WO2020052622A1 - 换热器制造方法及接头的处理方法和与连接管的焊接方法 - Google Patents

换热器制造方法及接头的处理方法和与连接管的焊接方法 Download PDF

Info

Publication number
WO2020052622A1
WO2020052622A1 PCT/CN2019/105567 CN2019105567W WO2020052622A1 WO 2020052622 A1 WO2020052622 A1 WO 2020052622A1 CN 2019105567 W CN2019105567 W CN 2019105567W WO 2020052622 A1 WO2020052622 A1 WO 2020052622A1
Authority
WO
WIPO (PCT)
Prior art keywords
joint
heat exchanger
zinc
coating
connecting pipe
Prior art date
Application number
PCT/CN2019/105567
Other languages
English (en)
French (fr)
Inventor
刘玉章
周涵
左玉克
王传廷
Original Assignee
杭州三花微通道换热器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201821512267.9U external-priority patent/CN209013818U/zh
Priority claimed from CN201811076567.1A external-priority patent/CN110587055B/zh
Application filed by 杭州三花微通道换热器有限公司 filed Critical 杭州三花微通道换热器有限公司
Priority to US17/276,019 priority Critical patent/US20220065560A1/en
Publication of WO2020052622A1 publication Critical patent/WO2020052622A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/28Selection of soldering or welding materials proper with the principal constituent melting at less than 950 degrees C
    • B23K35/286Al as the principal constituent
    • B23K35/288Al as the principal constituent with Sn or Zn
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0246Arrangements for connecting header boxes with flow lines
    • F28F9/0256Arrangements for coupling connectors with flow lines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K1/00Soldering, e.g. brazing, or unsoldering
    • B23K1/0008Soldering, e.g. brazing, or unsoldering specially adapted for particular articles or work
    • B23K1/0012Brazing heat exchangers
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C10/00Solid state diffusion of only metal elements or silicon into metallic material surfaces
    • C23C10/28Solid state diffusion of only metal elements or silicon into metallic material surfaces using solids, e.g. powders, pastes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • C23C4/06Metallic material
    • C23C4/08Metallic material containing only metal elements
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/18After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/0243Header boxes having a circular cross-section
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F9/00Casings; Header boxes; Auxiliary supports for elements; Auxiliary members within casings
    • F28F9/02Header boxes; End plates
    • F28F9/04Arrangements for sealing elements into header boxes or end plates
    • F28F9/16Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling
    • F28F9/18Arrangements for sealing elements into header boxes or end plates by permanent joints, e.g. by rolling by welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/04Tubular or hollow articles
    • B23K2101/14Heat exchangers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/34Coated articles, e.g. plated or painted; Surface treated articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D1/00Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
    • F28D1/02Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
    • F28D1/04Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
    • F28D1/053Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight
    • F28D1/0535Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being straight the conduits having a non-circular cross-section
    • F28D1/05366Assemblies of conduits connected to common headers, e.g. core type radiators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2275/00Fastening; Joining
    • F28F2275/04Fastening; Joining by brazing
    • F28F2275/045Fastening; Joining by brazing with particular processing steps, e.g. by allowing displacement of parts during brazing or by using a reservoir for storing brazing material

