WO2020052694A2 - 叠瓦组件和叠瓦组件的制造方法 - Google Patents

叠瓦组件和叠瓦组件的制造方法 Download PDF

Info

Publication number
WO2020052694A2
WO2020052694A2 PCT/CN2019/127000 CN2019127000W WO2020052694A2 WO 2020052694 A2 WO2020052694 A2 WO 2020052694A2 CN 2019127000 W CN2019127000 W CN 2019127000W WO 2020052694 A2 WO2020052694 A2 WO 2020052694A2
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
solar cell
manufacturing
solar cells
hollow portions
Prior art date
Application number
PCT/CN2019/127000
Other languages
English (en)
French (fr)
Other versions
WO2020052694A3 (zh
Inventor
丁二亮
陈登运
尹丙伟
孙俊
李岩
石刚
谢毅
刘汉元
Original Assignee
成都晔凡科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都晔凡科技有限公司 filed Critical 成都晔凡科技有限公司
Publication of WO2020052694A2 publication Critical patent/WO2020052694A2/zh
Publication of WO2020052694A3 publication Critical patent/WO2020052694A3/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of energy resources, and in particular, to a shingle component and a method for manufacturing the shingle component.
  • Photovoltaic modules are the core components of photovoltaic power generation. It is an inevitable trend to improve their conversion efficiency and develop high-efficiency modules. A variety of high-efficiency components are emerging on the market, such as shingles, half-pieces, multi-main grids, and double-sided components. As the application areas and application areas of photovoltaic modules become more and more widespread, their reliability requirements are becoming higher and higher, especially in some severe or extreme weather-prone areas, efficient and highly reliable photovoltaic modules are required.
  • shingled modules use the small-current and low-loss electrical principle (the power loss of a photovoltaic module is proportional to the square of the working current), so that the module power loss is greatly reduced.
  • the power loss of a photovoltaic module is proportional to the square of the working current
  • the energy density per unit area is high.
  • a conductive adhesive with elastomer characteristics is used to replace the conventional photovoltaic metal welding tape for components. Because the photovoltaic metal welding tape shows a high series resistance in the entire battery, the stroke of the conductive adhesive current loop is much smaller than that of the welding tape.
  • the shingled module becomes an efficient module, and the reliability of outdoor applications is better than that of conventional photovoltaic modules, because the shingled module avoids the stress damage of the metal welding tape to the cell-battery interconnection position and other confluence areas.
  • the failure probability of conventional components using metal ribbon interconnect packaging is far more than that of crystalline silicon battery chip packages cut with elastomeric conductive adhesive interconnection. Shingle components.
  • the current mainstream technology of shingled components uses conductive adhesive to interconnect the cut battery cells.
  • the conductive adhesive is mainly composed of a conductive phase and an adhesive phase.
  • the conductive phase is mainly composed of precious metals, such as pure silver particles or silver-coated copper, silver-coated nickel, silver-coated glass and other particles, and is used to conduct electricity between solar cells. Its particle shape and distribution meet the optimal electrical conduction As a benchmark, most of the flake or ball-shaped combination silver powders with D50 ⁇ 10um grade are currently used.
  • the adhesive phase is mainly composed of a weather-resistant polymer resin polymer. Generally, acrylic resin, silicone resin, epoxy resin, polyurethane, etc. are selected according to the bonding strength and weathering stability.
  • conductive adhesive manufacturers In order to achieve low contact resistance, low volume resistivity, high adhesion, and maintain long-term excellent weather resistance, conductive adhesive manufacturers generally design the conductive phase and adhesive phase formula to ensure that The stability of shingle modules in the initial stage of environmental erosion tests and long-term outdoor practical applications.
  • the conductive adhesive is mainly composed of polymer resin and a large amount of precious metal powder, which is costly and destroys the ecological environment to a certain extent (the production and processing of precious metals have a large environmental pollution).
  • the conductive glue is a paste, which has certain fluidity during the sizing or lamination process, and it is very easy for the glue to overflow and cause the positive and negative electrodes of the shingled interconnected battery string to short-circuit.
  • the purpose of the present invention is to provide a shingle module and a shingle module manufacturing method, so that when solar cells are connected by a non-conductive adhesive, the shingle module manufacturing method is simpler and more efficient. high.
  • a shingle module including a battery string, the battery string being formed by sequentially connecting a plurality of solar cells in a shingled manner in a first direction, the plurality of solar cells Connected to each other by a non-conductive adhesive,
  • the solar cell sheet includes a base sheet, a top electrode of the base sheet is provided with a positive electrode extending in a second direction, and a bottom surface of the base sheet is provided with a first electrode parallel to the second direction.
  • a back electrode extending in three directions, the positive electrode and the back electrode being spaced in the first direction, and in the shingle module, a positive electrode of one of two adjacent solar cells It is in direct contact with the back electrode of the other to achieve a conductive connection between two adjacent solar cells.
  • the solar cell sheet is formed in a rectangular or approximately rectangular shape, and the positive electrode and the back electrode of the solar cell sheet are disposed on two opposite longitudinal edges of the base sheet.
  • the adhesive is dot-shaped, and a plurality of the adhesives are arranged at intervals along the overlapping edges of each pair of two adjacent solar cells.
  • the adhesive is in a strip shape, and the adhesive extends along the overlapping edges of each pair of two adjacent solar cells.
  • the adhesive is strip-shaped, and the adhesive extends on the battery string along the first direction and spans a plurality of the solar cell sheets.
  • Another aspect of the present invention provides a method for manufacturing a shingle module, the shingle module including a battery string, the battery string including a solar cell sheet, the solar cell sheet including a base sheet, and a top surface of the base sheet A positive electrode extending in a second direction is provided on the bottom surface of the base sheet, and a back electrode extending in a third direction parallel to the second direction is provided on the bottom surface of the base sheet. Said that there is a gap in the first direction,
  • the manufacturing method includes the following steps:
  • a non-conductive adhesive is applied to the overlapping edges of the plurality of solar cells, so that the plurality of solar cells are connected together.
  • the step of applying an adhesive includes: intermittently applying an adhesive along the overlapping edges of each pair of adjacent solar cells, so that the adhesive is formed along the Multiple dot-like structures arranged at overlapping edges.
  • the step of applying an adhesive includes: continuously applying an adhesive along the overlapping edges of each pair of adjacent solar cell sheets, so that the adhesive is formed along the overlapping Strip-like structure extending from the edge.
  • the step of applying a non-conductive adhesive includes: continuously applying an adhesive along the first direction so that the adhesive spans the plurality of solar cell sheets.
