WO2020052693A2 - 叠瓦组件、太阳能电池片和叠瓦组件的制造方法 - Google Patents

叠瓦组件、太阳能电池片和叠瓦组件的制造方法 Download PDF

Info

Publication number
WO2020052693A2
WO2020052693A2 PCT/CN2019/126999 CN2019126999W WO2020052693A2 WO 2020052693 A2 WO2020052693 A2 WO 2020052693A2 CN 2019126999 W CN2019126999 W CN 2019126999W WO 2020052693 A2 WO2020052693 A2 WO 2020052693A2
Authority
WO
WIPO (PCT)
Prior art keywords
positive electrode
solar cell
back electrode
solar cells
electrode
Prior art date
Application number
PCT/CN2019/126999
Other languages
English (en)
French (fr)
Other versions
WO2020052693A3 (zh
Inventor
尹丙伟
孙俊
倪孙洋
陈登运
丁士引
李岩
石刚
谢毅
刘汉元
Original Assignee
成都晔凡科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都晔凡科技有限公司 filed Critical 成都晔凡科技有限公司
Publication of WO2020052693A2 publication Critical patent/WO2020052693A2/zh
Publication of WO2020052693A3 publication Critical patent/WO2020052693A3/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the field of energy resources, and in particular to a method for manufacturing a shingle module, a solar cell chip, and a shingle module.
  • Photovoltaic modules are the core components of photovoltaic power generation. It is an inevitable trend to improve their conversion efficiency and develop high-efficiency modules. A variety of high-efficiency components are emerging on the market, such as shingles, half-pieces, multi-main grids, and double-sided components. As the application areas and application areas of photovoltaic modules become more and more widespread, their reliability requirements are becoming higher and higher, especially in some severe or extreme weather-prone areas, efficient and highly reliable photovoltaic modules are required.
  • shingled modules use the small-current and low-loss electrical principle (the power loss of a photovoltaic module is proportional to the square of the working current), so that the module power loss is greatly reduced.
  • the power loss of a photovoltaic module is proportional to the square of the working current
  • the energy density per unit area is high.
  • conductive adhesives with elastomer properties are currently used to replace conventional photovoltaic metal welding tapes for components. Because the photovoltaic metal welding tapes exhibit high series resistance in the entire battery, the travel of the conductive adhesive current loop is much smaller than that using welding. In the end, the shingled module becomes an efficient module.
  • the reliability of outdoor applications is better than that of conventional photovoltaic modules, because the shingled module avoids the stress damage of the metal welding tape to the cell-battery interconnection position and other confluence areas. .
  • the failure probability of conventional components using metal ribbon interconnect packaging is far more than that of crystalline silicon battery chip packages cut with elastomeric conductive adhesive interconnection. Shingle components.
  • the current mainstream technology of shingled components uses conductive adhesive to interconnect the cut battery cells.
  • the conductive adhesive is mainly composed of a conductive phase and an adhesive phase.
  • the conductive phase is mainly composed of precious metals, such as pure silver particles or silver-coated copper, silver-coated nickel, silver-coated glass and other particles, and is used to conduct electricity between solar cells. Its particle shape and distribution meet the optimal electrical conduction As a benchmark, most of the flake or ball-shaped combination silver powders with D50 ⁇ 10um grade are currently used.
  • the adhesive phase is mainly composed of a weather-resistant polymer resin polymer. Generally, acrylic resin, silicone resin, epoxy resin, polyurethane, etc. are selected according to the bonding strength and weathering stability.
  • conductive adhesive manufacturers In order to achieve low contact resistance, low volume resistivity, high adhesion, and maintain long-term excellent weather resistance, conductive adhesive manufacturers generally design the conductive phase and adhesive phase formula to ensure that The stability of shingle modules in the initial stage of environmental erosion tests and long-term outdoor practical applications.
  • the conductive adhesive is mainly composed of polymer resin and a large amount of precious metal powder, which is costly and destroys the ecological environment to a certain extent (the production and processing of precious metals have a large environmental pollution).
  • the conductive adhesive is a paste, which has certain fluidity during the sizing or lamination process, and it is very easy to overflow the glue and cause the positive and negative electrodes of the shingled interconnected battery string to short circuit.
  • An object of the present invention is to provide a shingle module, a solar cell sheet, and a manufacturing method of a shingle module, so that when the solar cell sheets are arranged to form a shingle module, the electrical connection between the solar cells is passed through the positive Direct contact between the electrode and the back electrode or back electric field is achieved without relying on the conductivity of the adhesive.
  • a shingle module including a plurality of solar cells, and the plurality of solar cells are sequentially arranged in a shingled manner in a first direction and passed through an adhesive.
  • the solar cell sheet Fixed relative to each other, wherein the solar cell sheet includes a base sheet, a positive electrode extending in a second direction is provided on a top surface of the base sheet, and a back electrode or a back electric field is provided on a bottom surface of the base sheet ,
  • the positive electrode of any one of the two adjacent solar cells is in direct contact with the back electrode or back electric field of the other to realize a conductive connection.
  • a back electrode extending along a third direction parallel to the second direction is provided on a bottom surface of the base sheet, and the positive electrode and the back electrode are in the first direction. There are gaps,
  • the positive electrode and / or the back electrode are intermittently arranged in an extending direction thereof, and the positive electrode and the back electrode are at least partially aligned in the first direction.
  • the positive electrode is intermittently disposed in the second direction, and the back electrode is continuously disposed in the third direction; or
  • the positive electrode is continuously disposed in the second direction, and the back electrode is intermittently disposed in the third direction; or
  • the positive electrode is intermittently disposed in the second direction
  • the back electrode is intermittently disposed in the third direction
  • the positive electrode and the back electrode are aligned in the first direction.
  • the positive electrode and the back electrode are both formed into a zigzag structure.
  • the positive electrodes of the two solar cells And the back electrode is in contact with each other in a form of rack engagement.
  • the adhesive extends on the overlapping edges of each pair of adjacent solar cells.
  • the adhesive is intermittently disposed on the overlapping edges of each pair of adjacent solar cells.
  • the adhesive is applied at the end of each pair of adjacent solar cells that are in contact with the positive electrode and the back electrode.
  • the adhesive is located on a side of the positive electrode and the back electrode of each pair of adjacent solar cells that are in contact with each other, and
  • the contact height of the contacting positive electrode and the back electrode is greater than or equal to the height of the adhesive.
  • the adhesive extends in a first direction to span a plurality of the solar cells.
  • the adhesive is a conductive adhesive, or the adhesive does not have conductivity.
  • a solar cell sheet is provided.
  • a plurality of the solar cell sheets can be connected in a shingled manner in a first direction.
  • the solar cell sheet includes a base sheet, and The top surface of the base sheet is provided with a positive electrode extending in a second direction, and the bottom surface of the base sheet is provided with a back electrode or a back electric field.
  • the solar cell sheet is configured such that when two of the solar cells When the sheets are connected in a shingled manner along the first direction, direct contact can be made between the positive electrode of one of the two solar cell sheets and the back electrode or back electric field of the other to achieve a conductive connection.
  • a back electrode (12) extending along a third direction (D3) parallel to the second direction is provided on the bottom surface of the base sheet, and the positive electrode and the back electrode are on There is a gap in the first direction, and when two solar cells are connected in a shingled manner along the first direction, the positive electrode of one of the two solar cells can be The back electrode is aligned and in contact,
  • the positive electrode and / or the back electrode are intermittently arranged in an extending direction thereof, and the positive electrode and the back electrode are at least partially aligned in the first direction.