Definitions

  • the present invention relates to the technical field of heat exchange, in particular to a method for welding joints and connecting pipes of a heat exchanger, a method for manufacturing a heat exchanger, a method for processing a joint of a heat exchanger, and a replacement method. Connection structure of heat exchanger, a heat exchanger and a joint for the heat exchanger.
  • the refrigeration, HVAC, and air-conditioning systems and heat exchangers in related technologies often use joints and pipes to connect them, such as copper-aluminum brazed joints.
  • joints are usually brazed with a fluoroaluminate solder , But the joint is prone to corrosion leakage in a short time.
  • copper-aluminum joints usually need to be wrapped with heat-shrinkable sleeves, tape, glue, or coated with a protective layer for corrosion protection. Because the residual flux on the surface of the joint is not easy to completely clean, the protective effect of heat shrinkable tubes will also be compromised, and corrosion and leakage of some copper-aluminum joints will still occur in the subsequent use process.
  • the present invention aims to solve at least one of the technical problems existing in the prior art. To this end, the present invention proposes a method for welding the joints and connecting pipes of a heat exchanger. The method for welding the joints and connecting pipes of the heat exchanger improves the anticorrosive effect and reduces the leakage rate.
  • the invention also provides a method for manufacturing a heat exchanger.
  • the invention also provides a method for processing a joint of a heat exchanger.
  • the invention also provides a connection structure of the heat exchanger.
  • the invention also provides a heat exchanger.
  • the invention also proposes a joint for a heat exchanger.
  • a method for welding a joint and a connecting pipe of a heat exchanger includes the following steps: forming a diffusion coating on a surface of the joint The corrosion potential of the diffusion coating is less than the corrosion potential of the joint; inserting a connecting pipe into the joint; brazing the connecting pipe to the joint through a brazing material, which is formed after the brazing material is brazed The corrosion potential of the weld metal is higher than the corrosion potential of the joint and lower than the corrosion potential of the connection pipe.
  • the method of welding the joints and connecting pipes of the heat exchanger according to the embodiment of the present invention improves the anticorrosive effect and reduces the leakage rate.
  • the diffusion coating is formed on at least one of an inner peripheral surface and an outer peripheral surface of the joint.
  • a coating is formed on the surface of the joint by arc spraying, chemical immersion plating or coating, and the coating and the joint are heated to form the diffusion coating.
  • the maximum heating temperature is 585-615 ° C, and the heating time of the maximum temperature is 1.5min-30min.
  • the maximum heating temperature is 330-410 ° C, and the heating time of the maximum temperature is 1h-3h.
  • the joint is an aluminum joint or an aluminum alloy joint
  • the connecting pipe is a copper pipe
  • the diffusion coating is formed by diffusing a coating formed on a surface of the joint, the coating contains zinc, the zinc is from pure zinc, a zinc-containing alloy, or a zinc-containing compound,
  • the zinc-containing mass per unit area of the coating is 0.2 g / m2 to 60 g / m2.
  • the thickness of the diffusion coating is 10 ⁇ m-200 ⁇ m.
  • the zinc-containing mass concentration of the diffusion coating is 0.5% -20%.
  • the solder contains an Al-Si group, an Al-Cu-Si group, an Al-Cu-Si-Zn group, or an Al-Cu-Si-Ni group.
  • the joint of aluminum alloy is selected, and the outer surface of the joint is sprayed with pure zinc by arc spraying.
  • the mass of zinc sprayed per unit area is 1g / m2-20g / m2.
  • the rear joint is heated under the protection of nitrogen.
  • the maximum heating temperature is 585 ° C-615 ° C, and the heating time at the maximum temperature is 1.5min-10min.
  • the diffusion coating is formed, and the heated joint is cooled.
  • the thickness of the diffusion coating is 10 ⁇ m-200 ⁇ m and the mass concentration of zinc is 1% -10%; a copper connecting pipe is inserted into the cooled joint; the connecting pipe and the joint are heated by an oxygen acetylene flame, and The brazing filler metal is used to braze the copper-aluminum joint by means of a fluoroaluminate flux.
  • the joint of aluminum alloy is selected, and the outer surface of the joint is sprayed with pure zinc by arc spraying.
  • the mass of zinc sprayed per unit area is 1g / m2-20g / m2.
  • the rear joint is heated under the protection of nitrogen, the highest heating temperature is 330 ° C-410 ° C, and the heating time at the highest temperature is 1h-3h.
  • the diffusion coating is formed, and the heated joint is cooled, and the diffusion is performed.
  • the thickness of the coating is 20 ⁇ m-200 ⁇ m and the mass concentration of zinc is 1% -5%; the copper connecting pipe is inserted into the cooled joint; the connecting pipe and the joint are heated by an oxygen acetylene flame, The solder is described and the copper-aluminum joint is brazed by means of a fluoroaluminate flux.
  • a method for manufacturing a heat exchanger includes a joint and a connecting pipe of the heat exchanger according to the embodiment of the first aspect of the present invention. Welding method.
  • the manufacturing method of the heat exchanger according to the embodiment of the present invention by using the method of welding the joints and connecting pipes of the heat exchanger according to the embodiment of the first aspect of the present invention, the anticorrosive effect, production efficiency and cost are reduced Etc.
  • the method for manufacturing a heat exchanger includes the following steps: spot welding a joint to a current collecting tube; assembling a core of a heat exchanger; and attaching a zinc-containing coating to a surface of the joint ;
  • the furnace core of the assembled heat exchanger and the joint with the zinc-containing coating are integrated into the furnace, welding is completed and a diffusion coating is formed on the surface of the joint; the connecting pipe is inserted into the joint and brazed to the joint by a brazing material.
  • a method for processing a joint of a heat exchanger includes the following steps: attaching a coating on a surface of the joint; The subsequent joint is heated to form a diffusion coating on the outer surface of the joint, and the corrosion potential of the diffusion coating is lower than the corrosion potential of the joint.
  • a connection structure for a heat exchanger including: a joint, a surface of the joint is formed with a diffusion coating; Connected to the joint by brazing; wherein the corrosion potential of the diffusion coating, the corrosion potential of the joint, the corrosion potential of the weld metal formed after the brazing material is brazed, and the corrosion potential of the connecting pipe Elevated in order.
  • connection structure of the heat exchanger according to the embodiment of the utility model improves the anticorrosive effect and reduces the leakage rate.
  • the joint includes a header connection base; a joint body provided on the header connection base, the joint body having an axial direction along the joint body A connection hole penetrating the joint body and the header connection base; wherein the diffusion coating is formed on at least one of an inner peripheral surface and an outer peripheral surface of the joint body, and the connection pipe is inserted into the connection A hole, the outer peripheral surface of the connection pipe is brazed and connected to the inner peripheral surface of the joint body through the brazing material.
  • an end surface of an end of the joint body remote from the header connection base is provided with an inclined surface, and the inclined surface gradually moves from the outer side to the inner side of the joint body in a radial direction.
  • the direction of the flow tube connection seat is inclined.
  • the joint is an aluminum joint or an aluminum alloy joint
  • the connecting pipe is a copper pipe
  • the diffusion coating is formed by diffusing a coating formed on a surface of the joint.
  • the coating contains zinc, which is derived from pure zinc, a zinc-containing alloy, or a zinc-containing compound.
  • the zinc-containing mass per unit area of the coating is 0.2 g / m2 to 60 g / m2.
  • the thickness of the diffusion coating is 10 ⁇ m to 200 ⁇ m.
  • the zinc-containing mass concentration of the diffusion coating is 0.5% -20%.
  • the solder contains an Al-Si group, an Al-Cu-Si group, an Al-Cu-Si-Zn group, or an Al-Cu-Si-Ni group.
  • a heat exchanger is provided, the heat exchanger includes: a header; the connection structure of the heat exchanger according to the embodiment of the fourth aspect of the present invention;
  • the joint is connected to the header, and the connection pipe communicates with the header through the joint.
  • the connection structure of the heat exchanger according to the embodiment of the fourth aspect of the present invention by using the connection structure of the heat exchanger according to the embodiment of the fourth aspect of the present invention, the anticorrosive effect and production efficiency are improved, and the leakage rate is reduced.
  • a joint for a heat exchanger includes: a collector connection base; and a joint body provided on the joint body.
  • a header connection base the joint body having a connection hole penetrating the joint body and the header connection base along an axial direction of the joint body; wherein a surface of the joint body is formed with a diffusion coating, The corrosion potential of the diffusion coating is less than the corrosion potential of the joint body.
  • FIG. 1 is a schematic structural diagram of a heat exchanger according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of a joint of a connection structure of a heat exchange tube according to an embodiment of the present invention.
  • FIG. 3 is a flowchart of a method of welding a joint of a heat exchange tube and a connecting tube according to an embodiment of the present invention.
  • connection pipe 40 The connection pipe 40, the header 50, the heat exchange pipe 60, and the fin 70.
  • connection structure of a heat exchanger according to an embodiment of the present invention with reference to the drawings.
  • connection structure of the heat exchanger includes a joint 10 and a connection pipe 40.
  • the surface of the joint 10 is formed with a diffusion coating.
  • the connecting pipe 40 is inserted into the joint 10 and is connected to the joint 10 by soldering.
  • the corrosion potential of the diffusion coating, the corrosion potential of the joint 10, the corrosion potential of the weld metal formed after the brazing material is brazed, and the corrosion potential of the connection pipe 40 are sequentially increased.
  • the corrosion potential of the diffusion coating ⁇ the corrosion potential of the joint 10 ⁇ the corrosion potential of the weld metal formed after the brazing material is brazed ⁇ the corrosion potential of the connection pipe 40.
  • a method for welding a joint and a connecting pipe of a heat exchanger includes the following steps:
  • connection pipe 40 is brazed to the joint 10 by a brazing material.
  • the corrosion potential of the weld metal formed after the brazing material is higher than the corrosion potential of the joint 10 and lower than the corrosion potential of the connection pipe 40.
  • a diffusion coating is formed on the surface of the joint 10, and the corrosion potential of each part satisfies the following relationship:
  • the corrosion potential of the diffusion coating ⁇ the corrosion potential of the joint 10 ⁇ the corrosion potential of the weld metal formed after the brazing material is brazed ⁇ the corrosion potential of the connection pipe 40.
  • connection structure of the heat exchanger and the method of welding the joints and connecting pipes of the heat exchanger according to the embodiments of the present invention have the advantages of good anticorrosive effect, high production efficiency, and low cost.
  • connection structure of the heat exchanger and the method of welding the joints and connecting pipes of the heat exchanger according to the embodiments of the present invention can also be applied to non-pipe fittings, such as copper-aluminum transition joints ( Copper-aluminum transition row), and can be applied to conductive occasions.
  • non-pipe fittings such as copper-aluminum transition joints ( Copper-aluminum transition row)
  • the diffusion coating is formed on at least one of the inner peripheral surface and the outer peripheral surface of the joint 10, so that the corresponding part of the joint 10 can play a role of anti-corrosion to It is applied to different occasions, for example, when applied to a water system, a diffusion coating is formed on the inner peripheral surface of the joint 10 accordingly.
  • the joint 10 includes a header connection base 20 and a joint body 30.
  • the header connecting base 20 is used for connecting with the header 50 of the heat exchanger.
  • the header connecting base 20 is configured with an arc-shaped surface adapted to the shape of the outer peripheral surface of the header 50.
  • the joint body 30 is provided in the header connection base 20.
  • the joint body 30 has a connection hole 31.
  • the connection hole 31 penetrates the joint body 30 and the header connection base 20 in the axial direction of the joint body 30.
  • the diffusion coating is formed on at least one of an inner peripheral surface and an outer peripheral surface of the joint body 30, the connection pipe 40 is inserted into the connection hole 31, and an outer peripheral surface of the connection pipe 40 is connected to the joint body 30 through a solder.
  • the inner peripheral surface is connected by brazing to realize the connection between the connecting pipe 40 and the joint 10.