  • the step of applying a non-conductive adhesive includes applying a plurality of adhesives parallel to each other on a top surface and / or a bottom surface of the plurality of solar cell sheets.
  • the adhesive is applied in one of the following ways: spray method, drip method, roller brush method, printing method, and brush method.
  • the adhesive is applied by using a screen, which is provided with a hollow portion, and the method for applying the adhesive includes the following steps:
  • the screen is positioned on the top surface of the battery string, and an adhesive is coated on the screen so that the adhesive passes through the hollow portion and is printed at a desired position.
  • the hollow portion includes at least one group, wherein:
  • Each group of the hollow portions is a plurality of dot-shaped hollow portions arranged along a straight line.
  • the step of positioning the screen on the top surface of the battery string includes positioning the printing plate such that the A plurality of dot-shaped hollow portions are aligned with the overlapping edges of a pair of adjacent solar cells; or
  • Each group of said hollow portions is a strip-shaped hollow portion extending along a straight line or a plurality of strip-shaped hollow portions intermittently arranged on a straight line.
  • the step of positioning said screen on the top surface of said battery string includes : Positioning the mesh plate such that the strip-shaped hollow portion is aligned with the overlapping edges of a pair of adjacent solar cells.
  • the hollow portions include multiple groups, and the multiple groups of hollow portions are arranged on the printing plate in a direction perpendicular to the straight line, so that each group of the hollow portions can correspond to each other.
  • One said overlap edge
  • the step of positioning the screen on the top surface of the battery string includes positioning the printing plate such that each group of the hollow portions is aligned with one overlap edge.
  • the hollow portion includes at least one group, and each group of hollow portions is a strip-shaped hollow portion extending along a straight line, and the mesh plate is positioned on the top surface of the battery string.
  • the step includes: positioning the mesh plate such that the strip-shaped hollow portion is parallel to the first direction so as to span a plurality of the solar cells.
  • the hollow portions include multiple groups, and the multiple groups of hollow portions are arranged on the printing plate in a direction perpendicular to the straight line,
  • the step of positioning the screen on the top surface of the battery string includes positioning the printing plate so that each group of the hollow portions spans the plurality of solar cell sheets.
  • the step of sequentially arranging and fixing a plurality of the solar cells in a first direction along a plane in a stacked manner includes: arranging the plurality of solar cells in a vacuum or electrostatic adsorption manner. Fixed on the plane.
  • the solar cells when the solar cells are interconnected into a battery string, the solar cells are fixed to each other by a non-conductive adhesive.
  • a non-conductive adhesive In this way, environmental corrosion, high and low temperature alternation, thermal expansion and contraction, etc., easily destroy the conductivity.
  • the factors of glue will not affect the shingle component of the present invention, the shingle component is not prone to current virtual connection and disconnection, and the requirement for the coating accuracy of the adhesive is reduced.
  • problems such as disconnection of the positive and negative electrodes of the battery string caused by the overflow of adhesive will not occur.
  • the conductivity of the binder since the conductivity of the binder is not required, the production cost of the shingle module is also reduced. From the perspective of the manufacturing process, the process of splitting, arranging, and then applying an adhesive of the present invention can simplify the manufacturing process of the shingle component.
  • FIG. 1 shows a top view and a bottom view of a solar cell in a shingle module according to an embodiment of the present invention
  • FIGS. 2-7 are schematic diagrams of a method for manufacturing a shingle assembly according to several embodiments of the present invention.
  • FIG. 8 is another diagram of the manufacturing method shown in FIG. 7.
  • FIG. 1 to FIG. 8 show several preferred embodiments of the present invention.
  • the shingle component includes a back plate, a connection layer, a battery string, a light-transmitting connection layer, and a light-transmitting protective layer.
  • the battery string is formed by sequentially connecting a plurality of solar cells in a shingle manner.
  • first direction to be mentioned later can be understood as the arrangement direction of each solar cell 1 in the shingled module, which is substantially consistent with the width direction of each rectangular solar cell 1.
  • the first direction is shown by D1 in FIG. 2;
  • “second direction” can be understood as a length direction on the top surface 24 of the rectangular solar cell 1, and the second direction is shown by D2 in FIG. 1;
  • the “third direction” can be understood as a length direction on the bottom surface 25 of the rectangular solar cell 1, and the third direction is shown by D3 in FIG. 1.
  • FIG. 1 shows an example of a solar cell sheet.
  • the solar cell sheet 1 includes a base sheet, which is preferably made of silicon.
  • a plurality of electrodes are printed on the surface of the base sheet, and the electrodes are preferably made of silver.
  • the top surface 24 of the base sheet is printed with a positive electrode 13 extending in a second direction D2
  • the bottom surface 25 of the base sheet is provided with a back electrode 12 extending in a third direction D3 parallel to the second direction D2, There is a gap between the positive electrode 13 and the back electrode 12 in the first direction D1.
  • the positive electrode 13 of one of any two adjacent solar cells 1 can be in direct physical contact with the back electrode 12 or the back electric field 14 of the other solar cell 1 for conductive connection.
  • the solar cell sheet 1 can be processed into a rectangular shape or an approximately rectangular shape with a chamfer.
  • the positive electrode 13 and the back electrode 12 are disposed on opposite longitudinal edges of the top surface 24 and the bottom surface 25, respectively.
  • the positive electrode 13 and the back electrode 12 may be provided on the longitudinal edges of the top surface 24 and the bottom surface 25, respectively.
  • the first direction D1 may be a direction parallel to the lateral edges of the top surface 24 and the bottom surface 25, that is, the first direction D1 is perpendicular to the second direction D2 and the third direction D3.
  • each solar cell 1 can be fixed relative to each other by an adhesive, and the adhesive does not have conductivity.
  • the bonding material there are several factors to consider, such as the impact on electrical connectivity, mechanical strength, and product reliability, as well as factors such as application compatibility and cost.
  • a liquid or highly non-conductive material is selected to facilitate penetration into the overlap gap between adjacent solar cells.
  • the optional material of the binder may be, for example, a silicone system, an epoxy group, an unsaturated polyester resin, a water base, or the like.
  • the adhesive may also have various arrangements.
  • the adhesive may be dot-shaped, and a plurality of adhesives may be intermittently disposed on the overlapping edges of each pair of adjacent two solar cell sheets 1; or, the adhesive may be strip-shaped and along each pair The overlapping edges of two adjacent solar cells 1 extend; or, an adhesive may be applied to the top surfaces 24 of the plurality of solar cells 1 along the first direction D1 so that the adhesive spans the plurality of solar cells 1 1.