  • the positive electrode is intermittently disposed in the second direction, and the back electrode is continuously disposed in the third direction; or
  • the positive electrode is continuously disposed in the second direction, and the back electrode is intermittently disposed in the third direction; or
  • the positive electrode is intermittently disposed in the second direction
  • the back electrode is intermittently disposed in the third direction
  • the positive electrode and the back electrode are aligned in the first direction.
  • the positive electrode and the back electrode are both formed into a zigzag structure.
  • the positive electrodes of the two solar cells And the back electrode is in contact with each other in a form of rack engagement.
  • a manufacturing method for manufacturing the shingle component according to any one of the above includes the following steps:
  • the plurality of solar cells can be sequentially connected in a shingled manner in a first direction, and the top surface of the base sheet of the solar cell is provided with a positive electrode extending in a second direction, A back electrode or a back electric field is provided on the bottom surface of the base sheet.
  • a back electrode or a back electric field is provided on the bottom surface of the base sheet.
  • the step of manufacturing the plurality of solar cells includes:
  • the whole solar cell after the pretreatment is cut into small pieces to form the plurality of solar cells.
  • the step of pretreating the entire solar cell includes:
  • An outer passivation layer is grown and deposited on the middle passivation layer.
  • the inner passivation layer is deposited by a thermal oxidation method or a laughing gas oxidation or ozonation or nitric acid solution chemical method, and the inner passivation layer is provided as a silicon dioxide film layer; and / or
  • the middle passivation layer is deposited by a PECVD or ALD layer or a solid target by a PVD layer method, and the middle passivation layer is set as a film of aluminum oxide or a film containing aluminum oxide; and / or
  • the outer passivation layer is deposited by a PVD, CVD or ALD method.
  • the solar cells when the solar cells are interconnected into a shingle module, the solar cells are electrically connected to each other through direct contact between the positive electrode and the back electrode, so that a conductive adhesive having conductivity can be omitted.
  • factors such as environmental erosion, high and low temperature alternation, thermal expansion and contraction, which can easily damage the conductive adhesive, will not affect the shingle module of the present invention, and the shingle module will not be prone to current virtual connection and disconnection.
  • problems such as disconnection of the positive and negative electrodes of the shingle assembly caused by the overflow of adhesive will not occur.
  • the conductivity of the binder since the conductivity of the binder is not required, the production cost of the shingle module is also reduced.
  • FIG. 1 is a schematic diagram of a solar cell according to a preferred embodiment of the present invention.
  • FIG. 2 is a shingle module formed by stacking the solar cells in FIG. 1;
  • FIG. 1 are schematic diagrams of several alternative preferred embodiments of the solar cell sheet in FIG. 1;
  • 8 to 12 are side cross-sectional views taken along the line A-A in FIG. 2, showing the connection state between two adjacent solar cells in several preferred embodiments.
  • the present invention provides a shingle module, a solar cell sheet and a method for manufacturing the shingle module.
  • Figures 1 to 12 show several preferred embodiments of the invention.
  • FIG. 1 shows a solar cell sheet 1 according to a preferred embodiment of the present invention
  • FIG. 2 shows a plurality of shingled modules 2 arranged in a shingled manner by a plurality of solar cell sheets 1 in FIG. 1.
  • first direction mentioned later can be understood as the arrangement direction of each solar cell 1 in the shingle module 2, which is substantially consistent with the width direction of each rectangular solar cell 1.
  • the first direction is shown by D1 in FIG. 2
  • the “second direction” can be understood as a length direction on the top surface 24 of the rectangular solar cell 1
  • the second direction is shown by D2 in FIG. 3
  • the “third direction” can be understood as a length direction on the bottom surface 25 of the rectangular solar cell 1, and the third direction is shown by D3 in FIG. 3.
  • the solar cell sheet 1 includes a base sheet 11, which is preferably made of silicon.
  • a plurality of electrodes are printed on the surface of the base sheet 11, and the electrodes are preferably made of silver.
  • a positive electrode 13 extending along the second direction D2 is printed on the top surface 24 of the base sheet 11, and a back electrode 12 or a back electric field 14 is provided on the bottom surface 25 of the base sheet 11.
  • the back surface 12 is printed on the bottom surface 25 of the base sheet 11 in a third direction D3 parallel to the second direction D2. There is a gap in one direction D1.
  • the positive electrode 13 of one of the two solar cells 1 can be aligned with and contact the back electrode 12 of the other.
  • the top surface 24 of the solar cell sheet 1 is shown in FIG. 1, and therefore the back electrode 12 should be disposed on the bottom surface 25 opposite to the position at which it is pointed.
  • the solar cell sheet 1 may be processed such that both the top surface 24 and the bottom surface 25 are rectangular.
  • the positive electrode 13 and the back electrode 12 are disposed on opposite edges of the top surface 24 and the bottom surface 25, respectively.
  • the positive electrode 13 and the back electrode 12 may be provided on the longitudinal edges of the top surface 24 and the bottom surface 25, respectively.
  • the first direction D1 may be a direction parallel to the lateral edges of the top surface 24 and the bottom surface 25, that is, the first direction D1 is perpendicular to the second direction D2 and the third direction D3.
  • the positive electrode 13 and / or the back electrode 12 may be arranged intermittently along the extending direction thereof. In this way, the positive electrode 13 and the back electrode 12 The total set length is not necessarily equal.
  • the solar cell sheet 1 needs to be arranged so that the positive electrode and the back electrode are at least partially aligned in the first direction D1. For example, as shown in FIG.
  • the positive electrode 13 is intermittently disposed on the top surface 24 in the second direction D2, the back electrode 12 is intermittently disposed on the bottom surface 25 in the third direction D3, and the positive electrode 13 and the back electrode 12 are The sections are aligned in the first direction D1; or, as shown in FIG. 4, the positive electrode 13 is intermittently disposed on the top surface 24 in the second direction D2, and the back electrode 12 is continuously disposed on the bottom surface 25 in the third direction D3. Or, as shown in FIG. 5, the positive electrode 13 is continuously disposed along the second direction D2 on the top surface 24, and the back electrode 12 is intermittently disposed along the third direction D3 on the bottom surface 25.
  • the positive electrode 13 may be continuously disposed in the second direction D2, and the back electrode 12 is continuously disposed in the third direction D3.
  • the contact area between the positive electrode 13 and the back electrode 12 is as large as possible, so that Higher current conduction efficiency.
  • the positive electrode 13 and the back electrode 12 may be set in a zigzag structure, so that the adjacent solar cell sheets 1 are phase-phased.
  • the positive electrode 13 and the back electrode 12 are in contact with each other in the form of rack meshing. This scheme is shown in FIG. 12. Such an arrangement can not only increase the contact area between the positive electrode 13 and the back electrode 12, but also improve the stability of the interconnection between the solar cells 1.
  • the back electrode 12 may be replaced with a back electric field 14.
  • a corresponding notch may be provided at a corresponding edge of the bottom surface 25 of the solar cell sheet 1, and a back electric field 14 is applied at the edge.
  • the shingle module 2 provided by the present invention can be formed by connecting the solar cell sheets 1 described above to each other. After the solar cells 1 are interconnected with each other, each solar cell 1 can be fixed relative to each other by an adhesive 4.
  • the adhesive 4 may preferably have no conductivity, and of course, the adhesive 4 may also have conductivity.
  • the adhesive 4 can be made of materials such as acrylic resin, silicone resin, epoxy resin, polyurethane, etc., and in order to form a certain thickness, some additives or substances such as curing agents and cross-linking agents need to be added to the resin. , Coupling agent or rubber ball.
  • the adhesive 4 may have various installation forms.
