layer of a hard disk employing an in-plane magnetic recording system. In addition, non-magnetic particles such as oxide and carbon are dispersed in a Co—Cr—Pt-based ferromagnetic alloy containing Co as a main component in a recording layer of a hard disk employing a perpendicular magnetic recording method that has been put into practical use in recent years. Composite materials are often used. However, the composition that has become the mainstream in recent years is a composition containing little or no Cr, and it is difficult to sufficiently obtain the effect of increasing the leakage magnetic flux by the conventional method.
 このような背景から、WO2012/077665号においては、Ptが5mol%以上、Crが20mol%以下、残余がCoである組成の金属からなるスパッタリングターゲットにおいて、金属素地(A)と、前記(A)の中に、Ptを40~76mol%含有するCo-Pt合金相(B)とを有していることを特徴とする強磁性材スパッタリングターゲットが提案されている。当該文献によれば、Co-Pt合金相(B)の直径は小さすぎると、金属素地(A)と相(B)との間の拡散が進行して構成要素の違いが不明確になるため、10μm以上であることが好ましいとされる。また、当該文献によれば、Co-Pt合金相(B)の直径は大きすぎるとスパッタ時のパーティクルの問題が発生しやすくなることから、150μm以下であることが望ましいとされる。 From such a background, WO2012 / 077665 discloses that in a sputtering target made of a metal having a composition in which Pt is 5 mol% or more, Cr is 20 mol% or less, and the balance is Co, the metal base (A) and the (A) Among them, a ferromagnetic sputtering target characterized by having a Co—Pt alloy phase (B) containing 40 to 76 mol% of Pt has been proposed. According to the document, if the diameter of the Co—Pt alloy phase (B) is too small, the diffusion between the metal base (A) and the phase (B) proceeds, and the difference between the constituent elements becomes unclear. It is preferable that the thickness be 10 μm or more. Further, according to the document, if the diameter of the Co—Pt alloy phase (B) is too large, the problem of particles at the time of sputtering is likely to occur. Therefore, it is preferable that the diameter be 150 μm or less.
 また、WO2012/081669号においては、Crが20mol%以下、Ptが5mol%以上、残余がCoである組成の金属からなるスパッタリングターゲットにおいて、金属素地(A)と、前記(A)の中に、Ptを40~76mol%含有するCo-Pt合金相(B)と前記相(B)とは異なるCo又はCoを主成分とする金属又は合金相(C)を有することを特徴とする強磁性材スパッタリングターゲットが提案されている。当該文献によれば、Co-Pt合金相(B)の直径は小さすぎると、金属素地(A)と相(B)との間の拡散が進行して構成要素の違いが不明確になるため、10μm以上であることが好ましいとされる。また、当該文献によれば、Co-Pt合金相(B)の直径は大きすぎるとスパッタ時のパーティクルの問題が発生しやすくなることから、150μm以下であることが望ましいとされる。 Further, in WO2012 / 081669, in a sputtering target made of a metal having a composition in which Cr is 20 mol% or less, Pt is 5 mol% or more, and the balance is Co, a metal base (A) and A ferromagnetic material comprising: a Co—Pt alloy phase (B) containing 40 to 76 mol% of Pt; and Co or a metal or alloy phase (C) containing Co as a main component different from the phase (B). Sputtering targets have been proposed. According to the document, if the diameter of the Co—Pt alloy phase (B) is too small, the diffusion between the metal base (A) and the phase (B) proceeds, and the difference between the constituent elements becomes unclear. It is preferable that the thickness be 10 μm or more. Further, according to the document, if the diameter of the Co—Pt alloy phase (B) is too large, the problem of particles at the time of sputtering is likely to occur. Therefore, it is preferable that the diameter be 150 μm or less.
国際公開第2012/077665号International Publication No. 2012/077665 国際公開第2012/081669号International Publication No. 2012/081669
 特許文献1及び特許文献2に記載されているように、金属素地中にCo-Pt合金相を有する強磁性材スパッタリングターゲットは漏洩磁束を高めることができるという利点が得られる。しかしながら、本発明者の検討結果によれば、当該スパッタリングターゲットはスパッタ時のパーティクルの抑制に関して未だ改善の余地が残されている。そこで、本発明は漏洩磁束が高く、スパッタリング時におけるパーティクルの発生も抑制可能なCo-Pt系強磁性材スパッタリングターゲットを提供することを課題の一つとする。 強 磁性 As described in Patent Literature 1 and Patent Literature 2, a ferromagnetic sputtering target having a Co—Pt alloy phase in a metal base has an advantage that the leakage magnetic flux can be increased. However, according to the results of the study by the present inventors, there is still room for improvement in the suppression of particles during sputtering in the sputtering target. Therefore, an object of the present invention is to provide a Co—Pt-based ferromagnetic material sputtering target having a high leakage magnetic flux and capable of suppressing generation of particles during sputtering.
 特許文献1及び特許文献2においては、Co-Pt合金相は10μm以上の直径を有する相とすべきことが教示されているが、このような粗大なCo-Pt合金相はスパッタ時のパーティクルの発生の原因になることが分かった。そこで、本発明者は漏洩磁束を高めることができるCo-Pt合金相の利点を活かしながらパーティクルの抑制に有効な手段を鋭意検討したところ、Co-Pt合金相を微細化しつつ、Co相を粗大化するという手法が有効であることを見出した。本発明は斯かる知見に基づいて完成したものである。 Patent Literature 1 and Patent Literature 2 teach that the Co—Pt alloy phase should have a diameter of 10 μm or more. However, such a coarse Co—Pt alloy phase has a large particle size during sputtering. It was found to be the cause of the outbreak. Therefore, the present inventors have intensively studied effective means for suppressing particles while taking advantage of the Co-Pt alloy phase capable of increasing the leakage magnetic flux, and found that the Co-Pt alloy phase was coarsened while the Co-Pt alloy phase was refined. It has been found that the technique of making is effective. The present invention has been completed based on such findings.
 本発明は一側面において、
 Co:Pt=X:100-X(59≦X<100)のモル比で、金属Co及び金属Ptを合計で70mol%以上含有し、金属Crを0mol%以上20mol%以下含有する強磁性材スパッタリングターゲットであって、
 金属Coを90mol%以上含有し、平均粒径が30~300μmのCo粒子相と、
 モル比でCo:Pt=Y:100-Y(20≦Y≦60.5)となる条件で、金属Co及び金属Ptを合計で70mol%以上含有する平均粒径が7μm以下のCo-Pt合金粒子相を有する強磁性材スパッタリングターゲットである。
The invention provides in one aspect,
Ferromagnetic material sputtering containing a total of 70 mol% or more of metal Co and metal Pt and a content of 0 to 20 mol% of metal Cr at a molar ratio of Co: Pt = X: 100−X (59 ≦ X <100) The target,
A Co particle phase containing at least 90 mol% of metal Co and having an average particle diameter of 30 to 300 μm;
Co-Pt alloy containing metal Co and metal Pt in a total amount of 70 mol% or more and having an average particle size of 7 μm or less under the condition that Co: Pt = Y: 100−Y (20 ≦ Y ≦ 60.5) in a molar ratio. This is a ferromagnetic material sputtering target having a particle phase.
 本発明に係る強磁性材スパッタリングターゲットの一実施形態においては、B、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、W、Al、Si及びZnよりなる群から選択される一種又は二種以上の第三元素を合計で30mol%以下含有する。 In one embodiment of the ferromagnetic material sputtering target according to the present invention, one kind selected from the group consisting of B, Ti, V, Mn, Zr, Nb, Ru, Mo, Ta, W, Al, Si and Zn, or Contains at least 30 mol% of two or more third elements in total.
 本発明に係る強磁性材スパッタリングターゲットの別の一実施形態においては、炭素、酸化物、窒化物、炭化物及び炭窒化物よりなる群から選択される一種又は二種以上の非磁性材料を合計で25mol%以下含有する。 In another embodiment of the ferromagnetic material sputtering target according to the present invention, a total of one or more non-magnetic materials selected from the group consisting of carbon, oxide, nitride, carbide and carbonitride 25 mol% or less is contained.
 本発明に係る強磁性材スパッタリングターゲットの更に別の一実施形態においては、2θの測定範囲を30°~60°としたXRD測定において、2θ=33.27±2°、41.52±2°、47.76±2°、49.44±2°、及び54.21±2°の各位置にピークを有する。 In still another embodiment of the ferromagnetic material sputtering target according to the present invention, in XRD measurement in which the measurement range of 2θ is 30 ° to 60 °, 2θ = 33.27 ± 2 °, 41.52 ± 2 ° , 47.76 ± 2 °, 49.44 ± 2 °, and 54.21 ± 2 °.
 本発明は別の一側面において、
 金属Coを90mol%以上含有し、メジアン径が30~300μmのCo粉末を用意する工程と、
 モル比でCo:Pt=Y:100-Y(20≦Y≦60.5)となる条件で、金属Co及び金属Ptを合計で70mol%以上含有する、メジアン径が7μm以下のCo-Pt合金粉末を用意する工程と、
 Co-Pt合金粉末とCo粉末を混合し、モル比でCo:Pt=X:100-X(59≦X<100)となる条件で、金属Co及び金属Ptを合計で70mol%以上含有し、金属Crを0mol%以上20mol%以下含有する混合粉末を得る工程と、
 該混合粉末を焼成する工程と、
を含む強磁性材スパッタリングターゲットの製造方法である。
The invention provides, in another aspect,
Preparing a Co powder containing at least 90 mol% of metal Co and having a median diameter of 30 to 300 μm;
Co-Pt alloy containing metal Co and metal Pt in total of 70 mol% or more and having a median diameter of 7 μm or less under the condition that Co: Pt = Y: 100−Y (20 ≦ Y ≦ 60.5) in molar ratio Preparing a powder,
A Co—Pt alloy powder and a Co powder are mixed, and a total of 70 mol% or more of metal Co and metal Pt is contained under the condition that the molar ratio is Co: Pt = X: 100−X (59 ≦ X <100), A step of obtaining a mixed powder containing 0 mol% or more and 20 mol% or less of metal Cr;
Baking the mixed powder;
This is a method for producing a ferromagnetic material sputtering target containing:
 本発明に係る強磁性材スパッタリングターゲットの製造方法の一実施形態においては、前記混合粉末を得る工程は、更にB、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、W、Al、Si及びZnよりなる群から選択される一種又は二種以上の粉末を混合することを含む。 In one embodiment of the method for manufacturing a ferromagnetic material sputtering target according to the present invention, the step of obtaining the mixed powder further includes B, Ti, V, Mn, Zr, Nb, Ru, Mo, Ta, W, Al, This includes mixing one or more powders selected from the group consisting of Si and Zn.
 本発明に係る強磁性材スパッタリングターゲットの製造方法の別の一実施形態においては、前記混合粉末を得る工程は、更に炭素、酸化物、窒化物、炭化物及び炭窒化物よりなる群から選択される一種又は二種以上の非磁性材料を混合することを含む。 In another embodiment of the method for producing a ferromagnetic material sputtering target according to the present invention, the step of obtaining the mixed powder is further selected from the group consisting of carbon, oxide, nitride, carbide and carbonitride. This includes mixing one or more non-magnetic materials.
