WO2023153264A1 - Co-cr-pt-b ferromagnetic body sputtering target - Google Patents

Co-cr-pt-b ferromagnetic body sputtering target Download PDF

Info

Publication number
WO2023153264A1
WO2023153264A1 PCT/JP2023/002957 JP2023002957W WO2023153264A1 WO 2023153264 A1 WO2023153264 A1 WO 2023153264A1 JP 2023002957 W JP2023002957 W JP 2023002957W WO 2023153264 A1 WO2023153264 A1 WO 2023153264A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
phase
less
sputtering target
alloy phase
Prior art date
Application number
PCT/JP2023/002957
Other languages
French (fr)
Japanese (ja)
Inventor
知成 鎌田
Original Assignee
田中貴金属工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 田中貴金属工業株式会社 filed Critical 田中貴金属工業株式会社
Publication of WO2023153264A1 publication Critical patent/WO2023153264A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/14Both compacting and sintering simultaneously
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/04Making non-ferrous alloys by powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/07Alloys based on nickel or cobalt based on cobalt
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/047Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/18Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates by cathode sputtering

Definitions

  • the present invention relates to a sputtering target used for forming a magnetic film of a magnetic recording medium, particularly a magnetic recording layer of a hard disk drive adopting the perpendicular magnetic recording system, and is stable at a lower voltage when sputtering with a magnetron sputtering apparatus.
  • the present invention relates to a sputtering target capable of obtaining a discharged discharge.
  • materials based on ferromagnetic metals Co, Fe, or Ni are used as materials for magnetic thin films responsible for recording.
  • the magnetic recording layers of current hard disk drives use Co--Pt-based, Co--Cr--Pt-based, or composition systems obtained by adding non-magnetic inorganic substances to them.
  • the sputtering method is often used to produce the magnetic recording layer of this hard disk drive.
  • a melting method or a powder metallurgy method is generally used as a method for producing a target material that is indispensable when using the sputtering method. Which one is used is determined by the required target and thin film properties.
  • the sputtering method is a method in which a negative voltage is applied to a target material in an inert gas atmosphere, and the atoms that make up the target are deposited on the substrate to form a film.
  • a negative voltage By applying a negative voltage, the ionization of the inert gas proceeds, and the inert gas that has become positive ions is attracted to the target and collides with it, knocking out the atoms that make up the target.
  • a film is formed on the substrate by these atoms adhering to the substrate surface.
  • the magnetron sputtering method is a sputtering method in which a magnet is installed on the back side of a target, and a magnetic field generated on the surface of the target promotes ionization of plasma gas, thereby improving sputtering efficiency.
  • this magnetron sputtering method is often used from the viewpoints of film formation speed, target yield, and sputtering stability.
  • the target used for forming the magnetic recording layer is mainly a ferromagnetic material, which hinders the transmission of the magnetic flux emitted from the magnet placed on the back side. If the transmission of the magnetic flux is excessively hindered, the above advantage of using the magnetron sputtering method disappears, resulting in a decrease in target yield and instability of the sputtering discharge. Therefore, the target used in the magnetron sputtering method is required to have a leakage magnetic flux density as high as possible.
  • JPB4673453 a metal base (A) and a metal base (A) containing 90 mol% or more of Co have a difference between the major axis and the minor axis of 0 to 50%
  • JPB4758522 has a metal base (A) and a flat phase (B) containing 90 wt% or more of Co in the metal base (A), and the phase (B)
  • a ferromagnetic material sputtering target characterized by a structure having an average grain size of 10 ⁇ m or more and 150 ⁇ m or less and an average aspect ratio of 1:2 to 1:10, the composition containing Cr of 20 mol% or less and the balance being Co.
  • a sputtering target mainly composed of a metal having a composition containing 20 mol % or less of Cr, 5 mol % or more and 30 mol % or less of Pt, and the balance being Co.
  • JPB5394576 discloses a metal base (A), a Co—Pt alloy phase (B) containing 40 to 76 mol% of Pt in the metal base (A), and a Co—Pt alloy A ferromagnetic material sputtering target characterized by a structure having a Co alloy phase (C) containing 90 mol% or more of Co different from the phase (B), wherein Cr is 20 mol% or less, Pt is 5 mol% or more, and the balance is A sputtering target consisting of a metal of composition Co is described.
  • the grain size Those having a Co—Pt alloy phase (B) with a particle size of 50 to 150 ⁇ m containing 50 mol% of Pt and a pure Co phase (C) with a grain size of 70 to 150 ⁇ m are Co—Pt alloy phase (B) and Co alloy One having a structure containing no phase (C), and a structure containing a Co—Pt alloy phase (B) having a grain size of 50 to 150 ⁇ m and containing 81 mol% of Pt and a pure Co phase (C) having a grain size of 70 to 150 ⁇ m.
  • the average leakage flux density is higher than with When B is included as an additive element of 0.5 mol% or more and 10 mol% or less, B is present in the metal base (A), and the interface between the Co—Pt alloy phase (B) and the metal base (A) or the Co phase ( It is described that in some cases, some diffuse into the Co—Pt alloy phase (B) or Co phase (C) via the interface between C) and the metal substrate (A). That is, B may exist in the vicinity of the interface between the Co—Pt alloy phase (B) or Co phase (C) and the metal substrate (A), but the Co—Pt alloy phase (B) or Co phase (C) It is not a form distributed over the whole.
  • a Co alloy phase containing 90 mol% or more of large spherical Co with a grain size of 10 ⁇ m to 150 ⁇ m is present in the metal base (A), thereby forming a ferromagnetic material sputtering target. It discloses that the leakage magnetic flux density of can be increased.
  • B may be included as an additive element, there are no examples including B, and it is unknown whether the desired effect can be obtained in a Co--Cr--Pt--B based sputtering target.
  • B may be included as an additive element
  • B there are no examples including B, and it is unknown whether the desired effect can be obtained in a Co--Cr--Pt--B based sputtering target.
  • B is usually aggregated and unevenly distributed, those skilled in the art do not understand that B is distributed throughout.
  • JPA2015-61946 discloses an ingot structure made of a Co--Cr--Pt--B alloy with a precise structure. It is described that a fine and uniform rolled structure free of microcracks is obtained by controlling a processing method consisting of rolling or forging and adjusting by heat treatment.
  • FIG. 1 of this publication shows an SEM observation image of the structure of the sputtering target, which consists of two phases, a matrix phase and a B-rich phase.
  • B is distributed throughout the alloy phase, whereas in FIG. 1 of the publication, B is aggregated and B It is shown to be unevenly distributed in the rich phase.
  • JPA2015-619436 Japanese Patent No. 4673453 (JPB4673453) Japanese Patent No. 4758522 (JPB4758522) Japanese Patent No. 5394576 (JPB5394576) Japanese Patent Application Publication No. 2015-61946 (JPA2015-61946)
  • An object of the present invention is to provide a ferromagnetic sputtering target that provides stable discharge without abnormal discharge in the magnetron sputtering method.
  • the present inventors have found that in a Co—Cr—Pt—B ferromagnetic sputtering target, B is distributed in both the Co—Cr—Pt alloy phase and the Co or Co—Cr alloy phase, and the B aggregate phase is unevenly distributed. That is, a structure containing a Co—Cr—Pt—B alloy phase (A) and an alloy phase (B) that is either a Co—B alloy or a Co—Cr—B alloy.
  • A Co—Cr—Pt—B alloy phase
  • B alloy phase
  • the inventors have found that the leakage magnetic flux density can be improved and the discharge voltage can be lowered, and have completed the present invention.
  • a Co--Cr--Pt--B based ferromagnetic sputtering target and a method for producing the same are provided according to the following aspects.
  • the alloy phase (A) further contains Al, Si, Sc, Ti, V, Mn, Fe, Ni, Cu, Zn, Ge, Y, Zr, Nb, Ta, Mo, W, and Ru as additive elements.
  • the mixed powder is held at a pressure of 10 MPa or more and 100 MPa or less and a temperature of 700 ° C. or more and 1300 ° C. or less for 30 minutes or more and 3 hours or less.
  • the Co—Cr—Pt—B ferromagnetic sputtering target of the present invention contains a Co—Cr—Pt—B alloy phase (A) in which more than 0 at% and 30 at% or less of B is distributed throughout, Co-B alloy, Co-Cr-B alloy or Co-Pt-B alloy, containing more than 0 at% and 20 at% or less of B, and from the alloy phase (B) in which B is distributed throughout Since the B aggregate phase is not unevenly distributed and B is distributed over the entire target, the discharge voltage during sputtering can be reduced, and discharge abnormalities such as arcing caused by excessive voltage can be suppressed. In addition, the leakage magnetic flux density is high.
  • B alloy phase
  • FIG. 4 is a graph showing the relationship between input power and voltage value in Examples 1 to 3 and Comparative Examples 1 to 4; SEM observation image of Example 1.
  • FIG. SEM observation image of Comparative Example 3. EPMA-WDX mapping image of Example 1.
  • the present invention provides a ferromagnetic sputtering target that has a high leakage magnetic flux density and can reduce the discharge voltage during sputtering.
  • the Co—Cr—Pt—B ferromagnetic sputtering target of the present invention contains more than 0 at% and 30 at% or less of B, and B is distributed throughout the Co—Cr—Pt— A B alloy phase (A) and either a Co-B alloy, a Co-Cr-B alloy or a Co-Pt-B alloy, containing more than 0 at% and 20 at% or less of B, and the B aggregate phase being unevenly distributed and an alloy phase (B) in which B is distributed throughout the sputtering target, and the alloy phase (A) accounts for 50 vol% or more of the sputtering target, and the alloy phase (B) accounts for less than 50 vol% of the sputtering target. It is characterized by
  • the alloy phase (A) is larger than the alloy phase (B), and the alloy phase (A) is 50 vol% or more, preferably 60 vol% or more. Preferably, it accounts for 65 vol% or more, and alloy phase (B) is less than 50 vol%, preferably less than 40 vol%, more preferably less than 35 vol%.
  • the Co--Cr--Pt--B system ferromagnetic sputtering target of the present invention consists of two phases, an alloy phase (A) and an alloy phase (B), and does not contain other phases such as an oxide phase.
  • the alloy phase (A) contains more than 0 at% and 30 at% or less, preferably 3 at% or more and 26 at% or less of B, and the phase (B) contains more than 0 at% and 20 at% or less of B, preferably 3 at% or more and 18.5 at%.
  • B is distributed throughout in the alloy phase (B) means an EPMA- It means that there is no place where B does not exist in any 10 ⁇ m ⁇ 10 ⁇ m area in the WDX mapping image.
  • B is distributed throughout the alloy phase (A) as well.
  • “B is distributed throughout” in the alloy phase (A) means a 1000-fold SEM observation surface, an acceleration voltage of 20 kV, an irradiation current of 8 ⁇ 10 -5 A, a beam diameter of 10 ⁇ m, and an observation magnification of 200 times. means that there is no place where B does not exist in an arbitrary 10 ⁇ m ⁇ 10 ⁇ m region in the EPMA-WDX mapping image of .
  • the Co--Cr--Pt--B ferromagnetic sputtering target of the present invention contains Cr over 0 at% and 30 at% or less, Pt at 5 at% or more and 30 at% or less, B at 0 at% or more and 25 at% or less, and the balance is Co and unavoidable. It is preferred to have a composition that is an impurity. In particular, it is preferable to have a composition of 3 at % to 25 at % of Cr, 10 at % to 25 at % of Pt, 3 at % to 20 at % of B, and the balance being Co and unavoidable impurities.
  • the alloy phase (A) further contains Al, Si, Sc, Ti, V, Mn, Fe, Ni, Cu, Zn, Ge, Y, Zr, Nb, Te, Mo, W, Ru, Ag,
  • One or more elements selected from Sn, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Hf may be contained in an amount exceeding 0 at% and 25 at% or less, preferably 1 at% or more and 15 at% or less.
  • the average compositions of alloy phase (A) and alloy phase (B) are measured by the following method.
  • a cross section perpendicular to the sputtering target is cut out, polished in order using abrasive papers of counts from P80 to P1200, and finally buffed using diamond abrasive grains with a grain size of 1 ⁇ m to obtain a polished surface.