  • the connecting pipe 40 can communicate with the header 50 through the joint 10, and a diffusion coating is formed on the outer peripheral surface of the joint body 30 or the inner portion near the brazed surface. Peripheral surface, so that the brazing position has higher corrosion resistance.
  • the end surface of the end of the joint body 30 remote from the header connection base 20 is provided with an inclined surface 32, and the inclined surface 32 gradually moves from the outside to the inside of the header connection base 20 along the radial direction of the joint body 30.
  • the direction is inclined, so that the connecting pipe 40 can be easily inserted into the connecting hole 31 on the one hand, and the stability after welding can be improved on the other hand.
  • a coating is formed on the surface of the joint 10 by arc spraying, chemical dip plating or coating, and the coating and the joint 10 are heated to form the diffusion coating.
  • the heating maximum temperature is 585-615 ° C.
  • the heating time of the maximum temperature is 1.5min-30min.
  • the joint 10 can be passed through the furnace together with the heat exchanger core to obtain the diffusion layer.
  • the heating maximum temperature is 330-410 ° C, and the heating time of the maximum temperature is 1h-3h, and the joint 10 is suitable for separate diffusion treatment.
  • the joint 10 is an aluminum joint or an aluminum alloy joint
  • the connection pipe 40 is a copper pipe
  • the diffusion coating is diffused from a coating formed on the surface of the joint 10, the The coating contains zinc from pure zinc, a zinc-containing alloy, or a zinc-containing compound.
  • the zinc-containing mass per unit area of the coating is 0.2 g / m2 to 60 g / m2, and the zinc-containing mass concentration of the diffusion coating is 0.5% -20%.
  • the thickness of the diffusion coating is 10 ⁇ m-200 ⁇ m.
  • the process parameter range of the above processing process is to ensure that the thickness of the diffusion coating and the zinc concentration of the surface layer are within a proper range. Therefore, on the one hand, the coating can be uniformly diffused, and the time of protection can be guaranteed to effectively protect the weld; It can slow down the sacrificial speed of the diffusion coating, thereby extending the protection time.
  • the solder contains Al-Si-based, Al-Cu-Si-based, Al-Cu-Si-Zn-based or Al-Cu-Si-Ni-based, and the solder formed by the solder
  • the corrosion potential of the seam metal is between copper and aluminum alloy, which avoids the first corrosion of the weld, and the dissolution of the copper base material into the weld during the brazing process further increases the corrosion potential of the weld metal, ensuring the effect of the anti-corrosion effect. .
  • the joint 10 is an aluminum alloy, and pure zinc is sprayed on the outer surface of the joint body 30 by arc spraying.
  • the mass of zinc sprayed per unit area is about 1-20 g / m2.
  • the joint 10 after zinc spraying is placed in a nitrogen-protected heating furnace. It can be heated in the furnace (can be fed into the furnace together or separately with the core of the heat exchanger).
  • the maximum heating temperature is about 585-615 °C, and the heating time at the maximum temperature is about 1.5-10min. It is determined by the thickness of the material and cooled after heating.
  • the thickness of the diffusion coating obtained after testing and heating is about 10-200 ⁇ m, and the zinc concentration of the diffusion coating is about 1-10%.
  • the copper connection pipe 40 is placed in the connection hole 31 of the joint 10, and an Al-Si based brazing material is used.
  • the oxygen acetylene flame is used for heating, and brazing is performed with a fluoroaluminate flux.
  • the product is obtained after brazing is completed. .
  • the joint 10 is an aluminum alloy. Pure zinc is coated on the outer surface of the joint body 30 by arc spraying. The weight of zinc spray per unit area is about 1-20 g / m2.
  • the zinc-sprayed joint 10 is placed in a nitrogen-protected heating furnace. Heating (can enter the furnace together or separately with the core of the heat exchanger), the maximum heating temperature is about 330-410 °C, the heating time of the maximum temperature is about 1-3 hours, and it is cooled after heating.
  • the thickness of the diffusion coating obtained after testing and heating is about 20-200 ⁇ m, and the zinc concentration of the diffusion coating is about 1-5%.
  • the copper connecting pipe 40 is placed in the connecting hole 31 of the joint 10, and an Al-Cu-Si based brazing material is selected.
  • the oxygen acetylene flame is used for heating, and the brazing is performed by means of a fluoroaluminate flux. product.
  • the joint 10 is an aluminum alloy, and the outer surface of the joint body 30 is immersed with zinc by chemical leaching.
  • the amount of zinc per unit area is about 0.2-4 g / m2.
  • the joint 10 after being dipped is placed in a nitrogen-protected heating furnace. Heating in the middle, the maximum temperature of heating is about 585-615 °C, the heating time of the maximum temperature is about 1.5-10min, adjusted according to the thickness of the material, and cooled after heating.
  • the thickness of the diffusion coating obtained after detection and heating is about 20-100 ⁇ m, and the zinc concentration of the diffusion coating is about 0.3-2%.
  • the copper connecting pipe 40 is placed in the connecting hole 31 of the joint 10, and an Al-Cu-Si-Zn based brazing material is selected, heated with an oxygen acetylene flame, brazed with a fluoroaluminate flux, and brazed. Get the product upon completion.
  • the joint 10 is an aluminum alloy, and a 15% concentration KZnF3 aqueous suspension is used to coat the outer peripheral surface of the joint body 30.
  • the unit weight of the coated KZnF3 is about 5-60 g / m2.
  • the coated joint 10 is placed Heating in a heating furnace (can be brought into the furnace together or separately with the heat exchanger core), the maximum heating temperature is about 585-615 ° C, the heating time of the maximum temperature is about 1.5-10min, and it is cooled after heating.
  • the thickness of the diffusion coating obtained after detection and heating is about 20-150 ⁇ m, and the zinc concentration of the diffusion coating is about 1-10%.
  • connection pipe 40 into the connection hole 31 of the joint 10, use an Al-Cu-Si-Ni-based solder, heat it with an oxygen acetylene flame, and braze it with a fluoroaluminate flux.
  • the product is obtained after the brazing is completed.
  • the joint 10 is an aluminum alloy. 70% Nocolok flux (insoluble flux) powder + 15% binder + 15% Zn powder are mixed uniformly, and then coated on the outer peripheral surface of the joint body 30. The coated mixture The Zn content per unit area is about 1-6g / m2.
  • the coated joint 10 is placed in a heating furnace for heating (can be entered into the furnace together with the heat exchanger core or separately).
  • the maximum heating temperature is 585- 615 °C, the maximum heating time is about 1.5-10min, and then cooled after heating.
  • the thickness of the diffusion coating obtained after detection and heating is about 30-120 ⁇ m, and the zinc mass concentration of the diffusion coating is about 0.5-5%.
  • connection pipe 40 Place the copper connection pipe 40 into the connection hole 31 of the joint 10, use an Al-Cu-Si based brazing material, heat it with an oxygen acetylene flame, and braze it with a fluoroaluminate flux. After brazing is completed, Get the product.
  • the joint 10 is an aluminum alloy. 70% fluoroaluminate flux powder + 15% binder + 15% Zn-5Al powder are mixed uniformly, and then coated on the outer peripheral surface of the joint body 30. The coated mixture The content of Zn-15Al per unit area is about 1-8g / m2.
  • the coated joint 10 is placed in a heating furnace for heating. The maximum heating temperature is about 400-550 ° C, and the maximum temperature is about 2-30min. , And cool after heating. The thickness of the diffusion coating obtained after testing and heating is about 20-200 ⁇ m, and the zinc concentration of the diffusion coating is about 0.5-10%.
  • the copper connecting pipe 40 is placed in the connecting hole 31 of the joint 10, and an Al-Cu-Si-Ni based brazing material is selected, heated with an oxygen acetylene flame, brazed with a fluoroaluminate flux, and brazed. Get the product upon completion.
  • the joint 10 is an aluminum alloy.
  • the outer surface of the joint body 30 is sprayed with Zn-2Al alloy by arc spraying, and the weight per unit area is about 3-20g / m2.
  • the zinc-sprayed joint 10 is placed under nitrogen protection and heated. Heating in the furnace, the maximum temperature of heating is about 340-375 ° C, the heating time of the maximum temperature is about 1-3 hours, and the temperature is cooled after heating. After detection and heating, the thickness of the diffusion coating is about 50-200 ⁇ m, and the zinc concentration of the diffusion coating is about 1-20%.
  • the copper connection pipe 40 is placed in the connection hole 31 of the joint 10, and an Al-Si based brazing material is used.
  • the oxygen acetylene flame is used for heating, and brazing is performed with a fluoroaluminate flux.
  • the product is obtained after the brazing is completed. .
  • the joint 10 is an aluminum alloy, and a 20% strength KZnF3 aqueous suspension is used to coat the outer and inner peripheral surfaces of the joint body 30.
  • the unit weight of the coated KZnF3 is about 10-60 g / m2.
  • the joint 10 is placed in a heating furnace for heating (can be brought into the furnace together or separately with the core of the heat exchanger).
  • the maximum heating temperature is about 585-615 ° C, and the heating time of the maximum temperature is about 2-10min. After heating, it is cooled.
  • the thickness of the diffusion coating obtained after testing and heating is about 50-150 ⁇ m, and the zinc concentration of the diffusion coating is about 1-5%.
  • connection pipe 40 Place the copper connection pipe 40 into the connection hole 31 of the joint 10, use an Al-Cu-Si based brazing material, heat it with an oxygen acetylene flame, and braze it with a fluoroaluminate flux. After brazing is completed, Get the product.
  • the heat exchanger according to the embodiment of the present invention includes a header 50 and a connection structure of the heat exchanger.
  • connection pipe 40 is mainly a refrigerant inlet pipe and a refrigerant outlet pipe.
  • the manufacturing method of the heat exchanger according to the embodiment of the present invention includes the welding method of the joints and connecting pipes of the heat exchanger described above.
  • the heat exchanger and the manufacturing method thereof according to the embodiments of the present invention have the advantages of good anticorrosive effect, high production efficiency, and low cost.
  • Example A (including the method used in one of the above Examples 4/5/6/8)
  • the joint 10 and the heat exchanger core are integrated into the furnace to complete the welding of the heat exchanger core and form a diffusion coating on the joint 10;
  • the heat exchanger core is released
  • connection pipe 40 is welded to the joint 10 using a brazing material of one of Al-Si / Al-Cu-Si / Al-Cu-Si-Zn / Al-Si-Cu-Ni.
  • Example B (including the method used in one of the above examples 1/3)
  • the joint 10 and the heat exchanger core are integrated into the furnace to complete the welding of the heat exchanger core and form a diffusion coating on the joint 10;
  • the heat exchanger core is released
  • connection pipe 40 is welded to the joint 10 using a brazing material of one of Al-Si / Al-Cu-Si / Al-Cu-Si-Zn / Al-Si-Cu-Ni.
  • Example C (including the method used in one of the above Examples 2/7)
  • the joint 10 and the heat exchanger core are integrated into the furnace to complete the welding of the heat exchanger core and the diffusion coating on the joint 10 is further diffused;
  • the heat exchanger core is released
  • connection pipe 40 is welded to the joint 10 using a brazing material of one of Al-Si / Al-Cu-Si / Al-Cu-Si-Zn / Al-Si-Cu-Ni.
  • Example D (including the method used in one of the above Examples 2/7)
  • the heat exchanger core is passed through the furnace to complete the welding of the heat exchanger core;
  • the heat exchanger core is released
  • header connection base 20 of the joint 10 welding the header connection base 20 of the joint 10 to the header 50 by using Al-Si based solder or by fusion welding;
  • connection pipe 40 is welded to the joint 10 using a brazing material of one of Al-Si / Al-Cu-Si / Al-Cu-Si-Zn / Al-Si-Cu-Ni.
  • the heat exchanger core may include a fin 70 or a heat exchanger core without a fin 70, that is, directly exchanged.
  • the heat pipe 60 and the collecting pipe 50 may be assembled, and the assembled heat exchanger core may be bundled and fixed, or may be directly fixed by a welding device and then welded without being bundled, that is, the bundling step may be omitted.
  • the joint 10 can be passed through the furnace alone to form a diffusion coating, or it can be passed through the furnace together with the assembled heat exchanger core to complete the welding operation and form a diffusion coating.
  • the joint 10 for a heat exchanger includes a header connection base 20 and a joint body 30.
  • the joint body 30 is provided in the header connection base 20.
  • the joint body 30 has a connection hole 31 penetrating the joint body 30 and the header connection base 20 along the axial direction of the joint body 30.
  • a diffusion coating is formed on the surface of the joint body 30, and the corrosion potential of the diffusion coating is smaller than the corrosion potential of the joint body 30.
  • the method for processing the joint 10 of the heat exchanger according to the embodiment of the present invention includes the following steps;
  • the joint after coating is heated to form a diffusion coating on the outer surface of the joint, and the corrosion potential of the diffusion coating is lower than the corrosion potential of the joint.
  • the processed joint 10 and the connecting pipe 40 are not easily corroded after welding, and the production efficiency is high and the cost is low.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