 本発明に係る強磁性材スパッタリングターゲットの製造方法の更に別の一実施形態においては、メジアン径が7μm以下のCo-Pt合金粉末を用意する工程は、Co:Pt=Y:100-Y(20≦Y≦60.5)のモル比でCo粉末及びPt粉末を混合した粉末を、800℃~1000℃の加熱温度で焼成し、2θの測定範囲を30°~60°としたXRD測定において、2θ=33.27±2°、41.52±2°、47.76±2°、49.44±2°、及び54.21±2°の各位置にピークを有する第一の焼結体を得る工程と、第一の焼結体を粉砕する工程とを含む。 In still another embodiment of the method for producing a ferromagnetic material sputtering target according to the present invention, the step of preparing a Co—Pt alloy powder having a median diameter of 7 μm or less includes the step of Co: Pt = Y: 100−Y (20 ≦ Y ≦ 60.5) A powder obtained by mixing a Co powder and a Pt powder at a molar ratio of 800 ° C. to 1000 ° C. is fired, and the XRD measurement with a 2θ measurement range of 30 ° to 60 ° is performed. 2θ = 33.27 ± 2 °, 41.52 ± 2 °, 47.76 ± 2 °, 49.44 ± 2 °, and first sintered body having peaks at respective positions of 54.21 ± 2 ° And a step of pulverizing the first sintered body.
 本発明は更に別の一側面において、本発明に係るスパッタリングターゲットを用いることを含む磁気記録膜の製造方法である。 In another aspect, the present invention is a method for producing a magnetic recording film, comprising using the sputtering target according to the present invention.
 本発明の強磁性材スパッタリングターゲットは、漏洩磁束の大きいターゲットとなり、マグネトロンスパッタ装置で使用したとき、不活性ガスの電離促進が効率的に進み、安定した放電が得られる。本発明によれば、ターゲットの厚みを厚くすることができるため、ターゲットの交換頻度が小さくなり、低コストで磁性体薄膜を製造できるというメリットがある。また、本発明の強磁性材スパッタリングターゲットは、スパッタ時のパーティクルが少なく、安定したスパッタリングが可能となる。 The ferromagnetic material sputtering target of the present invention becomes a target having a large leakage magnetic flux, and when used in a magnetron sputtering apparatus, ionization of an inert gas is efficiently promoted and a stable discharge is obtained. According to the present invention, since the thickness of the target can be increased, there is an advantage that the frequency of replacement of the target is reduced and a magnetic thin film can be manufactured at low cost. Further, the ferromagnetic material sputtering target of the present invention has few particles at the time of sputtering and enables stable sputtering.
比較例1のXRDプロファイルを示す。4 shows an XRD profile of Comparative Example 1. 比較例2のXRDプロファイルを示す。9 shows an XRD profile of Comparative Example 2. 比較例3のXRDプロファイルを示す。13 shows an XRD profile of Comparative Example 3. 実施例1のXRDプロファイルを示す。2 shows an XRD profile of Example 1. 実施例2のXRDプロファイルを示す。9 shows an XRD profile of Example 2. 実施例3のXRDプロファイルを示す。13 shows an XRD profile of Example 3. 実施例5のXRDプロファイルを示す。13 shows an XRD profile of Example 5. 実施例7のXRDプロファイルを示す。17 shows an XRD profile of Example 7.
(1.全体組成)
 本発明に係る強磁性材スパッタリングターゲットは一実施形態において、モル比でCo:Pt=X:100-X(59≦X<100)となる条件で、金属Co及び金属Ptを合計で70mol%以上含有し、金属Crを0mol%以上20mol%以下含有する。当該組成は、強磁性材である金属Coの含有量が多く、また、漏洩磁束を増加させる効果のある金属Crの含有量が少ないため、一般には高い漏洩磁束が得られ難い組成である。本発明によれば、高い漏洩磁束が得られ難い組成のスパッタリングターゲットについて、ターゲットの組織に工夫を与えることによって、漏洩磁束を高め、更にはパーティクルを低減することができるようになる。
(1. Overall composition)
In one embodiment, the ferromagnetic material sputtering target according to the present invention has a total of 70 mol% or more of metal Co and metal Pt under the condition that Co: Pt = X: 100−X (59 ≦ X <100) in a molar ratio. Metal Cr is contained in an amount of 0 mol% or more and 20 mol% or less. This composition has a high content of metal Co, which is a ferromagnetic material, and a small content of metal Cr, which has an effect of increasing the leakage magnetic flux, so that it is generally difficult to obtain a high leakage magnetic flux. ADVANTAGE OF THE INVENTION According to this invention, about a sputtering target of the composition which cannot obtain a high leakage magnetic flux, it becomes possible to raise a leakage magnetic flux and to reduce a particle further by devising the structure of a target.
 本発明に係る強磁性材スパッタリングターゲットは、ハードディスクメディア製造用途を考慮すると、一実施形態において70≦X≦90とすることができ、別の一実施形態においては80≦X≦85とすることができる。 The ferromagnetic material sputtering target according to the present invention can satisfy 70 ≦ X ≦ 90 in one embodiment, and can satisfy 80 ≦ X ≦ 85 in another embodiment, in consideration of hard disk media manufacturing applications. it can.
 本発明に係る強磁性材スパッタリングターゲットは、一実施形態において金属Co及び金属Ptを合計で75mol%以上含有することができ、別の一実施形態において金属Co及び金属Ptを合計で85mol%以上含有することができる。また、本発明に係る強磁性材スパッタリングターゲットは、一実施形態において金属Co及び金属Ptを合計で95mol%以下含有することができ、別の一実施形態において金属Co及び金属Ptを合計で90mol%以下含有することができる。金属Co及び金属Ptを合計で75~95mol%含有する強磁性材スパッタリングターゲットは、垂直磁気記録膜用に好適である。 The ferromagnetic material sputtering target according to the present invention can contain metal Co and metal Pt in a total amount of 75 mol% or more in one embodiment, and can contain metal Co and metal Pt in a total amount of 85 mol% or more in another embodiment. can do. In one embodiment, the ferromagnetic material sputtering target according to the present invention can contain metal Co and metal Pt in a total of 95 mol% or less, and in another embodiment, the metal Co and metal Pt in a total of 90 mol%. The following can be contained. A ferromagnetic sputtering target containing a total of 75 to 95 mol% of metal Co and metal Pt is suitable for a perpendicular magnetic recording film.
 本発明に係る強磁性材スパッタリングターゲットは、一実施形態において金属Crを0mol%以上15mol%以下含有することができ、別の一実施形態において金属Crを0mol%以上10mol%以下含有することができ、更に別の一実施形態において金属Crを0mol%以上5mol%以下含有することができ、更に別の一実施形態において金属Crを0mol%以上1mol%以下含有することができ、更に別の一実施形態において金属Crを含有しない。 The ferromagnetic material sputtering target according to the present invention can contain 0 to 15 mol% of metal Cr in one embodiment, and can contain 0 to 10 mol% of metal Cr in another embodiment. In still another embodiment, the metal Cr can be contained in an amount of 0 mol% or more and 5 mol% or less. In yet another embodiment, the metal Cr can be contained in an amount of 0 mol% or more and 1 mol% or less. The form does not contain metallic Cr.
(2.Co-Pt合金粒子相)
 このようなCoリッチな組成のスパッタリングターゲットにおいて漏洩磁束を高めるには、スパッタリングターゲットがCo:Pt=Y:100-Y(20≦Y≦60.5)のモル比で、金属Co及び金属Ptを合計で70mol%以上、好ましくは80mol%以上、より好ましくは90mol%以上、更により好ましくは99mol%以上含有するCo-Pt合金粒子相を有することが望ましい。当該Co-Pt合金粒子相はL10構造の規則相を形成して高い磁気異方性を示すことができるため、漏洩磁束の増加に寄与する。漏洩磁束を増加する観点から、好ましくは25≦Y≦55であり、より好ましくは34.5≦Y≦55であり、更により好ましくは40≦Y≦50である。当該Co-Pt合金粒子相はターゲット組織中で分散して存在することができる。
(2. Co-Pt alloy particle phase)
In order to increase the magnetic flux leakage in such a Co-rich composition sputtering target, the sputtering target is made of metal Co and metal Pt at a molar ratio of Co: Pt = Y: 100-Y (20 ≦ Y ≦ 60.5). It is desirable to have a Co—Pt alloy particle phase containing a total of 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol% or more, and still more preferably 99 mol% or more. Since the Co-Pt alloy particles phase which can exhibit high magnetic anisotropy by forming a ordered phase of L1 0 structure, contributing to an increase in leakage flux. From the viewpoint of increasing the leakage magnetic flux, preferably 25 ≦ Y ≦ 55, more preferably 34.5 ≦ Y ≦ 55, and still more preferably 40 ≦ Y ≦ 50. The Co—Pt alloy particle phase can be dispersed in the target structure.
 Co-Pt合金粒子相は、漏洩磁束の向上に寄与するものの、平均粒径が大きいとパーティクルの増加をもたらす要因となる。特許文献1及び特許文献2においては、Co-Pt合金粒子相によるスパッタ時のパーティクルの問題は150μmを超える直径のときに生じるとされているが、Co-Pt合金粒子相は出来る限り微細であることが望ましい。そこで、本発明に係る強磁性材スパッタリングターゲットにおいて、上記Co-Pt合金粒子相の平均粒径は7μm以下であることが好ましく、5μm以下であることがより好ましく、2μm以下であることが更により好ましい。但し、当該Co-Pt合金粒子相の平均粒径は、小さすぎると焼結中に他の相との拡散が促進されL10構造が失われる可能性が高くなることから、0.1μm以上であることが好ましく、0.2μm以上であることがより好ましく、0.5μm以上であることが更により好ましい。 The Co—Pt alloy particle phase contributes to the improvement of the leakage magnetic flux, but when the average particle size is large, it becomes a factor of increasing particles. In Patent Literature 1 and Patent Literature 2, the problem of particles during sputtering by the Co—Pt alloy particle phase occurs when the diameter exceeds 150 μm, but the Co—Pt alloy particle phase is as fine as possible. It is desirable. Therefore, in the ferromagnetic material sputtering target according to the present invention, the average particle size of the Co—Pt alloy particle phase is preferably 7 μm or less, more preferably 5 μm or less, and even more preferably 2 μm or less. preferable. However, the average particle diameter of the Co-Pt alloy particles phase, since the possibility of L1 0 structure is diffused too small and another phase during sintering is promoted loss increases, at 0.1μm or more It is preferably at least 0.2 μm, more preferably at least 0.5 μm.
 Co-Pt合金粒子相は、漏洩磁束を増加させる効果を高めるという観点から、スパッタリングターゲットの全体の質量に対して、20質量%以上であることが好ましく、30質量%以上であることがより好ましく、40質量%以上であることが更により好ましい。また、Co-Pt合金粒子相は、非磁性材料を微細に分散させるという観点から、スパッタリングターゲットの全体の質量に対して、70質量%以下であることが好ましく、65質量%以下であることがより好ましく、60質量%以下であることが更により好ましい。 From the viewpoint of enhancing the effect of increasing the leakage magnetic flux, the Co—Pt alloy particle phase is preferably at least 20% by mass, more preferably at least 30% by mass, based on the total mass of the sputtering target. , 40% by mass or more. From the viewpoint of finely dispersing the nonmagnetic material, the Co-Pt alloy particle phase is preferably 70% by mass or less, and more preferably 65% by mass or less, based on the total mass of the sputtering target. More preferably, it is even more preferably 60% by mass or less.
(3.Co粒子相)
 本発明に係るCoリッチな組成のスパッタリングターゲットは一実施形態において、Co-Pt合金粒子相に加えて、金属Coを90mol%以上含有するCo粒子相を有する。Co粒子相はターゲット中に含まれるCo-Pt合金粒子相の割合を高めるために、金属Coを95mol%以上含有することが好ましく、99.9mol%以上含有することがより好ましい。当該Co粒子相はターゲット組織中で分散して存在することができる。
(3. Co particle phase)