  • the polished surface is observed using EPMA.
  • the observation conditions for EPMA are as follows: JEOL JXA-8500F is used as an apparatus, acceleration voltage is 20 kV, irradiation current is 8 ⁇ 10 ⁇ 5 A, beam diameter is 10 ⁇ m, observation magnification is 200 times, and the number of pixels is 128 ⁇ 128 to obtain an elemental mapping image. do.
  • the quantitative analysis mode is used, metal is selected as the substance to be measured, and the ZAF method is selected as the correction method.
  • the phase in which all of the main components Co, Cr, Pt, and B are detected corresponding to the alloy phase (A)
  • the alloy phase (A) in which Cr or Pt is not detected a phase (corresponding to the alloy phase (B)) whose concentration is extremely lower than that of Cr or Pt is confirmed, for each of them, a portion of a size sufficient for a perfect circle with a diameter of 50 ⁇ m is selected, and the composition at the center of gravity is determined.
  • the above observations are made for three fields of view, three points each for the alloy phase (A) and the alloy phase (B), and the average of the observations is taken as the average composition of the alloy phase (A) and the alloy phase (B).
  • the volume ratios of alloy phase (A) and alloy phase (B) are measured by the following method.
  • a mass concentration map for each element is obtained using EPMA by the method described above.
  • elements not detected in the alloy phase (B) e.g. Cr or Pt for Co--B, Pt for Co--Cr--B
  • plot horizontally across the image e.g. Cr or Pt for Co--B, Pt for Co--Cr--B
  • Perform directional line analysis During the line analysis, among the phases corresponding to the alloy phase (A) and the alloy phase (B), a portion other than the boundary between the alloy phase (A) and the alloy phase (B), that is, the alloy phase (A) A line is selected that contains both the only region and the alloy phase (B) only region.
  • the map is binarized using the average value of the maximum and minimum values of the profile obtained by the line analysis as a threshold.
  • the range exceeding this threshold is defined as the alloy phase (A)
  • the range below the threshold is defined as the alloy phase (B).
  • the area ratio of the alloy phase (A) and the alloy phase (B) is obtained by analyzing the obtained binarized image by ImageJ particle analysis. The above operation is performed for three fields of view, and the average value is taken as the area ratio of the sample. This area ratio directly corresponds to the volume ratio of each phase.
  • Pt is basically used as the element used for line analysis of the mass concentration map, but Cr is used when Pt is contained in all phases.
  • the Co--Cr--Pt--B system ferromagnetic sputtering target of the present invention can be produced by powder metallurgy.
  • the production method of the present invention includes a Co—Cr—Pt—B alloy powder containing more than 0 at% and 30 at% or less of B, and a Co—B alloy powder and a Co—Cr—B alloy powder containing more than 0 at% and 20 at% or less of B. or Co--Pt--B alloy powder to obtain a mixed powder; and sintering the mixed powder to obtain a sintered body.
  • the Co—Cr—Pt—B alloy powder, Co—B alloy powder, Co—Cr—B alloy powder, or Co—Pt—B alloy powder was produced by atomized alloy powder, chemical production method, or other production method. Although powders can be used, atomized alloy powders are preferred.
  • Weak mixing is not mixing in which each raw material powder is pulverized by applying a large mixing stirring energy, but Co—Cr—Pt—B alloy powder constituting the alloy phase (A) and the alloy phase (B). It means gently mixing the Co--B alloy powder, the Co--Cr--B alloy powder, or the Co--Pt--B alloy powder while preserving them without pulverizing them.
  • weak mixing is performed at a low rotation speed for a short time, for example, at a rotation speed of 30 rpm or more and 100 rpm or less for 10 minutes or more and 1 hour or less. It is particularly preferred to use a shaker or a mixer that only rocks and does not use a stirring ball.
  • Sintering is performed in a vacuum atmosphere at a sintering pressure of 10 MPa or more and 100 MPa or less, a sintering temperature of 700° C. or more and 1300° C. or less, a holding time of 30 minutes or more and 3 hours or less, preferably a sintering pressure of 20 MPa or more and 80 MPa or less, and a sintering temperature of 800. C. to 1100.degree. C. for a holding time of 30 minutes to 2 hours. If the sintering pressure is too low, the compactness of the sintered body will decrease. If the sintering temperature is too low, the compactness of the sintered body will decrease.
  • the sintering temperature is too high, B will aggregate too much to form a coarse B aggregated phase as seen in the prior art, and the entire target will be B tends to be unevenly distributed without being distributed in.
  • the sintering holding time is too short, the density of the sintered body will decrease, while if the sintering holding time is too long, B will aggregate too much to form a coarse B aggregate phase as seen in the prior art, B tends to be unevenly distributed without being distributed over the entire target.
  • a decrease in density causes particles generated from the target during sputtering discharge.
  • uneven distribution of the coarse B aggregate phase causes poor discharge such as arcing.
  • Example 1 the atomized alloy powder as the raw material constituting the alloy phase (A) shown in Table 1 and the second phase shown in Table 1 (in Examples, The atomized alloy powder of the raw material constituting the alloy phase (B), hereinafter the same) was weighed so that the content of the second phase shown in Table 1 and the remainder was the content of the alloy phase (A). , Using a shaker, mix at 15 to 100 rpm for 15 minutes, fill the resulting mixed powder into a carbon die, and vacuum under the conditions of a pressure of 30 MPa, a temperature of 800 ° C. to 1100 ° C., and a holding time of 1 hour. Hot pressed and sintered.
  • the sintering temperature varied depending on the target composition, but was set so that all the samples had a compactness of 97% or higher.
  • the obtained sintered body was cut and ground using a surface grinder and a lathe to produce a disk-shaped sputtering target with a diameter of 165 mm and a thickness of 6.4 mm.
  • the obtained disk-shaped sputtering target was attached to a magnetron sputtering apparatus, and while argon gas was flowed so that the argon gas pressure was 4.0 Pa, sputtering was performed using a data logger while continuing sputtering discharge at an arbitrary input power. Discharge voltage was measured.
  • the setting condition of the data logger was to repeat 100 times measurement of data at 15,000 points at a sampling period of 2 ⁇ s. By calculating the average of the data of each measurement and averaging the average values for 100 measurements, the sputter discharge voltage value under the measurement conditions was calculated. Table 1 shows the results.
  • Comparative Examples 1, 5, 7, 9, 11, and 13 sputtering targets were produced in the same manner as in Examples, except that each metal powder was mixed instead of the alloy atomized powder to prepare a mixed powder.
  • Comparative Examples 2 and 3 sputtering targets were produced in the same manner as in Examples, except that atomized alloy powder containing no B was used as the raw material powder constituting the second phase.
  • Comparative Examples 4 6, 8, 10, 12, and 14 sputtering targets were produced in the same manner as in Examples, except that Co metal powder was used as the raw material powder constituting the second phase.
  • Table 2 also shows the measured values of PTF (leakage magnetic flux density).
  • PTF measurements were made according to ASTM F2086-01.
  • the PTF of the sputtering targets of Examples 1 and 2 is higher than the PTF of the sputtering targets of Comparative Examples 1 and 2, and is equivalent to the PTF of the sputtering target of Comparative Example 3, and the PTF of the sputtering target of Example 3 is It was confirmed that the PTF is higher than that of any of the sputtering targets of 1 to 4, and an improvement in the leakage magnetic flux density can also be achieved.
  • Comparative Example 4 when arranging in descending order of sputtering discharge voltage, Comparative Example 4 produced using Co metal powder as the second phase, Comparative Example 1 produced using each metal powder instead of alloy atomized powder, Comparative Examples 3 and 2 were produced using the atomized alloy powder containing no B, and the sputtering discharge voltage of Examples 1 to 3 in which B was distributed throughout the alloy phase (A) and the alloy phase (B) was It can be seen that the sputter discharge voltage is much lower than those of Comparative Examples 1-4. In particular, when the input power is 300 W or more, the range of decrease in the sputtering discharge voltage becomes large. Further, from Table 1, when the sputter discharge voltage at an input power of 500 W is compared, the example shows a low value of 330 V or less, but the comparative example shows a high value exceeding 330 V.
  • the sputtering target of Example 1 is a Co-Cr-Pt-B alloy phase (A) containing Co, Cr, Pt and B in the lower white region in the CP image.
  • the upper gray region in the CP image is the Co--Pt--B alloy phase (B) containing Co, Pt and B.
  • the sputtering target of Example 1 consists of a Co—Cr—Pt—B alloy phase (A) and a Co—Pt—B alloy phase (B), where B is the alloy phase (A) and In both (B), B is distributed throughout the alloy phase (A) and the alloy phase (B) without any place not existing in an arbitrary 10 ⁇ m ⁇ 10 ⁇ m region, and B in the alloy phase (A) is fine It is uniformly distributed throughout the alloy phase (B), and although B in the alloy phase (B) is agglomerated compared to B in the alloy phase (A), it is distributed throughout the alloy phase (B). I understand.
  • the sputtering target of Example 2 is a Co-Cr-Pt-B alloy phase (A) containing Co, Cr, Pt and B in the white area on the right side of the CP image. It can be seen that the gray area on the left side of the CP image is the Co—Cr—B alloy phase (B) containing Co, Cr, and B.
  • the sputtering target of Example 2 consists of a Co—Cr—Pt—B alloy phase (A) and a Co—Cr—B alloy phase (B), where B is the alloy phase (A) and In both of (B), there is no place where it does not exist in an arbitrary 10 ⁇ m ⁇ 10 ⁇ m region, B is distributed throughout the alloy phase (A) and the alloy phase (B), and B in the alloy phase (A) is It is finely and uniformly distributed throughout the alloy phase (B), and although B in the alloy phase (B) is agglomerated compared to B in the alloy phase (A), it is distributed throughout the alloy phase (B). I understand.
  • the sputtering target of Example 3 is a Co-Cr-Pt-B alloy phase (A) containing Co, Cr, Pt and B in the white area above the CP image, It can be seen that the lower gray area in the CP image is the Co—B alloy phase (B) containing Co and B.
  • the sputtering target of Example 3 consists of a Co—Cr—Pt—B alloy phase (A) and a Co—B alloy phase (B), where B is the alloy phase (A) and (B ), there is no place where it does not exist in an arbitrary 10 ⁇ m ⁇ 10 ⁇ m region, B is distributed throughout the alloy phase (A) and the alloy phase (B), and B in the alloy phase (A) is distributed throughout It can be seen that although B in the alloy phase (B) is agglomerated compared to B in the alloy phase (A), it is distributed throughout the alloy phase (B).
  • the sputtering target of Comparative Example 2 is a Co—Pt phase containing Co and Pt but not B in the gray area on the right side of the CP image, and the left side of the CP image. It can be seen that the region in which black dots are present is the phase (A) of Co--Cr--Pt--B containing Co, Cr, Pt and B. 6 and 12, the sputtering target of Comparative Example 2 consists of a Co—Cr—Pt—B phase (A) and a Co—Pt phase (second phase), and B is present in the Co—Pt phase. It can be seen that there is no alloy phase (B) containing B.
  • the sputtering target of Comparative Example 3 has a Co—Cr—Pt—B phase (A) containing Co, Cr, Pt, and B in the white area at the lower right of the CP image.
  • the gray area in the upper left of the CP image is a Co-Pt phase containing Co and a trace amount of Pt, and the large black part in the same gray area is a coarse aggregated phase of B unevenly distributed around Co.
  • the sputtering target of Comparative Example 3 consists of a Co—Cr—Pt—B phase (A) and a Co—Pt phase (second phase), and B surrounds the Co—Pt phase. It can be seen that there is an unevenly distributed 10 ⁇ m ⁇ 10 ⁇ m region in which B is not present in the second phase, and that there is no alloy phase (B) in which B is distributed throughout.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Thin Magnetic Films (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

