WO2021013276A2 - 电池片大片、太阳能电池片、叠瓦组件和制造方法 - Google Patents

电池片大片、太阳能电池片、叠瓦组件和制造方法 Download PDF

Info

Publication number
WO2021013276A2
WO2021013276A2 PCT/CN2020/118186 CN2020118186W WO2021013276A2 WO 2021013276 A2 WO2021013276 A2 WO 2021013276A2 CN 2020118186 W CN2020118186 W CN 2020118186W WO 2021013276 A2 WO2021013276 A2 WO 2021013276A2
Authority
WO
WIPO (PCT)
Prior art keywords
top surface
solar cell
adhesive
conductive contact
area
Prior art date
Application number
PCT/CN2020/118186
Other languages
English (en)
French (fr)
Other versions
WO2021013276A3 (zh
Inventor
尹丙伟
孙俊
陈登运
李岩
石刚
Original Assignee
成都晔凡科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都晔凡科技有限公司 filed Critical 成都晔凡科技有限公司
Priority to AU2020317362A priority Critical patent/AU2020317362B2/en
Priority to EP20842943.1A priority patent/EP4131426A4/en
Priority to US17/915,633 priority patent/US20230097957A1/en
Publication of WO2021013276A2 publication Critical patent/WO2021013276A2/zh
Publication of WO2021013276A3 publication Critical patent/WO2021013276A3/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • H01L31/0508Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module the interconnection means having a particular shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022433Particular geometry of the grid contacts
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/05Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells
    • H01L31/0504Electrical interconnection means between PV cells inside the PV module, e.g. series connection of PV cells specially adapted for series or parallel connection of solar cells in a module
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of energy, in particular to a large cell, solar cell, shingled component and a manufacturing method.
  • shingled modules use the electrical principle of low current and low loss (the power loss of photovoltaic modules is proportional to the square of the operating current) to greatly reduce the power loss of the modules. Secondly, it generates electricity by making full use of the inter-chip spacing area of the battery assembly, and the energy density per unit area is high.
  • a conductive adhesive with elastomer characteristics is used to replace conventional photovoltaic metal ribbons for modules. Because the photovoltaic metal ribbons show higher series resistance in the entire cell, the current loop of the conductive adhesive has a much shorter stroke than the use of ribbons. Therefore, the shingled module finally becomes a high-efficiency module.
  • the reliability of outdoor applications is better than the performance of conventional photovoltaic modules, because the shingled module avoids the stress damage to the battery and battery interconnection position and other confluence areas by the metal soldering strip.
  • the failure probability of conventional components using metal ribbon interconnection package is much higher than that of crystalline silicon battery chip package after using elastomer conductive adhesive to interconnect and cut. Shingled components.
  • the current mainstream technology of shingle assembly uses conductive adhesive to interconnect the cut cells, and the conductive adhesive is mainly composed of a conductive phase and an adhesive phase.
  • the conductive phase is mainly composed of precious metals, such as pure silver particles or silver-coated copper, silver-coated nickel, silver-coated glass and other particles, and is used to conduct electricity between solar cells. Its particle shape and distribution meet the optimal electrical conductivity As a benchmark, currently more flake or ball-like combination silver powder with D50 ⁇ 10um level is mostly used.
  • the adhesive phase is mainly composed of high-molecular resin polymers with weather resistance, and acrylic resin, silicone resin, epoxy resin, polyurethane, etc. are usually selected according to the adhesive strength and weather resistance stability.
  • conductive adhesive manufacturers will complete the design of conductive phase and bonding phase formula to ensure The performance stability of shingled components in the initial environmental corrosion test and long-term outdoor practical application.
  • the battery components connected by conductive glue after being packaged, they are subject to environmental erosion during actual outdoor use, such as high and low temperature alternating thermal expansion and contraction resulting in relative displacement between the conductive glue.
  • the most serious cause is the virtual connection or even open circuit of the current.
  • the main reason is generally the weak connection ability between the materials after the combination.
  • the weak connection ability is mainly manifested in that the conductive adhesive operation in the process requires a process operation window. In the actual production process, this window is relatively narrow and is very susceptible to environmental factors, such as the temperature and humidity of the workplace, and the time spent in the air after applying the glue. Length and so on will make the conductive glue lose its activity.
  • the conductive adhesive is mainly composed of polymer resin and a large amount of precious metal powder, which is costly and damages the ecological environment to a certain extent (the production and processing of precious metals pollute the environment).
  • the conductive adhesive is a paste, which has a certain degree of fluidity during the sizing or lamination process, and it is very easy to overflow the adhesive and cause short circuit of the positive and negative electrodes of the shingled interconnected battery string.
  • the bus bars are only provided on the top surface or the bottom surface of the solar cell. Compared with the solution where the bus bars are provided on the top surface and the bottom surface at the same time, the present invention can also reduce the amount of silver paste to reduce the cost;
  • the adhesive may not have electrical conductivity, so environmental corrosion, high and low temperature alternation, thermal expansion and contraction and other factors that easily damage the conductive adhesive will not affect the shingled component of the present invention, and the shingled component is not prone to virtual current connection And disconnection, problems such as disconnection of the positive and negative poles of the battery string caused by the overflow of conductive glue will not occur.
  • the top surface bonding area and the top surface conductive contact area are configured to be able to apply an adhesive on the top surface bonding area when the second battery sheet is located in the battery string so as to interact with it.
  • the bottom surfaces of adjacent solar cells are fixed to each other, and the top surface conductive contact area can face each other with the corresponding area on the bottom surface of another solar cell that is formed by large shards of the solar cell.
  • the shingles of the two solar cells are connected, and the large cells are configured such that: one of the top surface conductive contact area and the corresponding area is provided with the secondary grid line, and the other is provided with The main grid line, the auxiliary grid line and the main grid line are in direct contact to realize the conductive connection of the two solar cells.
  • the base sheet includes a central layer and light-transmitting conductive films formed on the top and bottom surfaces of the central layer.
  • the busbar line is arranged on the top surface of the large cell sheet, and the busbar line includes multiple groups, and one group is provided at the edge of each cell, and each group of main grid lines
  • the gate line includes a multi-section structure intermittently arranged, and each section of the main gate line is arranged in each of the top surface conductive contact areas in a one-to-one correspondence.
  • the busbar lines are arranged on the bottom surface of the large cell sheet, and the busbar lines include multiple groups, and one group is provided at the edge of each cell, and each group of main grid lines
  • the gate line includes a multi-section structure intermittently arranged, and each section of the main gate line is arranged in each of the bottom surface conductive contact areas in a one-to-one correspondence,
  • auxiliary grid lines are arranged in the conductive contact area on the top surface of the large cell sheet.
  • the light-transmitting conductive film extends over the entire top and bottom surfaces of the center layer.
  • the light-transmitting conductive film does not exist at the top surface bonding area and the bottom surface bonding area.
  • the center layer includes a silicon wafer, a top-side intrinsic amorphous silicon film disposed on the top surface of the silicon wafer, and a top surface of the top-side intrinsic amorphous silicon film.
  • the second aspect of the present invention provides a solar cell, which is formed by splitting the cell according to any one of the above solutions.
  • the base sheet of the solar cell sheet includes a central layer and a light-transmitting conductive film, the light-transmitting conductive film extends over the entire top and bottom surfaces of the central layer, and the transparent
  • the photoconductive film has the same thickness everywhere, so that when the adhesive is applied on the top surface bonding area, the adhesive protrudes from the light-transmitting conductive film, so that the solar cell sheet and the other
  • the light-transmitting conductive films on the opposite surfaces of the two solar cell sheets are separated by the adhesive at the adhesive.
  • the base sheet of the solar cell sheet includes a light-transmitting conductive film on the top and bottom surfaces of the central layer as a central layer, and the light-transmitting conductive film is adhered to the top surface.
  • the junction area is provided with a gap, and when the adhesive is applied on the solar cell sheet, the adhesive is located in the gap and does not protrude from the light-transmitting conductive film.
  • the top surface of the overlapping edge of the solar cell sheet that is in contact with another solar cell sheet is provided with top surface bonding areas and top surface conductive areas extending along the overlapping edge and alternately arranged.