一种换热器的接头和连接管的焊接方法,包括以下步骤:在接头(10)的表面形成扩散涂层,所述扩散涂层的腐蚀电位小于所述接头(10)的腐蚀电位;将连接管(40)插入所述接头(10);通过钎料将所述连接管(40)钎焊于所述接头(10),所述钎料钎焊后所形成的焊缝金属的腐蚀电位高于所述接头(10)的腐蚀电位且低于所述连接管(40)的腐蚀电位。还涉及一种换热器的制造方法、一种换热器的接头的处理方法、一种换热器的连接结构、一种换热器和一种用于换热器的接头。上述技术方案提高了防腐效果及生产效率、降低成本,能够使经过处理的接头与连接管焊接后不易腐蚀,降低泄漏率。

Description

换热器制造方法及接头的处理方法和与连接管的焊接方法
相关申请的交叉引用
本申请基于申请号为201811076567.1和201821512267.9,申请日为2018年09月14日的中国专利申请提出,并要求这些中国专利申请的优先权,这些中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本发明涉及换热技术领域,具体而言,涉及一种换热器的接头和连接管的焊接方法、一种换热器的制造方法、一种换热器的接头的处理方法、一种换热器的连接结构、一种换热器和一种用于换热器的接头。
背景技术
相关技术中的制冷、暖通和空调系统及换热器经常用到接头与管路进行连接,例如铜铝钎焊接头,此类接头通常采用钎料配合氟铝酸盐类钎剂进行钎焊,但该接头容易在较短的时间内出现腐蚀泄漏。
为防腐蚀,铜铝接头外侧通常需要包裹热缩套管、胶带、胶泥或涂覆防护层等进行腐蚀防护。因接头表面的残留钎剂不容易彻底清理,热缩管等的保护效果也会打折扣,在后续使用过程仍然会出现部分铜铝接头的腐蚀泄漏。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种换热器的接头和连接管的焊接方法,该换热器的接头和连接管的焊接方法提高了防腐效果,降低了泄漏率。
本发明还提出一种换热器的制造方法。
本发明还提出一种换热器的接头的处理方法。
本发明还提出一种换热器的连接结构。
本发明还提出一种换热器。
本发明还提出一种用于换热器的接头。
根据本发明的第一方面的实施例提出一种换热器的接头和连接管的焊接方法,所述换热器的接头和连接管的焊接方法包括以下步骤:在接头的表面形成扩散涂层,所述扩散涂层的腐蚀电位小于所述接头的腐蚀电位;将连接管插入所述接头;通过钎料将所述连接管钎焊于所述接头,所述钎料钎焊后所形成的焊缝金属的腐蚀电位高于所述接头的腐蚀电位且低于所述连接管的腐蚀电位。
根据本发明实施例的换热器的接头和连接管的焊接方法提高了防腐效果,降低了泄漏率。
根据本发明的一些具体实施例,将所述扩散涂层形成在所述接头的内周表面和外周表面中的至少一个表面。
根据本发明的一些具体实施例,在所述接头的表面通过电弧喷涂、化学浸镀或涂覆的方式形成涂层,再对所述涂层和所述接头加热,以形成所述扩散涂层。
进一步地,所述加热的最高温度为585-615℃,所述最高温度的加热时间为1.5min-30min。
进一步地,所述加热的最高温度为330-410℃,所述最高温度的加热时间为1h-3h。
根据本发明的一些具体示例,所述接头为铝接头或铝合金接头,所述连接管为铜管。
根据本发明的一些具体示例,所述扩散涂层由形成在所述接头的表面的涂层扩散而成,所述涂层含有锌,所述锌来自纯锌、含锌合金或含锌化合物,所述涂层的单位面积的含锌质量为0.2g/㎡-60g/㎡。
进一步地,所述扩散涂层的厚度为10μm-200μm。
进一步地,所述扩散涂层的含锌质量浓度为0.5%-20%。
根据本发明的一些具体实施例,所述钎料含有Al-Si基、Al-Cu-Si基、Al-Cu-Si-Zn基或Al-Cu-Si-Ni基。
根据本发明的一些具体示例,选用铝合金的所述接头,采用电弧喷涂的方式在所述接头的外周表面喷涂纯锌,单位面积喷锌的质量为1g/㎡-20g/㎡,对喷锌后的接头在氮气的保护下加热,加热的最高温度为585℃-615℃,最高温度下的加热时间为1.5min-10min,形成所述扩散涂层,对加热后的接头进行冷却,所述扩散涂层的厚度为10μm-200μm且含锌质量浓度为1%-10%;将铜制的连接管插入冷却后的接头;采用氧气乙炔火焰对所述连接管和所述接头进行加热,通过所述钎料并借助氟铝酸盐钎剂对铜铝接头进行钎焊。
根据本发明的一些具体示例,选用铝合金的所述接头,采用电弧喷涂的方式在所述接头的外周表面喷涂纯锌,单位面积喷锌的质量为1g/㎡-20g/㎡,对喷锌后的接头在氮气的保护下加热,加热的最高温度为330℃-410℃,最高温度下的加热时间为1h-3h,形成所述扩散涂层,对加热后的接头进行冷却,所述扩散涂层的厚度为20μm-200μm且含锌质量浓度为1%-5%;将铜制的连接管插入冷却后的接头;采用氧气乙炔火焰对所述连接管和所述接头进行加热,通过所述钎料并借助氟铝酸盐钎剂对铜铝接头进行钎焊。
根据本发明的第二方面的实施例提出一种换热器的制造方法,所述换热器的制造方法包括根据本发明的第一方面的实施例所述的换热器的接头和连接管的焊接方法。
根据本发明实施例的换热器的制造方法,通过利用根据本发明的第一方面的实施例所述的换热器的接头和连接管的焊接方法,提高了防腐效果及生产效率、降低成本等优 点。
根据本发明的一些具体实施例,所述换热器的制造方法包括以下步骤:将接头点焊在集流管上;对换热器芯体进行组装;将含锌涂层附着在接头的表面;对组装后的换热器芯体以及附着含锌涂层的接头一体过炉,完成焊接并在接头的表面形成扩散涂层;将连接管插入接头并通过钎料钎焊于接头。
根据本发明的第三方面的实施例提出一种换热器的接头的处理方法,所述换热器的接头的处理方法包括以下步骤;在所述接头的表面附着涂层;对附着涂层后的接头进行加热,以在所述接头的外表面形成扩散涂层,所述扩散涂层的腐蚀电位低于所述接头的腐蚀电位。
根据本发明实施例的换热器的接头的处理方法,能够使经过处理的接头与连接管焊接后不易腐蚀。
根据本发明的第四方面的实施例提出一种换热器的连接结构,包括:接头,所述接头的表面形成有扩散涂层;连接管,所述连接管插入所述接头且通过钎料与所述接头钎焊相连;其中,所述扩散涂层的腐蚀电位、所述接头的腐蚀电位、所述钎料钎焊后所形成的焊缝金属的腐蚀电位和所述连接管的腐蚀电位依次升高。
根据本实用新型实施例的换热器的连接结构提高了防腐效果,降低了泄漏率。
根据本发明的一些具体实施例,所述接头包括:集流管连接座;接头本体,所述接头本体设于所述集流管连接座,所述接头本体具有沿所述接头本体的轴向贯通所述接头本体和所述集流管连接座的连接孔;其中,所述扩散涂层形成于所述接头本体的内周表面和外周表面的至少一个表面,所述连接管插入所述连接孔,所述连接管的外周面通过所述钎料与所述接头本体的内周面钎焊相连。
根据本发明的一些具体实施例,所述接头本体的远离所述集流管连接座的一端的端面设有斜面,所述斜面沿所述接头本体的径向由外至内逐渐向所述集流管连接座的方向倾斜。
根据本发明的一些具体实施例,所述接头为铝接头或铝合金接头,所述连接管为铜管,所述扩散涂层由形成在所述接头的表面形成的涂层扩散而成,所述涂层含有锌,所述锌来自纯锌、含锌合金或含锌化合物。
根据本发明的一些具体实施例,所述涂层的单位面积的含锌质量为0.2g/㎡-60g/㎡。
根据本发明的一些具体实施例,所述扩散涂层的厚度为10μm-200μm。
根据本发明的一些具体实施例,所述扩散涂层的含锌质量浓度为0.5%-20%。
根据本发明的一些具体实施例,所述钎料含有Al-Si基、Al-Cu-Si基、Al-Cu-Si-Zn基或Al-Cu-Si-Ni基。
根据本实用新型的第五方面的实施例提出一种换热器,所述换热器包括:集流管; 根据本实用新型的第四方面的实施例所述的换热器的连接结构,所述接头连接于所述集流管,所述连接管通过所述接头与所述集流管连通。
根据本实用新型实施例的换热器,通过利用根据本实用新型的第四方面的实施例所述的换热器的连接结构,提高了防腐效果和生产效率,降低了泄漏率。
根据本实用新型的第六方面的实施例提出一种用于换热器的接头,所述用于换热器的接头包括:集流管连接座;接头本体,所述接头本体设于所述集流管连接座,所述接头本体具有沿所述接头本体的轴向贯通所述接头本体和所述集流管连接座的连接孔;其中,所述接头本体的表面形成有扩散涂层,所述扩散涂层的腐蚀电位小于所述接头本体的腐蚀电位。