This Co-Cr-Pt-B ferromagnetic body sputtering target is characterized by comprising: a Co-Cr-Pt-B alloy phase (A) that includes B in the amount of more than 0 at% but not more than 30 at%, where B aggregate phase is not eccentrically located and B is distributed throughout; and an alloy phase (B) which is a Co-B alloy, a Co-Cr-B alloy, or a Co-Pt-B alloy, and which includes B in the amount of more than 0 at% but not more than 20 at%, where B aggregate phase is not eccentrically located and B is distributed throughout. The alloy phase (A) accounts for 50 vol% or more of the sputtering target, and the alloy phase (B) accounts for less than 50 vol% of the sputtering target.

Description

Co-Cr-Pt-B系強磁性体スパッタリングターゲットCo-Cr-Pt-B system ferromagnetic sputtering target
 本発明は、磁気記録媒体の磁性膜、特に垂直磁気記録方式を採用したハードディスクドライブの磁気記録層の成膜に使用されるスパッタリングターゲットに関し、マグネトロンスパッタリング装置でスパッタする際に、より低電圧で安定した放電が得られるスパッタリングターゲットに関する。 The present invention relates to a sputtering target used for forming a magnetic film of a magnetic recording medium, particularly a magnetic recording layer of a hard disk drive adopting the perpendicular magnetic recording system, and is stable at a lower voltage when sputtering with a magnetron sputtering apparatus. The present invention relates to a sputtering target capable of obtaining a discharged discharge.
 ハードディスクドライブに代表される磁気記録の分野では、記録を担う磁性薄膜の材料として、強磁性金属であるCo、Fe又はNiをベースとした材料系が用いられている。特に、現行のハードディスクドライブの磁気記録層にはCo-Pt系やCo-Cr-Pt系、またはそれらに非磁性の無機物を添加した組成系が用いられている。 In the field of magnetic recording, as typified by hard disk drives, materials based on ferromagnetic metals Co, Fe, or Ni are used as materials for magnetic thin films responsible for recording. In particular, the magnetic recording layers of current hard disk drives use Co--Pt-based, Co--Cr--Pt-based, or composition systems obtained by adding non-magnetic inorganic substances to them.
 このハードディスクドライブの磁気記録層の作製には、その生産性の高さから、主としてスパッタリング法、特にマグネトロンスパッタリング法が用いられることが多い。スパッタリング法を用いる際に不可欠なターゲット材の作製方法としては、溶解法または粉末冶金法を用いることが一般的である。このどちらを用いるかは、要求されるターゲットや薄膜の特性によって決められる。 Due to its high productivity, the sputtering method, especially the magnetron sputtering method, is often used to produce the magnetic recording layer of this hard disk drive. A melting method or a powder metallurgy method is generally used as a method for producing a target material that is indispensable when using the sputtering method. Which one is used is determined by the required target and thin film properties.
 スパッタリング法とは、不活性ガス雰囲気下でターゲット材に負の電圧を印加し、ターゲットを構成する原子を基板上に堆積させて成膜を行う方法である。負の電圧を印加することで不活性ガスの電離が進み、陽イオンとなった不活性ガスがターゲットに引き寄せられ、衝突することで、ターゲットを構成する原子がたたき出される。この原子が基板表面に付着することで、基板への成膜が行われる。マグネトロンスパッタリング法とは、スパッタリング法において、ターゲット裏側に磁石を設置し、ターゲット表面に発生させた磁界によりプラズマガスのイオン化を促進させ、スパッタの効率を向上させる方法である。現行のハードディスクドライブに代表される磁気記録の分野では、その成膜速度や、ターゲットの歩留まり、スパッタの安定性の観点から、このマグネトロンスパッタリング法を用いることが多い。 The sputtering method is a method in which a negative voltage is applied to a target material in an inert gas atmosphere, and the atoms that make up the target are deposited on the substrate to form a film. By applying a negative voltage, the ionization of the inert gas proceeds, and the inert gas that has become positive ions is attracted to the target and collides with it, knocking out the atoms that make up the target. A film is formed on the substrate by these atoms adhering to the substrate surface. The magnetron sputtering method is a sputtering method in which a magnet is installed on the back side of a target, and a magnetic field generated on the surface of the target promotes ionization of plasma gas, thereby improving sputtering efficiency. In the field of magnetic recording, as typified by current hard disk drives, this magnetron sputtering method is often used from the viewpoints of film formation speed, target yield, and sputtering stability.
 しかしながら、磁気記録層成膜に用いられるターゲットは主として強磁性材料であり、裏面に配置させた磁石から出る磁束の透過を妨げてしまう。磁束の透過が妨げられ過ぎると、上記のマグネトロンスパッタリング法を用いる利点が消滅し、ターゲット歩留まりの低下やスパッタ放電の不安定化を招いてしまう。したがって、マグネトロンスパッタリング法で用いるターゲットにはなるべく高い漏洩磁束密度が求められている。 However, the target used for forming the magnetic recording layer is mainly a ferromagnetic material, which hinders the transmission of the magnetic flux emitted from the magnet placed on the back side. If the transmission of the magnetic flux is excessively hindered, the above advantage of using the magnetron sputtering method disappears, resulting in a decrease in target yield and instability of the sputtering discharge. Therefore, the target used in the magnetron sputtering method is required to have a leakage magnetic flux density as high as possible.
 ターゲットの漏洩磁束密度を向上させるために、種々の方法が提案されている。たとえば、日本特許第4673453号公報(JPB4673453)には、金属素地(A)と、金属素地(A)の中にCoを90mol%以上含有する長径と短径の差が0~50%であり直径が30~150μmの球形の相(B)を有している組織を特徴とする強磁性材ターゲットであって、Crが20mol%以下、残余がCoである組成の金属からなる強磁性材スパッタリングターゲット、及びCrが20mol%以下、Ptが5mol%以上30mol%以下、残余がCoである組成の金属からなる強磁性材スパッタリングターゲットが記載されている。具体的には78Co-12Cr-5TiO-5SiO、65Co-13Cr-15Pt-5TiO-2Cr、85Co-15Cr、70Co-15Cr-15Ptの組成を有する強磁性材スパッタリングターゲットにおいて、球形のCo相(B)を含む組織を有する方が球形のCo相(B)を有さないものより平均漏洩磁束が高くなることが記載されている。 Various methods have been proposed to improve the leakage magnetic flux density of the target. For example, in Japanese Patent No. 4673453 (JPB4673453), a metal base (A) and a metal base (A) containing 90 mol% or more of Co have a difference between the major axis and the minor axis of 0 to 50%, A ferromagnetic material target characterized by a structure having a spherical phase (B) of 30 to 150 μm, the ferromagnetic material sputtering target made of a metal having a composition of Cr of 20 mol% or less and the balance being Co. and 20 mol % or less of Cr, 5 mol % or more and 30 mol % or less of Pt, and the balance being Co. Specifically, in a ferromagnetic material sputtering target having a composition of 78Co-12Cr-5TiO 2 -5SiO 2 , 65Co-13Cr-15Pt-5TiO 2 -2Cr 2 O 3 , 85Co-15Cr, and 70Co-15Cr-15Pt, spherical It is stated that the average leakage magnetic flux is higher in a structure containing Co phase (B) than in a structure without spherical Co phase (B).
 日本特許第4758522号公報(JPB4758522)には、金属素地(A)と、金属素地(A)の中にCoを90wt%以上含有する扁平状の相(B)を有し、相(B)の平均粒径が10μm以上150μm以下、かつ、平均アスペクト比が1:2~1:10である組織を特徴とする強磁性材スパッタリングターゲットであって、Crが20mol%以下、残余がCoである組成の金属を主成分とするターゲット、及びCrが20mol%以下、Ptが5mol%以上30mol%以下、残余がCoである組成の金属を主成分とするスパッタリングターゲットが記載されている。具体的には、78.73Co-13.07Cr-8.2SiOの組成を有する強磁性材スパッタリングターゲットにおいて、扁平状のCo相(B)を含む組織を有するものは、Coアトマイズ粉(球形)を用いて作製したものより平均漏洩磁束密度が低いが、従来のもの(詳細は不明)よりは高くなることが記載されている。 Japanese Patent No. 4758522 (JPB4758522) has a metal base (A) and a flat phase (B) containing 90 wt% or more of Co in the metal base (A), and the phase (B) A ferromagnetic material sputtering target characterized by a structure having an average grain size of 10 μm or more and 150 μm or less and an average aspect ratio of 1:2 to 1:10, the composition containing Cr of 20 mol% or less and the balance being Co. and a sputtering target mainly composed of a metal having a composition containing 20 mol % or less of Cr, 5 mol % or more and 30 mol % or less of Pt, and the balance being Co. Specifically, in a ferromagnetic material sputtering target having a composition of 78.73Co-13.07Cr-8.2SiO 2 , those having a structure containing a flat Co phase (B) are Co atomized powder (spherical) It is described that the average leakage magnetic flux density is lower than that produced using , but higher than that of the conventional one (details unknown).
 日本特許第5394576号公報(JPB5394576)には、金属素地(A)と、金属素地(A)の中に、Ptを40~76mol%含有するCo-Pt合金相(B)と、Co-Pt合金相(B)とは異なるCoを90mol%以上含有するCo合金相(C)を有する組織を特徴とする強磁性材スパッタリングターゲットであって、Crが20mol%以下、Ptが5mol%以上、残余がCoである組成の金属からなるスパッタリングターゲットが記載されている。具体的には、88(Co-5Cr-15Pt)-5CoO-7SiO、59Co-6Cr-20Pt-5Ru-4TiO-4SiO-2Crの組成を有する強磁性材スパッタリングターゲットにおいて、粒径50~150μmでPtを50mol%含有するCo-Pt合金相(B)及び粒径70~150μmで純Co相(C)を含む組織を有するものは、Co-Pt合金相(B)及びCo合金相(C)を含まない組織を有するもの、及び粒径50~150μmでPtを81mol%含有するCo-Pt合金相(B)及び粒径70~150μmで純Co相(C)を含む組織を有するものより平均漏洩磁束密度が高くなることが記載されている。0.5mol%以上10mol%以下の添加元素としてBを含む場合、Bは金属素地(A)中に存在し、Co-Pt合金相(B)と金属素地(A)との界面又はCo相(C)と金属素地(A)との界面を介して、Co-Pt合金相(B)又はCo相(C)に若干拡散する場合もあると記載されている。すなわち、BはCo-Pt合金相(B)又はCo相(C)の金属素地(A)との界面近傍に存在することもあるが、Co-Pt合金相(B)又はCo相(C)全体に分布している態様ではない。 Japanese Patent No. 5394576 (JPB5394576) discloses a metal base (A), a Co—Pt alloy phase (B) containing 40 to 76 mol% of Pt in the metal base (A), and a Co—Pt alloy A ferromagnetic material sputtering target characterized by a structure having a Co alloy phase (C) containing 90 mol% or more of Co different from the phase (B), wherein Cr is 20 mol% or less, Pt is 5 mol% or more, and the balance is A sputtering target consisting of a metal of composition Co is described. Specifically, in a ferromagnetic material sputtering target having a composition of 88(Co-5Cr-15Pt)-5CoO-7SiO 2 and 59Co-6Cr-20Pt-5Ru-4TiO 2 -4SiO 2 -2Cr 2 O 3 , the grain size Those having a Co—Pt alloy phase (B) with a particle size of 50 to 150 μm containing 50 mol% of Pt and a pure Co phase (C) with a grain size of 70 to 150 μm are Co—Pt alloy phase (B) and Co alloy One having a structure containing no phase (C), and a structure containing a Co—Pt alloy phase (B) having a grain size of 50 to 150 μm and containing 81 mol% of Pt and a pure Co phase (C) having a grain size of 70 to 150 μm. It is stated that the average leakage flux density is higher than with When B is included as an additive element of 0.5 mol% or more and 10 mol% or less, B is present in the metal base (A), and the interface between the Co—Pt alloy phase (B) and the metal base (A) or the Co phase ( It is described that in some cases, some diffuse into the Co—Pt alloy phase (B) or Co phase (C) via the interface between C) and the metal substrate (A). That is, B may exist in the vicinity of the interface between the Co—Pt alloy phase (B) or Co phase (C) and the metal substrate (A), but the Co—Pt alloy phase (B) or Co phase (C) It is not a form distributed over the whole.