In one embodiment, the Co-rich composition sputtering target according to the present invention has a Co particle phase containing 90 mol% or more of metallic Co in addition to the Co—Pt alloy particle phase. The Co particle phase preferably contains metallic Co in an amount of 95 mol% or more, more preferably 99.9 mol% or more, in order to increase the proportion of the Co—Pt alloy particle phase contained in the target. The Co particle phase can be dispersed in the target structure.
 Co-Pt合金粒子相を微細化した場合に、Co粒子相も微細化するとCo-Pt合金粒子相との接触点が増加し焼結中に構成元素の拡散が促進されL10構造が失われるという問題が生じる。そこで、Co粒子相は逆に粗大化することが望ましい。具体的には、金属Coを90mol%以上含有するCo粒子相の平均粒径は30μm以上であることが好ましく、50μm以上であることがより好ましく、100μm以上であることが更により好ましい。但し、当該Co粒子相の平均粒径は、大きすぎるとパーティクルの発生原因になってしまう懸念があることから、300μm以下であることが好ましく、200μm以下であることがより好ましく、150μm以下であることが更により好ましい。 When miniaturized Co-Pt alloy particles phase, L1 0 structure is promoted diffusion of contact points is increased constituent elements during sintering with Co particulate phase also when miniaturization Co-Pt alloy particles phase is lost The problem arises. Therefore, the Co particle phase is desirably coarsened. Specifically, the average particle size of the Co particle phase containing 90 mol% or more of metal Co is preferably 30 μm or more, more preferably 50 μm or more, and even more preferably 100 μm or more. However, the average particle size of the Co particle phase is preferably 300 μm or less, more preferably 200 μm or less, and more preferably 150 μm or less, since there is a concern that if the average particle size is too large, particles may be generated. Is even more preferred.
 Co粒子相は、漏洩磁束を増加させるため、さらに焼結中におけるCo-Pt合金粒子相の拡散を抑制するという観点から、スパッタリングターゲットの全体の質量に対して、15質量%以上であることが好ましく、25質量%以上であることがより好ましく、30質量%以上であることが更により好ましい。また、Co粒子相は、粗大な粒子であるため混合時に他の原料との分散性を高めるという観点から、スパッタリングターゲットの全体の質量に対して、50質量%以下であることが好ましく、45質量%以下であることがより好ましく、40質量%以下であることが更により好ましい。 The Co particle phase is preferably 15% by mass or more based on the total mass of the sputtering target from the viewpoint of increasing the leakage magnetic flux and further suppressing the diffusion of the Co—Pt alloy particle phase during sintering. It is more preferably at least 25% by mass, and even more preferably at least 30% by mass. In addition, the Co particle phase is preferably 50% by mass or less, and more preferably 45% by mass, based on the total mass of the sputtering target, from the viewpoint of improving dispersibility with other raw materials during mixing because the Co particle phase is coarse particles. %, More preferably 40% by mass or less.
(4.第三元素)
 本発明に係る強磁性材スパッタリングターゲットは、第三元素として、B、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、W、Al、Si及びZnよりなる群から選択される一種又は二種以上を単体金属又は合金として合計で30mol%以下、例えば0.01~20mol%、典型的には0.05~10mol%含有してもよい。これらは磁気記録媒体としての特性を向上させるために、必要に応じて添加される元素である。配合割合は上記範囲内で様々に調整でき、いずれも有効な磁気記録媒体としての特性を維持することができる。なお、本発明においてはBも金属として取り扱う。
(4. Third element)
The ferromagnetic material sputtering target according to the present invention includes, as a third element, one selected from the group consisting of B, Ti, V, Mn, Zr, Nb, Ru, Mo, Ta, W, Al, Si, and Zn. Two or more of them may be contained in a total amount of 30 mol% or less, for example, 0.01 to 20 mol%, typically 0.05 to 10 mol% as a single metal or alloy. These are elements added as necessary to improve the characteristics as a magnetic recording medium. The mixing ratio can be variously adjusted within the above range, and any of them can maintain the characteristics as an effective magnetic recording medium. In the present invention, B is also treated as a metal.
 上記第三元素は、Co-Pt合金粒子相中に存在してもよく、Co粒子相中に存在してもよく、Co-Pt合金粒子相及びCo粒子相とは区別可能な別の粒子相中に存在することができる。当該別の粒子相はターゲット組織中で分散して存在することができる。しかしながら、第三元素は、微細に分散している方がパーティクル低減に有利であるという理由により、上記第三元素はCo-Pt合金粒子相中に存在するか、又は微細な別の粒子相中に存在することが好ましい。なお、上記第三元素が単体金属又は合金の粒子相ではなく、酸化物、窒化物、炭化物又は炭窒化物として粒子相を形成している場合には第三元素の粒子相ではなく後述する非磁性材料の粒子相として取り扱う。 The third element may be present in the Co—Pt alloy particle phase, may be present in the Co particle phase, and may be a different particle phase distinguishable from the Co—Pt alloy particle phase and the Co particle phase. Can be inside. The other particulate phase can be dispersed in the target tissue. However, the third element is present in the Co—Pt alloy particle phase or is contained in another fine particle phase because the finely dispersed element is advantageous for particle reduction. Is preferably present. In the case where the third element is not a single metal or alloy particle phase but forms a particle phase as an oxide, nitride, carbide or carbonitride, the third element is not a third element particle phase but a Handle as the particle phase of the magnetic material.
 上記第三元素が別の粒子相中に存在する場合、当該別の粒子相はCo-Pt合金粒子相と相互に分散し合う複合相を形成することが好ましい。また、後述する非磁性材料の粒子相が更に存在する場合には、当該別の粒子相はCo-Pt合金粒子相及び非磁性材料の粒子相と相互に分散し合う複合相を形成することが好ましい。上記第三元素が別の粒子相を形成する場合には、当該第三元素の粒子相の平均粒径は20μm以下であることが好ましく、10μm以下であることがより好ましく、5μm以下であることが更により好ましい。但し、当該第三元素の粒子相の平均粒径は、小さすぎると混合粉作製工程中に大気中の酸素によって酸化が進む懸念があることから、0.5μm以上であることが好ましく、1μm以上であることがより好ましく、2μm以上であることが更により好ましい。 When the third element is present in another particle phase, it is preferable that the another particle phase forms a composite phase mutually dispersed with the Co—Pt alloy particle phase. Further, when a particle phase of a nonmagnetic material described later further exists, the other particle phase may form a composite phase mutually dispersed with the Co—Pt alloy particle phase and the particle phase of the nonmagnetic material. preferable. When the third element forms another particle phase, the average particle diameter of the particle phase of the third element is preferably 20 μm or less, more preferably 10 μm or less, and more preferably 5 μm or less. Is even more preferred. However, the average particle diameter of the particle phase of the third element is preferably 0.5 μm or more, preferably 1 μm or more, because if the average particle diameter is too small, oxidation may proceed due to oxygen in the air during the mixed powder preparation step. Is more preferable, and it is still more preferable that it is 2 micrometers or more.
(5.非磁性材料)
 本発明に係る強磁性材スパッタリングターゲットは添加材料として、炭素、酸化物、窒化物、炭化物及び炭窒化物よりなる群から選択される一種又は二種以上の非磁性材料を合計で25mol%以下、例えば5~20mol%、典型的には5~15mol%含有してもよい。この場合、スパッタリングターゲットは、グラニュラー構造をもつ磁気記録膜、特に垂直磁気記録方式を採用したハードディスクドライブの記録膜の材料に好適な特性を備えることができる。
(5. Non-magnetic material)
Ferromagnetic material sputtering target according to the present invention, as an additional material, carbon, oxide, nitride, carbide and one or two or more non-magnetic material selected from the group consisting of carbonitride, 25 mol% or less in total, For example, it may be contained at 5 to 20 mol%, typically 5 to 15 mol%. In this case, the sputtering target can have characteristics suitable for a material of a magnetic recording film having a granular structure, particularly a recording film of a hard disk drive employing a perpendicular magnetic recording method.
 炭化物の例としては、B、Ca、Nb、Si、Ta、Ti、W及びZrよりなる群から選択される元素の一種又は二種以上の炭化物が挙げられる。酸化物の例としては、Si、Al、B、Ba、Be、Co、Ca、Ce、Cr、Dy、Er、Eu、Ga、Gd、Ho、Li、Mg、Mn、Nb、Nd、Pr、Sc、Sm、Sr、Ta、Tb、Ti、V、Y、Zn及びZrよりなる群から選択される元素の一種又は二種以上の酸化物が挙げられる。酸化物の中でもSiO2はスパッタリングターゲットの高密度化に寄与する効果が大きいため、添加することが好ましい。窒化物の例としては、Al、Ca、Nb、Si、Ta、Ti及びZrよりなる群から選択される元素の一種又は二種以上の窒化物が挙げられる。これらの非磁性材料は要求される磁性薄膜の磁気特性に応じて適宜添加すればよい。なお、Cr酸化物及びCo酸化物は、金属として添加するCr及びCoとは異なるものとして認識される。 Examples of the carbide include one or more carbides of elements selected from the group consisting of B, Ca, Nb, Si, Ta, Ti, W and Zr. Examples of the oxide include Si, Al, B, Ba, Be, Co, Ca, Ce, Cr, Dy, Er, Eu, Ga, Gd, Ho, Li, Mg, Mn, Nb, Nd, Pr, and Sc. , Sm, Sr, Ta, Tb, Ti, V, Y, Zn, and one or more oxides of elements selected from the group consisting of Zr. Of the oxides, SiO 2 has a great effect of increasing the density of a sputtering target, and is therefore preferably added. Examples of the nitride include one or more nitrides of elements selected from the group consisting of Al, Ca, Nb, Si, Ta, Ti, and Zr. These nonmagnetic materials may be appropriately added according to the required magnetic properties of the magnetic thin film. The Cr oxide and the Co oxide are recognized as being different from Cr and Co added as a metal.
 非磁性材料は、Co-Pt合金粒子相及びCo粒子相と区別可能な非磁性材料の粒子相としてターゲット組織中で分散して存在することができる。その場合、非磁性材料の粒子相の平均粒径は2μm以下であることが好ましく、1μm以下であることがより好ましく、0.5μm以下であることが更により好ましい。但し、当該非磁性材料の粒子相の平均粒径は、小さすぎると混合粉作製工程中に互いに凝集して塊(粗大な二次粒子)となる懸念があることから、0.05μm以上であることが好ましく、0.1μm以上であることがより好ましく、0.2μm以上であることが更により好ましい。 The non-magnetic material can be dispersed in the target structure as a non-magnetic material particle phase that can be distinguished from the Co—Pt alloy particle phase and the Co particle phase. In that case, the average particle size of the particle phase of the nonmagnetic material is preferably 2 μm or less, more preferably 1 μm or less, and even more preferably 0.5 μm or less. However, the average particle size of the particle phase of the nonmagnetic material is 0.05 μm or more because if the particle size is too small, there is a concern that the particles may aggregate with each other during the mixed powder preparation step to form a lump (coarse secondary particles). Is preferably 0.1 μm or more, and more preferably 0.2 μm or more.
(6.XRDのプロファイル)