  • the adhesive is preferably a plurality and the plurality of adhesives are arranged parallel to each other on the top surface of the battery string; or alternatively, it may be on the top surface 24 and / or of the solar cell sheet 1 A plurality of adhesives are applied to the bottom surface 25, and the adhesives may not be parallel to each other.
  • a drainage design may be provided on the positive electrode 13 and the back electrode 12 to facilitate the penetration of the adhesive into the overlapping gap.
  • Various preferred embodiments of the present invention provide a method for manufacturing the above-mentioned shingle assembly.
  • the manufacturing method includes the following steps: arranging and fixing a plurality of solar cells on a plane in a stacked manner in a first direction, so that the positive electrode of one of the two adjacent solar cells and the back of the other The electrodes are in direct contact; a non-conductive adhesive is applied at the overlapping edges of the plurality of solar cells, thereby connecting the plurality of solar cells together.
  • the step of arranging a plurality of solar cells 1 in a shingled manner along the first direction can be achieved by first placing one solar cell 1 on a level, placing the second solar cell 1 on one side and The back electrode 12 on the bottom surface 25 of the second solar cell is in direct contact with the positive electrode 13 on the top surface 24 of the first solar cell; repeat for the third solar cell, the fourth solar cell, etc.
  • the above steps finally result in a battery string arranged in a shingled manner.
  • the step of sequentially arranging and fixing a plurality of solar cells in a first direction along a plane in a stacked manner includes: pre-processing the entire solar cell; splitting the entire solar cell to form a plurality of solar cells; Cells; a plurality of solar cells are fixed on a plane by means of vacuum or electrostatic adsorption.
  • thermal curing technology ultraviolet exposure curing technology, contact and non-contact force application technology, exposure air curing method, natural curing, and air curing can be used to fix each solar cell on a flat surface.
  • the color and efficiency sorting steps of the solar cells can be added, so that the solar cells of the same power and the same color are connected into a battery string.
  • the step of applying the adhesive may be selected from a variety of options.
  • the adhesive is intermittently applied along the overlapping edges of each pair of adjacent solar cells to form the adhesive into a plurality of dot-like structures arranged along the overlapping edges; or, along each pair of phases
  • Adhesives are continuously applied to the overlapping edges of adjacent solar cells, so that the adhesive is formed into a strip structure extending along the overlapping edges; or, the adhesive is continuously applied in a first direction so that the adhesive crosses
  • Multiple solar cells in this case, preferably, a plurality of adhesives may be applied in parallel to each other; or alternatively, a plurality of adhesives may be applied to the top surface and / or the bottom surface of the solar cell, each The adhesives may not be parallel to each other.
  • the adhesive is applied by using the glue brush mechanism 2; or, as shown in FIG. 3, the adhesive is applied by spraying using the glue mechanism 3; or, as shown in FIG. 4,
  • the glue application mechanism 4 is used to apply the adhesive in a dripping manner; or, as shown in FIG. 5, another glue application mechanism 5 is used to apply the adhesive in a spot sprayed manner; or, as shown in FIG. 6,
  • the roller brush mechanism 6 is used to apply the adhesive; or, as shown in FIG. 7, an additional screen is used to apply the adhesive.
  • FIG. 8 is a schematic view of applying an adhesive by means of a screen 9. It can be seen that the mesh plate 9 is provided with a hollow portion 91. When the mesh plate 9 is correctly positioned on the top surface of the battery string, the hollow portion 91 is substantially aligned with each overlapping edge. After the screen 9 is correctly positioned, an adhesive can be applied to the screen 9, and the adhesive can be printed on the overlapping edges between the solar cells through the hollow portion 91. Preferably, after the screen plate 9 is correctly positioned, the screen plate fixing mechanism 8 may be used to fix the screen plate 9.
  • the hollow portions 91 preferably include a plurality of groups.
  • Each group of hollow portions 91 is a plurality of strip-shaped hollow portions 91 intermittently disposed on a straight line.
  • a plurality of groups of hollow portions 91 are arranged at equal intervals in a direction perpendicular to the straight line, so that each group of hollow portions 91 corresponds to an overlapping edge.
  • the “straight line” mentioned here is actually a straight line which is located above a certain overlapping edge and parallel to the overlapping edge when the screen 9 is correctly positioned;
  • the “direction of the straight line” is actually a direction parallel to the first direction D1 when the screen 9 is correctly positioned.
  • the scraper used with the screen 9 can be an elongated scraper.
  • the scraper is parallel to the first direction D1, and the top surface of the screen 9 is coated with adhesive in a direction perpendicular to the first direction D1. Cover on the screen 9. In this way, the adhesive penetrates the overlapping gaps of the adjacent solar cells through the hollow portion 91, thereby connecting them.
  • the stencil can also be provided with other hollow shapes.
  • the strip-shaped hollow portions of each group can be connected, that is, each group of hollow portions is a strip-shaped hollow portion continuously arranged along a straight line.
  • the hollow portions may also be dot-shaped hollow portions.
  • Each group of point-shaped hollow portions is arranged along a straight line, and each group of point-shaped hollow portions corresponds to an overlapping edge.
  • all The dot-shaped hollow portions are formed in an array type.
  • each group of hollow portions is a strip-shaped hollow portion extending along a straight line, preferably the hollow portions are Multiple groups, multiple groups of hollow portions are arranged on the screen in a direction perpendicular to the straight line.
  • the “straight line” referred to here is actually a straight line parallel to the first direction D1 when the screen is correctly positioned; and the “direction perpendicular to the straight line” referred to here is actually When the screen is correctly positioned, the direction is perpendicular to the first direction D1.
  • the doctor blade should apply the adhesive in the first direction D1, and the adhesive leaks from the hollow portion on the top surface of the battery string to span the plurality of solar cells.
  • the shingle module and the manufacturing method of the shingle module of the present invention enable each solar cell to be fixed to each other through a non-conductive adhesive. In this way, environmental erosion, high and low temperature alternation, thermal expansion and contraction are easily destroyed
  • the factors of the conductive adhesive will not affect the shingle component of the present invention, the shingle component is not prone to current virtual connection and disconnection, and reduces the requirements for the coating accuracy of the adhesive.
  • problems such as disconnection of the positive and negative electrodes of the battery string caused by the overflow of adhesive will not occur.
  • the conductivity of the binder is not required, the production cost of the shingle module is also reduced. From the perspective of the manufacturing process, the process of splitting, arranging, and then applying an adhesive in the present invention can simplify the manufacturing process of the shingle component.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Finishing Walls (AREA)