 上述の先行特許文献はいずれも、金属素地(A)の中に、粒径10μm~150μmの大きな球形のCoを90mol%以上含むCo合金相が存在する組織とすることにより、強磁性材スパッタリングターゲットの漏洩磁束密度を高めることができることを開示する。添加元素としてBを含み得ることが記載されてはいるが、Bを含む実施例はなく、Co-Cr-Pt-B系スパッタリングターゲットにおいて所望の効果が得られるか否かは不明である。また、Bの分布状態を制御することは開示も示唆もなく、通常Bは凝集して偏在するため、Bが全体に分布することが開示されているとは当業者は理解しない。 In any of the above-mentioned prior patent documents, a Co alloy phase containing 90 mol% or more of large spherical Co with a grain size of 10 μm to 150 μm is present in the metal base (A), thereby forming a ferromagnetic material sputtering target. It discloses that the leakage magnetic flux density of can be increased. Although it is described that B may be included as an additive element, there are no examples including B, and it is unknown whether the desired effect can be obtained in a Co--Cr--Pt--B based sputtering target. In addition, there is no disclosure or suggestion of controlling the distribution state of B, and since B is usually aggregated and unevenly distributed, those skilled in the art do not understand that B is distributed throughout.
 酸化物を含まないCo-Cr-Pt-B系スパッタリングターゲットは、金属素地中にB凝集相の密度が高くなり、Bの脆性ゆえにマイクロクラックが発生し、このマイクロクラックを起点とするアーキングの発生が問題となる。アーキングによる放電異常が発生するとスパッタリングを安定して行うことができず、歩留まりが著しく低下する。 In a Co-Cr-Pt-B-based sputtering target that does not contain oxides, the density of the B aggregate phase in the metal base is high, microcracks occur due to the brittleness of B, and arcing occurs starting from these microcracks. becomes a problem. When discharge abnormality due to arcing occurs, sputtering cannot be performed stably, resulting in a significant decrease in yield.
 Co-Cr-Pt-B系スパッタリングターゲットのアーキングを抑制する方法として、日本特開2015-61946号公報(JPA2015-61946)には、Co-Cr-Pt-B系合金からなるインゴット組織を精密な圧延又は鍛造からなる加工法の制御と熱処理により調整し、マイクロクラックのない微細かつ均一な圧延組織とすることが記載されている。当該公報の図1には、スパッタリングターゲットの組織のSEM観察画像が示されており、マトリクス相とBリッチ相の2相からなり、Bリッチ相は鱗雲形状であることがわかる。後述する実施例のSEM観察画像と比較すればわかるように、本発明のスパッタリングターゲットではBが合金相全体にわたって分布しているのに対して、当該公報の図1にはBが凝集してBリッチ相に偏在していることが示されている。 As a method for suppressing arcing of a Co--Cr--Pt--B based sputtering target, Japanese Patent Application Laid-Open No. 2015-61946 (JPA2015-61946) discloses an ingot structure made of a Co--Cr--Pt--B alloy with a precise structure. It is described that a fine and uniform rolled structure free of microcracks is obtained by controlling a processing method consisting of rolling or forging and adjusting by heat treatment. FIG. 1 of this publication shows an SEM observation image of the structure of the sputtering target, which consists of two phases, a matrix phase and a B-rich phase. As can be seen by comparing with the SEM observation images of Examples described later, in the sputtering target of the present invention, B is distributed throughout the alloy phase, whereas in FIG. 1 of the publication, B is aggregated and B It is shown to be unevenly distributed in the rich phase.
日本特許第4673453号公報(JPB4673453)Japanese Patent No. 4673453 (JPB4673453) 日本特許第4758522号公報(JPB4758522)Japanese Patent No. 4758522 (JPB4758522) 日本特許第5394576号公報(JPB5394576)Japanese Patent No. 5394576 (JPB5394576) 日本特開2015-61946号公報(JPA2015-61946)Japanese Patent Application Publication No. 2015-61946 (JPA2015-61946)
 本発明は、マグネトロンスパッタリング法で放電異常の起こらない安定した放電が得られる強磁性体スパッタリングターゲットを提供することを目的とする。特に、漏洩磁束密度が高く、スパッタリング時の放電電圧を低下させることができるCo-Cr-Pt-B系強磁性体スパッタリングターゲット及びその製造方法を提供することを目的とする。 An object of the present invention is to provide a ferromagnetic sputtering target that provides stable discharge without abnormal discharge in the magnetron sputtering method. In particular, it is an object of the present invention to provide a Co--Cr--Pt--B based ferromagnetic sputtering target which has a high leakage magnetic flux density and is capable of reducing the discharge voltage during sputtering, and a method for producing the same.
 本発明者らは、Co-Cr-Pt-B系強磁性体スパッタリングターゲットにおいて、Co-Cr-Pt合金相、及びCo又はCo-Cr合金相の両方にBを分布させてB凝集相が偏在しないように制御すること、すなわちCo-Cr-Pt-B合金相(A)と、Co-B合金又はCo-Cr-B合金のいずれかである合金相(B)とを含む組織とすることにより、漏洩磁束密度を向上させ、放電電圧を低下させることができることを知見し、本発明を完成するに至った。 The present inventors have found that in a Co—Cr—Pt—B ferromagnetic sputtering target, B is distributed in both the Co—Cr—Pt alloy phase and the Co or Co—Cr alloy phase, and the B aggregate phase is unevenly distributed. That is, a structure containing a Co—Cr—Pt—B alloy phase (A) and an alloy phase (B) that is either a Co—B alloy or a Co—Cr—B alloy As a result, the inventors have found that the leakage magnetic flux density can be improved and the discharge voltage can be lowered, and have completed the present invention.
 本発明によれば、下記態様のCo-Cr-Pt-B系強磁性体スパッタリングターゲット及びその製造方法が提供される。
[1] Co-Cr-Pt-B系強磁性体スパッタリングターゲットであって、
 Bを0at%超過30at%以下含み、B凝集相が偏在することなくBが全体に分布しているCo-Cr-Pt-B合金相(A)と、
 Co-B合金、Co-Cr-B合金又はCo-Pt-B合金のいずれかであって、Bを0at%超過20at%以下含み、B凝集相が偏在することなくBが全体に分布している合金相(B)と、からなり、
 当該合金相(A)はスパッタリングターゲット中50vol%以上を占め、当該合金相(B)はスパッタリングターゲット中50vol%未満を占めることを特徴とするCo-Cr-Pt-B系強磁性体スパッタリングターゲット。
[2] Crを0at%超過30at%以下、Ptを5at%以上30at%以下、Bを0at%超過25at%以下、残余はCo及び不可避不純物であることを特徴とする上記[1]に記載のCo-Cr-Pt-B系強磁性体スパッタリングターゲット。
[3] 前記合金相(A)はさらに添加元素として、Al、Si、Sc、Ti、V、Mn、Fe、Ni、Cu、Zn、Ge、Y、Zr、Nb、Ta、Mo、W、Ru、Ag、Sn、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Hfから選択した1元素以上を0at%超過25at%以下含むことを特徴とする上記[1]又は[2]に記載のCo-Cr-Pt-B系強磁性体スパッタリングターゲット。
[4] 上記[1]~[3]のいずれか1に記載のCo-Cr-Pt-B系強磁性体スパッタリングターゲットの製造方法であって、
 Bを0at%超過30at%以下含むCo-Cr-Pt-B合金粉末と、
 Bを0at%超過20at%以下含む、Co-B合金粉末、Co-Cr-B合金粉末又はCo-Pt-B合金粉末のいずれか1と、を弱混合して混合粉末を得る混合工程と、
 当該混合粉末を焼結して焼結体を得る焼結工程と、
を含むことを特徴とする製造方法。
[5] 前記Co-Cr-Pt-B合金粉末、及び前記Co-B合金粉末、Co-Cr-B合金粉末又はCo-Pt-B合金粉末は、アトマイズ合金粉末であることを特徴とする上記[4]に記載の製造方法。
[6] 前記焼結工程は、前記混合粉末を、10MPa以上100MPa以下の圧力、700℃以上1300℃以下の温度にて、30分以上3時間以下保持することを特徴とする上記[4]又は[5]に記載の製造方法。
According to the present invention, a Co--Cr--Pt--B based ferromagnetic sputtering target and a method for producing the same are provided according to the following aspects.
[1] A Co—Cr—Pt—B system ferromagnetic sputtering target,
A Co—Cr—Pt—B alloy phase (A) containing more than 0 at% and 30 at% or less of B, in which B is distributed throughout without uneven distribution of the B aggregated phase;
Either a Co—B alloy, a Co—Cr—B alloy, or a Co—Pt—B alloy, containing more than 0 at% and 20 at% or less of B, and B being distributed throughout without unevenly distributed B aggregate phases and an alloy phase (B) containing
A Co--Cr--Pt--B based ferromagnetic sputtering target, wherein said alloy phase (A) accounts for 50 vol % or more of said sputtering target and said alloy phase (B) accounts for less than 50 vol % of said sputtering target.
[2] The above-mentioned [1], wherein Cr is more than 0 at% and 30 at% or less, Pt is 5 at% or more and 30 at% or less, B is more than 0 at% and 25 at% or less, and the remainder is Co and inevitable impurities. A Co--Cr--Pt--B system ferromagnetic sputtering target.
[3] The alloy phase (A) further contains Al, Si, Sc, Ti, V, Mn, Fe, Ni, Cu, Zn, Ge, Y, Zr, Nb, Ta, Mo, W, and Ru as additive elements. , Ag, Sn, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Hf more than 0 at% 25 at% or less of one or more elements selected from the above [1] or [2 ].
[4] A method for producing a Co-Cr-Pt-B ferromagnetic sputtering target according to any one of [1] to [3] above,
Co—Cr—Pt—B alloy powder containing more than 0 at% and 30 at% or less of B;
A mixing step of weakly mixing any one of Co—B alloy powder, Co—Cr—B alloy powder, and Co—Pt—B alloy powder containing more than 0 at% and 20 at% or less of B to obtain a mixed powder;
A sintering step of sintering the mixed powder to obtain a sintered body;
A manufacturing method comprising:
[5] The Co—Cr—Pt—B alloy powder, and the Co—B alloy powder, Co—Cr—B alloy powder, or Co—Pt—B alloy powder are atomized alloy powders. The production method according to [4].