  • the adhesive 4 may be applied continuously or intermittently on the overlapping edges of adjacent solar cells 1, or the adhesive may be applied on the top surface 24 of the plurality of solar cells 1 along the first direction D1. 4 thereby allowing the adhesive 4 to span multiple solar cells 1.
  • FIG. 8 to 12 are cross-sectional views of two adjacent solar cells 1 in an interconnected state in several embodiments. These cross-sectional views can be regarded as the cross-section of the shingle module 2 in FIG. 2 along the line AA. Open view.
  • the two solar cells 1 in the drawings are referred to as a first solar cell 21 and a second solar cell 22, respectively.
  • the positive electrode 13 of the first solar cell sheet 21 is in conductive contact with the back electrode 12 of the second solar cell sheet 22, and the surfaces of the positive electrode 13 and the back electrode 12 that are in contact with each other are conductive. Contact surface 23.
  • the adhesive 4 is intermittently provided on the overlapping edges of the first solar cell sheet 21 and the second solar cell sheet 22.
  • the adhesive 4 structure may be formed by intermittently applying a dot-shaped adhesive 4 to each overlapping edge, or applying a plurality of adhesives extending on the top surface of the shingle component 2 along the first direction D1. Agent 4 was formed. It can be seen that in FIGS. 8 and 9, the height of the portion of the adhesive 4 (ie, the dimension in the height direction H in FIG.
  • the junction size of the positive electrode 13 and the back electrode 12 in FIG. 12 should be smaller than the sum of the height of the positive electrode 13 and the height of the back electrode 12.
  • the positive electrode 13 of the first solar cell sheet 21 is in conductive contact with the back electrode 12 of the second solar cell sheet 22, and the surfaces of the positive electrode 13 and the back electrode 12 that are in contact with each other are conductive contact surfaces 23.
  • the adhesive 4 is provided intermittently on the overlapping edges of the first solar cell sheet 21 and the second solar cell sheet 22, and the adhesive 4 is applied to the ends of the positive electrode 13 and the back electrode 12, such an arrangement It is possible to prevent the EVA from entering the contact portions between the solar cell sheets 1 during the lamination process of the shingle module 2 and hinder the electrical connection.
  • the positive electrode 13 of the first solar cell sheet 21 is in conductive contact with the back electrode 12 of the second solar cell sheet 22, and the surfaces of the positive electrode 13 and the back electrode 12 that are in contact with each other are conductive contact surfaces 23, and the adhesive 4 is provided intermittently on the overlapping edges of the first solar cell sheet 21 and the second solar cell sheet 22, and the height of the adhesive 4 is smaller than the bonding height of the positive electrode 13 and the back electrode 12.
  • the utility model also provides a manufacturing method for manufacturing the solar cell sheet 1, which includes the following steps:
  • a plurality of solar cells 1 can be manufactured, and the plurality of solar cells 1 can be sequentially connected in a shingled manner in a first direction D1.
  • a top surface 24 of the base sheet 11 of the solar cell 1 is printed with an extension in the second direction D2.
  • the positive electrode 13 and the bottom surface 25 of the base sheet 11 are printed with a back electrode 12 extending in a third direction D3 parallel to the second direction D2. There is a gap between the positive electrode 13 and the back electrode 12 in the first direction D1.
  • the positive electrode 13 of one of the two solar cells 1 is aligned with and in contact with the back electrode 12 of the other;
  • the plurality of solar cell sheets 1 are arranged in a shingle manner along the first direction D1 and fixed to each other so that the positive electrode 13 of one of any two adjacent solar cell sheets 1 is in contact with the back electrode 12 of the other.
  • steps of manufacturing a plurality of solar cells 1 include:
  • the pre-processed entire solar cell sheet 1 is cut into small pieces to form a plurality of solar cell sheets 1.
  • step of preprocessing the entire solar cell sheet 1 includes:
  • An internal passivation layer is grown and precipitated on the front and back surfaces of the total substrate sheet 11;
  • An outer passivation layer is grown and deposited on the middle passivation layer.
  • the inner passivation layer is deposited using a thermal oxidation method or nitrous oxide oxidation or ozonation or a nitric acid solution chemical method, and the inner passivation layer is provided as a silicon dioxide film layer; and / or
  • the middle passivation layer is deposited using a PECVD or ALD layer or a solid target through a PVD layer method, and the middle passivation layer is set as a film of aluminum oxide or a film containing aluminum oxide; and / or
  • the outer passivation layer is deposited using PVD, CVD or ALD methods.
  • a single crystal silicon wafer is used to surface texturize to obtain a good texture structure, so that increasing the specific surface area can accept more photons (energy) and reduce the reflection of incident light. Its subsequent steps can include cleaning. Residual liquid step during texturing to reduce the impact of acid and alkaline substances on the battery junction.
  • a step of forming a PN junction may also be included, which includes: reacting phosphorus oxychloride with the silicon wafer to obtain phosphorus atoms; after a certain time, the phosphorus atoms enter the surface layer of the silicon wafer and pass between the silicon atoms.
  • the voids permeate and diffuse into the silicon wafer, forming the interface between the N-type semiconductor and the P-type semiconductor.
  • Complete the diffusion junction process to realize the conversion of light energy to electric energy. Because the diffusion junction forms a short-circuit channel at the edge of the silicon wafer, the photo-generated electrons collected on the front side of the PN junction will flow to the back of the PN junction along the region where the phosphorus is diffused along the edge, causing a short circuit.
  • the edge PN will be plasma-etched. Junction etch removal can avoid shorts caused by edges.
  • SE process steps can be added.
  • a layer of phosphosilicate glass is formed on the surface of the silicon wafer due to the diffusion junction process, and the effect on the efficiency of the shingled battery is reduced by the process of removing the phosphosilicate glass.
  • the silicon wafer may be laser-grooved; after the electrodes are printed, sintering is performed, and the photo-fading furnace or the electric injection furnace is used to reduce the photocell-induced attenuation of the battery cell, and finally the battery test is classified.
  • the step of splitting the silicon wafer into a plurality of solar cells 1 is preferably performed using a laser cutter.
  • the sintered whole silicon wafer enters the dicing detection position for visual inspection and visual positioning of the OK wafer (the poor appearance detection will be automatically shunted to the NG position).
  • Multi-track dicing machine or preset buffer stack area can be freely set according to the online production cycle to achieve continuous online feed operation. Set laser-related parameters according to the optimal effect of cutting and dicing to achieve faster cutting speed, narrower cutting heat-affected zone and cutting line width, better uniformity, and predetermined cutting depth.
  • the split at the cutting position is completed by the automatic scoring mechanism of the online laser scriber to realize the natural separation of each solar cell 1. It should be noted that the laser cutting surface is away from the PN junction side to avoid leakage current due to damage to the PN junction. It is necessary to confirm the orientation of the front and back sides of the cell before dicing and loading.
  • each solar cell sheet 1 is connected in series to form a shingle module 2 and then subjected to automatic typesetting and confluence, adhesive film and backsheet laying, intermediate inspection, lamination, trimming, framing, middle junction box, curing, cleaning, testing Wait for the completion of the shingled module 2 package.
  • the solar cell sheet, shingle module and manufacturing method of the present invention when the solar cells are interconnected to form a shingle module, the solar cells are electrically connected to each other through direct contact between the positive electrode and the back electrode of each other, and therefore it may be omitted.
  • Conductive conductive adhesive In this way, factors such as environmental erosion, high and low temperature alternation, thermal expansion and contraction, which easily damage the conductive adhesive, will not affect the shingle assembly of the present invention, and thus it is not easy for the current to be falsely connected and disconnected.
  • problems such as disconnection of the positive and negative electrodes of the shingle assembly caused by the overflow of adhesive will not occur.
  • the conductivity of the binder is not required, the production cost of the shingle module is also reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Finishing Walls (AREA)