Abstract

本发明涉及一种叠瓦组件和叠瓦组件的制造方法。叠瓦组件的电池串由多个太阳能电池片在第一方向上以叠瓦方式依次相连而形成,多个太阳能电池片通过不具导电性的粘结剂彼此相连,太阳能电池片包括基体片,基体片的顶表面上设置有正电极,基体片的底表面上设置有背电极,相邻的两个太阳能电池片中的一个的正电极与另一个的背电极直接接触,以实现相邻的两个太阳能电池片之间的导电连接。根据本发明,使用不具导电性的粘结剂来将各个太阳能电池片相对于彼此固定,这样能够避免现有的由于导电胶的存在而可能产生的问题;并且本发明所提供的先裂片、排布、再施加粘结剂的制造方法能够简化叠瓦组件的常规制造工艺,从而提高效率、降低成本。

Description

叠瓦组件和叠瓦组件的制造方法 技术领域
本发明涉及能源领域,尤其涉及一种叠瓦组件和叠瓦组件的制造方法。
背景技术
随着全球煤炭、石油、天然气等常规化石能源消耗速度加快,生态环境不断恶化,特别是温室气体排放导致日益严峻的全球气候变化,人类社会的可持续发展已经受到严重威胁。世界各国纷纷制定各自的能源发展战略,以应对常规化石能源资源的有限性和开发利用带来的环境问题。太阳能凭借其可靠性、安全性、广泛性、长寿性、环保性、资源充足性的特点已成为最重要的可再生能源之一,有望成为未来全球电力供应的主要支柱。
在新一轮能源变革过程中,我国光伏产业已成长为具有国际竞争优势的战略新兴产业。然而,光伏产业发展仍面临诸多问题与挑战,转换效率与可靠性是制约光伏产业发展的最大技术障碍,而成本控制与规模化又在经济上形成制约。光伏组件作为光伏发电的核心部件,提高其转换效率发展高效组件是必然趋势。目前市场上涌现各种各样的高效组件,如叠瓦、半片、多主栅、双面组件等。随着光伏组件的应用场所和应用地区越来越广泛,对其可靠性要求越来越高,尤其是在一些恶劣或极端天气多发地区需要采用高效、高可靠性的光伏组件。
在大力推广和使用太阳能绿色能源的背景下,叠瓦组件利用小电流低损耗的电学原理(光伏组件功率损耗与工作电流的平方成正比例关系)从而使得组件功率损耗大大降低。其次通过充分利用电池组件中片间距区域来进行发电,单位面积内能量密度高。另外使用了具有弹性体特性的导电胶粘剂替代了常规组件用光伏金属焊带,由于光伏金属焊带在整片电池中表现出较高的串联电阻而导电胶粘剂电流回 路的行程要远小于采用焊带的方式,从而最终使得叠瓦组件成为高效组件,同时户外应用可靠性较常规光伏组件性能表现更加优异,因为叠瓦组件避免了金属焊带对电池与电池互联位置及其他汇流区域的应力损伤。尤其是在高低温交变的动态(风、雪等自然界的载荷作用)环境下,采用金属焊带互联封装的常规组件失效概率远超过采用弹性体的导电胶粘剂互联切割后的晶硅电池小片封装的叠瓦组件。
当前叠瓦组件的主流工艺使用导电胶粘剂互联切割后的电池片,导电胶主要由导电相和粘接相构成。其中导电相主要由贵金属组成,如纯银颗粒或银包铜、银包镍、银包玻璃等颗粒并用于在太阳能电池片之间起导电作用,其颗粒形状和分布以满足最优的电传导为基准,目前更多采用D50<10um级的片状或类球型组合银粉居多。粘接相主要有具有耐候性的高分子树脂类聚合物构成,通常根据粘接强度和耐候稳定性选择丙烯酸树脂、有机硅树脂、环氧树脂、聚氨酯等。为了使导电胶粘接达到较低的接触电阻和较低的体积电阻率及高粘接并且保持长期优良的耐候特性,一般导电胶厂家会通过导电相和粘接相配方的设计完成,从而保证叠瓦组件在初始阶段环境侵蚀测试和长期户外实际应用下性能的稳定性。
而对于通过导电胶来实现连接的电池组件,在被封装之后,在户外实际使用时受到环境侵蚀,例如高低温交变热胀冷缩产生导电胶之间的相对位移。最为严重就是导致出现电流虚接甚至断路,主要原因一般都是因为材料组合后相互间连接能力弱。连接能力弱主要表现在制程中导电胶作业需要一个工艺操作窗口,实际生产过程中这个窗口相对较窄,非常容易受到环境因素的影响,比如作业场所的温湿度,涂胶后滞留空气中的时间长短等等都会让导电胶水失去活性。同时对于点胶、喷胶或印刷工艺下受胶水自身特性变化容易出现施胶不均缺失现象,对产品可靠性会有较大隐患。其次导电胶主要有高分子树脂和大量贵金属粉体所构成,成本高昂且一定程度上破坏生态环境(贵金属的生产和加工对环境污染较大)。再者导电胶属于膏状物,在施胶或叠片过程中具备一定的流动性,非常容易溢胶造成叠瓦互联电池 串正负极短路。
也就是说,对于大多数采用导电胶粘接方式而制成的叠瓦组件,存在相互连接强度弱特点,制程对环境要求高,工艺使用易溢胶短路,使用成本高昂,生产效率低等问题。
因而需要提供一种叠瓦组件和该组件的制造方法,以至少部分地解决上述问题。
发明内容
本发明的目的在于,提供一种叠瓦组件和叠瓦组件的制造方法,使得当太阳能电池片之间通过不具导电性的粘结剂相连,并使得叠瓦组件的制造方法更加简单、效率更高。
根据本发明的一个方面,提供了一种叠瓦组件,包括电池串,所述电池串由多个太阳能电池片在第一方向上以叠瓦方式依次相连而形成,所述多个太阳能电池片通过不具导电性的粘结剂彼此相连,
其中,所述太阳能电池片包括基体片,所述基体片的顶表面上设置有沿第二方向延伸的正电极,所述基体片的底表面上设置有沿平行于所述第二方向的第三方向延伸的背电极,所述正电极和所述背电极在所述第一方向上存在间隔,在所述叠瓦组件中,相邻的两个所述太阳能电池片中的一个的正电极与另一个的背电极直接接触,以实现相邻的两个所述太阳能电池片之间的导电连接。
在一种实施方式中,所述太阳能电池片形成为矩形或近似矩形,所述太阳能电池片所述正电极和所述背电极设置在所述基体片的两个相对的纵向边缘上。
在一种实施方式中,所述粘结剂呈点状,多个所述粘结剂沿每一对相邻的两个所述太阳能电池片的搭接边缘间隔排布。
在一种实施方式中,所述粘结剂呈条状,所述粘结剂沿每一对相邻的两个所述太阳能电池片的搭接边缘延伸。
在一种实施方式中,所述粘结剂呈条状,所述粘结剂在所述电池串上沿所述第一方向延伸并跨越多个所述太阳能电池片。
在一种实施方式中,所述粘结剂为多个,多个所述粘结剂在所述多个太阳能电池片的顶表面和/或底表面上延伸。
本发明另一方面提供了一种叠瓦组件的制造方法,所述叠瓦组件包括电池串,所述电池串包括太阳能电池片,所述太阳能电池片包括基体片,所述基体片的顶表面上设置有沿第二方向延伸的正电极,所述基体片的底表面上设置有沿平行于所述第二方向的第三方向延伸的背电极,所述正电极和所述背电极在所述第一方向上存在间隔,