[6] In the sintering step, the mixed powder is held at a pressure of 10 MPa or more and 100 MPa or less and a temperature of 700 ° C. or more and 1300 ° C. or less for 30 minutes or more and 3 hours or less. The production method according to [5].
 本発明のCo-Cr-Pt-B系強磁性体スパッタリングターゲットは、Bを0at%超過30at%以下含み、Bが全体に分布しているCo-Cr-Pt-B合金相(A)と、Co-B合金、Co-Cr-B合金又はCo-Pt-B合金のいずれかであって、Bを0at%超過20at%以下含み、Bが全体に分布している合金相(B)とからなり、B凝集相が偏在することなく、Bがターゲット全体にわたって分布しているため、スパッタリング時の放電電圧を低下させることができ、過剰な電圧を原因とするアーキング等の放電異常を抑制することができる上に、漏洩磁束密度が高い。 The Co—Cr—Pt—B ferromagnetic sputtering target of the present invention contains a Co—Cr—Pt—B alloy phase (A) in which more than 0 at% and 30 at% or less of B is distributed throughout, Co-B alloy, Co-Cr-B alloy or Co-Pt-B alloy, containing more than 0 at% and 20 at% or less of B, and from the alloy phase (B) in which B is distributed throughout Since the B aggregate phase is not unevenly distributed and B is distributed over the entire target, the discharge voltage during sputtering can be reduced, and discharge abnormalities such as arcing caused by excessive voltage can be suppressed. In addition, the leakage magnetic flux density is high.
 本発明の製造方法によれば、Bを0at%超過30at%以下含み、Bが全体に分布しているCo-Cr-Pt-B合金相(A)と、Co-B合金、Co-Cr-B合金又はCo-Pt-B合金のいずれかであって、Bを0at%超過20at%以下含み、Bが全体に分布している合金相(B)とからなり、B凝集相が偏在することなく、Bがターゲット全体にわたって分布して、漏洩磁束密度が高く、スパッタリング時の放電電圧を低下させることができるCo-Cr-Pt-B系強磁性体スパッタリングターゲットを得ることができる。 According to the production method of the present invention, a Co—Cr—Pt—B alloy phase (A) containing more than 0 at% and 30 at% or less of B, and a Co—B alloy, Co—Cr— Either a B alloy or a Co-Pt-B alloy, containing more than 0 at% and 20 at% or less of B, consisting of an alloy phase (B) in which B is distributed throughout, and the B aggregate phase is unevenly distributed It is possible to obtain a Co--Cr--Pt--B based ferromagnetic sputtering target in which B is distributed over the entire target, the leakage magnetic flux density is high, and the discharge voltage during sputtering can be lowered.
実施例1~3及び比較例1~4の投入電力と電圧値との関係を示すグラフ。4 is a graph showing the relationship between input power and voltage value in Examples 1 to 3 and Comparative Examples 1 to 4; 実施例1のSEM観察画像。SEM observation image of Example 1. FIG. 実施例2のSEM観察画像。SEM observation image of Example 2. FIG. 実施例3のSEM観察画像。SEM observation image of Example 3. FIG. 比較例1のSEM観察画像。SEM observation image of Comparative Example 1. FIG. 比較例2のSEM観察画像。SEM observation image of Comparative Example 2. FIG. 比較例3のSEM観察画像。SEM observation image of Comparative Example 3. 実施例1のEPMA-WDXマッピング画像。EPMA-WDX mapping image of Example 1. 実施例2のEPMA-WDXマッピング画像。EPMA-WDX mapping image of Example 2. 実施例3のEPMA-WDXマッピング画像。EPMA-WDX mapping image of Example 3. 比較例1のEPMA-WDXマッピング画像。EPMA-WDX mapping image of Comparative Example 1. 比較例2のEPMA-WDXマッピング画像。EPMA-WDX mapping image of Comparative Example 2. 比較例3のEPMA-WDXマッピング画像。EPMA-WDX mapping image of Comparative Example 3.
 本発明は、漏洩磁束密度が高く、スパッタリング時の放電電圧を低下させることができる強磁性体スパッタリングターゲットを提供する。 The present invention provides a ferromagnetic sputtering target that has a high leakage magnetic flux density and can reduce the discharge voltage during sputtering.
 本発明のCo-Cr-Pt-B系強磁性体スパッタリングターゲットは、Bを0at%超過30at%以下含み、B凝集相が偏在することなくBが全体に分布しているCo-Cr-Pt-B合金相(A)と、Co-B合金、Co-Cr-B合金又はCo-Pt-B合金のいずれかであって、Bを0at%超過20at%以下含み、B凝集相が偏在することなくBが全体に分布している合金相(B)と、からなり、当該合金相(A)はスパッタリングターゲット中50vol%以上を占め、当該合金相(B)はスパッタリングターゲット中50vol%未満を占めることを特徴とする。 The Co—Cr—Pt—B ferromagnetic sputtering target of the present invention contains more than 0 at% and 30 at% or less of B, and B is distributed throughout the Co—Cr—Pt— A B alloy phase (A) and either a Co-B alloy, a Co-Cr-B alloy or a Co-Pt-B alloy, containing more than 0 at% and 20 at% or less of B, and the B aggregate phase being unevenly distributed and an alloy phase (B) in which B is distributed throughout the sputtering target, and the alloy phase (A) accounts for 50 vol% or more of the sputtering target, and the alloy phase (B) accounts for less than 50 vol% of the sputtering target. It is characterized by
 本発明のCo-Cr-Pt-B系強磁性体スパッタリングターゲットは、合金相(A)が合金相(B)よりも多く、合金相(A)は50vol%以上、好ましくは60vol%以上、より好ましくは65vol%以上を占め、合金相(B)は50vol%未満、好ましくは40vol%未満、より好ましくは35vol%未満である。本発明のCo-Cr-Pt-B系強磁性体スパッタリングターゲットは、合金相(A)及び合金相(B)の2相からなり、酸化物相など他の相を含まない。 In the Co—Cr—Pt—B ferromagnetic sputtering target of the present invention, the alloy phase (A) is larger than the alloy phase (B), and the alloy phase (A) is 50 vol% or more, preferably 60 vol% or more. Preferably, it accounts for 65 vol% or more, and alloy phase (B) is less than 50 vol%, preferably less than 40 vol%, more preferably less than 35 vol%. The Co--Cr--Pt--B system ferromagnetic sputtering target of the present invention consists of two phases, an alloy phase (A) and an alloy phase (B), and does not contain other phases such as an oxide phase.
 前記合金相(A)はBを0at%超過30at%以下、好ましくは3at%以上26at%以下含み、前記相(B)はBを0at%超過20at%以下、好ましくは3at%以上18.5at%以下含む。 The alloy phase (A) contains more than 0 at% and 30 at% or less, preferably 3 at% or more and 26 at% or less of B, and the phase (B) contains more than 0 at% and 20 at% or less of B, preferably 3 at% or more and 18.5 at%. Including:
 合金相(B)に「Bが全体に分布している」とは、1000倍のSEM観察面及び加速電圧20kV、照射電流8×10-5A、ビーム径10μm、観察倍率200倍のEPMA-WDXマッピング画像において任意の10μm×10μmの領域にBが存在しない箇所がないことを意味する。 "B is distributed throughout" in the alloy phase (B) means an EPMA- It means that there is no place where B does not exist in any 10 μm×10 μm area in the WDX mapping image.
 また、合金相(A)においてもBが全体に分布していることが好ましい。ここで、合金相(A)に「Bが全体に分布している」とは、1000倍のSEM観察面及び加速電圧20kV、照射電流8×10-5A、ビーム径10μm、観察倍率200倍のEPMA-WDXマッピング画像において任意の10μm×10μmの領域にBが存在しない箇所がないことを意味する。 Moreover, it is preferable that B is distributed throughout the alloy phase (A) as well. Here, "B is distributed throughout" in the alloy phase (A) means a 1000-fold SEM observation surface, an acceleration voltage of 20 kV, an irradiation current of 8 × 10 -5 A, a beam diameter of 10 µm, and an observation magnification of 200 times. means that there is no place where B does not exist in an arbitrary 10 μm×10 μm region in the EPMA-WDX mapping image of .
 本発明のCo-Cr-Pt-B系強磁性体スパッタリングターゲットは、Crを0at%超過30at%以下、Ptを5at%以上30at%以下、Bを0at%超過25at%以下、残余はCo及び不可避不純物である組成を有することが好ましい。特に、Crを3at%以上25at%以下、Ptを10at%以上25at%以下、Bを3at%以上20at%以下、残余はCo及び不可避不純物である組成を有することが好ましい。 The Co--Cr--Pt--B ferromagnetic sputtering target of the present invention contains Cr over 0 at% and 30 at% or less, Pt at 5 at% or more and 30 at% or less, B at 0 at% or more and 25 at% or less, and the balance is Co and unavoidable. It is preferred to have a composition that is an impurity. In particular, it is preferable to have a composition of 3 at % to 25 at % of Cr, 10 at % to 25 at % of Pt, 3 at % to 20 at % of B, and the balance being Co and unavoidable impurities.
 前記合金相(A)はさらに添加元素として、Al、Si、Sc、Ti、V、Mn、Fe、Ni、Cu、Zn、Ge、Y、Zr、Nb、Te、Mo、W、Ru、Ag、Sn、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Hfから選択した1元素以上を0at%超過25at%以下、好ましくは1at%以上15at%以下含むことができる。 The alloy phase (A) further contains Al, Si, Sc, Ti, V, Mn, Fe, Ni, Cu, Zn, Ge, Y, Zr, Nb, Te, Mo, W, Ru, Ag, One or more elements selected from Sn, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, and Hf may be contained in an amount exceeding 0 at% and 25 at% or less, preferably 1 at% or more and 15 at% or less.
 本発明において、合金相(A)及び合金相(B)の平均組成は、以下の方法によって測定される。スパッタリングターゲットに対する垂直断面を切り出し、これを番手がP80からP1200までの研磨紙を用いて順番に研磨し、最終的に粒径1μmのダイヤモンド砥粒を用いてバフ研磨することで研磨面を得る。当該研磨面について、EPMAを用いて観察を行う。EPMAの観察条件は、装置としてJEOL製JXA-8500Fを用い、加速電圧20kV、照射電流8×10-5A、ビーム径10μm、観察倍率200倍、128×128ピクセル数とし、元素マッピング画像を取得する。観察時には、定量分析モードを用い、測定物質としてメタル、補正法としてZAF法を選択する。得られた元素マッピング画像において、主成分であるCo、Cr、Pt、Bすべてが検出される相(合金相(A)に対応)と、Cr又はPtが検出されないか又は合金相(A)のCr又はPtよりも極端に低濃度である相(合金相(B)に対応)が確認されたら、それぞれについて、直径50μmの真円が十分入るサイズの箇所を選択し、その重心点における組成を測定する。以上の観察を3視野分、合金相(A)、合金相(B)について各3箇所ずつ行い、その平均をそれぞれ合金相(A)及び合金相(B)の平均組成とする。 In the present invention, the average compositions of alloy phase (A) and alloy phase (B) are measured by the following method. A cross section perpendicular to the sputtering target is cut out, polished in order using abrasive papers of counts from P80 to P1200, and finally buffed using diamond abrasive grains with a grain size of 1 μm to obtain a polished surface. The polished surface is observed using EPMA. The observation conditions for EPMA are as follows: JEOL JXA-8500F is used as an apparatus, acceleration voltage is 20 kV, irradiation current is 8×10 −5 A, beam diameter is 10 μm, observation magnification is 200 times, and the number of pixels is 128×128 to obtain an elemental mapping image. do. During observation, the quantitative analysis mode is used, metal is selected as the substance to be measured, and the ZAF method is selected as the correction method. In the obtained elemental mapping image, the phase in which all of the main components Co, Cr, Pt, and B are detected (corresponding to the alloy phase (A)) and the alloy phase (A) in which Cr or Pt is not detected or When a phase (corresponding to the alloy phase (B)) whose concentration is extremely lower than that of Cr or Pt is confirmed, for each of them, a portion of a size sufficient for a perfect circle with a diameter of 50 μm is selected, and the composition at the center of gravity is determined. Measure. The above observations are made for three fields of view, three points each for the alloy phase (A) and the alloy phase (B), and the average of the observations is taken as the average composition of the alloy phase (A) and the alloy phase (B).