Abstract

本发明涉及一种叠瓦组件、太阳能电池片和叠瓦组件的制造方法。叠瓦组件中的多个太阳能电池片在第一方向上以叠瓦方式依次相连,太阳能电池片的基体片的顶表面上设置有沿第二方向延伸的正电极,基体片的底表面上设置有背电极或背电场,当两个太阳能电池片沿第一方向以叠瓦方式连接时,两个太阳能电池片中的一个的正电极与另一个的背电极或背电场之间直接接触以实现导电连接。根据本发明,太阳能电池片之间通过彼此间正电极和背电极的直接接触而实现导电互联,因而不要求粘结剂的导电性。这样的设置能够降低制造成本,并且能够避免现有的由于导电胶的存在而可能产生的问题。

Description

叠瓦组件、太阳能电池片和叠瓦组件的制造方法 技术领域
本发明涉及能源领域,尤其涉及一种叠瓦组件、太阳能电池片和叠瓦组件的制造方法。
背景技术
随着全球煤炭、石油、天然气等常规化石能源消耗速度加快,生态环境不断恶化,特别是温室气体排放导致日益严峻的全球气候变化,人类社会的可持续发展已经受到严重威胁。世界各国纷纷制定各自的能源发展战略,以应对常规化石能源资源的有限性和开发利用带来的环境问题。太阳能凭借其可靠性、安全性、广泛性、长寿性、环保性、资源充足性的特点已成为最重要的可再生能源之一,有望成为未来全球电力供应的主要支柱。
在新一轮能源变革过程中,我国光伏产业已成长为具有国际竞争优势的战略新兴产业。然而,光伏产业发展仍面临诸多问题与挑战,转换效率与可靠性是制约光伏产业发展的最大技术障碍,而成本控制与规模化又在经济上形成制约。光伏组件作为光伏发电的核心部件,提高其转换效率发展高效组件是必然趋势。目前市场上涌现各种各样的高效组件,如叠瓦、半片、多主栅、双面组件等。随着光伏组件的应用场所和应用地区越来越广泛,对其可靠性要求越来越高,尤其是在一些恶劣或极端天气多发地区需要采用高效、高可靠性的光伏组件。
在大力推广和使用太阳能绿色能源的背景下,叠瓦组件利用小电流低损耗的电学原理(光伏组件功率损耗与工作电流的平方成正比例关系)从而使得组件功率损耗大大降低。其次通过充分利用电池组件中片间距区域来进行发电,单位面积内能量密度高。另外目前使用了具有弹性体特性的导电胶粘剂替代了常规组件用光伏金属焊带,由于光伏金属焊带在整片电池中表现出较高的串联电阻而导电胶粘剂电 流回路的行程要远小于采用焊带的方式,从而最终使得叠瓦组件成为高效组件,同时户外应用可靠性较常规光伏组件性能表现更加优异,因为叠瓦组件避免了金属焊带对电池与电池互联位置及其他汇流区域的应力损伤。尤其是在高低温交变的动态(风、雪等自然界的载荷作用)环境下,采用金属焊带互联封装的常规组件失效概率远超过采用弹性体的导电胶粘剂互联切割后的晶硅电池小片封装的叠瓦组件。
当前叠瓦组件的主流工艺使用导电胶粘剂互联切割后的电池片,导电胶主要由导电相和粘接相构成。其中导电相主要由贵金属组成,如纯银颗粒或银包铜、银包镍、银包玻璃等颗粒并用于在太阳能电池片之间起导电作用,其颗粒形状和分布以满足最优的电传导为基准,目前更多采用D50<10um级的片状或类球型组合银粉居多。粘接相主要有具有耐候性的高分子树脂类聚合物构成,通常根据粘接强度和耐候稳定性选择丙烯酸树脂、有机硅树脂、环氧树脂、聚氨酯等。为了使导电胶粘接达到较低的接触电阻和较低的体积电阻率及高粘接并且保持长期优良的耐候特性,一般导电胶厂家会通过导电相和粘接相配方的设计完成,从而保证叠瓦组件在初始阶段环境侵蚀测试和长期户外实际应用下性能的稳定性。
而对于通过导电胶来实现连接的电池组件,在被封装之后,在户外实际使用时受到环境侵蚀,例如高低温交变热胀冷缩产生导电胶之间的相对位移。最为严重就是导致出现电流虚接甚至断路,主要原因一般都是因为材料组合后相互间连接能力弱。连接能力弱主要表现在制程中导电胶作业需要一个工艺操作窗口,实际生产过程中这个窗口相对较窄,非常容易受到环境因素的影响,比如作业场所的温湿度,涂胶后滞留空气中的时间长短等等都会让导电胶水失去活性。同时对于点胶、喷胶或印刷工艺下受胶水自身特性变化容易出现施胶不均缺失现象,对产品可靠性会有较大隐患。其次导电胶主要由高分子树脂和大量贵金属粉体所构成,成本高昂且一定程度上破坏生态环境(贵金属的生产和加工对环境污染较大)。再者导电胶属于膏状物,在施 胶或叠片过程中具备一定的流动性,非常容易溢胶造成叠瓦互联电池串正负极短路。
也就是说,对于大多数采用导电胶粘接方式而制成的叠瓦组件,存在相互连接强度弱特点,制程对环境要求高,工艺使用易溢胶短路,使用成本高昂,生产效率低等问题。
因而需要提供一种叠瓦组件、太阳能电池片和叠瓦组件的制造方法,以至少部分地解决上述问题。
发明内容
本发明的目的在于,提供一种叠瓦组件、太阳能电池片和叠瓦组件的制造方法,使得当太阳能电池片排列形成叠瓦组件之后,太阳能电池片之间的电连接通过彼此之间的正电极和背电极或背电场的直接接触而实现,而不依赖于粘结剂的导电性。
根据本发明的一个方面,提供了一种叠瓦组件,所述叠瓦组件包括多个太阳能电池片,多个所述太阳能电池片在第一方向上以叠瓦方式依次排列并通过粘结剂相对于彼此固定,其中,所述太阳能电池片包括基体片,所述基体片的顶表面上设置有沿第二方向延伸的正电极,所述基体片的底表面上设置有背电极或背电场,
其中,任意两个相邻的所述太阳能电池片中的一个的所述正电极与另一个的所述背电极或背电场直接接触而实现导电连接。
在一种实施方式中,所述基体片的底表面上设置有沿平行于所述第二方向的第三方向延伸的背电极,所述正电极和所述背电极在所述第一方向上存在间隔,
其中,所述正电极和/或所述背电极在其延伸方向上间断设置,所述正电极和所述背电极至少部分地在所述第一方向上对齐。
在一种实施方式中,所述正电极在所述第二方向上间断设置,所述背电极在所述第三方向上连续设置;或者
所述正电极在所述第二方向上连续设置,所述背电极在所述第三方向上间断设置;或者
所述正电极在所述第二方向上间断设置,所述背电极在所述第三方向上间断设置,所述正电极和所述背电极在所述第一方向上对齐。
在一种实施方式中,所述正电极和所述背电极均形成为锯齿状结构,当两个所述太阳能电池片以叠瓦方式连接时,所述两个太阳能电池片的所述正电极与所述背电极以齿条啮合的形式相互接触。
在一种实施方式中,所述粘结剂在每一对相邻的所述太阳能电池片的搭接边缘上延伸。
在一种实施方式中,所述粘结剂在每一对相邻的所述太阳能电池片的搭接边缘上间断设置。
在一种实施方式中,在每一对相邻的所述太阳能电池片的相接触的正电极和背电极的端部处施加有所述粘结剂。
在一种实施方式中,所述粘结剂位于每一对相邻的所述太阳能电池片的相接触的正电极和背电极的一侧,并且每一对相邻的所述太阳能电池片的相接触的正电极和背电极的接合高度大于或等于所述粘结剂的高度。
在一种实施方式中,所述粘结剂在第一方向上延伸以跨越多个所述太阳能电池片。
在一种实施方式中,所述粘结剂为导电胶,或者所述粘结剂不具有导电性。
根据本发明的另一个方面,提供了一种太阳能电池片,多个所述太阳能电池片能够在第一方向上以叠瓦方式依次相连,其特征在于,所述太阳能电池片包括基体片,所述基体片的顶表面上设置有沿第二方向延伸的正电极,所述基体片的底表面上设置有背电极或背电场,所述太阳能电池片被构造为使得当两个所述太阳能电池片沿所述第一方向以叠瓦方式连接时,所述两个太阳能电池片中的一个的所述正电极与另一个的所述背电极或背电场之间能够直接接触以实现导电连接。