  • a main gate line is arranged in the conductive contact area on the top surface.
  • the bottom surface of the overlapping edge of the solar cell sheet that is in contact with another solar cell sheet is provided with bottom surface bonding areas and bottom surface conductive areas extending along the overlapping edge and alternately arranged.
  • a main gate line is arranged in the conductive contact area on the bottom surface.
  • a shingled assembly including a battery string, characterized in that the battery string is composed of a plurality of solar cells according to any one of the above solutions in a shingled manner.
  • the battery string is composed of a plurality of solar cells according to any one of the above solutions in a shingled manner.
  • Each of the solar cell sheets is fixed to each other by an adhesive, and the top surface and the bottom surface of the solar cell sheet are provided with secondary grid lines, and the top surface or the bottom surface is provided with main grid lines.
  • a grid line, the main grid line of one of the two adjacent solar cell sheets can be in direct contact with the sub-grid line of the other of the two solar cell sheets, thereby realizing two adjacent solar cells Conductive connection between slices.
  • the adhesive is an adhesive with a dot structure made of acrylic resin, silicone resin, epoxy resin or polyurethane.
  • the adhesive is an adhesive with a point structure including a curing agent, a crosslinking agent, a coupling agent or a rubber ball.
  • a manufacturing method for manufacturing a shingled assembly including the following steps:
  • a plurality of said solar cells are connected in a shingled manner through an adhesive with no conductive properties, so that the main grid line of one of the two adjacent solar cell sheets and the sub-grid line of the other are directly connected. Contact to achieve a conductive connection.
  • the method further includes the step of applying an adhesive on the solar cell sheet in one of the following ways: spraying, dripping, rolling, printing, and brushing.
  • the method of manufacturing a large cell sheet does not include the step of arranging the bus bars.
  • a large cell sheet for manufacturing solar cells can be provided.
  • the connection area of each unit of the large cell sheet is formed with a cutting area, a top surface bonding area and a top surface conductive contact area.
  • the cutting area can facilitate the battery Large lobes; the bonding area on the top surface and the conductive contact area on the top surface are formed as the overlapping edge of a solar cell, wherein the multiple solar cells formed after the large lobes of the cell can be arranged in a shingled manner to form a battery string, And in the battery string, the top surface conductive contact area of one of any two adjacent solar cells can be in contact with the other solar cell, so as to realize that the busbar of one of the two solar cells and the other
  • the secondary grid lines are in contact to achieve a conductive connection; an adhesive used to bond adjacent solar cells together can be applied to the top surface bonding area.
  • This arrangement can facilitate the splitting of large solar cells, and the solar cells formed by the splits are electrically connected through the direct contact between the main grid lines and the secondary grid lines, so that adhesives that have no conductive properties can also be used for fixing , which has at least the following advantages:
  • the bus bars are only provided on the top surface or the bottom surface of the solar cell. Compared with the solution where the bus bars are provided on the top surface and the bottom surface at the same time, the present invention can also reduce the amount of silver paste to reduce the cost;
  • the adhesive may not have electrical conductivity, so environmental corrosion, high and low temperature alternation, thermal expansion and contraction and other factors that easily damage the conductive adhesive will not affect the shingled component of the present invention, and the shingled component is not prone to virtual current connection And disconnection, problems such as disconnection of the positive and negative poles of the battery string caused by the overflow of conductive glue will not occur.
  • Fig. 1 shows a schematic view of the top surface of a large battery sheet according to the first embodiment of the present invention
  • Figure 3 is a partial enlarged view of part B in Figure 1;
  • Figure 5 is a partial enlarged view of part C in Figure 4.
  • 6A and 6B are respectively a schematic diagram of the top surface and a schematic diagram of the bottom surface of a single solar cell formed by the large shards of the cell in FIG. 1;
  • Fig. 7 is a schematic diagram of the top surface of the two solar cell sheets shown in Figs. 6A-6B after being arranged in a shingled manner;
  • Figure 8 is a cross-sectional view taken along line A-A in Figure 7;
  • FIGS. 9A and 9B are schematic diagrams of the top surface and the bottom surface of the solar cell sheet according to the second embodiment of the present invention.
  • Fig. 10 is a schematic view of the top surface of the two solar cell sheets in Figs. 9A-9B after being arranged in a shingled manner;
  • Fig. 11 is a cross-sectional view taken along the line B-B in Fig. 10.
  • the present invention provides a large solar cell, a solar cell, a shingled assembly and a manufacturing method.
  • Large cells are used to manufacture solar cells, such as heterojunction solar cells, PERC cells and topcon cells.
  • the solar cell provided by the present invention may be a heterojunction solar cell, a PERC cell or a topcon cell.
  • Figures 1 to 11 show several preferred embodiments of the large cell sheet and solar cell sheet of the present invention.
  • the large cell is a large cell for manufacturing a heterojunction solar cell
  • the solar cell in this embodiment is a heterojunction solar cell.
  • FIG. 1 shows a large cell piece 100 in this embodiment, and the large cell piece 100 can be split to form a plurality of solar cells.
  • the large cell sheet 100 includes a base sheet 11, which includes a central layer and a light-transmitting conductive film 13 provided on the top and bottom surfaces of the central layer.
  • the central layer includes, for example, a silicon wafer, a top-side intrinsic amorphous silicon film disposed on the top surface of the silicon wafer, a P-type amorphous silicon film disposed on the top surface of the top-side intrinsic amorphous silicon film, and a P-type amorphous silicon film disposed on the top surface of the silicon wafer.
  • Sub-grid lines 12 are also provided on the top and bottom surfaces of the large cell piece 100, and main grid lines that span each sub-grid line 12 are provided on the top or bottom surface of the large cell piece.
  • the large cell piece 100 is formed by splitting.
  • the two solar cells can be connected in a shingled manner, and conductive connection is achieved through direct contact between the main grid line and the secondary grid line 12.
  • the bus bars are arranged on the bottom surface of the large cell piece 100 (as shown in FIG. 5 in the bottom surface conductive contact area 23a), and the top surface of the large cell piece 100 is not provided with bus bars.
  • the large battery sheet 100 is divided into a plurality of cells 1 arranged in a straight line. Any two adjacent cells 1 are a first cell 1a and a second cell 1b, and the first cell 1a forms the first cell 1a.
  • the battery piece, the second unit 1b forms a second battery piece.
  • the top surface of the boundary portion 2 between the first unit 1 a and the second unit 1 b is divided into a cutting area 21, a top surface bonding area 22 and a top surface conductive contact area 23.
  • the cutting area 21 extends in a direction perpendicular to the arrangement direction of the solar cells, and the large cell piece 100 can split along the cutting area 21.
  • the top surface bonding area 22 and the top surface conductive contact area 23 can be formed as the overlapping edge of the second battery sheet.
  • the top surface bonding area 22 and the top surface conductive contact area 23 are arranged on the large battery sheet 100.
  • One side of the cutting area 21 is alternately arranged in a direction parallel to the cutting area 21.
  • the second cell can be arranged in a shingle manner with another solar cell (for example, the first cell), and the bottom surface of the other solar cell can be aligned with the top of the second cell.
  • the surface conductive contact area 23 directly contacts to achieve a conductive connection, and the adhesive 9 for fixing the two solar cells can be applied on the top surface bonding area 22.
  • the structure of the bottom surface of the large cell piece 100 is shown in FIGS. 4 and 5. 4 and 5, on the large battery sheet 100, the bottom surface of the boundary portion 2 of the first cell 1a and the second cell 1b is also provided with a bottom surface bonding area 22a and a bottom surface conductive contact area 23a.
  • the bottom surface bonding area 22 a and the bottom surface conductive contact area 23 a are located on one side of the cutting area 21, and the bottom surface bonding area 22 a and the bottom surface conductive contact area 23 a are alternately arranged in a direction parallel to the cutting area 21.
  • the bottom surface conductive contact area 23a and the bottom surface bonding area 22a together constitute an overlapping edge of the first cell.
  • the bottom surface conductive contact area 23a is provided with a main gate line. As can be seen from the figure, the width of the main gate line is larger than the width of the sub-gate line 12.
  • the large cell piece 100 is configured such that the top surface conductive contact area 23 of the overlapping edge of the top surface of the first cell piece formed by the first unit 1a is provided with a secondary grid line 12.
  • the top surface conductive contact area 23a of the overlapping edge of the bottom surface is provided with a main grid line, so that when two solar cells are arranged in a shingle manner, the top surfaces of the two solar cells facing each other.