根据本实用新型实施例的用于换热器的接头,能够使经过处理的接头与连接管焊接后不易腐蚀。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据本发明实施例的换热器的结构示意图。
图2是根据本发明实施例的换热管的连接结构的接头的结构示意图。
图3是根据本发明实施例的换热管的接头和连接管的焊接方法的流程图。
附图标记:
接头10、
集流管连接座20、
接头本体30、连接孔31、斜面32、
连接管40、集流管50、换热管60、翅片70。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相 连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本发明中的具体含义。
下面参考附图描述根据本发明实施例的换热器的连接结构。
如图2所示,根据本发明实施例的换热器的连接结构包括接头10和连接管40。
接头10的表面形成有扩散涂层。所述连接管40插入接头10且通过钎料与接头10钎焊相连。
其中,所述扩散涂层的腐蚀电位、接头10的腐蚀电位、所述钎料钎焊后所形成的焊缝金属的腐蚀电位和所述连接管40的腐蚀电位依次升高。
换言之,所述扩散涂层的腐蚀电位<接头10的腐蚀电位<所述钎料钎焊后所形成的焊缝金属的腐蚀电位<所述连接管40的腐蚀电位。
下面参考附图描述根据本发明实施例的换热器的接头和连接管的焊接方法。
如图3所示,根据本发明实施例的换热器的接头和连接管的焊接方法包括以下步骤:
在接头10的表面形成扩散涂层,所述扩散涂层的腐蚀电位小于接头10的腐蚀电位;
将连接管40插入接头10;
通过钎料将所述连接管40钎焊于接头10,所述钎料钎焊后所形成的焊缝金属的腐蚀电位高于接头10的腐蚀电位且低于所述连接管40的腐蚀电位。
根据本发明实施例的换热器的连接结构以及换热器的接头和连接管的焊接方法,在接头10的表面形成有扩散涂层,且各部分的腐蚀电位满足以下关系:
所述扩散涂层的腐蚀电位<接头10的腐蚀电位<所述钎料钎焊后所形成的焊缝金属的腐蚀电位<所述连接管40的腐蚀电位。
由此,通过这种电位梯度的设计,能够避免在腐蚀环境中出现焊缝的率先腐蚀和接头10的过早点蚀,并进一步避免焊缝金属的率先腐蚀及由此带来的腐蚀产物在焊缝的堆积膨胀而造成接头10未腐蚀位置的开裂,从而大幅提高了耐腐蚀寿命。
并且,无需包裹热缩套管、胶带、胶泥或涂覆防护层等进行腐蚀防护,省去了对接头10表面进行打磨及清理的前序作业,大幅减少了生产工序,从而有效提高生产效率、降低生产成本。
因此,根据本发明实施例的换热器的连接结构以及换热器的接头和连接管的焊接方法,具有防腐效果好且生产效率高、成本低等优点。
本领域的技术人员可以理解地是,根据本发明实施例的换热器的连接结构以及换热器的接头和连接管的焊接方法,亦可以应用于非管件的场合,比如铜铝过渡接头(铜铝过渡排),并可以应用于导电的场合。此外,亦可以进一步通过外套热缩套管、胶带、胶泥或涂覆防护层等,以进一步提高使用寿命,满足更高腐蚀环境下的使用要求。
在本发明的一些具体实施例中,将所述扩散涂层形成在接头10的内周表面和外周表面中的至少一个表面,由此可以在接头10的对应部分起到防腐蚀的作用,以应用于不同的场合,例如,应用于水系统时,相应的在接头10的内周表面形成扩散涂层。
在本发明的一些具体示例中,如图2所示,接头10包括集流管连接座20和接头本体30。
集流管连接座20用于与换热器的集流管50相连,例如,集流管连接座20构造有与集流管50的外周面形状适配的弧形面。接头本体30设于集流管连接座20,接头本体30具有连接孔31,连接孔31沿接头本体30的轴向贯通接头本体30和集流管连接座20。
其中,所述扩散涂层形成于接头本体30的内周表面和外周表面的至少一个表面,所述连接管40插入连接孔31,所述连接管40的外周面通过钎料与接头本体30的内周面钎焊相连,实现连接管40与接头10的连接,连接管40能够通过接头10与集流管50连通,且扩散涂层形成在接头本体30的外周表面或钎焊面附近的内周表面,使钎焊位置具有较高的耐腐蚀性。
进一步地,如图2所示,接头本体30的远离集流管连接座20的一端的端面设有斜面32,斜面32沿接头本体30的径向由外至内逐渐向集流管连接座20的方向倾斜,这样一方面可以方便连接管40插入连接孔31,另一方面能够提高焊接后的稳固性。
在本发明的一些具体实施例中,在接头10的表面通过电弧喷涂、化学浸镀或涂覆的方式形成涂层,再对所述涂层和接头10加热,以形成所述扩散涂层。
可选地,所述加热的最高温度为585-615℃,所述最高温度的加热时间为1.5min-30min,接头10可以与换热器芯体一起过炉获得所述扩散层。
可选地,所述加热的最高温度为330-410℃,所述最高温度的加热时间为1h-3h,接头10适于单独进行扩散处理。
在本发明的一些实施例中,接头10为铝接头或铝合金接头,所述连接管40为铜管,所述扩散涂层由形成在接头10的表面形成的涂层扩散而成,所述涂层含有锌,所述锌来自纯锌、含锌合金或含锌化合物。
其中,所述涂层的单位面积的含锌质量为0.2g/㎡-60g/㎡,所述扩散涂层的含锌质量浓度为0.5%-20%。
进一步地,所述扩散涂层的厚度为10μm-200μm。
上述加工过程的工艺参数范围是为了确保扩散涂层厚度和表层的锌浓度在合适的范围内,由此,一方面能够保证涂层扩散均匀,保证防护的时间以有效保护焊缝;另一方面能够减缓扩散涂层的牺牲速度,从而延长防护时间。
在本发明的一些具体示例中,所述钎料含有Al-Si基、Al-Cu-Si基、Al-Cu-Si-Zn基或Al-Cu-Si-Ni基,钎料所形成的焊缝金属的腐蚀电位介于铜和铝合金之间,避免焊缝率先腐蚀,且钎焊过程中铜母材向焊缝的溶解进一步提高了焊缝金属的腐蚀电位,保 证了防腐蚀效果的效果。
下面举例描述根据本发明实施例的换热器的接头和连接管的焊接方法。
实施例1
接头10为铝合金,采用电弧喷涂的方式在接头本体30的外周表面喷涂纯锌,单位面积喷锌的质量约为1-20g/m2,将喷锌后的接头10放置在氮气保护的加热炉中进行加热(可以随着换热器芯体一起或者单独进炉),加热的最高温度约585-615℃,最高温度下的加热时间约1.5-10min,以材料厚度确定,加热后冷却。经检测加热后获得的扩散涂层的厚度约10-200μm,扩散涂层的锌质量浓度约1-10%。
将铜制的连接管40放入上述接头10的连接孔31,选用Al-Si基的钎料,采用氧气乙炔火焰进行加热,借助氟铝酸盐钎剂进行钎焊,钎焊完成后获得产品。
对上述产品的两端进行密封,随后进行酸性模拟海水循环盐雾试验(ASTM G85-A3标准),经过1000小时盐雾试验后,未出现外腐蚀泄漏。
实施例2
接头10为铝合金,采用电弧喷涂的方式在接头本体30的外周表面涂纯锌,单位面积喷锌的重量约为1-20g/m2,将喷锌后的接头10放置在氮气保护的加热炉中进行加热(可以随着换热器芯体一起或者单独进炉),加热的最高温度约330-410℃,最高温度的加热时间约1-3小时,加热后冷却。经检测加热后获得的扩散涂层的厚度约20-200μm,扩散涂层的锌质量浓度约1-5%。
将铜制的连接管40放入接头10的连接孔31,选用Al-Cu-Si基的钎料,采用氧气乙炔火焰进行加热,借助氟铝酸盐钎剂进行钎焊,钎焊完成后获得产品。
对上述产品的两端进行密封,随后进行酸性模拟海水循环盐雾试验(ASTM G85-A3标准),经过1000小时盐雾试验后,未出现外腐蚀泄漏。
实施例3
接头10为铝合金,采用化学浸锌的方法在接头本体30的外周表面浸锌,单位面积的浸锌量约为0.2-4g/m2,将浸锌后的接头10放置在氮气保护的加热炉中进行加热,加热的最高温度约585-615℃,最高温度的加热时间约1.5-10min,根据材料厚度不同进行调整,加热后冷却。经检测加热后获得的扩散涂层的厚度约20-100μm,扩散涂层的锌质量浓度约0.3-2%。
将铜制的连接管40放入上述接头10的连接孔31,选用Al-Cu-Si-Zn基的钎料,采用氧气乙炔火焰进行加热,借助氟铝酸盐钎剂进行钎焊,钎焊完成后获得产品。
对上述产品的两端进行密封,随后进行酸性模拟海水循环盐雾试验(ASTM G85-A3标准),经过1000小时盐雾试验后,未出现外腐蚀泄漏。
实施例4