并且,所述制造方法包括如下步骤:
将多个所述太阳能电池片在平面上以叠瓦的方式沿第一方向依次排列并固定,以使相邻的两个所述太阳能电池片中的一个的正电极与另一个的背电极直接接触;
在所述多个太阳能电池片的搭接边缘处施加不具导电性的粘结剂,从而使所述多个太阳能电池片连接在一起。
在一种实施方式中,施加粘结剂的步骤包括:沿每一对相邻的所述太阳能电池片的搭接边缘间断地施加粘结剂,以使所述粘结剂形成为沿所述搭接边缘间隔排布的多个点状结构。
在一种实施方式中,施加粘结剂的步骤包括:沿每一对相邻的所述太阳能电池片的搭接边缘连续施加粘结剂,以使所述粘结剂形成为沿所述搭接边缘延伸的条状结构。
在一种实施方式中,施加非导电性粘结剂的步骤包括:沿所述第一方向连续施加粘结剂,以使所述粘结剂跨越所述多个太阳能电池片。
在一种实施方式中,施加非导电性粘结剂的步骤包括:在所述多个太阳能电池片的顶表面和/或底表面上施加多个彼此平行的粘结剂。
在一种实施方式中,以如下方式之一来施加粘结剂:喷涂方式、滴落方式、滚刷方式、印刷方式、毛刷方式。
在一种实施方式中,通过利用网板来施加所述粘结剂,所述网板上设置有镂空部,所述施加粘结剂的方法包括如下步骤:
将所述网板定位在所述电池串的顶表面上,在所述网板上涂覆粘结剂,以使粘结剂透过所述镂空部而被印刷在所需位置。
在一种实施方式中,所述镂空部包括至少一组,其中,
每一组所述镂空部为沿一直线排布的多个点状镂空部,将所述网板定位在所述电池串的顶表面上的步骤包括:将所述印刷版定位为使得所述多个点状镂空部与一对相邻的太阳能电池片的搭接边缘对准;或者
每一组所述镂空部为沿一直线延伸的条状镂空部或在一直线上间断设置的多个条状镂空部,将所述网板定位在所述电池串的顶表面上的步骤包括:将所述网板定位为使得所述条状镂空部与一对相邻的太阳能电池片的搭接边缘对准。
在一种实施方式中,所述镂空部包括多组,所述多组镂空部在所述印刷版上沿垂直于所述直线的方向排布,以使每一组所述镂空部能够分别对应一个所述搭接边缘,
并且,将所述网板定位在所述电池串的顶表面上的步骤包括:将所述印刷版定位为使得每一组所述镂空部对准一个所述搭接边缘。
在一种实施方式中,所述镂空部包括至少一组,每一组所述镂空部为沿一直线延伸的条状镂空部,并且,将所述网板定位在所述电池串的顶表面上的步骤包括:将所述网板定位为使得所述条状镂空部平行于所述第一方向从而跨越多个所述太阳能电池片。
在一种实施方式中,所述镂空部包括多组,所述多组镂空部在所述印刷版上沿垂直于所述直线的方向排布,
并且,将所述网板定位在所述电池串的顶表面上的步骤包括:将所述印刷版定位为使得每一组所述镂空部均跨越所述多个太阳能电池片。
在一种实施方式中,将多个所述太阳能电池片在平面上以叠瓦的方式沿第一方向依次排列并固定的步骤包括:通过真空或静电吸附的方式将所述多个太阳能电池片固定在所述平面上。
根据本发明,在将太阳能电池片互联成电池串时,各个太阳能电池片之间通过不具导电性的粘结剂相互固定,这样,环境侵蚀、高低温交变、热胀冷缩等容易破坏导电胶的因素便不会影响本发明的叠瓦 组件,叠瓦组件不容易出现电流虚接和断路,且降低了粘结剂的涂覆精度的要求。并且,由于不必设置导电胶,那么溢胶而造成的电池串的正负极断路等问题也就不会发生。另外,由于不要求粘结剂的导电性,叠瓦组件的生产成本也得以降低。而从制造工艺角度上看,本发明的先裂片、排布、再施加粘结剂的过程能够简化叠瓦组件的制造流程。
附图说明
为了更好地理解本发明的上述及其他目的、特征、优点和功能,可以参考附图中所示的优选实施方式。附图中相同的附图标记指代相同的部件。本领域技术人员应该理解,附图旨在示意性地阐明本发明的优选实施方式,对本发明的范围没有任何限制作用,图中各个部件并非按比例绘制。
图1示出了根据本发明一种实施方式的叠瓦组件中的太阳能电池片的俯视图和仰视图;
图2-图7为本发明的几种实施方式的叠瓦组件的制造方法的示意图;和
图8为图7中所示的制造方法的另一个示图。
具体实施方式
现在参考附图,详细描述本发明的具体实施方式。这里所描述的仅仅是根据本发明的优选实施方式,本领域技术人员可以在所述优选实施方式的基础上想到能够实现本发明的其他方式,所述其他方式同样落入本发明的范围。
在本发明提供了一种叠瓦组件和制造该叠瓦组件的方法,图1至图8示出了本发明的几个优选实施方式。
叠瓦组件包括背板、连接层、电池串、透光连接层和透光保护层,电池串由多个太阳能电池片以叠瓦方式依次相连而形成。首先需要说明的是,后文将要提到的“第一方向”可以被理解为是叠瓦组件中各 个太阳能电池片1的排布方向,其大致与各个矩形太阳能电池片1的宽度方向一致,第一方向在图2中由D1示出;“第二方向”可以被理解为是矩形太阳能电池片1的顶表面24上的一个长度方向,第二方向在图1中由D2示出;“第三方向”可以被理解为是矩形太阳能电池片1的底表面25上的一个长度方向,第三方向在图1中由D3示出。
下面继续参考图1。图1示出了太阳能电池片的示例,太阳能电池片1包括基体片,基体片优选地由硅制成。基体片的表面印刷有多个电极,电极优选地由银制成。具体地,基体片的顶表面24上印刷有沿第二方向D2延伸的正电极13,基体片的底表面25上设置有沿平行于第二方向D2的第三方向D3延伸的背电极12,正电极13和背电极12在第一方向D1上存在间隔。当太阳能电池片1以叠瓦方式连接时,任意相邻的两个太阳能电池片1中的一个的正电极13能够和另一个的背电极12或背电场14直接物理接触而进行导电连接。
为了方便生产及装配,可以将太阳能电池片1加工成矩形或具有倒角的近似矩形。正电极13和背电极12分别设置在顶表面24和底表面25的相对的纵向边缘上。例如,正电极13和背电极12可以分别设置在顶表面24和底表面25的纵向边缘上。这样的设置可以避免出现太阳能电池片1之间的大面积的重叠,从而使电池串的暴露面积增大。并且,第一方向D1可以为平行于顶表面24、底表面25的横向边缘的方向,也就是说第一方向D1垂直于第二方向D2和第三方向D3。
太阳能电池片1彼此互联之后,可以通过粘结剂将各个太阳能电池片1相对于彼此固定,粘结剂不具有导电性。选择粘结材料时,要考虑多种因素,例如考虑对电气连接性的影响、机械强度、对产品可靠性的影响,同时也应考虑应用兼容性、成本等因素。优选地,选用液态或流动性较强的非导电性材料,便于渗入相邻的太阳能电池片之间的搭接缝隙。粘结剂的可选材料例如可以为有机硅体系、环氧基、不饱和聚酯树脂、水基等。