  • the conductive contact area 23 and the bottom surface conductive contact area 23a are in contact with each other.
  • the sub-grid line 12 in the top surface conductive contact area 23 of the solar cell on the bottom side (for example, the second cell formed by the second unit 1b) It can directly contact the busbar of the solar cell on the top side (for example, the first cell formed by the first unit 1a) to realize a conductive connection.
  • first unit and second unit are relative descriptions rather than absolute descriptions, for example, a pair of adjacent
  • first unit in the unit of may also be the “second unit” in another pair of adjacent units.
  • the pair of first unit 1a and second unit 1b at the forefront of the large battery sheet 100 also includes another set of top surface bonding areas 22 and top surface conductive contact areas 23, that is, in the cutting area 21
  • the two sets of top surface bonding areas 22 and top surface conductive contact areas 23 are respectively formed as the top surfaces of the overlapping edges of the first battery sheet and the second battery sheet.
  • FIGS. 6A and 6B show schematic diagrams of the top and bottom surfaces of a single solar cell composed of a single unit 1 after the large cell piece 100 is split in this embodiment. It can be seen that there are alternately arranged top surface bonding areas 22 and top surface conductive contact areas 23 on the edge of the top surface of the solar cell for overlapping with another solar cell. There are sub-grid lines 12 inside and no main grid lines are provided; the bottom surface of the solar cell sheet has alternately arranged bottom surface bonding areas 22a and bottom surface conductive contacts at the edge for overlapping with another solar cell sheet The area 23a, the bottom surface conductive contact area 23a is provided with a main gate line.
  • FIGS 7 and 8 show the structure after two solar cells composed of the first unit 1a and the second unit 1b are connected in a shingled manner. It can be seen that the solar cell sheet composed of the first unit 1a and the second unit 1b each includes a central layer and a light-transmitting conductive film 313 provided on the surface of the central layer.
  • the secondary grid lines 12 located in the top surface conductive contact area 23 on the top surface of the solar cell composed of the second unit 1b (Inside) and the main grid line 14 (located in the bottom surface conductive contact area 23a) on the bottom surface of the solar cell composed of the first unit 1a to achieve a conductive connection.
  • the main gate line is filled in the conductive contact area on the bottom surface, and the conductive contact area on the bottom surface is intermittently arranged in the extending direction, the main gate line 14 is also intermittent in the cross-sectional view shown in FIG. Arranged, between the segments of the bus bars 14 is an adhesive 9 applied on the bonding area.
  • the conductive connection is realized by the direct contact between the main grid lines 14 and the sub-grid lines 12, so that the large solar cells 100 can be less formed.
  • the amount of silver paste for the busbars compared to the solution where the busbars are provided on both the top and bottom surfaces, such an arrangement can reduce the cost and the weight of the solar cell.
  • FIGS. 9A to 11 show a solar cell sheet in a second embodiment according to the present invention.
  • the solar cell sheet in this embodiment is also produced by the splits of a large cell sheet (not shown).
  • the structure of each component of this embodiment is similar to that of the previous embodiment, so the parts that are the same or similar to the previous embodiment will not be repeated.
  • the top surface of the solar cell sheet 3 is provided with top surface conductive contact areas 33 and top surface bonding areas 32 extending along the overlapping edges and alternately arranged, and busbars are formed in the top surface conductive contact areas.
  • the bottom surface of the solar cell sheet 3 is provided with bottom surface conductive contact regions 33a and bottom surface bonding regions 32a extending along the overlapping edges and alternately arranged, and the bottom surface conductive contact regions 33a are provided with sub-grid lines. There is no busbar.
  • FIGS. 10 and 11 The state after two such solar cells are connected in a shingled manner is shown in FIGS. 10 and 11.
  • the two heterojunction solar cells in FIGS. 10-11 are referred to as the first cell 3a and the second cell 3b, respectively.
  • the first cell 3a includes a base sheet and a light-transmitting conductive film 313 on the bottom surface of the base sheet.
  • the bottom surface of the first cell 3a is provided with sub-grid lines 312 (specifically, in the conductive contact area on the bottom surface).
  • the second cell 3b includes a base sheet and a light-transmitting conductive film 313 on the top surface of the base sheet.
  • the top surface of the second cell 3b is provided with a busbar 314 (specifically, in the top surface conductive contact area).
  • the sub-grid line 312 and the main grid line 314 are in direct contact to achieve a conductive connection between the first cell 3a and the second cell 3b.
  • the main gate line 314 is filled in the top surface conductive contact area, and the top surface conductive contact area is intermittently arranged in its extension direction, in the cross-sectional view shown in FIG. 11, the main gate line 314 is also Intermittently arranged, between the segments of the bus bars 314 is an adhesive 9 applied to the bonding area.
  • each component may also have other preferred settings.
  • a non-conductive adhesive as an adhesive.
  • a variety of factors should be considered, such as the impact on electrical connectivity, mechanical strength, and product reliability. At the same time, factors such as application compatibility and cost should also be considered.
  • a liquid or non-conductive material with strong fluidity is selected to facilitate penetration into the overlap gap between adjacent solar cells.
  • the optional material of the binder can be made of acrylic resin, silicone resin, epoxy resin or polyurethane, for example, in order to form a certain thickness, curing agent, crosslinking agent, coupling agent or rubber ball can also be added to it. Additives.
  • the adhesive Since the adhesive has no conductivity, factors that easily damage the conductive adhesive such as environmental erosion, high and low temperature alternation, thermal expansion and contraction, etc. will not affect the shingled module and solar cell, shingled module and solar cell of the present invention Virtual connection and disconnection of current are not easy to occur, and the requirements for the coating accuracy of the adhesive are reduced. In addition, since there is no need to provide conductive glue, problems such as disconnection of the positive and negative electrodes of the battery string caused by overflow of glue will not occur. In addition, since the conductivity of the adhesive is not required, the production cost of the shingled assembly is also reduced.
  • the adhesive can also have various arrangements.
  • the adhesive may be in the form of dots, and a plurality of adhesives may be intermittently arranged on the overlapping edges of each pair of adjacent two solar cell sheets; The overlapping edges of two adjacent solar cells extend; alternatively, an adhesive can be applied to the top surfaces of multiple solar cells so that the adhesive spans multiple solar cells.
  • the bonding The agent is preferably multiple and the multiple adhesives are arranged parallel to each other on the top surface of the battery string; or alternatively, multiple adhesives may be applied on the top surface and/or the bottom surface of the solar cell sheet, and each adhesive The binding agents may not be parallel to each other.
  • the light-transmitting conductive film may be arranged to extend on the top surface and the bottom surface of the entire base sheet, and the light-transmitting conductive film has a uniform thickness everywhere before the solar cell sheets are interconnected.
  • the adhesive protrudes upward from the light-transmitting conductive film;
  • the adhesive protrudes downward from the light-transmitting conductive film.
  • the present invention also provides a preferred example of a method for manufacturing the above shingle assembly.
  • the manufacturing method includes the following steps: manufacturing large solar cells as described in the above embodiment; cutting along each cutting area of the large solar cells, so that the large solar cells are split into multiple solar cells; The sheets are connected in a shingled manner by an adhesive having no conductive properties, so that the main grid lines of one of the two adjacent solar cell sheets are in direct contact with the sub-grid lines of the other to achieve conductive connection.
  • it further includes the following step between the step of applying an adhesive on the first solar cell sheet and the step of interconnecting the first solar cell sheet and the second solar cell sheet: bonding on the bottom surface of the second solar cell sheet An adhesive is also applied to the light-transmitting conductive film in the junction area.
  • the step of applying the adhesive may include: intermittently applying the adhesive along the overlapping edges of each pair of adjacent solar cell sheets, so that the adhesive is formed as a plurality of points arranged at intervals along the overlapping edges ⁇ Like structure.
  • the method of manufacturing a whole solar cell sheet includes: arranging a silicon wafer; setting a top-side intrinsic amorphous silicon film on the top surface of the silicon wafer; The bottom surface of the silicon wafer is provided with a bottom-side intrinsic amorphous silicon film; the top surface of the top-side intrinsic amorphous silicon film and the bottom surface of the bottom-side intrinsic amorphous silicon film are provided with a light-transmitting conductive film; Sub-gate lines are arranged on the photoconductive film.
  • the method of manufacturing a whole piece of solar cell does not include the step of arranging the bus bars.
  • the first cell 3a The first cell 3a