接头10为铝合金,采用15%浓度的KZnF3水悬浊液涂覆在接头本体30的外周表面, 涂覆的KZnF3的单位面积重量约为5-60g/m2,将涂覆后的接头10放置在加热炉中进行加热(可以随着换热器芯体一起或者单独进炉),加热的最高温度约585-615℃,最高温度的加热时间约1.5-10min,加热后冷却。经检测加热后获得的扩散涂层的厚度约20-150μm,扩散涂层的锌质量浓度约1-10%。
将连接管40放入接头10的连接孔31,选用Al-Cu-Si-Ni基的钎料,采用氧气乙炔火焰进行加热,借助氟铝酸盐钎剂进行钎焊,钎焊完成后获得产品。
对上述产品的两端进行密封,随后进行酸性模拟海水循环盐雾试验(ASTM G85-A3标准),经过1000小时盐雾试验后,未出现外腐蚀泄漏。
实施例5
接头10为铝合金,将70%的Nocolok钎剂(不溶性钎剂)粉末+15%的粘结剂+15%的Zn粉末混合均匀后,涂覆在接头本体30的外周表面,涂覆的混合物中单位面积的Zn含量约为1-6g/m2,将涂覆后的接头10放置在加热炉中进行加热(可以随着换热器芯体一起或者单独进炉),加热的最高温度585-615℃,最高温度的加热时间约1.5-10min,加热后冷却。经检测加热后获得的扩散涂层的厚度约30-120μm,扩散涂层的锌质量浓度约0.5-5%。
将铜制的连接管40放入上述接头10的连接孔31,选用Al-Cu-Si基的钎料,采用氧气乙炔火焰进行加热,借助氟铝酸盐钎剂进行钎焊,钎焊完成后获得产品。
对上述产品的两端进行密封,随后进行酸性模拟海水循环盐雾试验(ASTM G85-A3标准),经过1000小时盐雾试验后,未出现外腐蚀泄漏。
实施例6
接头10为铝合金,将70%的氟铝酸盐钎剂粉末+15%的粘结剂+15%的Zn-5Al粉末混合均匀后,涂覆在接头本体30的外周表面,涂覆的混合物中单位面积的Zn-15Al含量约为1-8g/m2,将涂覆后的接头10放置在加热炉中进行加热,加热的最高温度约400-550℃,最高温度的加热时间约2-30min,加热后冷却。经检测加热后获得的扩散涂层的厚度约20-200μm,扩散涂层的锌质量浓度约0.5-10%。
将铜制的连接管40放入上述接头10的连接孔31,选用Al-Cu-Si-Ni基的钎料,采用氧气乙炔火焰进行加热,借助氟铝酸盐钎剂进行钎焊,钎焊完成后获得产品。
对上述产品的两端进行密封,随后进行酸性模拟海水循环盐雾试验(ASTM G85-A3标准),经过1000小时盐雾试验后,未出现外腐蚀泄漏。
实施例7
接头10为铝合金,采用电弧喷涂的方式在接头本体30的外周表面喷涂Zn-2Al合金,单位面积喷涂的重量约为3-20g/m2,将喷锌后的接头10放置在氮气保护的加热炉中进行加热,加热的最高温度约340-375℃,最高温度的加热时间约1-3小时,加热后冷却。经检测加热后获得扩散涂层的厚度约50-200μm,扩散涂层的锌质量浓度约1-20%。
将铜制的连接管40放入上述接头10的连接孔31,选用Al-Si基的钎料,采用氧气乙炔火焰进行加热,借助氟铝酸盐钎剂进行钎焊,钎焊完成后获得产品。
对上述产品的两端进行密封,随后进行酸性模拟海水循环盐雾试验(ASTM G85-A3标准),经过1000小时盐雾试验后,未出现外腐蚀泄漏。
实施例8
接头10为铝合金,采用20%浓度的KZnF3水悬浊液涂覆在接头本体30的外周表面和内周表面,涂覆的KZnF3的单位面积重量约为10-60g/m2,将涂覆后的接头10放置在加热炉中进行加热(可以随着换热器芯体一起或者单独进炉),加热的最高温度约585-615℃,最高温度的加热时间约2-10min,加热后冷却。经检测加热后获得的扩散涂层的厚度约50-150μm,扩散涂层的锌质量浓度约1-5%。
将铜制的连接管40放入上述接头10的连接孔31,选用Al-Cu-Si基的钎料,采用氧气乙炔火焰进行加热,借助氟铝酸盐钎剂进行钎焊,钎焊完成后获得产品。
对上述产品的两端进行密封,随后进行酸性模拟海水循环盐雾试验(ASTM G85-A3标准),经过1000小时盐雾试验后,未出现外腐蚀泄漏。
对上述产品形成的通道内壁进行内腐蚀测试(ASTM D2570标准),经21天内腐蚀测试后未出现内腐蚀泄漏。
下面描述根据本发明实施例的换热器,如图1所示,根据本发明实施例的换热器包括集流管50和上述换热器的连接结构。
接头10连接于所述集流管50,所述连接管40通过接头10与所述集流管50连通,连接管40主要为制冷剂进口管和制冷剂出口管。
根据本发明实施例的换热器的制造方法包括上述换热器的接头和连接管的焊接方法。
根据本发明实施例的换热器及其制造方法,具有防腐效果好且生产效率高、成本低等优点。
下面举例描述根据本发明实施例的换热器的制造方法。
实施例A(包含上述实施例4/5/6/8中之一采用的方法)
将接头10的集流管连接座20点焊在集流管50上;
对换热器芯体进行组装;
将含锌涂层附着在需要的位置;
接头10和换热器芯体一体过炉完成换热器芯体的焊接及在接头10上形成扩散涂层;
换热器芯体出炉;
将连接管40采用Al-Si/Al-Cu-Si/Al-Cu-Si-Zn/Al-Si-Cu-Ni中之一的钎料焊接在接头10上。
实施例B(包含上述实施例1/3中之一采用的方法)
对接头10进行电弧喷锌或化学浸锌;
将接头10的集流管连接座20点焊在集流管50上;
对换热管60、翅片70及集流管50进行组装;
捆扎固定组装好的换热器芯体;
接头10和换热器芯体一体过炉完成换热器芯体的焊接及在接头10上形成扩散涂层;
换热器芯体出炉;
将连接管40采用Al-Si/Al-Cu-Si/Al-Cu-Si-Zn/Al-Si-Cu-Ni中之一的钎料焊接在接头10上。
实施例C(包含上述实施例2/7中之一采用的方法)
对接头10进行电弧喷锌;
将接头10单独过炉形成扩散涂层;
将接头10的集流管连接座20点焊在集流管50上;
对换热管60、翅片70及集流管50进行组装;
捆扎固定组装好的换热器芯体;
将接头10和换热器芯体一体过炉完成换热器芯体的焊接且接头10上的扩散涂层进一步扩散;
换热器芯体出炉;
将连接管40采用Al-Si/Al-Cu-Si/Al-Cu-Si-Zn/Al-Si-Cu-Ni中之一的钎料焊接在接头10上。
实施例D(包含上述实施例2/7中之一采用的方法)
对接头10进行电弧喷锌;
将接头10单独过炉形成扩散涂层
对换热管60、翅片70及集流管50进行组装;
捆扎固定组装好的换热器芯体;
换热器芯体过炉完成换热器芯体的焊接;
换热器芯体出炉;
将接头10的集流管连接座20采用Al-Si基钎料焊接或采用熔化焊焊接在集流管50上;
将连接管40采用Al-Si/Al-Cu-Si/Al-Cu-Si-Zn/Al-Si-Cu-Ni中之一的钎料焊接在接头10上。
实施例A-实施例D中对换热器芯体进行组装时,可以是含有翅片70的换热器芯体,也可以是不带翅片70的换热器芯体,即直接对换热管60和集流管50进行组装即可,组装完成后的换热器芯体可以进行捆扎固定,也可以不进行捆扎,直接通过焊接装置固定后进行焊接操作,即可以省略捆扎的步骤。接头10可以单独过炉形成扩散涂层,也可以 和组装后的换热器芯体一体过炉,即完成焊接操作同时形成扩散涂层。
下面描述根据本发明实施例的用于换热器的接头10。
如图2所示,根据本发明实施例的用于换热器的接头10包括集流管连接座20和接头本体30。
接头本体30设于集流管连接座20,接头本体30具有沿接头本体30的轴向贯通接头本体30和集流管连接座20的连接孔31。其中,接头本体30的表面形成有扩散涂层,所述扩散涂层的腐蚀电位小于接头本体30的腐蚀电位。
根据本发明实施例的换热器的接头10的处理方法包括以下步骤;
在所述接头的表面附着涂层;
对附着涂层后的接头进行加热,以在所述接头的外表面形成扩散涂层,所述扩散涂层的腐蚀电位低于所述接头的腐蚀电位。
根据本发明实施例的换热器的接头10及其处理方法,能够使经过处理的接头10与连接管40焊接后不易腐蚀,且生产效率高、成本低。
根据本发明实施例的换热器的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本发明的实施例,本领域的普通技术人员可以理解:在不脱离本发明的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由权利要求及其等同物限定。