粘结剂也可以具有多种设置形式。例如,粘结剂可以呈点状,多个粘结剂在每一对相邻的两个太阳能电池片1的搭接边缘上间断设置;或者,粘结剂可以为条状并沿每一对相邻的两个太阳能电池片1的搭接边缘延伸;或者,可以沿第一方向D1在多个太阳能电池片1的顶表面24上施加粘结剂从而让粘结剂跨越多个太阳能电池片1,在这种情况下,粘结剂优选地为多个且多个粘结剂在电池串的顶表面上彼此平行地布置;再或者,可以在太阳能电池片1的顶表面24和/或底表面25上施加多个粘结剂,各个粘结剂之间可以彼此不平行。
优选地,为了提高搭接边缘处的粘结剂的机械强度,可以在正电极13和背电极12上设置引流设计,以方便粘结剂渗入至搭接缝隙。
本发明的各个优选实施方式提供了上述叠瓦组件的制造方法。制造方法包括如下步骤:将多个太阳能电池片在平面上以叠瓦的方式沿第一方向依次排列并固定,以使相邻的两个太阳能电池片中的一个的正电极与另一个的背电极直接接触;在多个太阳能电池片的搭接边缘处施加非导电性粘结剂,从而使多个太阳能电池片连接在一起。
其中,将多个太阳能电池片1沿第一方向以叠瓦方式排列的步骤可以这样实现:首先将一个太阳能电池片1放置在水平上,将第二个太阳能电池片放在其一侧并使第二个太阳能电池片的底表面25上的背电极12与第一个太阳能电池片的顶表面24上的正电极13直接接触;对第三个太阳能电池片、第四个太阳能电池片等重复上述步骤以最终得到以叠瓦方式排列的电池串。
进一步地,将多个太阳能电池片在平面上以叠瓦的方式沿第一方向依次排列并固定的步骤包括:对整片太阳能电池片预处理;将整片太阳能电池片裂片而形成多个太阳能电池片;通过真空或静电吸附的方式将多个太阳能电池片固定在平面上。或者,也可以采用热固化技术、紫外线暴露固化技术、接触式和非接触式施力技术、暴露空气固化方式、自然固化、气流固化等将各个太阳能电池片固定在平面上。
优选地,在将各个太阳能电池片以叠瓦方式排列之前,还可以增加太阳能电池片的颜色、效率分选等环节,从而将同一功率、同一颜 色的太阳能电池片连成一个电池串。
进一步地,施加粘结剂的步骤可以由多种选择。例如,沿每一对相邻的太阳能电池片的搭接边缘间断地施加粘结剂,以使粘结剂形成为沿搭接边缘排布的多个点状结构;或者,沿每一对相邻的太阳能电池片的搭接边缘连续施加粘结剂,以使粘结剂形成为沿搭接边缘延伸的条状结构;或者,沿第一方向连续施加粘结剂,以使粘结剂跨越多个太阳能电池片,在这种情况下,优选地可以施加多个彼此平行的粘结剂;再或者,可以在太阳能电池片的顶表面和/或底表面上施加多个粘结剂,各个粘结剂彼此间可以不平行。
并且,还可以根据成本高低、维护是否方便维护等方面选用不同的工具来施加粘结剂。例如,如图2所示,使用刷胶机构2来施加粘结剂;或者,如图3所示,使用喷胶机构3以喷涂的方式来施加粘结剂;或者,如图4所示,使用滴胶机构4以滴落的方式来施加粘结剂;或者,如图5所示,使用另一喷胶机构5以点喷的方式来施加粘结剂;或者,如图6所示,使用滚刷机构6来施加粘结剂;或者,如图7所示,采用额外的网板来施加粘结剂。
图8为借助网板9来施加粘结剂的示意图。可以看到,网板9上设置有镂空部91,当把网板9正确定位在电池串的顶表面上时,镂空部91大致和各个搭接边缘对准。在将网板9正确定位之后,可以在网板9上涂覆粘结剂,粘结剂便能够透过镂空部91而被印刷在太阳能电池片之间的搭接边缘上。优选地,在将网板9正确定位后,可以使用网板固定机构8来把网板9固定住。
镂空部91优选地包括多组。每一组镂空部91为在一直线上间断设置的多个条状镂空部91。多组镂空部91在垂直于该直线的方向上等间隔排布,以使每一组镂空部91对应一个搭接边缘。需要说明的是,此处所说的“一直线”实际上为在网板9正确定位的情况下位于某一搭接边缘上方且平行于该搭接边缘的直线;而此处所说的“垂直于该直线的方向”实际上为在网板9正确定位的情况下平行于第一方向D1的方向。
和网板9配套使用的刮刀可以为一个长条形刮刀,在使用时刮刀平行于第一方向D1,并且在网板9的顶表面上沿垂直于第一方向D1的方向将粘结剂涂覆在网板9上。这样,粘结剂便透过镂空部91而渗入相邻的太阳能电池片的搭接缝隙,从而将它们连接起来。
网板上还可以将镂空部设置成其他形状。例如,每一组的条状镂空部可以连接起来,即每一组镂空部为一个沿一直线连续设置的条状镂空部。或者,镂空部还可以为点状镂空部,每一组点状镂空部沿直线排布,每一组点状镂空部对应于一个搭接边缘,这样,从整体上看,网板上的所有点状镂空部形成为一个阵列式。
为了得到沿第一方向跨越在各个太阳能电池片上的一个或多个粘结剂,则需要将网板设置为:每一组镂空部为沿一直线延伸的条状镂空部,优选地镂空部为多组,多组镂空部在网板上沿垂直于该直线的方向排布。需要说明的是,此处所说的“一直线”实际上为在网板正确定位的情况下平行于第一方向D1的直线;而此处所说的“垂直于该直线的方向”实际上为在网板正确定位的情况下垂直于第一方向D1的方向。在这种情况下,在施加粘结剂时刮刀应沿第一方向D1涂覆粘结剂,粘结剂从镂空部漏出在电池串的顶表面上以跨越多个太阳能电池片。
本发明的叠瓦组件和和叠瓦组件的制造方法,使得各个太阳能电池片之间通过不具导电性的粘结剂相互固定,这样,环境侵蚀、高低温交变、热胀冷缩等容易破坏导电胶的因素便不会影响本发明的叠瓦组件,叠瓦组件不容易出现电流虚接和断路,且降低了粘结剂的涂覆精度的要求。并且,由于不必设置导电胶,那么溢胶而造成的电池串的正负极断路等问题也就不会发生。另外,由于不要求粘结剂的导电性,叠瓦组件的生产成本也得以降低。而从制造工艺角度上看,本发明先裂片、排布、再施加粘结剂的过程能够简化叠瓦组件的制造流程。
本发明的多种实施方式的以上描述出于描述的目的提供给相关领域的一个普通技术人员。不意图将本发明排他或局限于单个公开的实施方式。如上所述,以上教导的领域中的普通技术人员将明白本发 明的多种替代和变型。因此,虽然具体描述了一些替代实施方式,本领域普通技术人员将明白或相对容易地开发其他实施方式。本发明旨在包括这里描述的本发明的所有替代、改型和变型,以及落入以上描述的本发明的精神和范围内的其他实施方式。
附图标记:
太阳能电池片1
太阳能电池片的顶表面24
太阳能电池片的底表面25
正电极13
背电极12
刷胶机构2
喷胶机构3
滴胶机构4
另一喷胶机构5
滚刷机构6
刮刀7
网板固定机构8
网板9
镂空部91
第一方向D1
第二方向D2
第三方向D3