 本発明に係る強磁性材スパッタリングターゲットは一実施形態において、2θの測定範囲を30°~60°としたXRD測定において、2θ=33.27±2°、41.52±2°、47.76±2°、49.44±2°、及び54.21±2°の各位置にピークを有する。スパッタリングターゲットがこのようなXRDのプロファイルを有することで、漏洩磁束をより大きくすることが可能となる。理論によって本発明が限定されることを意図するものではないが、上記各ピークはL10構造に由来しており、本発明に係るスパッタリングターゲットの組成からみて、Co-Pt合金粒子相がL10構造の規則相を形成している場合に、このようなピークが観察されると推察される。
(6. XRD profile)
In one embodiment of the ferromagnetic material sputtering target according to the present invention, 2θ = 33.27 ± 2 °, 41.52 ± 2 °, 47.76 in XRD measurement in which the measurement range of 2θ is 30 ° to 60 °. It has peaks at each position of ± 2 °, 49.44 ± 2 °, and 54.21 ± 2 °. When the sputtering target has such an XRD profile, the leakage magnetic flux can be further increased. Although not intending that the invention be limited by theory, each peak is derived from the L1 0 structure, as viewed from the composition of the sputtering target according to the present invention, Co-Pt alloy particles phase L1 0 It is presumed that such a peak is observed when an ordered phase of the structure is formed.
 2θ=33.27±2°、41.52±2°、47.76±2°、49.44±2°、及び54.21±2°の各位置にピークを有するというのは、各位置におけるピーク強度のバックグラウンド強度(2θ=37.0~38.0°の強度の平均値)に対する比が2以上であることを意味し、一般には当該比は2~200とすることができる。 2θ = 33.27 ± 2 °, 41.52 ± 2 °, 47.76 ± 2 °, 49.44 ± 2 °, and 54.21 ± 2 ° means that each position has a peak. Means that the ratio of the peak intensity to the background intensity (the average value of the intensity at 2θ = 37.0 to 38.0 °) is 2 or more, and generally the ratio can be 2 to 200.
 とりわけ、漏洩磁束を高めるためにはL10構造がしっかりと形成されていることが必要であるとの理由から、XRD測定の2θの測定範囲が30°~60°における最も強いピークが41.52±2°に存在することが好ましい。41.52±2°はCo-PtのL10構造の最強ピークである。 Especially, because of the in order to increase the magnetic flux leakage is necessary that the L1 0 structure is securely formed, the measurement range of 2θ of XRD measurement strongest peak at 30 ° ~ 60 ° 41.52 It preferably exists at ± 2 °. 41.52 ± 2 ° is a strongest peak of L1 0 structure of Co-Pt.
 本発明においてスパッタリングターゲットのXRD測定は以下の条件で測定される。測定装置としてX線回折装置(実施例ではリガク社製UltimaIVを使用した。)を用い、管球はCu、測定条件は管電圧40kv、管電流30mA、スキャンスピード4°/min、ステップ0.02°とし、θ/2θ法でスパッタ面に水平な面に対して測定する。スパッタ面に水平な面であれば、表面でも切断面でも構わない。 に お い て In the present invention, the XRD measurement of the sputtering target is performed under the following conditions. An X-ray diffractometer (Ultima IV manufactured by Rigaku Corp. was used in the examples) was used as the measuring device, the tube was Cu, the measuring conditions were a tube voltage of 40 kv, a tube current of 30 mA, a scan speed of 4 ° / min, and a step of 0.02. ° and the measurement is made on the plane parallel to the sputtering surface by the θ / 2θ method. The surface may be a surface or a cut surface as long as the surface is horizontal to the sputter surface.
(7.製法)
 本発明に係る強磁性材スパッタリングターゲットは、粉末焼結法を用いて、例えば、以下の手順によって作製することができる。
(7. Manufacturing method)
The ferromagnetic material sputtering target according to the present invention can be manufactured using the powder sintering method, for example, by the following procedure.
 純度が90mol%以上、好ましくは95mol%以上、より好ましくは99.9mol%以上のCo粉末を用意する。Co粉末は溶解鋳造した金属コバルトのインゴットを粉砕して作製してもよいし、ガスアトマイズ法により作製してもよい。当該Co粉末のメジアン径は30μm以上であることが好ましく、50μm以上であることがより好ましく、100μm以上であることが更により好ましい。但し、当該Co粉末のメジアン径は、大きすぎると他の粉末材料との均一に混合することが難しいことやスパッタリング中にパーティクルの原因となる懸念があることから、300μm以下であることが好ましく、200μm以下であることがより好ましく、150μm以下であることが更により好ましい。メジアン径は粉砕や篩別により調整可能である。 Co Prepare a Co powder having a purity of 90 mol% or more, preferably 95 mol% or more, more preferably 99.9 mol% or more. The Co powder may be produced by pulverizing a molten cobalt ingot of metal cobalt, or may be produced by a gas atomizing method. The median diameter of the Co powder is preferably 30 μm or more, more preferably 50 μm or more, and even more preferably 100 μm or more. However, the median diameter of the Co powder is preferably 300 μm or less, because if it is too large, it is difficult to mix uniformly with other powder materials and there is a concern that particles may be generated during sputtering. It is more preferably 200 μm or less, and even more preferably 150 μm or less. The median diameter can be adjusted by grinding or sieving.
 また、Co:Pt=Y:100-Y(20≦Y≦60.5)のモル比となる条件で、金属Co及び金属Ptを合計で70mol%以上、好ましくは80mol%以上、より好ましくは90mol%以上、更により好ましくは99mol%以上含有するCo-Pt合金粉末を用意する。L10構造を発達させるという観点から、当該Co-Pt合金粉末のメジアン径は7μm以下であることが好ましく、6μm以下であることがより好ましく、5μm以下であることが更により好ましい。但し、当該Co-Pt合金粉末のメジアン径は、小さすぎると混合工程中に大気中の酸素で酸化してしまう懸念があるであることから、0.1μm以上であることが好ましく、0.5μm以上であることがより好ましく、1μm以上であることが更により好ましい。 Under the condition that the molar ratio of Co: Pt = Y: 100−Y (20 ≦ Y ≦ 60.5), the total of metal Co and metal Pt is 70 mol% or more, preferably 80 mol% or more, more preferably 90 mol. %, More preferably 99 mol% or more. From the viewpoint of developing an L1 0 structure, it is preferable that the median diameter of the Co-Pt alloy powder is 7μm or less, more preferably 6μm or less, and still more preferably at 5μm or less. However, the median diameter of the Co—Pt alloy powder is preferably 0.1 μm or more, because if it is too small, it may be oxidized by atmospheric oxygen during the mixing step. It is more preferably at least 1 μm.
 このようなCo-Pt合金粉末を作製する方法としては、Co:Pt=Y:100-Y(20≦Y≦60.5)のモル比でCo粉末及びPt粉末を混合した粉末を、不活性雰囲気下、800℃~1000℃の加熱温度で焼成する方法がある。当該焼成方法により、2θの測定範囲を30°~60°としたXRD測定において、2θ=33.27±2°、41.52±2°、47.76±2°、49.44±2°、及び54.21±2°の各位置にピークを有するCo-Pt合金のスポンジを得ることができる。不活性雰囲気としては、例えば、真空雰囲気、Arガス雰囲気等の希ガス雰囲気、及び、窒素ガス雰囲気が挙げられる。得られたスポンジを粉砕することで得られた粉末を篩別することによりメジアン径を調整可能である。 As a method for producing such a Co—Pt alloy powder, a powder obtained by mixing a Co powder and a Pt powder in a molar ratio of Co: Pt = Y: 100-Y (20 ≦ Y ≦ 60.5) is prepared by inactivating the powder. There is a method of firing at a heating temperature of 800 ° C. to 1000 ° C. in an atmosphere. According to the baking method, in the XRD measurement in which the measurement range of 2θ is 30 ° to 60 °, 2θ = 33.27 ± 2 °, 41.52 ± 2 °, 47.76 ± 2 °, 49.44 ± 2 °. , And 54.21 ± 2 ° can be obtained. Examples of the inert atmosphere include a rare gas atmosphere such as a vacuum atmosphere and an Ar gas atmosphere, and a nitrogen gas atmosphere. The median diameter can be adjusted by sieving the powder obtained by crushing the obtained sponge.
 次いで、Co-Pt合金粉末とCo粉末を混合し、Co:Pt=X:100-X(59≦X<100)のモル比で、金属Co及び金属Ptを合計で70mol%以上含有する混合粉末を得る。 Next, a Co—Pt alloy powder and a Co powder are mixed, and a mixed powder containing a total of 70 mol% or more of metal Co and metal Pt in a molar ratio of Co: Pt = X: 100−X (59 ≦ X <100). Get.
 必要に応じて、B、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、W、Al、Si及びZnよりなる群から選択される一種又は二種以上の第三元素の粉末を用意する。第三元素の粉末は、混合粉末中の合計濃度が先述したスパッタリングターゲット中の所定濃度となるように添加することが好ましい。第三元素の粉末のメジアン径は20μm以下であることが好ましく、10μm以下であることがより好ましく、5μm以下であることが更により好ましい。但し、第三元素の粉末のメジアン径は、小さすぎると混合粉作製工程中に大気中の酸素によって酸化が進む懸念があることから、0.5μm以上であることが好ましく、1μm以上であることがより好ましく、2μm以上であることが更により好ましい。 If necessary, prepare powder of one or more third elements selected from the group consisting of B, Ti, V, Mn, Zr, Nb, Ru, Mo, Ta, W, Al, Si and Zn I do. The powder of the third element is preferably added so that the total concentration in the mixed powder becomes the predetermined concentration in the sputtering target described above. The median diameter of the third element powder is preferably 20 μm or less, more preferably 10 μm or less, and even more preferably 5 μm or less. However, the median diameter of the powder of the third element is preferably at least 0.5 μm, more preferably at least 1 μm, because if the median diameter of the powder of the third element is too small, oxidation may proceed due to oxygen in the atmosphere during the mixed powder preparation step. Is more preferable, and it is still more preferable that it is 2 micrometers or more.
 必要に応じて、炭素、酸化物、窒化物、炭化物及び炭窒化物よりなる群から選択される一種又は二種以上の非磁性材料の粉末を用意する。非磁性材料の粉末は、混合粉末中の合計濃度が先述したスパッタリングターゲット中の所定濃度となるように添加することが好ましい。非磁性材料の粉末のメジアン径は2μm以下であることが好ましく、1μm以下であることがより好ましく、0.5μm以下であることが更により好ましい。但し、当該非磁性材料の粉末のメジアン径は、小さすぎると混合粉作製工程中に大気中の酸素によって酸化が進む懸念があることから、0.05μm以上であることが好ましく、0.1μm以上であることがより好ましく、0.2μm以上であることが更により好ましい。 粉末 If necessary, prepare a powder of one or more nonmagnetic materials selected from the group consisting of carbon, oxide, nitride, carbide and carbonitride. The powder of the nonmagnetic material is preferably added so that the total concentration in the mixed powder becomes the predetermined concentration in the sputtering target described above. The median diameter of the non-magnetic material powder is preferably 2 μm or less, more preferably 1 μm or less, and even more preferably 0.5 μm or less. However, the median diameter of the powder of the nonmagnetic material is preferably at least 0.05 μm, and more preferably at least 0.1 μm, since if it is too small, oxidation may proceed due to oxygen in the atmosphere during the mixed powder preparation step. Is more preferable, and even more preferably 0.2 μm or more.
