WO2020052314A1 - 一种高强韧性高硬度的镁基高熵合金及制备方法 - Google Patents

一种高强韧性高硬度的镁基高熵合金及制备方法 Download PDF

Info

Publication number
WO2020052314A1
WO2020052314A1 PCT/CN2019/092753 CN2019092753W WO2020052314A1 WO 2020052314 A1 WO2020052314 A1 WO 2020052314A1 CN 2019092753 W CN2019092753 W CN 2019092753W WO 2020052314 A1 WO2020052314 A1 WO 2020052314A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium
alloy
toughness
entropy alloy
strength
Prior art date
Application number
PCT/CN2019/092753
Other languages
English (en)
French (fr)
Inventor
徐丹
林小娉
黄铎
权力伟
陈达平
申睿
Original Assignee
东北大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东北大学 filed Critical 东北大学
Publication of WO2020052314A1 publication Critical patent/WO2020052314A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C30/00Alloys containing less than 50% by weight of each constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C23/00Alloys based on magnesium
    • C22C23/02Alloys based on magnesium with aluminium as the next major constituent

Definitions

  • the invention belongs to the technical field of alloys and relates to a MgAlGdYZn-based high-entropy alloy with high strength and toughness and high hardness, which is designed based on the idea of a high-entropy alloy and a preparation method thereof.
  • Magnesium alloy as the lightest metal structural material in engineering applications, has the characteristics of high specific strength, high specific rigidity and good damping performance. It is widely used in aviation, aerospace, communications, automotive and other industries. However, the strength of cast magnesium alloy is low. Even the Mg-Ga-Y-Zn cast alloy with the highest strength has a strength of only 350 ⁇ 380MPa, an elongation of 9 ⁇ 12%, and a hardness of less than 100HV. The lack of absolute strength and hardness of magnesium alloys has become a bottleneck in the research field of magnesium alloys.
  • the main method to improve the strength and toughness of magnesium alloys is multi-component alloying, which improves the properties of magnesium alloys through solid solution strengthening, etc., but often forms a compound phase, which can weaken the solid solubility effect of alloy elements and also deteriorate the plasticity of the alloy. .
  • the object of the present invention is to provide a magnesium-based alloy designed based on the idea of a high-entropy alloy and a preparation method thereof.
  • a magnesium-based high-entropy alloy with high strength, toughness and high hardness is obtained, and the preparation method of the magnesium-based high-entropy alloy is simple and the conditions are easy to control.
  • a magnesium-based high-entropy alloy with high strength, toughness, and hardness contains five elements: Mg, Al, Gd, Y, and Zn.
  • the atomic percentage (at.%) Of each component is: Mg: 30 ⁇ 35 %, Al: 20 ⁇ 25%, Gd: 15 ⁇ 20%, Y: 10 ⁇ 15%, Zn: 10 ⁇ 15%.
  • the above-mentioned magnesium-based high entropy alloy has a micro hardness of HV103.3 to HV123.7, a room temperature compressive strength of 458.01 to 496.65MPa, and a compression ratio after breaking of 14.83 to 17.28%.
  • the above-mentioned method for preparing a magnesium-based high-entropy alloy with high strength, toughness and hardness includes the following steps:
  • the vacuum melting furnace when used for smelting, the vacuum degree is 0.024 Pa, the melting temperature is 740-820 ° C, and the holding time is 15-20 minutes.
  • the temperature at which the alloy liquid is poured in the step (2) is 700-780 ° C.
  • the temperature of the water cooling system in the step (2) is constant at 20 ° C.
  • the invention aims to improve the strength and toughness of magnesium alloys, and based on a new design idea of high-entropy alloy material composition, based on Mg, the main elements including Al, Gd, Y, Zn and Mg have a significant "solid solubility effect", and Magnesium alloy strengthens and hardens beneficial alloying elements, and develops magnesium-based high entropy alloys with high strength, toughness, and hardness.
  • the invention breaks through the design components of the magnesium alloy, and changes the performance by only adding 2-3 elements in the past. Based on the high-entropy alloy design concept, adding four or more elements, using the high-entropy effect to form a solid solution, resulting in solid solution strengthening, improving the overall performance of the magnesium alloy, and obtaining a microhardness of HV101.4 ⁇ HV128.4,
  • the room temperature compressive strength is 458.01 ⁇ 496.65MPa
  • the post-break compression ratio is 14.83-17.28% of magnesium-based high entropy alloy.
  • FIG. 1 is a metallographic photograph of Example 1: (a) 100x, (b) 200x, (c) 500x, (d) 1000x;