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明涉及一种电池片大片、太阳能电池片、叠瓦组件和制造方法。电池片大片的各单元交界部分的顶表面处被划分为切割区、顶表面粘结区和顶表面导电接触区。所述切割区构造为使得所述电池片大片能够沿其被切割;所述顶表面粘结区与所述顶表面导电接触区交替设置,所述切割区和顶表面导电接触区形成为电池片的一个搭接边缘,电池片大片裂片之后顶表面导电接触区的能够与和另一太阳能电池片的底表面直接接触而实现导电连接。本发明提供的电池片大片能够方便裂片操作,且为电池片单片设有专门的粘结区和导电接触区,这样的设置能够优化太阳能电池片的生产过程和使用性能。

Description

电池片大片、太阳能电池片、叠瓦组件和制造方法 技术领域
本发明涉及能源领域,尤其涉及一种电池片大片、太阳能电池片、叠瓦组件和制造方法。
背景技术
随着全球煤炭、石油、天然气等常规化石能源消耗速度加快,生态环境不断恶化,特别是温室气体排放导致日益严峻的全球气候变化,人类社会的可持续发展已经受到严重威胁。世界各国纷纷制定各自的能源发展战略,以应对常规化石能源资源的有限性和开发利用带来的环境问题。太阳能凭借其可靠性、安全性、广泛性、长寿性、环保性、资源充足性的特点已成为最重要的可再生能源之一,有望成为未来全球电力供应的主要支柱。
在新一轮能源变革过程中,我国光伏产业已成长为具有国际竞争优势的战略新兴产业。然而,光伏产业发展仍面临诸多问题与挑战,转换效率与可靠性是制约光伏产业发展的最大技术障碍,而成本控制与规模化又在经济上形成制约。光伏组件作为光伏发电的核心部件,提高其转换效率发展高效组件是必然趋势。目前市场上涌现各种各样的高效组件,如叠瓦、半片、多主栅、双面组件等。随着光伏组件的应用场所和应用地区越来越广泛,对其可靠性要求越来越高,尤其是在一些恶劣或极端天气多发地区需要采用高效、高可靠性的光伏组件。
在大力推广和使用太阳能绿色能源的背景下,叠瓦组件利用小电流低损耗的电学原理(光伏组件功率损耗与工作电流的平方成正比例关系)从而使得组件功率损耗大大降低。其次通过充分利用电池组件中片间距区域来进行发电,单位面积内能量密度高。另外使用了具有弹性体特性的导电胶粘剂替代了常规组件用光伏金属焊带,由于光伏金属焊带在整片电池中表现出较高的串联电阻而导电胶粘剂电流回 路的行程要远小于采用焊带的方式,从而最终使得叠瓦组件成为高效组件,同时户外应用可靠性较常规光伏组件性能表现更加优异,因为叠瓦组件避免了金属焊带对电池与电池互联位置及其他汇流区域的应力损伤。尤其是在高低温交变的动态(风、雪等自然界的载荷作用)环境下,采用金属焊带互联封装的常规组件失效概率远超过采用弹性体的导电胶粘剂互联切割后的晶硅电池小片封装的叠瓦组件。
当前叠瓦组件的主流工艺使用导电胶粘剂互联切割后的电池片,导电胶主要由导电相和粘接相构成。其中导电相主要由贵金属组成,如纯银颗粒或银包铜、银包镍、银包玻璃等颗粒并用于在太阳能电池片之间起导电作用,其颗粒形状和分布以满足最优的电传导为基准,目前更多采用D50<10um级的片状或类球型组合银粉居多。粘接相主要有具有耐候性的高分子树脂类聚合物构成,通常根据粘接强度和耐候稳定性选择丙烯酸树脂、有机硅树脂、环氧树脂、聚氨酯等。为了使导电胶粘接达到较低的接触电阻和较低的体积电阻率及高粘接并且保持长期优良的耐候特性,一般导电胶厂家会通过导电相和粘接相配方的设计完成,从而保证叠瓦组件在初始阶段环境侵蚀测试和长期户外实际应用下性能的稳定性。
而对于通过导电胶来实现连接的电池组件,在被封装之后,在户外实际使用时受到环境侵蚀,例如高低温交变热胀冷缩产生导电胶之间的相对位移。最为严重就是导致出现电流虚接甚至断路,主要原因一般都是因为材料组合后相互间连接能力弱。连接能力弱主要表现在制程中导电胶作业需要一个工艺操作窗口,实际生产过程中这个窗口相对较窄,非常容易受到环境因素的影响,比如作业场所的温湿度,涂胶后滞留空气中的时间长短等等都会让导电胶水失去活性。同时对于点胶、喷胶或印刷工艺下受胶水自身特性变化容易出现施胶不均缺失现象,对产品可靠性会有较大隐患。其次导电胶主要有高分子树脂和大量贵金属粉体所构成,成本高昂且一定程度上破坏生态环境(贵金属的生产和加工对环境污染较大)。再者导电胶属于膏状物,在施胶或叠片过程中具备一定的流动性,非常容易溢胶造成叠瓦互联电池 串正负极短路。
也就是说,对于大多数采用导电胶粘接方式而制成的叠瓦组件,存在相互连接强度弱特点,制程对环境要求高,工艺使用易溢胶短路,使用成本高昂,生产效率低等问题。
并且,为了实现各个太阳能电池片的导电连接,通常还需要在太阳能电池片的表面上设置电极,而电极由昂贵金属制成,因而太阳能电池片通常具有较高成本。
在太阳能电池的制造方面,也还不存在能够形成如上所说的太阳能电池片、且易于裂片操作的电池片大片。
因而需要提供一种电池片大片、太阳能电池片、叠瓦组件和制造方法,以至少部分地解决上述问题。
发明内容
本发明的目的在于,提供一种电池片大片、太阳能电池片、叠瓦组件和制造方法。本发明提供的电池片大片能够方便裂片操作,且电池片大片上设置有用于裂片后的太阳能电池片实现导电连接的导电接触区以及用于施加粘结剂的粘结区,这样的设置能够优化太阳能电池片的生产过程和使用性能。
进一步地,裂片而形成的太阳能电池片之间能够通过主栅线和副栅线的直接接触而实现导电连接,从而也可以使用不具导电性质的粘结剂来进行固定,这至少具有以下优点:
一、仅在太阳能电池片的顶表面或底表面上设置主栅线,相比于将主栅线同时设置在顶表面和底表面上的方案,本发明还能够减少银浆用量以降低成本;
二、粘结剂可以不具导电性,因而环境侵蚀、高低温交变、热胀冷缩等容易破坏导电胶的因素便不会影响本发明的叠瓦组件,叠瓦组件不容易出现电流虚接和断路,由于导电胶溢胶而造成的电池串的正负极断路等问题也不会发生。
根据本发明的一个方面,提供了一种电池片大片,用于裂片而形 成多个太阳能电池片,多个所述太阳能电池片能够以叠瓦方式排列成电池串,
其中,所述电池片大片包括基体片,所述基体片的顶表面和底表面上设置有副栅线,且所述基体片的顶表面或底表面上设置有跨越各个副栅线的主栅线,所述电池片大片被划分成沿第一方向排布的多个单元,任意相邻的两个所述单元为第一单元和第二单元,当所述电池片大片裂片之后所述第一单元形成为第一电池片,所述第二单元形成为第二电池片,
所述第一单元和所述第二单元之间的交界部分的顶表面处被划分为:
切割区,所述切割区沿垂直于所述第一方向的方向延伸,所述切割区构造为使得所述电池片大片能够沿其被切割;和
顶表面粘结区和顶表面导电接触区,所述顶表面粘结区和顶表面导电接触区设置在所述切割区的一侧,且所述顶表面粘结区与所述顶表面导电接触区在垂直于所述第一方向的方向上交替设置,所述切割区和顶表面导电接触区形成为所述第二电池片的一个搭接边缘的顶表面,
其中,所述顶表面粘结区和所述顶表面导电接触区构造为当所述第二电池片位于电池串中时能够在所述顶表面粘结区的上施加粘结剂从而和与其相邻的太阳能电池片的底表面相互固定,且所述顶表面导电接触区能够与和另一由所述电池片大片裂片而成的太阳能电池片的底表面上的对应区域彼此面对而实现这两个太阳能电池片的叠瓦连接,并且,所述电池片大片构造为使得:所述顶表面导电接触区和所述对应区域中的一个上设置有所述副栅线,另一个上设置有所述主栅线,所述副栅线和所述主栅线直接接触而实现这两个太阳能电池片的导电连接。
在一种实施方式中,所述基体片包括中心层和形成在所述中心层的顶表面、底表面上的透光导电膜。
在一种实施方式中,所述主栅线设置在所述电池片大片的顶表面 上,且所述主栅线包括多组,每一个所述单元的边缘处设置有一组,每一组主栅线包括间断设置的多段结构,各段所述主栅线一一对应地设置在各个所述顶表面导电接触区内。
在一种实施方式中,在所述第一单元和所述第二单元的交界部分的底表面上还设置有底表面粘结区和底表面导电接触区,所述底表面粘结区和所述底表面导电接触区在所述第一方向上位于所述切割区的另一侧且所述底表面粘结区和所述底表面导电接触区在垂直于所述第一方向的方向上交替设置,所述底表面导电接触区形成为所述对应区域。
在一种实施方式中,所述主栅线设置在所述电池片大片的底表面上,且所述主栅线包括多组,每一个所述单元的边缘处设置有一组,每一组主栅线包括间断设置的多段结构,各段所述主栅线一一对应地设置在各个所述底表面导电接触区内,
并且,所述电池片大片的顶表面导电接触区内设置有副栅线。
在一种实施方式中,所述透光导电膜在所述中心层的整个顶表面和底表面上延伸。
在一种实施方式中,在所述顶表面粘结区和所述底表面粘结区处不存在所述透光导电膜。
在一种实施方式中,所述电池片大片的最前端的一对所述第一单元和所述第二单元之间的交界部分的顶表面还设置有另一组顶表面粘结区和顶表面导电接触区,所述另一组顶表面粘结区和顶表面导电接触区位于所述切割区的另一侧,所述另一组顶表面粘结区和顶表面导电接触区形成为该第一电池片的一个搭接边缘的顶表面。
在一种实施方式中,所述中心层包括硅片、设置在所述硅片的顶表面上的顶侧本征非晶硅薄膜、设置在所述顶侧本征非晶硅薄膜的顶表面的P型非晶硅薄膜、设置在所述硅片的底表面上的底侧本征非晶硅薄膜以及设置在所述底侧本征非晶硅薄膜的底表面上的N型非晶硅薄膜。
本发明的第二方面提供了一种太阳能电池片,所述太阳能电池片 由根据上述方案中任意一项所述的电池片大片裂片而成。
在一种实施方式中,所述太阳能电池片的基体片包括中心层和透光导电膜,所述透光导电膜在所述中心层的整个顶表面和底表面上延伸,并且,所述透光导电膜在各处均具有相同厚度,以使得当在顶表面粘结区上施加粘结剂时,所述粘结剂突出于所述透光导电膜,从而使得所述太阳能电池片与另一个所述太阳能电池片相连时,所述两个太阳能电池片的彼此相对的表面上的所述透光导电膜在所述粘结剂处被所述粘结剂间隔开。