 必要に応じて、更にCr粉末を用意する。Cr粉末を添加する場合は、混合粉末中の金属Crの合計濃度が先述したスパッタリングターゲット中の所定濃度範囲内となるように留意する。Cr粉末のメジアン径は10μm以下であることが好ましく、5μm以下であることがより好ましく、3μm以下であることが更により好ましい。但し、Cr粉末のメジアン径は、小さすぎると混合粉作製工程中に大気中の酸素によって酸化が進む懸念があることから、1μm以上であることが好ましく、1.5μm以上であることがより好ましく、2μm以上であることが更により好ましい。 更 に If necessary, prepare additional Cr powder. When adding Cr powder, care is taken so that the total concentration of metallic Cr in the mixed powder is within the above-mentioned predetermined concentration range in the sputtering target. The median diameter of the Cr powder is preferably 10 μm or less, more preferably 5 μm or less, and even more preferably 3 μm or less. However, the median diameter of the Cr powder is preferably 1 μm or more, more preferably 1.5 μm or more, because if the median diameter of the Cr powder is too small, there is a concern that oxidation may proceed due to oxygen in the air during the mixed powder production step. Even more preferably, it is 2 μm or more.
 なお、上記の各原料粉におけるメジアン径は、レーザー回折・散乱法によって求めた粒度分布における体積値基準での積算値50%(D50)での粒径を意味する。実施例においては、HORIBA社製の型式LA-920の粒度分布測定装置を使用し、粉末をエタノールの溶媒中に分散させて湿式法にて測定した。屈折率は金属コバルトの値を使用した。 The median diameter in each of the raw material powders described above means a particle diameter at an integrated value of 50% (D50) based on a volume value in a particle size distribution obtained by a laser diffraction / scattering method. In the examples, the powder was dispersed in a solvent of ethanol and measured by a wet method using a particle size distribution analyzer of model LA-920 manufactured by HORIBA. As the refractive index, the value of metallic cobalt was used.
 上記原料粉を所望の組成となるように秤量し、ボールミル等の公知の手法を用いて粉砕を兼ねて混合する。このとき、粉砕容器内に不活性ガスを封入して原料粉の酸化をできるかぎり抑制することが望ましい。不活性ガスとしては、Ar、N2ガスが挙げられる。 The above-mentioned raw material powder is weighed so as to have a desired composition, and is mixed using a known method such as a ball mill while also serving as pulverization. At this time, it is desirable that an inert gas be sealed in the pulverizing container to suppress oxidation of the raw material powder as much as possible. Examples of the inert gas include Ar and N 2 gases.
 このようにして得られた混合粉末をホットプレス法で真空雰囲気又は不活性ガス雰囲気下において成形・焼結する。また、前記ホットプレス法以外にも、プラズマ放電焼結法など様々な加圧焼結方法を使用することができる。特に、熱間等方加圧加工法(HIP)は、焼結体の密度向上に有効であり、ホットプレス法と熱間等方加圧加工法をこの順に実施することが焼結体の密度向上の観点から好ましい。 (4) The mixed powder thus obtained is molded and sintered in a vacuum atmosphere or an inert gas atmosphere by a hot press method. In addition to the hot press method, various pressure sintering methods such as a plasma discharge sintering method can be used. In particular, hot isostatic pressing (HIP) is effective in increasing the density of a sintered body, and hot pressing and hot isostatic pressing are performed in this order. It is preferable from the viewpoint of improvement.
 焼結時の保持温度は、ターゲットが十分緻密化する温度域のうち最も低い温度に設定するのが好ましい。ターゲットの組成にもよるが、多くの場合、700~1200℃の温度範囲で保持すればよい。当該温度範囲の中でも、L10構造の規則相を多くするという観点からは、焼結時の保持温度は1050℃以下とすることが好ましく、1000℃以下とすることがより好ましく、950℃以下とすることがさらにより好ましい。また、焼結時の圧力は300~500kg/cm2であることが好ましい。熱間等方加圧加工時の保持温度は焼結体の組成にもよるが、多くの場合、700~1200℃の温度範囲である。当該温度範囲の中でも、L10構造の規則相を多くするという観点からは、1050℃以下とすることが好ましく、1000℃以下とすることがより好ましく、950℃以下とすることがさらにより好ましい。また、加圧力は100MPa以上に設定することが好ましい。 The holding temperature during sintering is preferably set to the lowest temperature in the temperature range where the target is sufficiently densified. Although it depends on the composition of the target, in many cases, the temperature may be maintained in a temperature range of 700 to 1200 ° C. Among the temperature range from the viewpoint of increasing the ordered phase of the L1 0 structure, the holding temperature at the time of sintering is preferably set to 1050 ° C. or less, and more preferably set to 1000 ° C. or less, and 950 ° C. or less Is even more preferred. The pressure during sintering is preferably 300 to 500 kg / cm 2 . The holding temperature at the time of hot isostatic pressing depends on the composition of the sintered body, but is often in the range of 700 to 1200 ° C. Among the temperature range from the viewpoint of increasing the ordered phase of the L1 0 structure, preferably set to 1050 ° C. or less, and more preferably set to 1000 ° C. or less, still more preferably it is 950 ° C. or less. Further, the pressing force is preferably set to 100 MPa or more.
 焼結時間は、焼結体の密度向上のために0.3時間以上とすることが好ましく、0.5時間以上とすることがより好ましく、1.0時間以上とすることが更により好ましい。また、焼結時間は、結晶粒の粗大化を防止するために3.0時間以下とすることが好ましく、2.0時間以下とすることがより好ましく、1.5時間以下とすることが更により好ましい。 The sintering time is preferably at least 0.3 hour, more preferably at least 0.5 hour, even more preferably at least 1.0 hour, for improving the density of the sintered body. Further, the sintering time is preferably 3.0 hours or less, more preferably 2.0 hours or less, and further preferably 1.5 hours or less in order to prevent coarsening of crystal grains. Is more preferable.
 得られた焼結体を、旋盤等を用いて所望の形状に成形加工することにより、本発明に係るスパッタリングターゲットを作製することができる。ターゲット形状には特に制限はないが、例えば平板状(円盤状や矩形板状を含む)及び円筒状が挙げられる。本発明に係るスパッタリングターゲットは、磁気記録膜の成膜に使用するスパッタリングターゲットとして特に有用である。 ス パ ッ タ リ ン グ The obtained sintered body is formed into a desired shape using a lathe or the like, whereby the sputtering target according to the present invention can be manufactured. The target shape is not particularly limited, and examples thereof include a flat plate shape (including a disk shape and a rectangular plate shape) and a cylindrical shape. The sputtering target according to the present invention is particularly useful as a sputtering target used for forming a magnetic recording film.
 以下に本発明の実施例を比較例と共に示すが、これらの実施例は本発明及びその利点をよりよく理解するために提供するものであり、本発明が限定されることを意図するものではない。 Hereinafter, Examples of the present invention are shown together with Comparative Examples, but these Examples are provided for better understanding of the present invention and its advantages, and are not intended to limit the present invention. .
(1.スパッタリングターゲットの作製)
 原料粉末として、表1に記載の各メジアン径のCo粉末、Pt粉末、Co-Pt合金粉末、Cr粉末、B23粉末、TiO2粉末、SiO2粉末、Co34粉末、Cr23粉末、B粉末、Ru粉末、Ta粉末、Ta25粉末、CoO粉末、Si34粉末、SiC粉末を用意した。何れも高純度品であり、不可避的不純物以外は含まない。これらの粉末のメジアン径は篩別して適宜調整した。
(1. Production of sputtering target)
As raw material powders, Co powders of the respective median diameter shown in Table 1, Pt powder, Co-Pt alloy powder, Cr powder, B 2 O 3 powder, TiO 2 powder, SiO 2 powder, Co 3 O 4 powder, Cr 2 O 3 powder, B powder, Ru powder, Ta powder, Ta 2 O 5 powder, CoO powder, Si 3 N 4 powder, and SiC powder were prepared. Each is a high-purity product and does not contain anything other than inevitable impurities. The median diameter of these powders was appropriately adjusted by sieving.
 上記の原料粉末のうち、Co-Pt合金粉末は以下の手順で用意した。Co-Pt合金粉末中のCoモル比(Y)が表3に記載の値になるように、メジアン径が3μmのCo粉末及びメジアン径が2μmのPt粉末を自動乳鉢を用いて2時間回転させて混合した。次いで、得られた混合粉末を試験番号に応じて表5に記載の事前熱処理温度として真空雰囲気で2時間焼成した。次いで、得られたスポンジを粉砕することで得られた粉末を篩別することにより表1に記載の各種メジアン径を有するCo-Pt合金粉末を得た。ただし、比較例3におけるCo-Pt粉はガスアトマイズ法により作製したものを篩別して使用した。 CoOf the above raw material powders, Co-Pt alloy powder was prepared according to the following procedure. The Co powder having a median diameter of 3 μm and the Pt powder having a median diameter of 2 μm were rotated using an automatic mortar for 2 hours so that the Co molar ratio (Y) in the Co—Pt alloy powder became the value shown in Table 3. And mixed. Next, the obtained mixed powder was fired in a vacuum atmosphere for 2 hours at a pre-heat treatment temperature shown in Table 5 according to the test number. Then, the obtained sponge was pulverized, and the obtained powder was sieved to obtain Co-Pt alloy powder having various median diameters shown in Table 1. However, the Co-Pt powder used in Comparative Example 3 was prepared by a gas atomizing method and used by sieving.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 次に、上記の各原料粉末を試験番号に応じて表3の組成欄に記載のモル比となるように、表2に示す質量比で、粉砕媒体のジルコニアボールと共に容量10リットルのボールミルポットに封入し、20時間回転させて混合した。次いで、得られた混合粉末をカーボン製の型に充填し、真空雰囲気中で表5に示す温度で、保持時間2時間、加圧力30MPaの条件下でホットプレスして、焼結体を得た。次に、ホットプレスから取り出した焼結体に、表5に示す温度で熱間等方加圧加工を施した。また、加圧力は100~200MPaの範囲に設定した。さらにこれを、汎用旋盤および平面研削盤を用いて研削加工して直径が180mm、厚さが5mmの円盤状のスパッタリングターゲットを得た。原料粉末の混合割合から計算した各試験番号におけるターゲット組成、及びターゲット中の金属Co及び金属Ptの合計に対する金属Coのモル比(X)(%)を表3に示す。また、Co-Pt合金粒子相中の金属Co及び金属Ptの合計に対する金属Coのモル比(Co-Pt合金粉末の組成に等しい)(Y)(%)を表3に示す。 Next, the above-mentioned raw material powders were placed in a ball mill pot having a capacity of 10 liters together with a zirconia ball as a grinding medium at a mass ratio shown in Table 2 so as to have a molar ratio described in the composition column of Table 3 according to the test number. Sealed and rotated for 20 hours to mix. Next, the obtained mixed powder was filled in a carbon mold, and hot-pressed at a temperature shown in Table 5 in a vacuum atmosphere under a condition of a holding time of 2 hours and a pressure of 30 MPa to obtain a sintered body. . Next, the sintered body taken out from the hot press was subjected to hot isostatic pressing at the temperatures shown in Table 5. The pressure was set in the range of 100 to 200 MPa. This was further ground using a general-purpose lathe and a surface grinder to obtain a disk-shaped sputtering target having a diameter of 180 mm and a thickness of 5 mm. Table 3 shows the target composition in each test number calculated from the mixing ratio of the raw material powders, and the molar ratio (X) (%) of metal Co to the total of metal Co and metal Pt in the target. Table 3 shows the molar ratio of metal Co to the total of metal Co and metal Pt in the Co-Pt alloy particle phase (equal to the composition of the Co-Pt alloy powder) (Y) (%).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
(2.ターゲット組織の分析)
 上記手順により得られた各スパッタリングターゲットについて、下記に示す手順により観察し、Co粒子相、Co-Pt合金粒子相、第三元素の粒子相、及び非磁性材料の相の平均粒径を求めた。なお、Co粒子相、Co-Pt合金粒子相、第三元素の粒子相および非磁性材料の相はFE-EPMAの元素マッピング画像を用いて特定した。結果を表4に示す。