Claims (18)

  1. 一种叠瓦组件,包括背板、连接层、电池串、透光连接层和透光保护层,其特征在于,所述电池串由多个太阳能电池片(1)在第一方向(D1)上以叠瓦方式依次相连而形成,所述多个太阳能电池片通过不具导电性的粘结剂彼此相连,
    其中,所述太阳能电池片包括基体片,所述基体片的顶表面上设置有沿第二方向(D2)延伸的正电极,所述基体片的底表面上设置有沿平行于所述第二方向的第三方向(D3)延伸的背电极,所述正电极和所述背电极在所述第一方向上存在间隔,在所述叠瓦组件中,相邻的两个所述太阳能电池片中的一个的正电极与另一个的背电极直接接触,以实现相邻的两个所述太阳能电池片之间的导电连接。
  2. 根据权利要求1所述的叠瓦组件,其特征在于,所述太阳能电池片形成为矩形或近似矩形,所述太阳能电池片所述正电极和所述背电极设置在所述基体片的两个相对的纵向边缘上。
  3. 根据权利要求1所述的叠瓦组件,其特征在于,所述粘结剂呈点状,多个所述粘结剂沿每一对相邻的两个所述太阳能电池片的搭接边缘间隔排布。
  4. 根据权利要求1所述的叠瓦组件,其特征在于,所述粘结剂呈条状,所述粘结剂沿每一对相邻的两个所述太阳能电池片的搭接边缘延伸。
  5. 根据权利要求1所述的叠瓦组件,其特征在于,所述粘结剂呈条状,所述粘结剂在所述电池串上沿所述第一方向延伸并跨越多个所述太阳能电池片。
  6. 根据权利要求5所示的叠瓦组件,其特征在于,所述粘结剂为多个,多个所述粘结剂在所述多个太阳能电池片的顶表面和/或底表面上延伸。
  7. 一种叠瓦组件的制造方法,其特征在于,所述叠瓦组件包括电池串,所述电池串包括太阳能电池片,所述太阳能电池片包括基体片, 所述基体片的顶表面上设置有沿第二方向延伸的正电极,所述基体片的底表面上设置有沿平行于所述第二方向的第三方向延伸的背电极,所述正电极和所述背电极在所述第一方向上存在间隔,
    并且,所述制造方法包括如下步骤:
    将整片太阳能电池片裂片而形成多个所述太阳能电池片;
    将多个所述太阳能电池片在平面上以叠瓦的方式沿第一方向依次排列并固定,以使相邻的两个所述太阳能电池片中的一个的正电极与另一个的背电极直接接触;
    在所述多个太阳能电池片的搭接边缘处施加不具导电性的粘结剂,从而使所述多个太阳能电池片连接在一起。
  8. 根据权利要求7所述的制造方法,其特征在于,施加粘结剂的步骤包括:沿每一对相邻的所述太阳能电池片的搭接边缘间断地施加粘结剂,以使所述粘结剂形成为沿所述搭接边缘间隔排布的多个点状结构。
  9. 根据权利要求7所述的制造方法,其特征在于,施加粘结剂的步骤包括:沿每一对相邻的所述太阳能电池片的搭接边缘连续施加粘结剂,以使所述粘结剂形成为沿所述搭接边缘延伸的条状结构。
  10. 根据权利要求7所述的制造方法,其特征在于,施加粘结剂的步骤包括:沿所述第一方向连续施加粘结剂,以使所述粘结剂跨越所述多个太阳能电池片。
  11. 根据权利要求10所述的制造方法,其特征在于,施加粘结剂的步骤包括:在所述多个太阳能电池片的顶表面和/或底表面上施加多个粘结剂。
  12. 根据权利要求7-11中任意一项所述的制造方法,其特征在于,以如下方式之一来施加粘结剂:喷涂方式、滴落方式、滚刷方式、印刷方式、毛刷方式。
  13. 根据权利要求7所述的制造方法,其特征在于,通过利用网板(9)来施加所述粘结剂,所述网板上设置有镂空部(91),所述施加粘结剂的方法包括如下步骤:
    将所述网板定位在所述电池串的顶表面上,在所述网板上涂覆粘结剂,以使粘结剂透过所述镂空部而被印刷在所需位置。
  14. 根据权利要求13所述的制造方法,其特征在于,所述镂空部包括至少一组,其中,
    每一组所述镂空部为沿一直线排布的多个点状镂空部,将所述网板定位在所述电池串的顶表面上的步骤包括:将所述印刷版定位为使得所述多个点状镂空部与一对相邻的太阳能电池片的搭接边缘对准;或者
    每一组所述镂空部为沿一直线延伸的条状镂空部或在一直线上间断设置的多个条状镂空部,将所述网板定位在所述电池串的顶表面上的步骤包括:将所述网板定位为使得所述条状镂空部与一对相邻的太阳能电池片的搭接边缘对准。
  15. 根据权利要求14所述的制造方法,其特征在于,所述镂空部包括多组,所述多组镂空部在所述印刷版上沿垂直于所述直线的方向排布,以使每一组所述镂空部能够分别对应一个所述搭接边缘,
    并且,将所述网板定位在所述电池串的顶表面上的步骤包括:将所述印刷版定位为使得每一组所述镂空部对准一个所述搭接边缘。
  16. 根据权利要求13所述的制造方法,其特征在于,所述镂空部包括至少一组,每一组所述镂空部为沿一直线延伸的条状镂空部,并且,将所述网板定位在所述电池串的顶表面上的步骤包括:将所述网板定位为使得所述条状镂空部平行于所述第一方向从而跨越多个所述太阳能电池片。
  17. 根据权利要求16所述的制造方法,其特征在于,所述镂空部包括多组,所述多组镂空部在所述印刷版上沿垂直于所述直线的方向排布,
    并且,将所述网板定位在所述电池串的顶表面上的步骤包括:将所述印刷版定位为使得每一组所述镂空部均跨越所述多个太阳能电池片。
  18. 根据权利要求7所述的制造方法,其特征在于,将多个所述 太阳能电池片在平面上以叠瓦的方式沿第一方向依次排列并固定的步骤包括:通过真空或静电吸附的方式将所述多个太阳能电池片固定在所述平面上。
PCT/CN2019/127000 2019-09-05 2019-12-20 叠瓦组件和叠瓦组件的制造方法 WO2020052694A2 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910837011.8A CN110581185A (zh) 2019-09-05 2019-09-05 叠瓦组件和叠瓦组件的制造方法
CN201910837011.8 2019-09-05