Claims (25)

  1. 一种换热器的接头和连接管的焊接方法,其特征在于,包括以下步骤:
    在接头(10)的表面形成扩散涂层,所述扩散涂层的腐蚀电位小于所述接头(10)的腐蚀电位;
    将连接管(40)插入所述接头(10);
    通过钎料将所述连接管(40)钎焊于所述接头(10),所述钎料钎焊后所形成的焊缝金属的腐蚀电位高于所述接头(10)的腐蚀电位且低于所述连接管(40)的腐蚀电位。
  2. 根据权利要求1所述的换热器的接头和连接管的焊接方法,其特征在于,将所述扩散涂层形成在所述接头(10)的内周表面和外周表面中的至少一个表面。
  3. 根据权利要求1所述的换热器的接头和连接管的焊接方法,其特征在于,在所述接头(10)的表面通过电弧喷涂、化学浸镀或涂覆的方式形成涂层,再对所述涂层和所述接头(10)加热,以形成所述扩散涂层。
  4. 根据权利要求3所述的换热器的接头和连接管的焊接方法,其特征在于,所述加热的最高温度为585-615℃,所述最高温度的加热时间为1.5min-30min。
  5. 根据权利要求3所述的换热器的接头和连接管的焊接方法,其特征在于,所述加热的最高温度为330-410℃,所述最高温度的加热时间为1h-3h。
  6. 根据权利要求1-5中任一项所述的换热器的接头和连接管的焊接方法,其特征在于,所述接头(10)为铝接头或铝合金接头,所述连接管(40)为铜管。
  7. 根据权利要求1-5中任一项所述的换热器的接头和连接管的焊接方法,其特征在于,所述扩散涂层由形成在所述接头(10)的表面的涂层扩散而成,所述涂层含有锌,所述锌来自纯锌、含锌合金或含锌化合物,所述涂层的单位面积的含锌质量为0.2g/㎡-60g/㎡。
  8. 根据权利要求7所述的换热器的接头和连接管的焊接方法,其特征在于,所述扩散涂层的厚度为10μm-200μm。
  9. 根据权利要求7所述的换热器的接头和连接管的焊接方法,其特征在于,所述扩散涂层的含锌质量浓度为0.5%-20%。
  10. 根据权利要求1-5中任一项所述的换热器的接头和连接管的焊接方法,其特征在于,所述钎料含有Al-Si基、Al-Cu-Si基、Al-Cu-Si-Zn基或Al-Cu-Si-Ni基。
  11. 根据权利要求4所述的换热器的接头和连接管的焊接方法,其特征在于,选用铝合金的所述接头(10),采用电弧喷涂的方式在所述接头(10)的外周表面喷涂纯锌,单位面积喷锌的质量为1g/㎡-20g/㎡,对喷锌后的接头(10)在氮气的保护下加热,加热的最高温度为585℃-615℃,最高温度下的加热时间为1.5min-10min,形成所述扩散涂层,对加热后的接头(10)进行冷却,所述扩散涂层的厚度为10μm-200μm且含锌 质量浓度为1%-10%;
    将铜制的连接管(40)插入冷却后的接头(10);
    采用氧气乙炔火焰对所述连接管(40)和所述接头(10)进行加热,通过所述钎料并借助氟铝酸盐钎剂对铜铝接头(10)进行钎焊。
  12. 根据权利要求5所述的换热器的接头和连接管的焊接方法,其特征在于,选用铝合金的所述接头(10),采用电弧喷涂的方式在所述接头(10)的外周表面喷涂纯锌,单位面积喷锌的质量为1g/㎡-20g/㎡,对喷锌后的接头(10)在氮气的保护下加热,加热的最高温度为330℃-410℃,最高温度下的加热时间为1h-3h,形成所述扩散涂层,对加热后的接头(10)进行冷却,所述扩散涂层的厚度为20μm-200μm且含锌质量浓度为1%-5%;
    将铜制的连接管(40)插入冷却后的接头(10);
    采用氧气乙炔火焰对所述连接管(40)和所述接头(10)进行加热,通过所述钎料并借助氟铝酸盐钎剂对铜铝接头(10)进行钎焊。
  13. 一种换热器的制造方法,其特征在于,包括根据权利要求1-12中任一项所述的换热器的接头(10)和连接管(40)的焊接方法。
  14. 根据权利要求13所述的换热器的制造方法,其特征在于,包括以下步骤:
    将接头(10)点焊在集流管(50)上;
    对换热器芯体进行组装;
    将含锌涂层附着在接头(10)的表面;
    对组装后的换热器芯体以及附着含锌涂层的接头(10)一体过炉,完成焊接并在接头(10)的表面形成扩散涂层;
    将连接管(40)插入接头(10)并通过钎料钎焊于接头(10)。
  15. 一种换热器的接头的处理方法,其特征在于,包括以下步骤;
    在所述接头(10)的表面附着涂层;
    对附着涂层后的接头(10)进行加热,以在所述接头(10)的外表面形成扩散涂层,所述扩散涂层的腐蚀电位低于所述接头(10)的腐蚀电位。
  16. 一种换热器的连接结构,其特征在于,包括:
    接头,所述接头的表面形成有扩散涂层;
    连接管,所述连接管插入所述接头且通过钎料与所述接头钎焊相连;
    其中,所述扩散涂层的腐蚀电位、所述接头的腐蚀电位、所述钎料钎焊后所形成的焊缝金属的腐蚀电位和所述连接管的腐蚀电位依次升高。
  17. 根据权利要求16所述的换热器的连接结构,其特征在于,所述接头包括:
    集流管连接座;
    接头本体,所述接头本体设于所述集流管连接座,所述接头本体具有沿所述接头本 体的轴向贯通所述接头本体和所述集流管连接座的连接孔;
    其中,所述扩散涂层形成于所述接头本体的内周表面和外周表面的至少一个表面,所述连接管插入所述连接孔,所述连接管的外周面通过所述钎料与所述接头本体的内周面钎焊相连。
  18. 根据权利要求17所述的换热器的连接结构,其特征在于,所述接头本体的远离所述集流管连接座的一端的端面设有斜面,所述斜面沿所述接头本体的径向由外至内逐渐向所述集流管连接座的方向倾斜。
  19. 根据权利要求16-18中任一项所述的换热器的连接结构,其特征在于,所述接头为铝接头或铝合金接头,所述连接管为铜管,所述扩散涂层由形成在所述接头的表面形成的涂层扩散而成,所述涂层含有锌,所述锌来自纯锌、含锌合金或含锌化合物。
  20. 根据权利要求19所述的换热器的连接结构,其特征在于,所述涂层的单位面积的含锌质量为0.2g/㎡-60g/㎡。
  21. 根据权利要求19所述的换热器的连接结构,其特征在于,所述扩散涂层的厚度为10μm-200μm。
  22. 根据权利要求19所述的换热器的连接结构,其特征在于,所述扩散涂层的含锌质量浓度为0.5%-20%。
  23. 根据权利要求16-18中任一项所述的换热器的连接结构,其特征在于,所述钎料含有Al-Si基、Al-Cu-Si基、Al-Cu-Si-Zn基或Al-Cu-Si-Ni基。
  24. 一种换热器,其特征在于,包括:
    集流管;
    根据权利要求16-23中任一项所述的换热器的连接结构,所述接头连接于所述集流管,所述连接管通过所述接头与所述集流管连通。
  25. 一种用于换热器的接头,其特征在于,包括:
    集流管连接座;
    接头本体,所述接头本体设于所述集流管连接座,所述接头本体具有沿所述接头本体的轴向贯通所述接头本体和所述集流管连接座的连接孔;
    其中,所述接头本体的表面形成有扩散涂层,所述扩散涂层的腐蚀电位小于所述接头本体的腐蚀电位。
PCT/CN2019/105567 2018-09-14 2019-09-12 换热器制造方法及接头的处理方法和与连接管的焊接方法 WO2020052622A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/276,019 US20220065560A1 (en) 2018-09-14 2019-09-12 Welding method of connector and connection tube, connection structure and heat exchanger