(2. Analysis of target organization)
Each sputtering target obtained by the above procedure was observed by the following procedure, and the average particle size of the Co particle phase, the Co—Pt alloy particle phase, the third element particle phase, and the nonmagnetic material phase was determined. . The Co particle phase, the Co—Pt alloy particle phase, the third element particle phase, and the phase of the non-magnetic material were specified using an FE-EPMA element mapping image. Table 4 shows the results.
(2-1.Co-Pt合金粒子相)
 本発明において、Co-Pt合金粒子相の平均粒径は、以下の方法により算出する。スパッタリングターゲットのスパッタリング面に対して水平となる面の切断面を鏡面研磨したものを用いて、3000倍で撮影した縦70μm×横95μmのSEM写真上において、横方向に水平な二本の切断線によって写真を縦方向に等間隔で3分割し、各切断線によって切断されるCo-Pt合金粒子相の切断長さを測定し、その切断長さの平均値(μm)を視野毎に求める。なお、切断線の太さは写真の縦方向の長さの400分の1の太さとする。これを任意の10視野において実施し、10視野の平均値を測定値とする。なお、視野に一部分のみ含まれるCo-Pt合金粒子相は測定対象から除く。
(2-1. Co-Pt alloy particle phase)
In the present invention, the average particle size of the Co—Pt alloy particle phase is calculated by the following method. Two horizontal cutting lines in a horizontal direction on a 70 μm × 95 μm SEM photograph taken at 3000 × magnification using a mirror-polished cut surface of a surface which is horizontal to a sputtering surface of a sputtering target. The photograph is divided into three parts at equal intervals in the vertical direction, the cutting length of the Co—Pt alloy particle phase cut along each cutting line is measured, and the average value (μm) of the cutting length is determined for each visual field. The thickness of the cutting line is 1/400 of the vertical length of the photograph. This is performed in arbitrary 10 visual fields, and the average value of 10 visual fields is set as a measured value. Note that the Co—Pt alloy particle phase included only partially in the visual field is excluded from the measurement target.
(2-2.Co粒子相)
 本発明において、Co粒子相の平均粒径は、以下の方法により算出する。Co粒子相の大きさの測定は、スパッタリングターゲットのスパッタリング面に対して水平となる面の切断面を鏡面研磨したものを用いて、220倍で撮影した縦1120μm×横1500μmのSEM写真上において、横方向に水平な二本の切断線によって写真を縦方向に等間隔で3分割し、各切断線によって切断されるCo粒子相の切断長さを測定し、その切断長さの平均値(μm)を視野毎に求める。なお、切断線の太さは写真の縦方向の長さの400分の1の太さとする。これを任意の10視野において実施し、10視野の平均値を測定値とする。なお、視野に一部分のみ含まれるCo粒子相は測定対象から除く。
(2-2. Co particle phase)
In the present invention, the average particle size of the Co particle phase is calculated by the following method. The measurement of the size of the Co particle phase was performed using a mirror-polished cut surface of a surface that is horizontal to the sputtering surface of the sputtering target, and on a SEM photograph of 1120 μm × 1500 μm taken at 220 ×, The photograph is divided into three parts at equal intervals in the vertical direction by two horizontal cutting lines in the horizontal direction, the cutting length of the Co particle phase cut by each cutting line is measured, and the average value of the cutting length (μm ) Is determined for each field of view. The thickness of the cutting line is 1/400 of the vertical length of the photograph. This is performed in arbitrary 10 visual fields, and the average value of 10 visual fields is set as a measured value. Note that the Co particle phase included only partially in the visual field is excluded from the measurement target.
(2-3.第三元素の粒子相)
 本発明において、第三元素が独立した粒子相を形成する場合の、第三元素の粒子相の平均粒径は、以下の方法により算出する。スパッタリングターゲットのスパッタリング面に対して水平となる面の切断面を鏡面研磨したものを用いて、1000倍で撮影した縦215μm×横290μmのSEM写真上において、横方向に水平な二本の切断線によって写真を縦方向に等間隔で3分割し、各切断線によって切断される第三元素の粒子相の切断長さを測定し、その切断長さの平均値(μm)を視野毎に求める。なお、切断線の太さは写真の縦方向の長さの400分の1の太さとする。これを任意の10視野において実施し、10視野の平均値を測定値とする。なお、視野に一部分のみ含まれる第三元素の粒子相は測定対象から除く。
(2-3. Particle phase of third element)
In the present invention, when the third element forms an independent particle phase, the average particle size of the particle phase of the third element is calculated by the following method. Using a mirror-polished cut surface of a surface that is horizontal to the sputtering surface of the sputtering target, two horizontal cutting lines in the horizontal direction on a 215 μm × 290 μm SEM photograph taken at 1000 × magnification. The photograph is divided into three parts at equal intervals in the vertical direction, the cutting length of the particle phase of the third element cut by each cutting line is measured, and the average value (μm) of the cutting length is determined for each visual field. The thickness of the cutting line is 1/400 of the vertical length of the photograph. This is performed in arbitrary 10 visual fields, and the average value of 10 visual fields is set as a measured value. The particle phase of the third element contained only partially in the visual field is excluded from the measurement target.
(2-4.非磁性材料の粒子相)
 本発明において、非磁性材料の粒子相の平均粒径は、以下の方法により算出する。スパッタリングターゲットのスパッタリング面に対して水平となる面の切断面を鏡面研磨したものを用いて、3000倍で撮影した縦70μm×横95μmのSEM写真上において、横方向に水平な二本の切断線によって写真を縦方向に等間隔で3分割し、各切断線によって切断される非磁性材料の粒子相の切断長さを測定し、その切断長さの平均値(μm)を視野毎に求める。なお、切断線の太さは写真の縦方向の長さの400分の1の太さとする。これを任意の10視野において実施し、10視野の平均値を測定値とする。なお、視野に一部分のみ含まれる非磁性材料の粒子相は測定対象から除く。
(2-4. Particle phase of non-magnetic material)
In the present invention, the average particle size of the particle phase of the nonmagnetic material is calculated by the following method. Two horizontal cutting lines in a horizontal direction on a 70 μm × 95 μm SEM photograph taken at 3000 × magnification using a mirror-polished cut surface of a surface which is horizontal to a sputtering surface of a sputtering target. The photograph is divided into three at equal intervals in the vertical direction, the cut length of the particle phase of the nonmagnetic material cut along each cutting line is measured, and the average value (μm) of the cut length is determined for each visual field. The thickness of the cutting line is 1/400 of the vertical length of the photograph. This is performed in arbitrary 10 visual fields, and the average value of 10 visual fields is set as a measured value. Note that the particle phase of the nonmagnetic material included only in a part of the visual field is excluded from the measurement target.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
(3.漏洩磁束の測定)
 上記手順により得られた各スパッタリングターゲットについて、漏洩磁束の測定をASTM  F2086-01(Standard Test Method for  Pass Through Flux of Circular Magnetic Sputtering Targets, Method 2)に則して実施した。ターゲットの中心を固定し、0°、30°、60°、90°、120°と回転させて測定した漏洩磁束密度(PTF)を、ASTMで定義されているreference fieldの値で割り返し、100を掛けてパーセントで表した。そしてこれら5点について平均した結果を、平均漏洩磁束密度(PTF(%))として表5に記載した。
(3. Measurement of leakage magnetic flux)
For each of the sputtering targets obtained by the above procedure, the leakage magnetic flux was measured according to ASTM F2086-01 (Standard Test Method for Pass Through Flux of Circular Magnetic Sputtering Targets, Method 2). The leakage magnetic flux density (PTF) measured by rotating the target at 0 °, 30 °, 60 °, 90 °, and 120 ° with the center of the target fixed is divided by the value of the reference field defined by ASTM, and 100 And multiplied by a percentage. The results of averaging these five points are shown in Table 5 as average leakage magnetic flux density (PTF (%)).
(4.パーティクルの測定)
 上記手順により得られた各スパッタリングターゲットを、マグネトロンスパッタ装置(キヤノンアネルバ(株)製C-3010スパッタリングシステム)に取り付け、スパッタリングを行った。スパッタリングの条件は、投入電力1kW、Arガス圧1.7Paとし、2kWhrのプレスパッタリングを実施した後、4インチ径のシリコン基板上に20秒間成膜した。そして基板上へ付着した粒子径が0.07μm以上のパーティクルの個数を表面異物検査装置(Candela CS920、KLA-Tencor社製)で測定した。結果を表5に示す。
(4. Measurement of particles)
Each sputtering target obtained by the above procedure was attached to a magnetron sputtering apparatus (C-3010 sputtering system manufactured by Canon Anelva Co., Ltd.) to perform sputtering. The sputtering was performed under the conditions of an input power of 1 kW and an Ar gas pressure of 1.7 Pa. After performing pre-sputtering at 2 kWhr, a film was formed on a 4-inch diameter silicon substrate for 20 seconds. Then, the number of particles having a particle diameter of 0.07 μm or more adhered to the substrate was measured with a surface foreign matter inspection device (Candela CS920, manufactured by KLA-Tencor). Table 5 shows the results.
(5.XRD測定)
 上記手順により得られた各スパッタリングターゲットのスパッタ面に対して水平となる面の切断面を鏡面研磨したものに対してX線回折装置(リガク社製UltimaIV)を使用して先述した測定条件でXRD測定を行った。XRD測定においては、2θの測定範囲を30°~60°とし、33.27±2°、41.52±2°、47.76±2°、49.44±2°、及び54.21±2°の各回折角(2θ)におけるピーク強度のバックグラウンド強度(2θ=37.0~38.0°の強度の平均値)に対する比を調査した。結果を表5に示す。また、比較例1、比較例2、比較例3、実施例1、実施例2、実施例3、実施例5及び実施例7のXRDプロファイルを図1~図8にそれぞれ掲載する。
(5. XRD measurement)
Using a X-ray diffractometer (Ultima IV, manufactured by Rigaku Corporation) on a mirror-polished cut surface of a surface horizontal to the sputter surface of each sputtering target obtained by the above procedure, under the above-mentioned measurement conditions under XRD. A measurement was made. In the XRD measurement, the measurement range of 2θ was 30 ° to 60 °, and 33.27 ± 2 °, 41.52 ± 2 °, 47.76 ± 2 °, 49.44 ± 2 °, and 54.21 ±. The ratio of the peak intensity at each diffraction angle (2θ) of 2 ° to the background intensity (the average value of the intensity at 2θ = 37.0 to 38.0 °) was examined. Table 5 shows the results. The XRD profiles of Comparative Example 1, Comparative Example 2, Comparative Example 3, Example 1, Example 2, Example 3, Example 5, and Example 7 are shown in FIGS. 1 to 8, respectively.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005