在一种实施方式中,所述基体片的底表面上设置有沿平行于所述第二方向的第三方向(D3)延伸的背电极(12),所述正电极和所述 背电极在所述第一方向上存在间隔,当两个所述太阳能电池片沿所述第一方向以叠瓦方式连接时,所述两个太阳能电池片中的一个的所述正电极能够与另一个的所述背电极对准并接触,
并且,所述正电极和/或所述背电极在其延伸方向上间断设置,所述正电极和所述背电极在所述第一方向上至少部分地对准。
在一种实施方式中,所述正电极在所述第二方向上间断设置,所述背电极在所述第三方向上连续设置;或者
所述正电极在所述第二方向上连续设置,所述背电极在所述第三方向上间断设置;或者
所述正电极在所述第二方向上间断设置,所述背电极在所述第三方向上间断设置,所述正电极和所述背电极在所述第一方向上对齐。
在一种实施方式中,所述正电极和所述背电极均形成为锯齿状结构,当两个所述太阳能电池片以叠瓦方式连接时,所述两个太阳能电池片的所述正电极与所述背电极以齿条啮合的形式相互接触。
根据本发明的再一个方面,提供了一种制造上述任意一项所述的叠瓦组件的制造方法,所述制造方法包括如下步骤:
制造多个太阳能电池片,所述多个太阳能电池片能够在第一方向上以叠瓦方式依次相连,所述太阳能电池片的基体片的顶表面上设置有沿第二方向延伸的正电极,所述基体片的底表面上设置有背电极或背电场,当两个所述太阳能电池片以叠瓦方式连接时,所述两个太阳能电池片中的一个的所述正电极与另一个的所述背电极或背电场对准并接触;
在各个所述太阳能电池片上施加粘结剂;
将所述多个太阳能电池片沿所述第一方向以叠瓦方式排列、相互固定并使得任意相邻的两个太阳能电池片中的一个的正电极与另一个的背电极或背电场直接接触。
在一种实施方式中,制造所述多个太阳能电池片的步骤包括:
对整片太阳能电池片进行预处理;
将预处理之后的所述整片太阳能电池片切割成小片从而形成所 述多个太阳能电池片。
在一种实施方式中,所述对整片太阳能电池片进行预处理的步骤包括:
在所述整片太阳能电池片的总基体片表面上制绒;
在所述总基体片的正面和背面均生长沉淀一层内钝化层;
在所述内钝化层上生长沉积一层中钝化层;
在所述中钝化层上生长沉积一层外钝化层。
在一种实施方式中,所述内钝化层采用热氧化法或笑气氧化或臭氧化或硝酸溶液化学法沉积,且内钝化层设置为二氧化硅膜层;并且/或者
所述中钝化层采用PECVD或ALD层或固体靶材经PVD层方法沉积,且中钝化层设置为三氧化二铝膜层或含有三氧化二铝的膜层;并且/或者
所述外钝化层采用PVD、CVD或者ALD方法沉积。
根据本发明,在将太阳能电池片互联成叠瓦组件时,太阳能电池片之间通过彼此间正电极和背电极的直接接触而实现导电互联,因而可以省略具有导电性的导电胶。这样,环境侵蚀、高低温交变、热胀冷缩等容易破坏导电胶的因素便不会影响本发明的叠瓦组件,叠瓦组件不容易出现电流虚接和断路。并且,由于不必设置导电胶,那么溢胶而造成的叠瓦组件的正负极断路等问题也就不会发生。另外,由于不要求粘结剂的导电性,叠瓦组件的生产成本也得以降低。
附图说明
为了更好地理解本发明的上述及其他目的、特征、优点和功能,可以参考附图中所示的优选实施方式。附图中相同的附图标记指代相同的部件。本领域技术人员应该理解,附图旨在示意性地阐明本发明的优选实施方式,对本发明的范围没有任何限制作用,图中各个部件并非按比例绘制。
图1为根据本发明一种优选实施方式的太阳能电池片的示意图;
图2为由图1中的太阳能电池片叠加而成的叠瓦组件;
图3-图7为图1中太阳能电池片的几种替代性优选实施方式的示意图;
图8-图12为沿着图2中的A-A线截取的侧视剖视图,示出了几种优选实施方式中相邻两个太阳能电池片之间的连接状态。
具体实施方式
现在参考附图,详细描述本发明的具体实施方式。这里所描述的仅仅是根据本发明的优选实施方式,本领域技术人员可以在所述优选实施方式的基础上想到能够实现本发明的其他方式,所述其他方式同样落入本发明的范围。
本发明提供了一种叠瓦组件、太阳能电池片和制造该叠瓦组件的方法,图1至图12示出了本发明的若干优选实施方式。
图1示出了本发明的一个优选实施方式的太阳能电池片1,图2为多个图1中的太阳能电池片1以叠瓦方式排列成的叠瓦组件2。首先需要说明的是,后文将要提到的“第一方向”可以被理解为是叠瓦组件2中各个太阳能电池片1的排布方向,其大致与各个矩形太阳能电池片1的宽度方向一致,第一方向在图2中由D1示出;“第二方向”可以被理解为是矩形太阳能电池片1的顶表面24上的一个长度方向,第二方向在图3中由D2示出;“第三方向”可以被理解为是矩形太阳能电池片1的底表面25上的一个长度方向,第三方向在图3中由D3示出。
下面继续参考图1。太阳能电池片1包括基体片11,基体片11优选地由硅制成。基体片11的表面印刷有多个电极,电极优选地由银制成。具体地,基体片11的顶表面24上印刷有沿第二方向D2延伸的正电极13,基体片11的底表面25上设置有背电极12或背电场14。当太阳能电池片1以叠瓦方式连接时,任意相邻的两个太阳能电池片1中的一个的正电极13能够和另一个的背电极12或背电场14直接物理接触而进行导电连接。
优选地,如图1、图3至图5所示,基体片11的底表面25上沿平行于第二方向D2的第三方向D3印刷有背电极12,正电极13和背电极12在第一方向D1上存在间隔。当两个太阳能电池片1沿第一方向D1以叠瓦方式连接时,两个太阳能电池片1中的一个的正电极13能够与另一个的背电极12对准并接触。可以理解,图1中所示的为太阳能电池片1的顶表面24,因而背电极12应设置在与其指向的位置相对的底表面25上。
为了方便生产及装配,可以将太阳能电池片1加工成使其顶表面24和底表面25均为矩形。正电极13和背电极12分别设置在顶表面24和底表面25的相对的边缘上。例如,正电极13和背电极12可以分别设置在顶表面24和底表面25的纵向边缘上。这样的设置可以避免出现太阳能电池片1之间的大面积的重叠,从而使叠瓦组件2的暴露面积增大。并且,第一方向D1可以为平行于顶表面24、底表面25的横向边缘的方向,也就是说第一方向D1垂直于第二方向D2和第三方向D3。
为了节省电极的制造材料,同时又不影响太阳能电池片1之间的导电性,可以将正电极13和/或背电极12设置为沿其延伸方向间断设置,这样,正电极13和背电极12的总的设置长度不一定相等。同时,为了使得正电极13和背电极12能够接触,还需将太阳能电池片1设置为使得正电极和背电极至少部分地在第一方向D1上对齐。例如,如图3中所示,正电极13在顶表面24上沿第二方向D2间断设置,背电极12在底表面25上沿第三方向D3间断设置,且正电极13和背电极12的各部段在第一方向D1上对齐;或者,如图4中所示,正电极13在顶表面24上沿第二方向D2间断设置,背电极12在底表面25上沿第三方向D3连续设置;或者如图5中所示,正电极13在顶表面24上沿第二方向D2连续设置,背电极12在底表面25上沿第三方向D3间断设置。
或者,为了实现高效导电,还可以选择正电极13在第二方向D2上连续设置,背电极12在第三方向D3上连续设置,正电极13和背 电极12的接触面积尽可能大,从而使电流传导效率较高。
为了进一步增大相邻的太阳能电池片1的正电极13和背电极12之间的接触面积,可以将正电极13和背电极12设置为锯齿状结构,以使得相邻的太阳能电池片1相接合时,正电极13和背电极12以齿条啮合的形式相互接触,这种方案在图12中示出。这样的设置不仅能够增大正电极13和背电极12之间的接触面积,还能够提升太阳能电池片1之间的互联的稳定性。
在如图6和图7所示的实施方式中,可以用背电场14替代背电极12。在图7所示的方案中,由于正电极13设置为间断设置,太阳能电池片1的底表面25的对应边缘也可以设置对应的缺口,并在该边缘处施加背电场14。