在一种实施方式中,所述太阳能电池片的基体片包括中心层为位于所述中心层的顶表面、底表面上的透光导电膜,所述透光导电膜上在所述顶表面粘结区设置有缺口,当在所述太阳能电池片上施加粘结剂时,所述粘结剂位于所述缺口内不突出于所述透光导电膜。
在一种实施方式中,所述太阳能电池片的与另一太阳能电池片接触的搭接边缘的顶表面上设置有沿所述搭接边缘延伸并交替设置的顶表面粘结区和顶表面导电接触区,所述顶表面导电接触区内设置有主栅线。
在一种实施方式中,所述太阳能电池片的与另一太阳能电池片接触的搭接边缘的底表面上设置有沿所述搭接边缘延伸并交替设置的底表面粘结区和底表面导电接触区,所述底表面导电接触区内设置有主栅线。
根据本发明的第三方面,提供了一种叠瓦组件,包括电池串,其特征在于,所述电池串由多个根据上述方案中中任意一项所述的太阳能电池片以叠瓦方式依次相连而形成,各个所述太阳能电池片通过粘结剂彼此固定,并且,所述太阳能电池片的顶表面和底表面上设置有副栅线,所述顶表面或所述底表面上设置有主栅线,相邻的两个所述太阳能电池片中的一个的主栅线能够和所述两个太阳能电池片中的另一个的副栅线直接接触从而实现相邻的两个所述太阳能电池片之间的导电连接。
在一种实施方式中,所述粘结剂为非导电性粘结剂。
在一种实施方式中,所述粘结剂为由丙烯酸树脂、有机硅树脂、环氧树脂或聚氨酯制成的点状结构的粘结剂。
在一种实施方式中,所述粘结剂为包括固化剂、交联剂、偶联剂或橡胶球的点状结构的粘结剂。
根据本发明的第四方面,提供了一种制造方法,用于制造叠瓦组件,所述方法包括如下步骤:
制造根据上述方案中任意一项所述的电池片大片,且所述电池片大片具有副栅线;
沿所述电池片大片的每一个切割区切割,从而使所述电池片大片裂片为多个太阳能电池片;
将多个所述太阳能电池片通过不具导电特性的粘结剂以叠瓦的方式相连,以使相邻的两个所述太阳能电池片中的一个的主栅线和另一个的副栅线直接接触从而实现导电连接。
在一种实施方式中,所述方法还包括在所述太阳能电池片上以如下方式之一来施加粘结剂的步骤:喷涂方式、滴落方式、滚刷方式、印刷方式、毛刷方式。
在一种实施方式中,制造电池片大片的方法不包括设置主栅线的步骤。
根据本发明,能够提供一种用于制造太阳能电池片的电池片大片,电池片大片的各个单元的连接区域形成有切割区、顶表面粘结区和顶表面导电接触区,切割区能够方便电池片大片裂片;顶表面粘结区和顶表面导电接触区形成为一个太阳能电池片的搭接边缘,其中,电池片大片裂片之后形成的多个太阳能电池片能够以叠瓦方式排列成电池串,且在电池串中,任意两个相邻的太阳能电池片中的一个的顶表面导电接触区能够和另一个太阳能电池片接触,从而实现两个太阳能电池片中的一个的主栅线与另一个的副栅线相接触以实现导电连接;用于将相邻的太阳能电池片粘结在一起的粘结剂能够被施加在顶表面粘结区。
这样的设置能够方便电池片大片裂片,且裂片而形成的太阳能电 池片之间通过主栅线和副栅线的直接接触而实现导电连接,从而也可以使用不具导电性质的粘结剂来进行固定,这至少具有以下优点:
一、仅在太阳能电池片的顶表面或底表面上设置主栅线,相比于将主栅线同时设置在顶表面和底表面上的方案,本发明还能够减少银浆用量以降低成本;
二、粘结剂可以不具导电性,因而环境侵蚀、高低温交变、热胀冷缩等容易破坏导电胶的因素便不会影响本发明的叠瓦组件,叠瓦组件不容易出现电流虚接和断路,由于导电胶溢胶而造成的电池串的正负极断路等问题也不会发生。
附图说明
为了更好地理解本发明的上述及其他目的、特征、优点和功能,可以参考附图中所示的优选实施方式。附图中相同的附图标记指代相同的部件。本领域技术人员应该理解,附图旨在示意性地阐明本发明的优选实施方式,对本发明的范围没有任何限制作用,图中各个部件并非按比例绘制。
图1示出了根据本发明第一实施方式的电池片大片的顶表面示意图;
图2为图1中的A部分的局部放大图;
图3为图1中的B部分的局部放大图;
图4为该实施方式中的电池片大片的底表面示意图;
图5为图4中的C部分的局部放大图;
图6A、图6B分别为图1中的电池片大片裂片而形成的单个太阳能电池片的顶表面示意图和底表面示意图;
图7为两个图6A-6B中所示的太阳能电池片以叠瓦方式排列之后的顶表面的示意图;
图8为沿图7中的A-A线截取的截面图;
图9A、图9B为根据本发明的第二实施方式的太阳能电池片的顶表面示意图和底表面示意图;
图10为两个图9A-9B中的两个太阳能电池片以叠瓦方式排列之后的顶表面示意图;
图11为沿图10中的B-B线截取的截面图。
具体实施方式
现在参考附图,详细描述本发明的具体实施方式。这里所描述的仅仅是根据本发明的优选实施方式,本领域技术人员可以在所述优选实施方式的基础上想到能够实现本发明的其他方式,所述其他方式同样落入本发明的范围。
在本发明提供了一种电池片大片、太阳能电池片、叠瓦组件和制造方法。电池片大片用于制造太阳能电池片,例如用于制造异质结太阳能电池片、PERC电池片以及topcon电池片。对应地,本发明所提供的太阳能电池片可以为异质结太阳能电池片、PERC电池片或topcon电池片。
图1至图11示出了本发明的电池片大片和太阳能电池片的几个优选实施方式。在本实施方式中,电池片大片为制造异质结太阳能电池片的电池片大片,本实施方式中的太阳能电池片为异质结太阳能电池片。
图1-图8示出了根据本发明的第一实施方式。图1示出了该实施方式中的电池片大片100,电池片大片100能够裂片而形成多个太阳能电池片。其中,电池片大片100包括基体片11,基体片11包括中心层和设置在中心层的顶表面和底表面上的透光导电膜13。中心层例如又包括硅片、设置在硅片的顶表面上的顶侧本征非晶硅薄膜、设置在顶侧本征非晶硅薄膜的顶表面的P型非晶硅薄膜、设置在硅片的底表面上的底侧本征非晶硅薄膜以及设置在底侧本征非晶硅薄膜的底表面上的N型非晶硅薄膜。
电池片大片100的顶表面和底表面上还设置有副栅线12,并且电池片大片的顶表面或底表面上设置有跨越各个副栅线12的主栅线,电池片大片100裂片而成的两个太阳能电池片能够以叠瓦方式连接, 并通过主栅线和副栅线12的直接接触而实现导电连接。在本实施方式中,主栅线设置在电池片大片100的底表面上(如图5所示在底表面导电接触区23a内),电池片大片100的顶表面上不设置主栅线。
参考图2,电池片大片100被划分成沿一直线方向排布的多个单元1,任意相邻的两个单元1为第一单元1a和第二单元1b,其中第一单元1a形成第一电池片,第二单元1b形成第二电池片。
继续参考图2,第一单元1a和第二单元1b之间的交界部分2的顶表面处被划分为切割区21、顶表面粘结区22和顶表面导电接触区23。切割区21沿垂直于太阳能电池片的排布方向的方向延伸,且电池片大片100能够沿着切割区21裂片。在裂片之后,顶表面粘结区22和顶表面导电接触区23能够形成为第二电池片的搭接边缘,在电池片大片100上顶表面粘结区22和顶表面导电接触区23设置在切割区21的一侧并在平行于切割区21的方向上交替设置。
当电池片大片100裂片之后,第二电池片能够和另一太阳能电池片(例如第一电池片)以叠瓦方式排列,所述另一太阳能电池片的底表面能够和第二电池片的顶表面导电接触区23直接接触而实现导电连接,并且,用于将这两个太阳能电池片固定的粘结剂9可以施加在顶表面粘结区22上。
电池片大片100的底表面的结构在图4和图5中示出。参考图4和图5,在电池片大片100上,第一单元1a和第二单元1b的交界部分2的底表面上还设置有底表面粘结区22a和底表面导电接触区23a。底表面粘结区22a和底表面导电接触区23a位于切割区21的一侧,并且底表面粘结区22a和底表面导电接触区23a在平行于切割区21的方向上交替设置。底表面导电接触区23a和底表面粘结区22a共同构成了第一电池片的一个搭接边缘。底表面导电接触区23a内设置有主栅线,从图中可以看到,主栅线的宽度大于副栅线12的宽度。
优选地,主栅线包括多组,各组主栅线与电池片大片的各个单元一一对应,每一组主栅线又包括多段结构,各段主栅线一一对应地设置在各个底表面导电接触区23a内。
从图2和图5中可以看到,电池片大片100被构造成:由第一单元1a形成的第一电池片的顶表面的搭接边缘的顶表面导电接触区23内设置有副栅线12,底表面的搭接边缘的顶表面导电接触区23a内设置有主栅线,这样,当两个太阳能电池片以叠瓦方式排列时,这两个太阳能电池片的彼此面对的顶表面导电接触区23和底表面导电接触区23a相互接触,此时,位于底侧的太阳能电池片(例如由第二单元1b形成的第二电池片)顶表面导电接触区23内的副栅线12能够和位于顶侧的太阳能电池片(例如由第一单元1a形成的第一电池片)的主栅线直接接触而实现导电连接。
需要说明的是,本文提到的“第一单元”和“第二单元”、“第一电池片”和“第二电池片”是相对性描述而非绝对性描述,例如,一对相邻的单元中的“第一单元”也可以同时是另一对相邻的单元中的“第二单元”。
下面转到图1和图3。可以看到电池片大片100的最前端的一对第一单元1a和第二单元1b还包括另一组顶表面粘结区22和顶表面导电接触区23,也就是说,在切割区21的两侧各存在一组顶表面粘结区22和顶表面导电接触区23。这两组顶表面粘结区22和顶表面导电接触区23分别形成为第一电池片和第二电池片的搭接边缘的顶表面。
图6A和图6B示出了本实施方式中电池片大片100裂片之后由单个单元1构成的单个太阳能电池片的顶表面和底表面的示意图。可以看到,在太阳能电池片的顶表面上的用于与另一太阳能电池片搭接的边缘处具有交替设置的顶表面粘结区22和顶表面导电接触区23,顶表面导电接触区23内具有副栅线12而不设置主栅线;在太阳能电池片的底表面上的用于与另一太阳能电池片搭接的边缘处具有交替设置的底表面粘结区22a和底表面导电接触区23a,底表面导电接触区23a设置有主栅线。