Claims (9)

  1.  Co:Pt=X:100-X(59≦X<100)のモル比で、金属Co及び金属Ptを合計で70mol%以上含有し、金属Crを0mol%以上20mol%以下含有する強磁性材スパッタリングターゲットであって、
     金属Coを90mol%以上含有し、平均粒径が30~300μmのCo粒子相と、
     モル比でCo:Pt=Y:100-Y(20≦Y≦60.5)となる条件で、金属Co及び金属Ptを合計で70mol%以上含有する平均粒径が7μm以下のCo-Pt合金粒子相を有する強磁性材スパッタリングターゲット。
    Ferromagnetic material sputtering containing a total of 70 mol% or more of metal Co and metal Pt and a content of 0 to 20 mol% of metal Cr at a molar ratio of Co: Pt = X: 100−X (59 ≦ X <100) The target,
    A Co particle phase containing at least 90 mol% of metal Co and having an average particle diameter of 30 to 300 μm;
    Co-Pt alloy containing metal Co and metal Pt in a total amount of 70 mol% or more and having an average particle size of 7 μm or less under the condition that Co: Pt = Y: 100−Y (20 ≦ Y ≦ 60.5) in a molar ratio. Ferromagnetic material sputtering target having a particle phase.
  2.  B、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、W、Al、Si及びZnよりなる群から選択される一種又は二種以上の第三元素を合計で30mol%以下含有する請求項1に記載の強磁性材スパッタリングターゲット。 Claims containing 30 mol% or less in total of one or more third elements selected from the group consisting of B, Ti, V, Mn, Zr, Nb, Ru, Mo, Ta, W, Al, Si and Zn. Item 7. The ferromagnetic material sputtering target according to item 1.
  3.  炭素、酸化物、窒化物、炭化物及び炭窒化物よりなる群から選択される一種又は二種以上の非磁性材料を合計で25mol%以下含有する請求項1又は2に記載の強磁性材スパッタリングターゲット。 3. The ferromagnetic material sputtering target according to claim 1, comprising one or more nonmagnetic materials selected from the group consisting of carbon, oxide, nitride, carbide, and carbonitride in a total amount of 25 mol% or less. 4. .
  4.  2θの測定範囲を30°~60°としたXRD測定において、2θ=33.27±2°、41.52±2°、47.76±2°、49.44±2°、及び54.21±2°の各位置にピークを有する請求項1~3の何れか一項に記載の強磁性材スパッタリングターゲット。 In the XRD measurement in which the measurement range of 2θ is 30 ° to 60 °, 2θ = 33.27 ± 2 °, 41.52 ± 2 °, 47.76 ± 2 °, 49.44 ± 2 °, and 54.21. 4. The ferromagnetic sputtering target according to claim 1, which has a peak at each position of ± 2 °.
  5.  金属Coを90mol%以上含有し、メジアン径が30~300μmのCo粉末を用意する工程と、
     モル比でCo:Pt=Y:100-Y(20≦Y≦60.5)となる条件で、金属Co及び金属Ptを合計で70mol%以上含有する、メジアン径が7μm以下のCo-Pt合金粉末を用意する工程と、
     Co-Pt合金粉末とCo粉末を混合し、モル比でCo:Pt=X:100-X(59≦X<100)となる条件で、金属Co及び金属Ptを合計で70mol%以上含有し、金属Crを0mol%以上20mol%以下含有する混合粉末を得る工程と、
     該混合粉末を焼成する工程と、
    を含む請求項1~4の何れか一項に記載の強磁性材スパッタリングターゲットの製造方法。
    Preparing a Co powder containing at least 90 mol% of metal Co and having a median diameter of 30 to 300 μm;
    Co-Pt alloy containing metal Co and metal Pt in total of 70 mol% or more and having a median diameter of 7 μm or less under the condition that Co: Pt = Y: 100−Y (20 ≦ Y ≦ 60.5) in molar ratio Preparing a powder,
    A Co—Pt alloy powder and a Co powder are mixed, and a total of 70 mol% or more of metal Co and metal Pt is contained under the condition that the molar ratio is Co: Pt = X: 100−X (59 ≦ X <100), A step of obtaining a mixed powder containing 0 mol% or more and 20 mol% or less of metal Cr;
    Baking the mixed powder;
    The method for producing a ferromagnetic material sputtering target according to any one of claims 1 to 4, comprising:
  6.  前記混合粉末を得る工程は、更にB、Ti、V、Mn、Zr、Nb、Ru、Mo、Ta、W、Al、Si及びZnよりなる群から選択される一種又は二種以上の粉末を混合することを含む請求項5に記載の製造方法。 The step of obtaining the mixed powder further comprises mixing one or more powders selected from the group consisting of B, Ti, V, Mn, Zr, Nb, Ru, Mo, Ta, W, Al, Si and Zn. 6. The method according to claim 5, comprising:
  7.  前記混合粉末を得る工程は、更に炭素、酸化物、窒化物、炭化物及び炭窒化物よりなる群から選択される一種又は二種以上の非磁性材料を混合することを含む請求項5又は6に記載の製造方法。 7. The method according to claim 5, wherein the step of obtaining the mixed powder further comprises mixing one or more nonmagnetic materials selected from the group consisting of carbon, oxide, nitride, carbide and carbonitride. The manufacturing method as described.
  8.  メジアン径が7μm以下のCo-Pt合金粉末を用意する工程は、Co:Pt=Y:100-Y(20≦Y≦60.5)のモル比でCo粉末及びPt粉末を混合した粉末を、800℃~1000℃の加熱温度で焼成し、2θの測定範囲を30°~60°としたXRD測定において、2θ=33.27±2°、41.52±2°、47.76±2°、49.44±2°、及び54.21±2°の各位置にピークを有する第一の焼結体を得る工程と、第一の焼結体を粉砕する工程とを含む請求項5~7の何れか一項に記載の製造方法。 In the step of preparing a Co—Pt alloy powder having a median diameter of 7 μm or less, a powder obtained by mixing a Co powder and a Pt powder at a molar ratio of Co: Pt = Y: 100-Y (20 ≦ Y ≦ 60.5) is used. Baking at a heating temperature of 800 ° C. to 1000 ° C., and XRD measurement with a 2θ measurement range of 30 ° to 60 °, 2θ = 33.27 ± 2 °, 41.52 ± 2 °, 47.76 ± 2 ° , 49.44 ± 2 ° and 54.21 ± 2 °, a step of obtaining a first sintered body having peaks at respective positions, and a step of pulverizing the first sintered body. 8. The production method according to any one of items 7 to 7.
  9.  請求項1~4の何れか一項に記載のスパッタリングターゲットを用いることを含む磁気記録膜の製造方法。 (5) A method for producing a magnetic recording film, comprising using the sputtering target according to any one of (1) to (4).
PCT/JP2018/033698 2018-09-11 2018-09-11 Ferromagnetic material sputtering target WO2020053973A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880004278.2A CN111183244B (en) 2018-09-11 2018-09-11 Ferromagnetic material sputtering target
PCT/JP2018/033698 WO2020053973A1 (en) 2018-09-11 2018-09-11 Ferromagnetic material sputtering target
SG11201906523QA SG11201906523QA (en) 2018-09-11 2018-09-11 Ferromagnetic material sputtering target
JP2019530516A JPWO2020053973A1 (en) 2018-09-11 2018-09-11 Ferromagnetic material sputtering target
MYPI2019004199A MY191072A (en) 2018-09-11 2018-09-11 Ferromagnetic material sputtering target