 本発明において、合金相(A)及び合金相(B)の体積比率は、以下の方法によって測定される。まず、上述の方法によりEPMAを用いて元素ごとの質量濃度マップを取得する。得られた質量濃度マップを用いて、合金相(B)において検出されない元素(例えばCo-Bの場合はCrもしくはPt、Co-Cr-Bの場合はPt)について、画像の端から端まで水平方向のライン分析を行う。ライン分析の際には、前記合金相(A)と合金相(B)にそれぞれ対応する相のうち、合金相(A)と合金相(B)の境界以外の箇所、すなわち合金相(A)だけの領域と合金相(B)だけの領域の両者が含まれるラインを選択する。ライン分析により得られたプロファイルの最大値と最小値の平均値を閾値として、マップを2値化する。ここで、この閾値を越える範囲が合金相(A)、閾値以下の範囲が合金相(B)と定義される。得られた2値化像をImageJの粒子解析によって分析することにより、合金相(A)と合金相(B)の面積比率を求める。以上の操作を3視野分行い、その平均値を当該試料の面積比率とする。この面積比率が、そのままそれぞれの相の体積比率に対応する。質量濃度マップのライン分析に使用する元素として基本的にはPtを用いるが、Ptがすべての相に含まれる際はCrを用いる。 In the present invention, the volume ratios of alloy phase (A) and alloy phase (B) are measured by the following method. First, a mass concentration map for each element is obtained using EPMA by the method described above. Using the resulting mass concentration map, for elements not detected in the alloy phase (B) (e.g. Cr or Pt for Co--B, Pt for Co--Cr--B), plot horizontally across the image. Perform directional line analysis. During the line analysis, among the phases corresponding to the alloy phase (A) and the alloy phase (B), a portion other than the boundary between the alloy phase (A) and the alloy phase (B), that is, the alloy phase (A) A line is selected that contains both the only region and the alloy phase (B) only region. The map is binarized using the average value of the maximum and minimum values of the profile obtained by the line analysis as a threshold. Here, the range exceeding this threshold is defined as the alloy phase (A), and the range below the threshold is defined as the alloy phase (B). The area ratio of the alloy phase (A) and the alloy phase (B) is obtained by analyzing the obtained binarized image by ImageJ particle analysis. The above operation is performed for three fields of view, and the average value is taken as the area ratio of the sample. This area ratio directly corresponds to the volume ratio of each phase. Pt is basically used as the element used for line analysis of the mass concentration map, but Cr is used when Pt is contained in all phases.
 本発明のCo-Cr-Pt-B系強磁性体スパッタリングターゲットは、粉末冶金法で製造することができる。本発明の製造方法は、Bを0at%超過30at%以下含むCo-Cr-Pt-B合金粉末と、Bを0at%超過20at%以下含む、Co-B合金粉末、Co-Cr-B合金粉末又はCo-Pt-B合金粉末のいずれか1と、を弱混合して混合粉末を得る工程と、当該混合粉末を焼結して焼結体を得る工程と、を含む。 The Co--Cr--Pt--B system ferromagnetic sputtering target of the present invention can be produced by powder metallurgy. The production method of the present invention includes a Co—Cr—Pt—B alloy powder containing more than 0 at% and 30 at% or less of B, and a Co—B alloy powder and a Co—Cr—B alloy powder containing more than 0 at% and 20 at% or less of B. or Co--Pt--B alloy powder to obtain a mixed powder; and sintering the mixed powder to obtain a sintered body.
 前記Co-Cr-Pt-B合金粉末、及びCo-B合金粉末、Co-Cr-B合金粉末又はCo-Pt-B合金粉末は、アトマイズ合金粉末、化学的製法、その他の製法により作製された粉末を用いることができるが、アトマイズ合金粉末が好ましい。 The Co—Cr—Pt—B alloy powder, Co—B alloy powder, Co—Cr—B alloy powder, or Co—Pt—B alloy powder was produced by atomized alloy powder, chemical production method, or other production method. Although powders can be used, atomized alloy powders are preferred.
 弱混合とは、大きな混合撹拌エネルギーを付与して各原料粉末を粉砕する混合ではなく、合金相(A)を構成するCo-Cr-Pt-B合金粉末と、合金相(B)を構成するCo-B合金粉末、Co-Cr-B合金粉末又はCo-Pt-B合金粉末を粉砕することなく、各合金粉末を温存したまま緩やかに混合することを意味する。本発明の製造方法において、弱混合は、ボールミルを用いる場合には小さな回転数で短時間の混合、たとえば30rpm以上100rpm以下の回転数で10分以上1時間以下とすることが好ましく、上下左右の揺動のみで撹拌ボールを用いないシェイカーもしくはミキサーを用いて行うことが特に好ましい。 Weak mixing is not mixing in which each raw material powder is pulverized by applying a large mixing stirring energy, but Co—Cr—Pt—B alloy powder constituting the alloy phase (A) and the alloy phase (B). It means gently mixing the Co--B alloy powder, the Co--Cr--B alloy powder, or the Co--Pt--B alloy powder while preserving them without pulverizing them. In the production method of the present invention, when a ball mill is used, weak mixing is performed at a low rotation speed for a short time, for example, at a rotation speed of 30 rpm or more and 100 rpm or less for 10 minutes or more and 1 hour or less. It is particularly preferred to use a shaker or a mixer that only rocks and does not use a stirring ball.
 焼結は、真空雰囲気にて、焼結圧力10MPa以上100MPa以下、焼結温度700℃以上1300℃以下、保持時間30分間以上3時間以下、好ましくは焼結圧力20MPa以上80MPa以下、焼結温度800℃以上1100℃以下、保持時間30分以上2時間以下で行うことができる。焼結圧力が低すぎると焼結体の緻密度が低下する。焼結温度が低すぎると焼結体の緻密度が低下し、一方、焼結温度が高すぎるとBが凝集しすぎて従来技術に見られるような粗大なB凝集相が形成され、ターゲット全体にBが分布せずに偏在しやすい。焼結保持時間が短すぎると焼結体の緻密度が低下し、一方、焼結保持時間が長すぎるとBが凝集しすぎて従来技術に見られるような粗大なB凝集相が形成され、ターゲット全体にBが分布せずに偏在しやすい。緻密度の低下は、スパッタ放電時にターゲットから発生するパーティクルの原因となる。一方、粗大なB凝集相の偏在は、アーキングをはじめとした放電不良の原因となる。 Sintering is performed in a vacuum atmosphere at a sintering pressure of 10 MPa or more and 100 MPa or less, a sintering temperature of 700° C. or more and 1300° C. or less, a holding time of 30 minutes or more and 3 hours or less, preferably a sintering pressure of 20 MPa or more and 80 MPa or less, and a sintering temperature of 800. C. to 1100.degree. C. for a holding time of 30 minutes to 2 hours. If the sintering pressure is too low, the compactness of the sintered body will decrease. If the sintering temperature is too low, the compactness of the sintered body will decrease. On the other hand, if the sintering temperature is too high, B will aggregate too much to form a coarse B aggregated phase as seen in the prior art, and the entire target will be B tends to be unevenly distributed without being distributed in. If the sintering holding time is too short, the density of the sintered body will decrease, while if the sintering holding time is too long, B will aggregate too much to form a coarse B aggregate phase as seen in the prior art, B tends to be unevenly distributed without being distributed over the entire target. A decrease in density causes particles generated from the target during sputtering discharge. On the other hand, uneven distribution of the coarse B aggregate phase causes poor discharge such as arcing.
 以下、実施例及び比較例により本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。 The present invention will be described in more detail below with reference to Examples and Comparative Examples, but the present invention is not limited to these.
 実施例1~23は、表1に示す各ターゲット組成となるように、表1に示す合金相(A)を構成する原材料のアトマイズ合金粉末と、表1に示す第二相(実施例においては合金相(B)を意味する。以下、同じ。)を構成する原材料のアトマイズ合金粉末と、を表1に示す第二相含有量及び残余が合金相(A)含有量となるように秤量し、シェイカーを用いて15~100rpmで15分間混合し、得られた混合粉末をカーボン製ダイスに充填し、真空雰囲気下にて圧力30MPa、温度800℃~1100℃、保持時間1時間の条件で真空ホットプレスして焼結した。焼結温度は、ターゲット組成に応じて異なるが、すべての試料について緻密度97%以上になるように設定した。得られた焼結体を平面研削盤及び旋盤を用いて切削、研削加工して、直径165mm、厚さ6.4mmの円板状のスパッタリングターゲットを製作した。 In Examples 1 to 23, the atomized alloy powder as the raw material constituting the alloy phase (A) shown in Table 1 and the second phase shown in Table 1 (in Examples, The atomized alloy powder of the raw material constituting the alloy phase (B), hereinafter the same) was weighed so that the content of the second phase shown in Table 1 and the remainder was the content of the alloy phase (A). , Using a shaker, mix at 15 to 100 rpm for 15 minutes, fill the resulting mixed powder into a carbon die, and vacuum under the conditions of a pressure of 30 MPa, a temperature of 800 ° C. to 1100 ° C., and a holding time of 1 hour. Hot pressed and sintered. The sintering temperature varied depending on the target composition, but was set so that all the samples had a compactness of 97% or higher. The obtained sintered body was cut and ground using a surface grinder and a lathe to produce a disk-shaped sputtering target with a diameter of 165 mm and a thickness of 6.4 mm.
 得られた円板状のスパッタリングターゲットをマグネトロンスパッタリング装置に取り付け、アルゴンガス圧4.0Paとなるようにアルゴンガスを流しつつ、任意の投入電力でスパッタ放電を継続しながらデータロガーを用いて、スパッタ放電電圧を測定した。データロガーの設定条件は、サンプリング周期2μ秒で15000点のデータを測定することを100回繰り返す条件とした。各測定回のデータの平均を算出し、さらにその平均値を100回分平均することで、その測定条件におけるスパッタ放電電圧値を算出した。結果を表1に示す。 The obtained disk-shaped sputtering target was attached to a magnetron sputtering apparatus, and while argon gas was flowed so that the argon gas pressure was 4.0 Pa, sputtering was performed using a data logger while continuing sputtering discharge at an arbitrary input power. Discharge voltage was measured. The setting condition of the data logger was to repeat 100 times measurement of data at 15,000 points at a sampling period of 2 μs. By calculating the average of the data of each measurement and averaging the average values for 100 measurements, the sputter discharge voltage value under the measurement conditions was calculated. Table 1 shows the results.