本实用新型所提供的叠瓦组件2可以由上述的太阳能电池片1彼此相连而形成。太阳能电池片1彼此互联之后,可以通过粘结剂4将各个太阳能电池片1相对于彼此固定,粘结剂4优选地可以不具有导电性,当然,粘结剂4也可以具有导电性。例如,粘结剂4可以是丙烯酸树脂、有机硅树脂、环氧树脂、聚氨酯等材料制成,并且为形成一定的厚度,需要在树脂中添加一些助剂或物质,如固化剂、交联剂、偶联剂或橡胶球等。
粘结剂4也可以具有多种设置形式。例如,可以在相邻的太阳能电池片1的搭接边缘上连续地或间断地施加粘结剂4,或者可以沿第一方向D1在多个太阳能电池片1的顶表面24上施加粘结剂4从而让粘结剂4跨越多个太阳能电池片1。
图8-图12示出的几种实施方式中的相邻的两个太阳能电池片1的互联状态下的截面图,这些截面图可以被视为图2中的叠瓦组件2沿A-A线剖开的视图。为了方便描述,将附图中的两个太阳能电池片1分别称为第一太阳能电池片21和第二太阳能电池片22。
其中,图8、图9和图12中,第一太阳能电池片21的正电极13与第二太阳能电池片22的背电极12导电接触,正电极13和背电极12的彼此接触的表面为导电接触表面23。粘结剂4在第一太阳能电 池片21和第二太阳能电池片22的搭接边缘上间断地设置。该粘结剂4结构可以是对每一个搭接边缘间断地施加点状粘结剂4而形成的,或者是在叠瓦组件2的顶表面上施加多个沿第一方向D1延伸的粘结剂4而形成的。可以看到,在图8和图9中,粘结剂4部分的高度(即在图8中的高度方向H上的尺寸)等于正电极13和背电极12的接合高度(即正电极13和背电极12的接触部分在高度方向H上的尺寸)。图12中正电极13和背电极12的接合尺寸应小于正电极13的高度与背电极12的高度的和。
在图10中,第一太阳能电池片21的正电极13与第二太阳能电池片22的背电极12导电接触,正电极13和背电极12的彼此接触的表面为导电接触表面23。粘结剂4在第一太阳能电池片21和第二太阳能电池片22的搭接边缘上间断地设置,并且在正电极13和背电极12的端部处施加有粘结剂4,这样的设置能够防止叠瓦组件2的层压过程中EVA进入太阳能电池片1之间的接触部位而阻碍电连接。
在图11中,第一太阳能电池片21的正电极13与第二太阳能电池片22的背电极12导电接触,正电极13和背电极12的彼此接触的表面为导电接触表面23,粘结剂4在第一太阳能电池片21和第二太阳能电池片22的搭接边缘上间断地设置,并且粘结剂4的高度小于正电极13和背电极12的接合高度。
本实用新型同时还提供了一种制造上述太阳能电池片1的制造方法,其包括如下步骤:
制造多个太阳能电池片1,多个太阳能电池片1能够在第一方向D1上以叠瓦方式依次相连,太阳能电池片1的基体片11的顶表面24上印刷有沿第二方向D2延伸的正电极13,基体片11的底表面25上印刷有沿平行于第二方向D2的第三方向D3延伸的背电极12,正电极13和背电极12在第一方向D1上存在间隔,当两个太阳能电池片1以叠瓦方式连接时,两个太阳能电池片1中的一个的正电极13与另一个的背电极12对准并接触;
在各个太阳能电池片1上施加粘结剂4;
将多个太阳能电池片1沿第一方向D1以叠瓦方式排列、相互固定并使得任意相邻的两个太阳能电池片1中的一个的正电极13与另一个的背电极12接触。
进一步地,制造多个太阳能电池片1的步骤包括:
对整片太阳能电池片1进行预处理;
将预处理之后的整片太阳能电池片1切割成小片从而形成多个太阳能电池片1。
进一步地,对整片太阳能电池片1进行预处理的步骤包括:
在整片太阳能电池片1的总基体片11表面上制绒;
在总基体片11的正面和背面均生长沉淀一层内钝化层;
在内钝化层上生长沉积一层中钝化层;
在中钝化层上生长沉积一层外钝化层。
更具体地,内钝化层采用热氧化法或笑气氧化或臭氧化或硝酸溶液化学法沉积,且内钝化层设置为二氧化硅膜层;并且/或者
中钝化层采用PECVD或ALD层或固体靶材经PVD层方法沉积,且中钝化层设置为三氧化二铝膜层或含有三氧化二铝的膜层;并且/或者
外钝化层采用PVD、CVD或者ALD方法沉积。
上述的各项工序,能够再具体和优化。例如,对于制绒步骤,采用单晶硅片经过表面制绒获得良好的绒面结构,从而实现增大比表面积可以接受更多光子(能量),同时减少入射光的反射,其后续可包括清洗制绒时残留的液体的步骤,以减少酸性和碱性物质对电池制结的影响。在制绒之后还可以包括制PN结的步骤,其包括:通过三氯氧磷和硅片进行反应,得到磷原子;经过一定时间,磷原子进入硅片的表面层,并且通过硅原子之间的空隙向硅片内部渗透扩散,形成了N型半导体和P型半导体的交界面。完成扩散制结工序,实现光能到电能的转换。由于扩散制结在硅片边缘形成了短路通道,PN结的正面所收集到的光生电子会沿着边缘扩散有磷的区域流到PN结的背面,而造成短路,经过等离子刻蚀将边缘PN结刻蚀去除,能够避免边缘 造成短路,另外,还可以增加SE工艺步骤。并且,由于扩散制结工序会使硅片表面形成一层磷硅玻璃,通过去磷硅玻璃工序减少对叠瓦电池效率的影响。
进一步地,在形成钝化层之后还可以对硅片进行激光开槽;在印刷电极之后进行烧结,并通过光衰炉或者电注入炉,减少电池池光致衰减,最后进行电池测试分档。
将硅片裂片成多个太阳能电池片1的步骤优选地使用激光切割机来完成。对于烧结好的整片硅片增加在线激光切割划片工序,烧结好的整片硅片进入划片检测位进行外观检查并对OK片进行视觉定位(外观检测不良会自动分流至NG位),根据在线生产节拍可以自由设置多轨划片机或预设缓存堆栈区,以实现在线连续进料作业。按照切割划片最优效果设定激光器相关参数,以实现较快的切割速度、较窄的切割热影响区和切割线宽、更优的均匀性以及预定的切割深度等。完成自动切割后通过在线激光划片机自动掰片机构完成切割位置处裂片实现各个太阳能电池片1的自然分离。需要注意的是,激光切割面为远离PN结侧,避免PN结受损出现漏电流,需要划片上料前确认电池片正反面方向,若方向相反需增加单独的180°换向装置。
最后,将各个太阳能电池片1串联成叠瓦组件2后,经过自动排版汇流、胶膜和背板敷设、中检、层压、修边、装框、中间位接线盒、固化、清洗、测试等环节完成叠瓦组件2封装。
本发明的太阳能电池片、叠瓦组件和制造方法,使得太阳能电池片互联成叠瓦组件时,太阳能电池片之间通过彼此间正电极和背电极的直接接触而实现导电互联,因而可以省略具有导电性的导电胶。这样,环境侵蚀、高低温交变、热胀冷缩等容易破坏导电胶因素便不会影响本发明的叠瓦组件,因而不容易出现电流虚接和断路。并且,由于不必设置导电胶,那么溢胶而造成的叠瓦组件的正负极断路等问题也就不会发生。另外,由于不要求粘结剂的导电性,叠瓦组件的生产成本也得以降低。
本发明的多种实施方式的以上描述出于描述的目的提供给相关 领域的一个普通技术人员。不意图将本发明排他或局限于单个公开的实施方式。如上所述,以上教导的领域中的普通技术人员将明白本发明的多种替代和变型。因此,虽然具体描述了一些替代实施方式,本领域普通技术人员将明白或相对容易地开发其他实施方式。本发明旨在包括这里描述的本发明的所有替代、改型和变型,以及落入以上描述的本发明的精神和范围内的其他实施方式。
附图标记:
太阳能电池片1
叠瓦组件2
太阳能电池片的顶表面24
太阳能电池片的底表面25
基体片11
正电极13
背电极12
背电场14
粘结剂4
第一太阳能电池片21
第二太阳能电池片22
导电接触表面23
第一方向D1
第二方向D2
第三方向D3
高度方向H