图7和图8示出了两个由上述第一单元1a、第二单元1b构成的太阳能电池片以叠瓦方式连接之后的结构。可以看到,由第一单元1a 和第二单元1b构成的太阳能电池片均包括中心层和设置在中心层表面上的透光导电膜313。
当两个太阳能电池片以叠瓦方式相连时,在其二者彼此接触的区域中,由第二单元1b构成的太阳能电池片的顶表面的的副栅线12(位于顶表面导电接触区23内)和由第一单元1a构成的太阳能电池片的底表面的主栅线14(位于底表面导电接触区23a内)的直接接触而实现导电连接。并且,由于主栅线是填充在底表面导电接触区内的,而底表面导电接触区在其延伸方向上是间断设置的,因而在图7所示的截面图中,主栅线14也是间断设置的,在各段主栅线14之间是施加在粘结区上的粘结剂9。
在本实施方式中,电池片大片100裂片而成的太阳能电池片以叠瓦方式排列之后,由主栅线14和副栅线12的直接接触而实现导电连接,因而电池片大片100可以减少形成主栅线的银浆用量(相比于顶表面和底表面都设置主栅线的方案),这样的设置能够降低成本,并且能够减轻太阳能电池片的重量。
图9A至图11示出了根据本发明的第二实施方式中的太阳能电池片,本实施方式中的太阳能电池片也是由电池片大片(未示出)裂片产生的。本实施方式各部件的结构与上一实施方式类似,因而对于与上一实施方式相同或相似的部分不再进行赘述。
参考图9A,太阳能电池片3的顶表面设置有沿其搭接边缘延伸并交替设置的顶表面导电接触区33和顶表面粘结区32,顶表面导电接触区内形成有主栅线。参考图9B,太阳能电池片3的底表面设置有沿其搭接边缘延伸并交替设置的底表面导电接触区33a和底表面粘结区32a,底表面导电接触区33a内设置有副栅线而不具有主栅线。
两个这样的太阳能电池片以叠瓦方式连接之后的状态在图10和图11中示出。为了方便描述,图10-图11中的两个异质结太阳能电池分别称为第一电池片3a和第二电池片3b。
第一电池片3a包括基体片和位于基体片底表面的透光导电膜313,第一电池片3a的底表面设置有副栅线312(具体地是设置在底 表面导电接触区内)。第二电池片3b包括基体片和位于基体片顶表面的透光导电膜313,第二电池片3b的顶表面设置有主栅线314(具体地是设置在顶表面导电接触区内)。副栅线312和主栅线314直接接触而实现第一电池片3a和第二电池片3b之间的导电连接。并且,由于主栅线314是填充在顶表面导电接触区内的,而顶表面导电接触区在其延伸方向上是间断设置的,因而在图11所示的截面图中,主栅线314也是间断设置的,在各段主栅线314之间是施加在粘结区上的粘结剂9。
在上述两个实施方式中,除了上文已描述的,各个部件还可以具有其他优选设置。
例如,粘结剂优选使用非导电性粘结剂。选择粘结材料时,要考虑多种因素,例如考虑对电气连接性的影响、机械强度、对产品可靠性的影响,同时也应考虑应用兼容性、成本等因素。优选地,选用液态或流动性较强的非导电性材料,便于渗入相邻的太阳能电池片之间的搭接缝隙。粘结剂的可选材料例如可以由丙烯酸树脂、有机硅树脂、环氧树脂或聚氨酯制成,为形成一定的厚度,还可以在其中添加固化剂、交联剂、偶联剂或橡胶球等助剂。
由于粘结剂不具有导电性,环境侵蚀、高低温交变、热胀冷缩等容易破坏导电胶的因素便不会影响本发明的叠瓦组件和太阳能电池片,叠瓦组件和太阳能电池片不容易出现电流虚接和断路,且降低了粘结剂的涂覆精度的要求。并且,由于不必设置导电胶,那么溢胶而造成的电池串的正负极断路等问题也就不会发生。另外,由于不要求粘结剂的导电性,叠瓦组件的生产成本也得以降低。
粘结剂也可以具有多种设置形式。例如,粘结剂可以呈点状,多个粘结剂在每一对相邻的两个太阳能电池片的搭接边缘上间断设置;或者,粘结剂可以为条状并沿每一对相邻的两个太阳能电池片的搭接边缘延伸;或者,可以在多个太阳能电池片的顶表面上施加粘结剂从而让粘结剂跨越多个太阳能电池片,在这种情况下,粘结剂优选地为多个且多个粘结剂在电池串的顶表面上彼此平行地布置;再或者,可 以在太阳能电池片的顶表面和/或底表面上施加多个粘结剂,各个粘结剂之间可以彼此不平行。
优选地,粘结剂也可以是先施加在每一个太阳能电池片上,然后再将各个太阳能电池片彼此互连。
再例如,可以将透光导电膜设置为:在整个基体片的顶表面和底表面上延伸,且在各个太阳能电池片彼此互连之前透光导电膜在各处具有均匀的厚度。这样,例如对于中心层顶表面上的透光导电膜来说,在顶表面粘结区处的透光导电膜上的施加粘结剂之后,粘结剂向上突出于该透光导电膜;对于中心层底表面上的透光导电膜来说,在底表面粘结区的透光导电膜上施加粘结剂之后,粘结剂向下突出于该透光导电膜。
这样,当两个太阳能电池片以叠瓦方式互连时,二者彼此相对的表面上的透光导电膜在粘结剂处因粘结剂的挤压而产生弯曲,使得二者的透光导电膜在紧邻粘结剂的位置处出现间隔。这样的设置方式较为简单,无需对透光导电膜做额外加工,因而生产效率较高、成本较低。
作为上述方案的替代,透光导电膜在设置粘结剂的位置处设置有缺口以至少部分地容纳粘结剂,这样当两个太阳能电池片以叠瓦方式互连时,二者的透光导电膜紧密接触,且接触表面不存在弯曲等情况。这样的设置避免了透光导电膜被挤压变形而产生的问题,并且粘结剂稳定地容纳在缺口中能够避免粘结剂脱落失效等问题的发生。
优选地,太阳能电池片的顶侧和/或底侧的透光导电膜可以为多层结构,并且在自中心层沿垂直于中心层的方向向外指向的方向上,各个所述透光导电膜的透光性递增。这样的设置能够改善太阳能电池片的载流子偏移率、透光性和导电性等方面,避免填充因子偏低、断路电流偏低问题的发生,使太阳能电池片具有较高的光电转化率。
本发明还提供了一种制造如上的叠瓦组件的方法的优选示例。该制造方法包括如下步骤:制造如上述实施方式所述的电池片大片;沿电池片大片的每一个切割区切割,从而使电池片大片裂片为多个太阳 能电池片;将多个所述太阳能电池片通过不具导电特性的粘结剂以叠瓦的方式相连,以使相邻的两个所述太阳能电池片中的一个的主栅线和另一个的副栅线直接接触从而实现导电连接。
其中,可以先在各个太阳能电池片的透光导电膜上施加粘结剂,然后再将各个透光导电膜彼此相连。具体地,对于彼此相邻的两个电池片(将其称为第一太阳能电池片和第二太阳能电池片),通过不具导电特性的粘结剂以叠瓦的方式将其相连的步骤包括依次的如下步骤:在第一太阳能电池片的顶表面粘结区的透光导电膜上施加粘结剂;将第一太阳能电池片和第二太阳能电池片以叠瓦方式彼此相连,两个太阳能电池片之间通过粘结剂彼此固定。
优选地,还包括在第一太阳能电池片上施加粘结剂的步骤和将第一太阳能电池片和第二太阳能电池片彼此互联的步骤之间的如下步骤:在第二太阳能电池片的底表面粘结区的透光导电膜上也施加粘结剂。
或者,也可以将各个太阳能电池片以叠瓦方式排列好之后,在再其上施加粘结剂。这样的方式又可以由若干不同的实现方法来实现。
其中,施加粘结剂的步骤可以包括:沿每一对相邻的太阳能电池片的搭接边缘间断地施加粘结剂,以使粘结剂形成为沿搭接边缘间隔排布的多个点状结构。
或者,施加粘结剂的步骤可以包括:沿每一对相邻的太阳能电池片的搭接边缘连续施加粘结剂,以使粘结剂形成为沿搭接边缘延伸的条状结构。
或者,施加粘结剂的可以步骤包括:沿各个太阳能电池片的排布方向连续施加粘结剂,以使粘结剂跨越多个太阳能电池片。
优选地,上述几种施加粘结剂的方式可以通过喷涂方式、滴落方式、滚刷方式、印刷方式、毛刷方式来实现。
同样优选地,还可以通过利用网板来施加粘结剂,网板上设置有镂空部,施加粘结剂的方法包括如下步骤:将网板定位在各个排列好的太阳能电池片的顶表面上,在网板上涂覆粘结剂,以使粘结剂透过 镂空部而被印刷在所需位置。
如上文,由于太阳能电池片的中心层也具有多层结构,因而,制造整片太阳能电池片的方法包括:设置硅片;在硅片的顶表面上设置顶侧本征非晶硅薄膜、在硅片的底表面上设置底侧本征非晶硅薄膜;在顶侧本征非晶硅薄膜的顶表面上和底侧本征非晶硅薄膜的底表面上设置透光导电膜;在透光导电膜上设置副栅线。优选地,制造整片太阳能电池片的方法不包括设置主栅线的步骤。
本发明提供的电池片大片能够方便裂片操作,且电池片大片上设置有用于太阳能电池片导电连接的导电接触区以及用于施加粘结剂的粘结区,这样的设置能够优化太阳能电池片的生产过程和使用性能。
进一步地,裂片而形成的太阳能电池片之间能够通过主栅线和副栅线的直接接触而实现导电连接,从而也可以使用不具导电性质的粘结剂来进行固定,这至少具有以下优点:
一、能够减少主栅线的设置,从而节约银浆、降低成本;
二、粘结剂可以不具导电性,因而环境侵蚀、高低温交变、热胀冷缩等容易破坏导电胶的因素便不会影响本发明的叠瓦组件,叠瓦组件不容易出现电流虚接和断路,由于导电胶溢胶而造成的电池串的正负极断路等问题也不会发生。
本发明的多种实施方式的以上描述出于描述的目的提供给相关领域的一个普通技术人员。不意图将本发明排他或局限于单个公开的实施方式。如上所述,以上教导的领域中的普通技术人员将明白本发明的多种替代和变型。因此,虽然具体描述了一些替代实施方式,本领域普通技术人员将明白或相对容易地开发其他实施方式。本发明旨在包括这里描述的本发明的所有替代、改型和变型,以及落入以上描述的本发明的精神和范围内的其他实施方式。
附图标记:
电池片大片 100
单元 1
第一单元 1a
第二单元 1b
第一电池片 3a
第二电池片 3b
交界部分 2
切割区 21
顶表面粘结区 22、32
顶表面导电接触区 23、33
基体片 11
副栅线 12
底表面粘结区 22a、32a
底表面导电接触区 23a、33a
透光导电膜 13、313
粘结剂 9
主栅线 14