  • Fig. 2 is a metallographic photograph of Example 2: (a) 100x, (b) 200x, (c) 500x, (d) 1000x;
  • Figure 3 is a metallographic photograph of Example 3: (a) 100x, (b) 200x, (c) 500x, (d) 1000x;
  • Fig. 4 is a metallographic photograph of Example 4: (a) 100x, (b) 200x, (c) 500x, (d) 1000x;
  • Example 5 is an engineering stress-strain curve at room temperature in Example 1;
  • Example 6 is an engineering stress-strain curve at room temperature in Example 2.
  • Example 7 is an engineering stress-strain curve at room temperature in Example 3.
  • FIG. 8 is an engineering stress-strain curve at room temperature in Example 4.
  • a method for preparing a magnesium-based high-entropy alloy with high strength, toughness, and hardness including the following steps: According to the atomic percentage (at.%) Of magnesium-based high-entropy alloy, Mg: 35%, Al: 25%, Gd: 20%, and Y: 10%, Zn: 10%, 5.43 g of Al ingot and 5.26 g of Zn ingot, 23.85 g of Mg-30Y intermediate alloy and 84.36 g of Mg-30Gd intermediate alloy were taken in a crucible for melting. The melting temperature is 760 ° C (soak for 15min), and the casting temperature is 740 ° C.
  • the alloy liquid was cast into a graphite mold (water-cooled) to obtain a Mg 35 Al 25 Gd 20 Y 10 Zn 10 alloy ingot.
  • the obtained alloy ingot was measured by a microhardness tester (load 29.42N, holding time 10 seconds), and the hardness was HV115.6.
  • the obtained alloy ingot was subjected to compression measurement by a UTM-5305 electronic universal testing machine, and the compressive strength at room temperature was 496.65 MPa and the elongation was 15.42%.
  • a method for preparing a magnesium-based high entropy alloy with high strength, toughness and hardness including the following steps: According to the atomic percentage (at.%) Of Mg: 35%, Al: 20%, Gd: 20%, and Y: 10%, Zn: 15%, 4.21 g of Al ingot and 7.65 g of Zn ingot, 23.13 g of Mg-30Y intermediate alloy and 81.83 g of Mg-30Gd intermediate alloy were taken in a crucible for melting. The melting temperature is 760 ° C (soak for 15min), and the casting temperature is 740 ° C. The alloy liquid was cast into a graphite mold (water-cooled) to obtain a Mg 35 Al 20 Gd 20 Y 10 Zn 15 alloy ingot.
  • the obtained alloy ingot was measured by a microhardness tester (load 29.42N, holding time 10 seconds), and the hardness was HV103.3.
  • the obtained alloy ingot was subjected to compression measurement by a UTM-5305 electronic universal testing machine, and the room temperature compressive strength was 481.48 MPa and the elongation was 17.28%.
  • a method for preparing a magnesium-based high-entropy alloy with high strength, toughness and hardness including the following steps: According to the atomic percentage (at.%) Of magnesium-based high-entropy alloy, Mg: 30%, Al: 25%, Gd: 20%, Y: 15%, Zn: 10%, take 4.128 g of Al ingots and 4.002 g of Zn ingots with a purity of 99.9 wt.%, 27.20 g of Mg-30Y intermediate alloy and 64.16 g of Mg-30Gd intermediate alloy in a crucible for melting. The melting temperature is 760 ° C (soak for 15min), and the casting temperature is 740 ° C.
  • the alloy liquid was cast into a graphite mold (water-cooled) to obtain a Mg 30 Al 25 Gd 20 Y 15 Zn 10 alloy ingot.
  • the obtained alloy ingot was measured by a microhardness tester (load 29.42N, holding time 10 seconds), and the hardness was HV123.7.
  • the obtained alloy ingot was subjected to compression measurement by a UTM-5305 electronic universal testing machine, and the room temperature compressive strength was 458.23 MPa and the elongation was 16.35%.
  • a method for preparing a magnesium-based high-entropy alloy with high strength, toughness, and hardness including the following steps: According to the atomic percentage (at.%) Of magnesium-based high-entropy alloy, Mg: 35%, Al: 25%, Gd: 15%, and Y: 15%, Zn: 10%, 5.794 g of Al ingot and 5.568 g of Zn ingot, 37.86 g of Mg-30Y intermediate alloy and 66.96 g of Mg-30Gd intermediate alloy were taken in a crucible for melting. The melting temperature is 760 ° C (soak for 15min), and the casting temperature is 740 ° C.
  • the alloy liquid was cast into a graphite mold (water-cooled) to obtain a Mg 35 Al 25 Gd 15 Y 15 Zn 10 alloy ingot.
  • the obtained alloy ingot was measured by a microhardness tester (load 29.42N, holding time 10 seconds), and the hardness was HV111.4.
  • the obtained alloy ingot was subjected to compression measurement by a UTM-5305 electronic universal testing machine, and the room temperature compressive strength was 458.01 MPa and the elongation was 14.83%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种高强韧性高硬度的镁基高熵合金及制备方法,以Mg为基,选取对镁合金增强、增硬有益的主要元素Al、Gd、Y和Zn,开发出高强韧性、高硬度的镁基高熵合金及其制备方法。镁基高熵合金,其工程应力-应变曲线具有明显的加工硬化特征,显微硬度为HV103.3~HV123.7,室温抗拉强度为458.01~496.65MPa,断后压缩率为14.83~17.28%,并且制备方法简单、条件易控制。