Claims (18)

  1. 一种叠瓦组件,所述叠瓦组件包括多个太阳能电池片,多个所述太阳能电池片在第一方向(D1)上以叠瓦方式依次排列并通过粘结剂(4)相对于彼此固定,其中,所述太阳能电池片包括基体片(11),所述基体片的顶表面(24)上设置有沿第二方向(D2)延伸的正电极(13),所述基体片的底表面(25)上设置有背电极(12)或背电场(14),
    其特征在于,任意两个相邻的所述太阳能电池片中的一个的所述正电极与另一个的所述背电极或背电场直接接触而实现导电连接。
  2. 根据权利要求1所述的叠瓦组件,其特征在于,所述基体片的底表面上设置有沿平行于所述第二方向的第三方向(D3)延伸的背电极(12),所述正电极和所述背电极在所述第一方向上存在间隔,
    其中,所述正电极和/或所述背电极在其延伸方向上间断设置,所述正电极和所述背电极至少部分地在所述第一方向上对齐。
  3. 根据权利要求2所述的叠瓦组件,其特征在于,所述正电极在所述第二方向上间断设置,所述背电极在所述第三方向上连续设置;或者
    所述正电极在所述第二方向上连续设置,所述背电极在所述第三方向上间断设置;或者
    所述正电极在所述第二方向上间断设置,所述背电极在所述第三方向上间断设置,所述正电极和所述背电极在所述第一方向上对齐。
  4. 根据权利要求2所述的叠瓦组件,其特征在于,所述正电极和所述背电极均形成为锯齿状结构,当两个所述太阳能电池片以叠瓦方式连接时,所述两个太阳能电池片的所述正电极与所述背电极以齿条啮合的形式相互接触。
  5. 根据权利要求1所述的叠瓦组件,其特征在于,所述粘结剂在每一对相邻的所述太阳能电池片的搭接边缘上延伸。
  6. 根据权利要求1所述的叠瓦组件,其特征在于,所述粘结剂在 每一对相邻的所述太阳能电池片的搭接边缘上间断设置。
  7. 根据权利要求2所述的叠瓦组件,其特征在于,在每一对相邻的所述太阳能电池片的相接触的正电极和背电极的端部处施加有所述粘结剂。
  8. 根据权利要求2所述的叠瓦组件,其特征在于,所述粘结剂位于每一对相邻的所述太阳能电池片的相接触的正电极和背电极的一侧,并且每一对相邻的所述太阳能电池片的相接触的正电极和背电极的接合高度大于或等于所述粘结剂的高度。
  9. 根据权利要求1所述的叠瓦组件,其特征在于,所述粘结剂在第一方向上延伸以跨越多个所述太阳能电池片。
  10. 根据权利要求1-9中任意一项所述的叠瓦组件,其特征在于,所述粘结剂为导电胶,或者所述粘结剂不具有导电性。
  11. 一种太阳能电池片(1),多个所述太阳能电池片能够在第一方向(D1)上以叠瓦方式依次相连,其特征在于,所述太阳能电池片包括基体片(11),所述基体片的顶表面(24)上设置有沿第二方向(D2)延伸的正电极(13),所述基体片的底表面(25)上设置有背电极(12)或背电场(14),所述太阳能电池片被构造为使得当两个所述太阳能电池片沿所述第一方向以叠瓦方式连接时,所述两个太阳能电池片中的一个的所述正电极与另一个的所述背电极或背电场之间能够直接接触以实现导电连接。
  12. 根据权利要求11所述的太阳能电池片,其特征在于,所述基体片的底表面上设置有沿平行于所述第二方向的第三方向(D3)延伸的背电极(12),所述正电极和所述背电极在所述第一方向上存在间隔,当两个所述太阳能电池片沿所述第一方向以叠瓦方式连接时,所述两个太阳能电池片中的一个的所述正电极能够与另一个的所述背电极对准并接触,
    并且,所述正电极和/或所述背电极在其延伸方向上间断设置,所述正电极和所述背电极在所述第一方向上至少部分地对准。
  13. 根据权利要求12所述的太阳能电池片,其特征在于,所述正 电极在所述第二方向上间断设置,所述背电极在所述第三方向上连续设置;或者
    所述正电极在所述第二方向上连续设置,所述背电极在所述第三方向上间断设置;或者
    所述正电极在所述第二方向上间断设置,所述背电极在所述第三方向上间断设置,所述正电极和所述背电极在所述第一方向上对齐。
  14. 根据权利要求12所述的太阳能电池片,其特征在于,所述正电极和所述背电极均形成为锯齿状结构,当两个所述太阳能电池片以叠瓦方式连接时,所述两个太阳能电池片的所述正电极与所述背电极以齿条啮合的形式相互接触。
  15. 一种制造根据权利要求1-10中任意一项所述的叠瓦组件的制造方法,其特征在于,所述制造方法包括如下步骤:
    制造多个太阳能电池片,所述多个太阳能电池片能够在第一方向上以叠瓦方式依次相连,所述太阳能电池片的基体片的顶表面上设置有沿第二方向延伸的正电极,所述基体片的底表面(25)上设置有背电极或背电场,当两个所述太阳能电池片以叠瓦方式连接时,所述两个太阳能电池片中的一个的所述正电极与另一个的所述背电极或背电场对准并接触;
    在各个所述太阳能电池片上施加粘结剂;
    将所述多个太阳能电池片沿所述第一方向以叠瓦方式排列、相互固定并使得任意相邻的两个太阳能电池片中的一个的正电极与另一个的背电极或背电场直接接触。
  16. 根据权利要求15所述的方法,其特征在于,制造所述多个太阳能电池片的步骤包括:
    对整片太阳能电池片进行预处理;
    将预处理之后的所述整片太阳能电池片切割成小片从而形成所述多个太阳能电池片。
  17. 根据权利要求16所述的方法,其特征在于,所述对整片太阳能电池片进行预处理的步骤包括:
    在所述整片太阳能电池片的总基体片表面上制绒;
    在所述总基体片的正面和背面均生长沉淀一层内钝化层;
    在所述内钝化层上生长沉积一层中钝化层;
    在所述中钝化层上生长沉积一层外钝化层。
  18. 根据权利要求17所述的制造方法,其特征在于,
    所述内钝化层采用热氧化法或笑气氧化或臭氧化或硝酸溶液化学法沉积,且内钝化层设置为二氧化硅膜层;并且/或者
    所述中钝化层采用PECVD或ALD层或固体靶材经PVD层方法沉积,且中钝化层设置为三氧化二铝膜层或含有三氧化二铝的膜层;并且/或者
    所述外钝化层采用PVD、CVD或者ALD方法沉积。
PCT/CN2019/126999 2019-09-05 2019-12-20 叠瓦组件、太阳能电池片和叠瓦组件的制造方法 WO2020052693A2 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910851765.9A CN110556437A (zh) 2019-09-05 2019-09-05 叠瓦组件、太阳能电池片和叠瓦组件的制造方法
CN201910851765.9 2019-09-05