Claims (21)

  1. 一种电池片大片,用于裂片而形成多个太阳能电池片,多个所述太阳能电池片能够以叠瓦方式排列成电池串,
    其中,所述电池片大片包括基体片,所述基体片的顶表面和底表面上设置有副栅线,且所述基体片的顶表面或底表面上设置有跨越各个副栅线的主栅线,所述电池片大片被划分成沿第一方向排布的多个单元,任意相邻的两个所述单元为第一单元和第二单元,当所述电池片大片裂片之后所述第一单元形成为第一电池片,所述第二单元形成为第二电池片,
    其特征在于,所述第一单元和所述第二单元之间的交界部分的顶表面处被划分为:
    切割区,所述切割区沿垂直于所述第一方向的方向延伸,所述切割区构造为使得所述电池片大片能够沿其被切割;和
    顶表面粘结区和顶表面导电接触区,所述顶表面粘结区和顶表面导电接触区设置在所述切割区的一侧,且所述顶表面粘结区与所述顶表面导电接触区在垂直于所述第一方向的方向上交替设置,所述切割区和顶表面导电接触区形成为所述第二电池片的一个搭接边缘的顶表面,
    其中,所述顶表面粘结区和所述顶表面导电接触区构造为当所述第二电池片位于电池串中时能够在所述顶表面粘结区的上施加粘结剂从而和与其相邻的太阳能电池片的底表面相互固定,且所述顶表面导电接触区能够与和另一由所述电池片大片裂片而成的太阳能电池片的底表面上的对应区域彼此面对而实现这两个太阳能电池片的叠瓦连接,并且,所述电池片大片构造为使得:所述顶表面导电接触区和所述对应区域中的一个上设置有所述副栅线,另一个上设置有所述主栅线,所述副栅线和所述主栅线直接接触而实现这两个太阳能电池片的导电连接。
  2. 根据权利要求1所述的电池片大片,其特征在于,所述基体片 包括中心层和形成在所述中心层的顶表面、底表面上的透光导电膜。
  3. 根据权利要求1所述的电池片大片,其特征在于,所述主栅线设置在所述电池片大片的顶表面上,且所述主栅线包括多组,每一个所述单元的边缘处设置有一组,每一组主栅线包括间断设置的多段结构,各段所述主栅线一一对应地设置在各个所述顶表面导电接触区内。
  4. 根据权利要求1所述的电池片大片,其特征在于,在所述第一单元和所述第二单元的交界部分的底表面上还设置有底表面粘结区和底表面导电接触区,所述底表面粘结区和所述底表面导电接触区在所述第一方向上位于所述切割区的另一侧且所述底表面粘结区和所述底表面导电接触区在垂直于所述第一方向的方向上交替设置,所述底表面导电接触区形成为所述对应区域。
  5. 根据权利要求4所述的电池片大片,其特征在于,所述主栅线设置在所述电池片大片的底表面上,且所述主栅线包括多组,每一个所述单元的边缘处设置有一组,每一组主栅线包括间断设置的多段结构,各段所述主栅线一一对应地设置在各个所述底表面导电接触区内,并且,所述电池片大片的顶表面导电接触区内设置有副栅线。
  6. 根据权利要求2所述的电池片大片,其特征在于,所述透光导电膜在所述中心层的整个顶表面和底表面上延伸。
  7. 根据权利要求2所述的电池片大片,其特征在于,在所述顶表面粘结区和所述底表面粘结区处不存在所述透光导电膜。
  8. 根据权利要求1所述的电池片大片,其特征在于,所述电池片大片的最前端的一对所述第一单元和所述第二单元之间的交界部分的顶表面还设置有另一组顶表面粘结区和顶表面导电接触区,所述另一组顶表面粘结区和顶表面导电接触区位于所述切割区的另一侧,所述另一组顶表面粘结区和顶表面导电接触区形成为该第一电池片的一个搭接边缘的顶表面。
  9. 根据权利要求1所述的电池片大片,其特征在于,所述电池片大片包括中心层,所述中心层包括硅片、设置在所述硅片的顶表面上的顶侧本征非晶硅薄膜、设置在所述顶侧本征非晶硅薄膜的顶表面的 P型非晶硅薄膜、设置在所述硅片的底表面上的底侧本征非晶硅薄膜以及设置在所述底侧本征非晶硅薄膜的底表面上的N型非晶硅薄膜。
  10. 一种太阳能电池片,所述太阳能电池片由根据权利要求1-9中任意一项所述的电池片大片裂片而成。
  11. 根据权利要求10所述的太阳能电池片,其特征在于,所述太阳能电池片的基体片包括中心层和透光导电膜,所述透光导电膜在所述中心层的整个顶表面和底表面上延伸,并且,所述透光导电膜在各处均具有相同厚度,以使得当在顶表面粘结区上施加粘结剂时,所述粘结剂突出于所述透光导电膜,从而使得所述太阳能电池片与另一个所述太阳能电池片相连时,所述两个太阳能电池片的彼此相对的表面上的所述透光导电膜在所述粘结剂处被所述粘结剂间隔开。
  12. 根据权利要求10所述的太阳能电池片,其特征在于,所述太阳能电池片的基体片包括中心层为位于所述中心层的顶表面、底表面上的透光导电膜,所述透光导电膜上在所述顶表面粘结区设置有缺口,当在所述太阳能电池片上施加粘结剂时,所述粘结剂位于所述缺口内不突出于所述透光导电膜。
  13. 根据权利要求10所述的太阳能电池片,其特征在于,所述太阳能电池片的与另一太阳能电池片接触的搭接边缘的顶表面上设置有沿所述搭接边缘延伸并交替设置的顶表面粘结区和顶表面导电接触区,所述顶表面导电接触区内设置有主栅线。
  14. 根据权利要求10所述的太阳能电池片,其特征在于,所述太阳能电池片的与另一太阳能电池片接触的搭接边缘的底表面上设置有沿所述搭接边缘延伸并交替设置的底表面粘结区和底表面导电接触区,所述底表面导电接触区内设置有主栅线。
  15. 一种叠瓦组件,包括电池串,其特征在于,所述电池串由多个根据权利要求10-14中任意一项所述的太阳能电池片以叠瓦方式依次相连而形成,各个所述太阳能电池片通过粘结剂彼此固定,并且,所述太阳能电池片的顶表面和底表面上设置有副栅线,所述顶表面或所述底表面上设置有主栅线,相邻的两个所述太阳能电池片中的一个 的主栅线能够和所述两个太阳能电池片中的另一个的副栅线直接接触从而实现相邻的两个所述太阳能电池片之间的导电连接。
  16. 根据权利要求15所述的叠瓦组件,其特征在于,所述粘结剂为非导电性粘结剂。
  17. 根据权利要求15所述的叠瓦组件,其特征在于,所述粘结剂为由丙烯酸树脂、有机硅树脂、环氧树脂或聚氨酯制成的点状结构的粘结剂。
  18. 根据权利要求15所述的叠瓦组件,其特征在于,所述粘结剂为包括固化剂、交联剂、偶联剂或橡胶球的点状结构的粘结剂。
  19. 一种制造方法,用于制造叠瓦组件,其特征在于,所述方法包括如下步骤:
    制造根据权利要求1-9中任意一项所述的电池片大片,且所述电池片大片具有副栅线;
    沿所述电池片大片的每一个切割区切割,从而使所述电池片大片裂片为多个太阳能电池片;
    将多个所述太阳能电池片通过不具导电特性的粘结剂以叠瓦的方式相连,以使相邻的两个所述太阳能电池片中的一个的主栅线和另一个的副栅线直接接触从而实现导电连接。
  20. 根据权利要求19所述的制造方法,其特征在于,所述方法还包括在所述太阳能电池片上以如下方式之一来施加粘结剂的步骤:喷涂方式、滴落方式、滚刷方式、印刷方式、毛刷方式。
  21. 根据权利要求19所述的制造方法,其特征在于,制造电池片大片的方法不包括设置主栅线的步骤。
PCT/CN2020/118186 2020-03-30 2020-09-27 电池片大片、太阳能电池片、叠瓦组件和制造方法 WO2021013276A2 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2020317362A AU2020317362B2 (en) 2020-03-30 2020-09-27 Large cell piece, solar cell pieces, shingled assembly, and manufacturing method
EP20842943.1A EP4131426A4 (en) 2020-03-30 2020-09-27 LARGE SIZE CELL ELEMENT, SOLAR CELL ELEMENTS, SHINGLE ASSEMBLY AND METHOD OF MANUFACTURING
US17/915,633 US20230097957A1 (en) 2020-03-30 2020-09-27 Large cell sheets, solar cells, shingled solar module, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010237613.2A CN111490116A (zh) 2020-03-30 2020-03-30 电池片大片、太阳能电池片、叠瓦组件和制造方法
CN202010237613.2 2020-03-30