Publications (2)

Publication Number Publication Date
WO2020052694A2 true WO2020052694A2 (zh) 2020-03-19
WO2020052694A3 WO2020052694A3 (zh) 2020-07-23

Family

ID=68812512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/127000 WO2020052694A2 (zh) 2019-09-05 2019-12-20 叠瓦组件和叠瓦组件的制造方法

Country Status (2)

Country Link
CN (1) CN110581185A (zh)
WO (1) WO2020052694A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4131426A4 (en) * 2020-03-30 2024-05-01 Tongwei Solar Hefei Co Ltd LARGE SIZE CELL ELEMENT, SOLAR CELL ELEMENTS, SHINGLE ASSEMBLY AND METHOD OF MANUFACTURING

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110581185A (zh) * 2019-09-05 2019-12-17 成都晔凡科技有限公司 叠瓦组件和叠瓦组件的制造方法
CN111244216A (zh) * 2020-01-23 2020-06-05 成都晔凡科技有限公司 叠瓦组件的制造方法及叠瓦组件
CN113594302B (zh) * 2021-08-02 2023-08-11 浙江晶科能源有限公司 光伏组件加工方法、光伏组件及滴胶装置
CN114899262A (zh) * 2022-05-18 2022-08-12 通威太阳能(合肥)有限公司 叠瓦组件及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012009706A (ja) * 2010-06-25 2012-01-12 Asahi Kasei E-Materials Corp 太陽電池モジュール及びその製造方法
JP2012049390A (ja) * 2010-08-27 2012-03-08 Sanyo Electric Co Ltd 太陽電池モジュール及びその製造方法
CN202523736U (zh) * 2011-03-08 2012-11-07 日立化成工业株式会社 太阳能电池单元
CN111095789B (zh) * 2016-12-08 2023-10-31 石刚 叠瓦光伏电池的互连方法
CN206806350U (zh) * 2017-06-27 2017-12-26 苏州腾晖光伏技术有限公司 一种太阳能光伏组件
CN207489886U (zh) * 2017-11-16 2018-06-12 浙江晶科能源有限公司 一种太阳能叠瓦组件
CN208444844U (zh) * 2018-04-09 2019-01-29 成都晔凡科技有限公司 用于叠瓦组件的太阳能电池片和太阳能电池
CN208256682U (zh) * 2018-05-30 2018-12-18 苏州阿特斯阳光电力科技有限公司 光伏组件
CN108987509A (zh) * 2018-08-03 2018-12-11 浙江爱旭太阳能科技有限公司 双面叠瓦太阳能电池组件及制备方法
CN109216478A (zh) * 2018-08-03 2019-01-15 浙江爱旭太阳能科技有限公司 单面叠瓦太阳能电池组件及制备方法
CN109888045B (zh) * 2019-03-29 2023-07-25 通威太阳能(成都)有限公司 一种新型双面perc叠瓦电池片及其制备方法
CN110581185A (zh) * 2019-09-05 2019-12-17 成都晔凡科技有限公司 叠瓦组件和叠瓦组件的制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4131426A4 (en) * 2020-03-30 2024-05-01 Tongwei Solar Hefei Co Ltd LARGE SIZE CELL ELEMENT, SOLAR CELL ELEMENTS, SHINGLE ASSEMBLY AND METHOD OF MANUFACTURING

Also Published As

Publication number Publication date
WO2020052694A3 (zh) 2020-07-23
CN110581185A (zh) 2019-12-17

Similar Documents

Publication Publication Date Title
WO2020052694A2 (zh) 叠瓦组件和叠瓦组件的制造方法
JP7239713B2 (ja) 板葺きソーラーモジュールの製造方法及び板葺きソーラーモジュール
CN111048609A (zh) 一种光伏组件及其制造方法
WO2021013275A2 (zh) 叠瓦组件、太阳能电池片和叠瓦组件的制造方法
CN111244209A (zh) 叠瓦组件及其制造方法
WO2020052693A2 (zh) 叠瓦组件、太阳能电池片和叠瓦组件的制造方法
JP7209720B2 (ja) 太陽電池アレイ及び太陽光発電モジュール
CN111162133A (zh) 叠瓦组件、太阳能电池片和叠瓦组件的制造方法
CN211858665U (zh) 叠瓦组件和太阳能电池片
WO2021013276A2 (zh) 电池片大片、太阳能电池片、叠瓦组件和制造方法
CN204834651U (zh) 一种低温串接的太阳能电池组件
CN210778618U (zh) 叠瓦组件
TW202209696A (zh) 雙面光伏電池的金屬導線與電池組件連接結構
CN110061081B (zh) 一种光伏电池阵列及光伏组件
CN211828800U (zh) 叠瓦组件和异质结太阳能电池片
CN211828787U (zh) 电池片大片、异质结太阳能电池片及叠瓦组件
CN212085017U (zh) 电池片大片、太阳能电池片及叠瓦组件
CN211017101U (zh) 叠瓦组件
CN106328732A (zh) 一种新型太阳能电池
CN202423343U (zh) 一种具有多组输出的硅基薄膜太阳能电池
CN210325819U (zh) 叠瓦组件、太阳能电池片
CN111048613A (zh) 叠瓦组件、异质结太阳能电池片和制造方法
CN211265497U (zh) 叠瓦组件
CN211858664U (zh) 叠瓦组件和太阳能电池片
CN212695161U (zh) 一种高效半片电池组件

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859988

Country of ref document: EP

Kind code of ref document: A2