Publications (2)

Publication Number Publication Date
WO2020052693A2 true WO2020052693A2 (zh) 2020-03-19
WO2020052693A3 WO2020052693A3 (zh) 2020-07-16

Family

ID=68739795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126999 WO2020052693A2 (zh) 2019-09-05 2019-12-20 叠瓦组件、太阳能电池片和叠瓦组件的制造方法

Country Status (2)

Country Link
CN (1) CN110556437A (zh)
WO (1) WO2020052693A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4131426A4 (en) * 2020-03-30 2024-05-01 Tongwei Solar (Hefei) Co., Ltd. LARGE SIZE CELL ELEMENT, SOLAR CELL ELEMENTS, SHINGLE ASSEMBLY AND METHOD OF MANUFACTURING

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110556437A (zh) * 2019-09-05 2019-12-10 成都晔凡科技有限公司 叠瓦组件、太阳能电池片和叠瓦组件的制造方法
CN111180533A (zh) * 2020-01-23 2020-05-19 成都晔凡科技有限公司 叠瓦组件、太阳能电池片和叠瓦组件的制造方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10741712B2 (en) * 2012-02-15 2020-08-11 Alta Devices, Inc. Photovoltaic module containing shingled photovoltaic tiles and fabrication processes thereof
KR20140109522A (ko) * 2013-02-27 2014-09-16 엘지전자 주식회사 태양전지 모듈
JP2014179406A (ja) * 2013-03-14 2014-09-25 Sharp Corp 太陽電池セル接続体、太陽電池モジュール、配線シートおよび配線シート製造方法
JP6190218B2 (ja) * 2013-09-05 2017-08-30 シャープ株式会社 太陽電池モジュールおよび配線シート
US10593820B2 (en) * 2014-03-31 2020-03-17 Kaneka Corporation Solar cell module and method for manufacturing same
EP3552308B1 (en) * 2016-12-08 2023-11-08 Gang Shi Method of interconnecting shingled pv cells
CN109326665B (zh) * 2017-09-28 2020-07-31 长春永固科技有限公司 太阳能电池串、太阳能电池组件及其制备方法
CN208173600U (zh) * 2018-04-09 2018-11-30 成都晔凡科技有限公司 用于perc叠瓦组件的太阳能电池片、制备系统和perc叠瓦组件
CN208256682U (zh) * 2018-05-30 2018-12-18 苏州阿特斯阳光电力科技有限公司 光伏组件
CN109244160A (zh) * 2018-08-03 2019-01-18 浙江爱旭太阳能科技有限公司 分片单面直连太阳能电池组件及制备方法
CN109256235A (zh) * 2018-09-20 2019-01-22 彭延岩 导电胶、太阳能背钝化电池、叠瓦电池串及其制作方法
CN209298145U (zh) * 2018-11-23 2019-08-23 成都晔凡科技有限公司 叠瓦电池片的制造系统
CN109888045B (zh) * 2019-03-29 2023-07-25 通威太阳能(成都)有限公司 一种新型双面perc叠瓦电池片及其制备方法
CN110112231A (zh) * 2019-04-24 2019-08-09 天津爱旭太阳能科技有限公司 一种太阳能叠瓦电池组件及其制备方法
CN110085692A (zh) * 2019-05-28 2019-08-02 晶澳(扬州)太阳能科技有限公司 光伏导电背板、太阳能电池组件及其制备方法
CN110556437A (zh) * 2019-09-05 2019-12-10 成都晔凡科技有限公司 叠瓦组件、太阳能电池片和叠瓦组件的制造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4131426A4 (en) * 2020-03-30 2024-05-01 Tongwei Solar (Hefei) Co., Ltd. LARGE SIZE CELL ELEMENT, SOLAR CELL ELEMENTS, SHINGLE ASSEMBLY AND METHOD OF MANUFACTURING

Also Published As

Publication number Publication date
CN110556437A (zh) 2019-12-10
WO2020052693A3 (zh) 2020-07-16

Similar Documents

Publication Publication Date Title
WO2020052695A2 (zh) 叠瓦组件、太阳能电池片和叠瓦组件的制造方法
WO2020052693A2 (zh) 叠瓦组件、太阳能电池片和叠瓦组件的制造方法
WO2021013275A2 (zh) 叠瓦组件、太阳能电池片和叠瓦组件的制造方法
CN105789359A (zh) 一种双面太阳能电池组件的制作方法
CN109802002B (zh) 叠瓦双面电池组件及其制造方法
CN110854218A (zh) 栅线结构、太阳能电池片、叠瓦组件、印刷和制造方法
US20210126153A1 (en) Busbar-less shingled array solar cells and methods of manufacturing solar modules
WO2020052694A2 (zh) 叠瓦组件和叠瓦组件的制造方法
CN104269453B (zh) 无主栅、高效率背接触太阳能电池背板、组件及制备工艺
CN111162133A (zh) 叠瓦组件、太阳能电池片和叠瓦组件的制造方法
CN111244209A (zh) 叠瓦组件及其制造方法
CN215815903U (zh) 一种光伏组件
CN108922934B (zh) 双面直连太阳能电池组件及制备方法
CN210640258U (zh) 栅线结构、太阳能电池片和叠瓦组件
CN204204882U (zh) 无主栅高效率背接触太阳能电池组件
CN211858665U (zh) 叠瓦组件和太阳能电池片
CN208444844U (zh) 用于叠瓦组件的太阳能电池片和太阳能电池
CN104269454A (zh) 无主栅、高效率背接触太阳能电池背板、组件及制备工艺
CN204204885U (zh) 无主栅高效率背接触太阳能电池背板
CN110890433A (zh) 栅线结构、太阳能电池片、叠瓦组件、印刷和制造方法
CN112271225A (zh) 太阳能电池组件及其制造方法
CN113140647A (zh) 异质结太阳能电池片、光伏组件及制造方法
CN210443570U (zh) 太阳能电池片及具有该太阳能电池片的叠瓦组件
CN109037364B (zh) 分片贯孔双面直连太阳能电池组件及制备方法
CN210640259U (zh) 栅线结构、太阳能电池片和叠瓦组件

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19860351

Country of ref document: EP

Kind code of ref document: A2