Publications (2)

Publication Number Publication Date
WO2021013276A2 true WO2021013276A2 (zh) 2021-01-28
WO2021013276A3 WO2021013276A3 (zh) 2021-03-11

Family

ID=71812473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/118186 WO2021013276A2 (zh) 2020-03-30 2020-09-27 电池片大片、太阳能电池片、叠瓦组件和制造方法

Country Status (5)

Country Link
US (1) US20230097957A1 (zh)
EP (1) EP4131426A4 (zh)
CN (1) CN111490116A (zh)
AU (1) AU2020317362B2 (zh)
WO (1) WO2021013276A2 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111490116A (zh) * 2020-03-30 2020-08-04 成都晔凡科技有限公司 电池片大片、太阳能电池片、叠瓦组件和制造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180198008A1 (en) * 2017-01-06 2018-07-12 Solarcity Corporation Photovoltaic structures with segmented busbars for increased thermal cycling reliability
KR20180127751A (ko) * 2017-05-22 2018-11-30 엘지전자 주식회사 화합물 태양전지, 화합물 태양전지 모듈과 이의 제조 방법
CN110137282A (zh) * 2019-06-05 2019-08-16 苏州阿特斯阳光电力科技有限公司 太阳能电池与光伏组件
CN210156385U (zh) * 2019-07-11 2020-03-17 江苏爱康科技股份有限公司 硅基异质结太阳电池叠瓦光伏组件
CN110556437A (zh) * 2019-09-05 2019-12-10 成都晔凡科技有限公司 叠瓦组件、太阳能电池片和叠瓦组件的制造方法
CN110473924A (zh) * 2019-09-05 2019-11-19 成都晔凡科技有限公司 叠瓦组件、太阳能电池片和叠瓦组件的制造方法
CN110581185A (zh) * 2019-09-05 2019-12-17 成都晔凡科技有限公司 叠瓦组件和叠瓦组件的制造方法
CN111490116A (zh) * 2020-03-30 2020-08-04 成都晔凡科技有限公司 电池片大片、太阳能电池片、叠瓦组件和制造方法

Also Published As

Publication number Publication date
EP4131426A4 (en) 2024-05-01
US20230097957A1 (en) 2023-03-30
AU2020317362A1 (en) 2022-11-03
AU2020317362B2 (en) 2024-04-18
CN111490116A (zh) 2020-08-04
WO2021013276A3 (zh) 2021-03-11
EP4131426A2 (en) 2023-02-08

Similar Documents

Publication Publication Date Title
CN104810423B (zh) 新型无主栅高效率背接触太阳能电池和组件及制备工艺
WO2020052694A2 (zh) 叠瓦组件和叠瓦组件的制造方法
WO2021008634A4 (zh) 叠瓦组件的制造方法及叠瓦组件
JP2010238927A (ja) 太陽電池セル、太陽電池モジュールおよび太陽電池システム
CN104269462B (zh) 无主栅背接触太阳能电池背板、组件及制备工艺
WO2021013275A2 (zh) 叠瓦组件、太阳能电池片和叠瓦组件的制造方法
CN110854218A (zh) 栅线结构、太阳能电池片、叠瓦组件、印刷和制造方法
CN104269454B (zh) 无主栅、高效率背接触太阳能电池背板、组件及制备工艺
WO2020052693A2 (zh) 叠瓦组件、太阳能电池片和叠瓦组件的制造方法
WO2021013276A2 (zh) 电池片大片、太阳能电池片、叠瓦组件和制造方法
CN204230264U (zh) 无主栅高效率背接触太阳能电池背板及组件
CN211858665U (zh) 叠瓦组件和太阳能电池片
CN103465385B (zh) 一种柔性薄膜太阳能电池及其分片、连接与制备方法
CN216054728U (zh) 一种太阳能光伏电池组件的连接结构
CN110767760A (zh) 异质结太阳能电池片、叠瓦组件及其制造方法
TW202209696A (zh) 雙面光伏電池的金屬導線與電池組件連接結構
CN212085017U (zh) 电池片大片、太阳能电池片及叠瓦组件
CN211828787U (zh) 电池片大片、异质结太阳能电池片及叠瓦组件
CN209607753U (zh) 一种光伏电池阵列及光伏组件
CN211828800U (zh) 叠瓦组件和异质结太阳能电池片
CN106328732A (zh) 一种新型太阳能电池
CN202423343U (zh) 一种具有多组输出的硅基薄膜太阳能电池
CN210778618U (zh) 叠瓦组件
CN110911517A (zh) 一种新型互联材料焊带
CN111403510A (zh) 电池片大片、异质结太阳能电池片、叠瓦组件和制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20842943

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2020317362

Country of ref document: AU

Date of ref document: 20200927

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020842943

Country of ref document: EP

Effective date: 20221031