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2018/033698 WO2020053973A1 (en) 2018-09-11 2018-09-11 Ferromagnetic material sputtering target

Publications (1)

Publication Number Publication Date
WO2020053973A1 true WO2020053973A1 (en) 2020-03-19

Family

ID=69776659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033698 WO2020053973A1 (en) 2018-09-11 2018-09-11 Ferromagnetic material sputtering target

Country Status (5)

Country Link
JP (1) JPWO2020053973A1 (en)
CN (1) CN111183244B (en)
MY (1) MY191072A (en)
SG (1) SG11201906523QA (en)
WO (1) WO2020053973A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021235380A1 (en) * 2020-05-18 2021-11-25 田中貴金属工業株式会社 Pt-OXIDE SPUTTERING TARGET AND PERPENDICULAR MAGNETIC RECORDING MEDIUM

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090412A (en) * 2008-10-03 2010-04-22 Tanaka Holdings Kk Pd-cr-w-based sputtering target and method of manufacturing the same
JP2011174174A (en) * 2010-01-26 2011-09-08 Mitsubishi Materials Corp Sputtering target for forming magnetic recording medium film, and method for producing the same
JP2016056392A (en) * 2014-09-05 2016-04-21 Jx金属株式会社 Sputtering target for magnetic recording medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102482765B (en) * 2010-07-20 2014-03-26 吉坤日矿日石金属株式会社 Sputtering target of ferromagnetic material with low generation of particles
SG188601A1 (en) * 2010-12-09 2013-04-30 Jx Nippon Mining & Metals Corp Ferromagnetic material sputtering target
JP5394576B2 (en) * 2010-12-17 2014-01-22 Jx日鉱日石金属株式会社 Ferromagnetic sputtering target

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090412A (en) * 2008-10-03 2010-04-22 Tanaka Holdings Kk Pd-cr-w-based sputtering target and method of manufacturing the same
JP2011174174A (en) * 2010-01-26 2011-09-08 Mitsubishi Materials Corp Sputtering target for forming magnetic recording medium film, and method for producing the same
JP2016056392A (en) * 2014-09-05 2016-04-21 Jx金属株式会社 Sputtering target for magnetic recording medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021235380A1 (en) * 2020-05-18 2021-11-25 田中貴金属工業株式会社 Pt-OXIDE SPUTTERING TARGET AND PERPENDICULAR MAGNETIC RECORDING MEDIUM
CN115552052A (en) * 2020-05-18 2022-12-30 田中贵金属工业株式会社 Pt-oxide-based sputtering target and perpendicular magnetic recording medium

Also Published As

Publication number Publication date
MY191072A (en) 2022-05-30
CN111183244A (en) 2020-05-19
JPWO2020053973A1 (en) 2020-10-22
SG11201906523QA (en) 2020-04-29
CN111183244B (en) 2022-03-08

Similar Documents

Publication Publication Date Title
JP6526837B2 (en) Ferromagnetic sputtering target
JP5394576B2 (en) Ferromagnetic sputtering target
JP5763178B2 (en) Ferromagnetic sputtering target with less generation of particles
WO2012011294A1 (en) Ferromagnetic material sputtering target with little particle generation
JP5705993B2 (en) Fe-Pt-Ag-C based sputtering target in which C particles are dispersed and method for producing the same
JP6692724B2 (en) Non-magnetic material dispersed Fe-Pt based sputtering target
US20130206592A1 (en) Ferromagnetic Sputtering Target
TWI583813B (en) Sintered body sputtering target
TWI608113B (en) Sputtering target
WO2020053973A1 (en) Ferromagnetic material sputtering target
JP6728094B2 (en) Ferromagnetic material sputtering target
CN109844167B (en) Magnetic material sputtering target and method for producing same
JPWO2014171161A1 (en) Sputtering target
WO2021014760A1 (en) Sputtering target member for non-magnetic layer formation
TWI680198B (en) Ferromagnetic material sputtering target, manufacturing method thereof, and magnetic recording film manufacturing method
JP7412659B2 (en) Sputtering target members, sputtering target assemblies, and film formation methods
CN111886359A (en) Sputtering target
WO2023153264A1 (en) Co-cr-pt-b ferromagnetic body sputtering target
JP4819199B1 (en) Ferromagnetic sputtering target with less generation of particles
JP2022166726A (en) Sputtering target member, sputtering target assembly, and film deposition method

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019530516

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933049

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933049

Country of ref document: EP

Kind code of ref document: A1