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201821512267.9 2018-09-14
CN201821512267.9U CN209013818U (zh) 2018-09-14 2018-09-14 换热器及其连接结构和接头
CN201811076567.1A CN110587055B (zh) 2018-09-14 2018-09-14 换热器制造方法及接头的处理方法和与连接管的焊接方法
CN201811076567.1 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020052622A1 true WO2020052622A1 (zh) 2020-03-19

Family

ID=69778179

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/105567 WO2020052622A1 (zh) 2018-09-14 2019-09-12 换热器制造方法及接头的处理方法和与连接管的焊接方法

Country Status (2)

Country Link
US (1) US20220065560A1 (zh)
WO (1) WO2020052622A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328240A (ja) * 1993-05-18 1994-11-29 Showa Alum Corp パイプ同志の接続方法
JP2000351062A (ja) * 1997-01-24 2000-12-19 Nippon Light Metal Co Ltd アルミニウム製熱交換器コア及びその製造方法
CN101120117A (zh) * 2005-02-16 2008-02-06 昭和电工株式会社 热交换器构件及其制造方法
CN204388688U (zh) * 2014-12-29 2015-06-10 杭州三花微通道换热器有限公司 用于换热器的集流管组件
CN105987631A (zh) * 2015-01-27 2016-10-05 丹佛斯微通道换热器(嘉兴)有限公司 换热器
CN107429333A (zh) * 2015-03-12 2017-12-01 三菱铝株式会社 钎焊之后的耐腐蚀性优秀的钎焊片
CN209013818U (zh) * 2018-09-14 2019-06-21 杭州三花微通道换热器有限公司 换热器及其连接结构和接头

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06328240A (ja) * 1993-05-18 1994-11-29 Showa Alum Corp パイプ同志の接続方法
JP2000351062A (ja) * 1997-01-24 2000-12-19 Nippon Light Metal Co Ltd アルミニウム製熱交換器コア及びその製造方法
CN101120117A (zh) * 2005-02-16 2008-02-06 昭和电工株式会社 热交换器构件及其制造方法
CN204388688U (zh) * 2014-12-29 2015-06-10 杭州三花微通道换热器有限公司 用于换热器的集流管组件
CN105987631A (zh) * 2015-01-27 2016-10-05 丹佛斯微通道换热器(嘉兴)有限公司 换热器
CN107429333A (zh) * 2015-03-12 2017-12-01 三菱铝株式会社 钎焊之后的耐腐蚀性优秀的钎焊片
CN209013818U (zh) * 2018-09-14 2019-06-21 杭州三花微通道换热器有限公司 换热器及其连接结构和接头

Also Published As

Publication number Publication date
US20220065560A1 (en) 2022-03-03

Similar Documents

Publication Publication Date Title
US4831701A (en) Method of making a corrosion resistant aluminum heat exchanger using a particulate flux
CN101676667B (zh) 铝合金制热交换器及其制造方法
US8152047B2 (en) Method of producing a corrosion resistant aluminum heat exchanger
US20070164088A1 (en) Brazing process for stainless steel heat exchangers
US3855682A (en) Method of soldering together an aluminum part and a ferrous or cuprous metal part
US5005285A (en) Method of producing an aluminum heat exchanger
JP5955488B1 (ja) 冷媒分配器の製造方法、冷媒分配器の製造装置、冷媒分配器、熱交換器及び空気調和装置
CN202992436U (zh) 一种换热器的铜铝接头结构
CN1962941A (zh) 铝合金热交换器导管和翘片复合钎料的冷喷涂方法
CN104768690B (zh) Al合金管的接合体和使用其的热交换器
JPH08267228A (ja) アルミニウム管と銅管の接合構造
CN108746940A (zh) 一种降低镍基合金管板自动焊收弧裂纹的方法
KR101646484B1 (ko) 동 커넥터를 구비한 판형 열교환기의 제작 방법
WO2020052622A1 (zh) 换热器制造方法及接头的处理方法和与连接管的焊接方法
CN106270915A (zh) 一种空调储液器焊接保护装置及其使用方法
CN209013818U (zh) 换热器及其连接结构和接头
CN110587055B (zh) 换热器制造方法及接头的处理方法和与连接管的焊接方法
JPH04138587U (ja) 熱交換器
JP4411803B2 (ja) アルミニウム熱交換器のろう付け方法およびアルミニウム部材ろう付け用溶液
CN108907606A (zh) Cloos焊接机器人焊枪修复方法
JPH0594593U (ja) 異種金属の継手構造
JPS60177969A (ja) Ti−Al二重管とTi管板との組付方法
KR100408776B1 (ko) 열교환기의 제조방법
JP4843150B2 (ja) 熱交換器
JP2004339582A (ja) 熱交換器用チューブ及び熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859379

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859379

Country of ref document: EP

Kind code of ref document: A1