 比較例1、5、7、9、11及び13は、合金アトマイズ粉末ではなく各金属粉末を混合して混合粉末を調製した点を除いて、実施例と同様にスパッタリングターゲットを作製した。 In Comparative Examples 1, 5, 7, 9, 11, and 13, sputtering targets were produced in the same manner as in Examples, except that each metal powder was mixed instead of the alloy atomized powder to prepare a mixed powder.
 比較例2及び3は、第二相を構成する原料粉末としてBを含まないアトマイズ合金粉末を用いた点を除いて、実施例と同様にスパッタリングターゲットを作製した。 In Comparative Examples 2 and 3, sputtering targets were produced in the same manner as in Examples, except that atomized alloy powder containing no B was used as the raw material powder constituting the second phase.
 比較例4、6、8、10、12及び14は、第二相を構成する原料粉末としてCo金属粉末を用いた点を除いて、実施例と同様にスパッタリングターゲットを作製した。 In Comparative Examples 4, 6, 8, 10, 12, and 14, sputtering targets were produced in the same manner as in Examples, except that Co metal powder was used as the raw material powder constituting the second phase.
 同じ組成Co-15Cr-10Pt-10Bを有する実施例1~3及び比較例1~4のスパッタリングターゲットについて、投入電力を100Wから1000Wまで100W毎変化させて、スパッタ放電電圧を測定した結果を表2及び図1に示す。 For the sputtering targets of Examples 1 to 3 and Comparative Examples 1 to 4 having the same composition Co-15Cr-10Pt-10B, the input power was changed from 100 W to 1000 W every 100 W, and the results of measuring the sputtering discharge voltage are shown in Table 2. and shown in FIG.
 表2にPTF(漏洩磁束密度)の測定値を併記する。PTFの測定は、ASTM F2086-01に基づき行った。実施例1及び2のスパッタリングターゲットのPTFは比較例1及び2のスパッタリングターゲットのPTFより高く、比較例3のスパッタリングターゲットのPTFと同等であり、実施例3のスパッタリングターゲットのPTFは、比較例1~4のいずれのスパッタリングターゲットのPTFより高く、漏洩磁束密度の向上も達成できることが確認できた。 Table 2 also shows the measured values of PTF (leakage magnetic flux density). PTF measurements were made according to ASTM F2086-01. The PTF of the sputtering targets of Examples 1 and 2 is higher than the PTF of the sputtering targets of Comparative Examples 1 and 2, and is equivalent to the PTF of the sputtering target of Comparative Example 3, and the PTF of the sputtering target of Example 3 is It was confirmed that the PTF is higher than that of any of the sputtering targets of 1 to 4, and an improvement in the leakage magnetic flux density can also be achieved.
 図1から、スパッタ放電電圧の高い順に並べると、第二相としてCo金属粉末を用いて作製した比較例4、合金アトマイズ粉末ではなく各金属粉末を用いて作製した比較例1、第二相としてBを含まないアトマイズ合金粉末を用いて作製した比較例3及び2となり、合金相(A)及び合金相(B)の全体にわたってBが分布している実施例1~3のスパッタ放電電圧は、比較例1~4のスパッタ放電電圧よりも大幅に低下していることがわかる。特に投入電力が300W以上に大きくなるとスパッタ放電電圧の低下幅が大きくなる。また、表1より、投入電力500Wの際のスパッタ放電電圧で比較すると、実施例は330V以下と低い値となるが、比較例は330Vを越える高い値であることがわかる。 From FIG. 1, when arranging in descending order of sputtering discharge voltage, Comparative Example 4 produced using Co metal powder as the second phase, Comparative Example 1 produced using each metal powder instead of alloy atomized powder, Comparative Examples 3 and 2 were produced using the atomized alloy powder containing no B, and the sputtering discharge voltage of Examples 1 to 3 in which B was distributed throughout the alloy phase (A) and the alloy phase (B) was It can be seen that the sputter discharge voltage is much lower than those of Comparative Examples 1-4. In particular, when the input power is 300 W or more, the range of decrease in the sputtering discharge voltage becomes large. Further, from Table 1, when the sputter discharge voltage at an input power of 500 W is compared, the example shows a low value of 330 V or less, but the comparative example shows a high value exceeding 330 V.
 実施例1~3及び比較例1~3のスパッタリングターゲットのSEM観察画像(15.0V×1,000)を図2~7に示し、実施例1~3及び比較例1~3のスパッタリングターゲットのEPMA-WDXマッピング画像(15.0V×2,000)を図8~13に示す。 SEM observation images (15.0 V × 1,000) of the sputtering targets of Examples 1 to 3 and Comparative Examples 1 to 3 are shown in FIGS. EPMA-WDX mapping images (15.0 V x 2,000) are shown in Figures 8-13.
 図8のEPMA-WDXマッピング画像から、実施例1のスパッタリングターゲットは、CP画像中下方の白色の領域はCo、Cr、Pt及びBを含むCo-Cr-Pt-B合金相(A)であり、CP画像中上方の灰色の領域はCo、Pt及びBを含むCo-Pt-Bの合金相(B)であることがわかる。図2及び図8から、実施例1のスパッタリングターゲットは、Co-Cr-Pt-B合金相(A)及びCo-Pt-Bの合金相(B)からなり、Bは合金相(A)及び(B)の双方において、任意の10μm×10μmの領域に存在しない箇所がなくBが合金相(A)及び合金相(B)の全体に分布し、かつ合金相(A)内のBは微細均一に全体に分布しており、合金相(B)内のBは合金相(A)内のBと比較して凝集してはいるが、合金相(B)の全体に分布していることがわかる。 From the EPMA-WDX mapping image in FIG. 8, the sputtering target of Example 1 is a Co-Cr-Pt-B alloy phase (A) containing Co, Cr, Pt and B in the lower white region in the CP image. , the upper gray region in the CP image is the Co--Pt--B alloy phase (B) containing Co, Pt and B. 2 and 8, the sputtering target of Example 1 consists of a Co—Cr—Pt—B alloy phase (A) and a Co—Pt—B alloy phase (B), where B is the alloy phase (A) and In both (B), B is distributed throughout the alloy phase (A) and the alloy phase (B) without any place not existing in an arbitrary 10 μm × 10 μm region, and B in the alloy phase (A) is fine It is uniformly distributed throughout the alloy phase (B), and although B in the alloy phase (B) is agglomerated compared to B in the alloy phase (A), it is distributed throughout the alloy phase (B). I understand.
 図9のEPMA-WDXマッピング画像から、実施例2のスパッタリングターゲットは、CP画像中右方の白色の領域はCo、Cr、Pt及びBを含むCo-Cr-Pt-B合金相(A)であり、CP画像中左方の灰色の領域はCo、Cr及びBを含むCo-Cr-Bの合金相(B)であることがわかる。図3及び図9から、実施例2のスパッタリングターゲットは、Co-Cr-Pt-B合金相(A)及びCo-Cr-Bの合金相(B)からなり、Bは合金相(A)及び(B)の双方において、任意の10μm×10μmの領域に存在しない箇所がなく、Bが合金相(A)及び合金相(B)の全体に分布し、かつ合金相(A)内のBは微細均一に全体に分布しており、合金相(B)内のBは合金相(A)内のBと比較して凝集してはいるが、合金相(B)の全体に分布していることがわかる。 From the EPMA-WDX mapping image in FIG. 9, the sputtering target of Example 2 is a Co-Cr-Pt-B alloy phase (A) containing Co, Cr, Pt and B in the white area on the right side of the CP image. It can be seen that the gray area on the left side of the CP image is the Co—Cr—B alloy phase (B) containing Co, Cr, and B. 3 and 9, the sputtering target of Example 2 consists of a Co—Cr—Pt—B alloy phase (A) and a Co—Cr—B alloy phase (B), where B is the alloy phase (A) and In both of (B), there is no place where it does not exist in an arbitrary 10 μm × 10 μm region, B is distributed throughout the alloy phase (A) and the alloy phase (B), and B in the alloy phase (A) is It is finely and uniformly distributed throughout the alloy phase (B), and although B in the alloy phase (B) is agglomerated compared to B in the alloy phase (A), it is distributed throughout the alloy phase (B). I understand.
 図10のEPMA-WDXマッピング画像から、実施例3のスパッタリングターゲットは、CP画像上方の白色の領域はCo、Cr、Pt及びBを含むCo-Cr-Pt-B合金相(A)であり、CP画像中下方の灰色の領域はCo及びBを含むCo-Bの合金相(B)であることがわかる。図4及び図10から、実施例3のスパッタリングターゲットは、Co-Cr-Pt-B合金相(A)及びCo-Bの合金相(B)からなり、Bは合金相(A)及び(B)の双方において、任意の10μm×10μmの領域に存在しない箇所がなく、Bが合金相(A)及び合金相(B)の全体に分布し、かつ合金相(A)内のBは全体に分布しており、合金相(B)内のBは合金相(A)内のBと比較して凝集してはいるが、合金相(B)の全体に分布していることがわかる。 From the EPMA-WDX mapping image in FIG. 10, the sputtering target of Example 3 is a Co-Cr-Pt-B alloy phase (A) containing Co, Cr, Pt and B in the white area above the CP image, It can be seen that the lower gray area in the CP image is the Co—B alloy phase (B) containing Co and B. 4 and 10, the sputtering target of Example 3 consists of a Co—Cr—Pt—B alloy phase (A) and a Co—B alloy phase (B), where B is the alloy phase (A) and (B ), there is no place where it does not exist in an arbitrary 10 μm × 10 μm region, B is distributed throughout the alloy phase (A) and the alloy phase (B), and B in the alloy phase (A) is distributed throughout It can be seen that although B in the alloy phase (B) is agglomerated compared to B in the alloy phase (A), it is distributed throughout the alloy phase (B).
 図5及び図11から、比較例1のスパッタリングターゲットは、Co、Cr、Pt及びBが全体に分散した単相であり、合金相(B)を有していないことがわかる。 5 and 11 show that the sputtering target of Comparative Example 1 is a single phase in which Co, Cr, Pt and B are dispersed throughout and does not have an alloy phase (B).
 図12のEPMA-WDXマッピング画像から、比較例2のスパッタリングターゲットは、CP画像中右方の灰色の領域はCo及びPtを含むがBを含まないCo-Pt相であり、CP画像中左方の黒い点が存在している領域はCo、Cr、Pt及びBを含むCo-Cr-Pt-Bの相(A)であることがわかる。図6及び図12から、比較例2のスパッタリングターゲットは、Co-Cr-Pt-Bの相(A)とCo-Pt相(第2相)とからなり、Co-Pt相にはBが存在せず、Bを含む合金相(B)を有していないことがわかる。 From the EPMA-WDX mapping image in FIG. 12, the sputtering target of Comparative Example 2 is a Co—Pt phase containing Co and Pt but not B in the gray area on the right side of the CP image, and the left side of the CP image. It can be seen that the region in which black dots are present is the phase (A) of Co--Cr--Pt--B containing Co, Cr, Pt and B. 6 and 12, the sputtering target of Comparative Example 2 consists of a Co—Cr—Pt—B phase (A) and a Co—Pt phase (second phase), and B is present in the Co—Pt phase. It can be seen that there is no alloy phase (B) containing B.
 図13のEPMA-WDXマッピング画像から、比較例3のスパッタリングターゲットは、CP画像中右下方の白色の領域はCo、Cr、Pt及びBを含むCo-Cr-Pt-Bの相(A)であり、CP画像中左上方の灰色の領域はCo及び微量のPtを含むCo-Pt相であり、同灰色の領域内の大きな黒色はCoの周囲に偏在する粗大なBの凝集相であることがわかる。図7及び図13から、比較例3のスパッタリングターゲットは、Co-Cr-Pt-Bの相(A)とCo-Pt相(第2相)とからなり、BはCo-Pt相の周囲に偏在して、第2相内にはBが存在しない10μm×10μmの領域があり、Bが全体に分布する合金相(B)を有していないことがわかる。
 
From the EPMA-WDX mapping image in FIG. 13, the sputtering target of Comparative Example 3 has a Co—Cr—Pt—B phase (A) containing Co, Cr, Pt, and B in the white area at the lower right of the CP image. The gray area in the upper left of the CP image is a Co-Pt phase containing Co and a trace amount of Pt, and the large black part in the same gray area is a coarse aggregated phase of B unevenly distributed around Co. I understand. 7 and 13, the sputtering target of Comparative Example 3 consists of a Co—Cr—Pt—B phase (A) and a Co—Pt phase (second phase), and B surrounds the Co—Pt phase. It can be seen that there is an unevenly distributed 10 μm×10 μm region in which B is not present in the second phase, and that there is no alloy phase (B) in which B is distributed throughout.

Claims (6)

  1.  Co-Cr-Pt-B系強磁性体スパッタリングターゲットであって、
     Bを0at%超過30at%以下含み、B凝集相が偏在することなくBが全体に分布しているCo-Cr-Pt-B合金相(A)と、
     Co-B合金、Co-Cr-B合金又はCo-Pt-B合金のいずれかであって、Bを0at%超過20at%以下含み、B凝集相が偏在することなくBが全体に分布している合金相(B)と、からなり、
     当該合金相(A)はスパッタリングターゲット中50vol%以上を占め、当該合金相(B)はスパッタリングターゲット中50vol%未満を占めることを特徴とするCo-Cr-Pt-B系強磁性体スパッタリングターゲット。
    A Co—Cr—Pt—B ferromagnetic sputtering target,
    A Co—Cr—Pt—B alloy phase (A) containing more than 0 at% and 30 at% or less of B, in which B is distributed throughout without uneven distribution of the B aggregated phase;
    Either a Co—B alloy, a Co—Cr—B alloy, or a Co—Pt—B alloy, containing more than 0 at% and 20 at% or less of B, and B being distributed throughout without unevenly distributed B aggregate phases and an alloy phase (B) containing
    A Co--Cr--Pt--B based ferromagnetic sputtering target, wherein said alloy phase (A) accounts for 50 vol % or more of said sputtering target and said alloy phase (B) accounts for less than 50 vol % of said sputtering target.
  2.  Crを0at%超過30at%以下、Ptを5at%以上30at%以下、Bを0at%超過25at%以下、残余はCo及び不可避不純物であることを特徴とする請求項1に記載のCo-Cr-Pt-B系強磁性体スパッタリングターゲット。 Cr more than 0 at% 30 at% or less, Pt 5 at% or more and 30 at% or less, B more than 0 at% 25 at% or less, the remainder being Co and unavoidable impurities Co-Cr- according to claim 1 Pt-B system ferromagnetic sputtering target.
  3.  前記合金相(A)はさらに添加元素として、Al、Si、Sc、Ti、V、Mn、Fe、Ni、Cu、Zn、Ge、Y、Zr、Nb、Ta、Mo、W、Ru、Ag、Sn、La、Ce、Pr、Nd、Sm、Gd、Tb、Dy、Ho、Hfから選択した1元素以上を0at%超過25at%以下含むことを特徴とする請求項1又は2に記載のCo-Cr-Pt-B系強磁性体スパッタリングターゲット。 The alloy phase (A) further contains Al, Si, Sc, Ti, V, Mn, Fe, Ni, Cu, Zn, Ge, Y, Zr, Nb, Ta, Mo, W, Ru, Ag, Sn, La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Co according to claim 1 or 2, characterized in that it contains one or more elements selected from 0 at% and 25 at% or less. Cr--Pt--B based ferromagnetic sputtering target.
  4.  請求項1~3のいずれか1に記載のCo-Cr-Pt-B系強磁性体スパッタリングターゲットの製造方法であって、
     Bを0at%超過30at%以下含むCo-Cr-Pt-B合金粉末と、
     Bを0at%超過20at%以下含む、Co-B合金粉末、Co-Cr-B合金粉末又はCo-Pt-B合金粉末のいずれか1と、を弱混合して混合粉末を得る混合工程と、
     当該混合粉末を焼結して焼結体を得る焼結工程と、
    を含むことを特徴とする製造方法。
    A method for producing a Co—Cr—Pt—B ferromagnetic sputtering target according to any one of claims 1 to 3,
    Co—Cr—Pt—B alloy powder containing more than 0 at% and 30 at% or less of B;
    A mixing step of weakly mixing any one of Co—B alloy powder, Co—Cr—B alloy powder, and Co—Pt—B alloy powder containing more than 0 at% and 20 at% or less of B to obtain a mixed powder;
    A sintering step of sintering the mixed powder to obtain a sintered body;
    A manufacturing method comprising:
  5.  前記Co-Cr-Pt-B合金粉末、及び前記Co-B合金粉末、Co-Cr-B合金粉末又はCo-Pt-B合金粉末は、アトマイズ合金粉末であることを特徴とする請求項4に記載の製造方法。 5. The Co--Cr--Pt--B alloy powder, and the Co--B alloy powder, Co--Cr--B alloy powder or Co--Pt--B alloy powder are atomized alloy powders. Method of manufacture as described.
  6.  前記焼結工程は、前記混合粉末を、10MPa以上100MPa以下の圧力、700℃以上1300℃以下の温度にて、30分以上3時間以下保持することを特徴とする請求項4又は5に記載の製造方法。 6. The sintering step, wherein the mixed powder is held at a pressure of 10 MPa or more and 100 MPa or less and a temperature of 700° C. or more and 1300° C. or less for 30 minutes or more and 3 hours or less. Production method.
PCT/JP2023/002957 2022-02-14 2023-01-31 Co-cr-pt-b ferromagnetic body sputtering target WO2023153264A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022020485A JP2023117753A (en) 2022-02-14 2022-02-14 Co-Cr-Pt-B BASED FERROMAGNETIC SPUTTERING TARGET
JP2022-020485 2022-02-14

Publications (1)

Publication Number Publication Date
WO2023153264A1 true WO2023153264A1 (en) 2023-08-17

Family

ID=87564201

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/002957 WO2023153264A1 (en) 2022-02-14 2023-01-31 Co-cr-pt-b ferromagnetic body sputtering target

Country Status (2)

Country Link
JP (1) JP2023117753A (en)
WO (1) WO2023153264A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107226A (en) * 1999-10-01 2001-04-17 Hitachi Metals Ltd Co SERIES TARGET AND ITS PRODUCTION METHOD
JP2002226970A (en) * 2000-12-01 2002-08-14 Hitachi Metals Ltd Co TARGET AND PRODUCTION METHOD THEREFOR
JP2007031827A (en) * 2005-07-22 2007-02-08 Heraeus Inc Enhanced sputter target manufacturing method
JP2009001861A (en) * 2007-06-21 2009-01-08 Mitsubishi Materials Corp Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001107226A (en) * 1999-10-01 2001-04-17 Hitachi Metals Ltd Co SERIES TARGET AND ITS PRODUCTION METHOD
JP2002226970A (en) * 2000-12-01 2002-08-14 Hitachi Metals Ltd Co TARGET AND PRODUCTION METHOD THEREFOR
JP2007031827A (en) * 2005-07-22 2007-02-08 Heraeus Inc Enhanced sputter target manufacturing method
JP2009001861A (en) * 2007-06-21 2009-01-08 Mitsubishi Materials Corp Sputtering target for use in forming film of perpendicular magnetic recording medium having low relative magnetic permeability

Also Published As

Publication number Publication date
JP2023117753A (en) 2023-08-24
TW202342793A (en) 2023-11-01

Similar Documents

Publication Publication Date Title
JP4837801B2 (en) Sputtering target in which oxide phase is dispersed in Co or Co alloy phase
US8679268B2 (en) Sputtering target of ferromagnetic material with low generation of particles
US9181617B2 (en) Sputtering target of ferromagnetic material with low generation of particles
JP5763178B2 (en) Ferromagnetic sputtering target with less generation of particles
JP6359622B2 (en) Sputtering target containing Co or Fe
JP6692724B2 (en) Non-magnetic material dispersed Fe-Pt based sputtering target
SG189832A1 (en) Ferromagnetic material sputtering target
TWI608113B (en) Sputtering target
JP5946974B1 (en) Sputtering target
JP6545898B2 (en) Ferromagnetic sputtering target
JP6713489B2 (en) Sputtering target and magnetic thin film for magnetic recording medium
CN109844167B (en) Magnetic material sputtering target and method for producing same
WO2023153264A1 (en) Co-cr-pt-b ferromagnetic body sputtering target
JP6553755B2 (en) Sputtering target for magnetic recording media and magnetic thin film
JP6728094B2 (en) Ferromagnetic material sputtering target
CN111183244B (en) Ferromagnetic material sputtering target
TWI843435B (en) Co-Cr-Pt-B system ferromagnetic material sputtering target and its manufacturing method
CN111886359A (en) Sputtering target
JP7412659B2 (en) Sputtering target members, sputtering target assemblies, and film formation methods
TWI680198B (en) Ferromagnetic material sputtering target, manufacturing method thereof, and magnetic recording film manufacturing method
WO2024014156A1 (en) Co-Cr-Pt-OXIDE-BASED SPUTTERING TARGET
JP2022166726A (en) Sputtering target member, sputtering target assembly, and film deposition method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752729

Country of ref document: EP

Kind code of ref document: A1