Description

一种高强韧性高硬度的镁基高熵合金及制备方法 技术领域
本发明属于合金技术领域,涉及一种基于高熵合金思想设计的具有高强韧性、高硬度MgAlGdYZn镁基高熵合金及制备方法。
背景技术
镁合金作为工程应用中最轻的金属结构材料,具有比强度高、比刚度高、阻尼性能好的特点,广泛应用于航空、航天、通讯、汽车等行业。但铸造镁合金强度较低,即便是强度最高的Mg-Ga-Y-Zn铸造合金,其强度也仅在350~380MPa,延伸率在9~12%,硬度低于100HV。镁合金的绝对强度、硬度不足,已成为镁合金研究领域的一个瓶颈。
目前提高镁合金强度与韧性的主要方法是多元合金化,通过固溶强化等提高镁合金的性能,但往往会形成化合物相,它们可削弱合金元素的固溶度效应,也恶化了合金的塑性。
20世纪90年代,叶均蔚打破传统的合金设计理念,首次在CoCrFeNiCu系合金中提出高熵合金的概念:此合金须具有五个及五个以上主要元素,且每个主元素原子百分比应介于5%至35%,而每个次要元素则小于5%(J.M. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang. Nanostructured high-entropy alloys with multiple principal elements: novel alloy design concepts and outcomes[J]. Adv. Eng. Mat. 6(2004)299-303.)。目前,高熵合金主要围绕Fe基、Co基和Al基等展开的(张博文. FeCrVTi基高熵合金微观组织及性能研究[D].合肥工业大学,2017.)(房伟峰. CuCrFeNiMn基高熵合金的微观组织和耐腐蚀性能研究[D].郑州大学,2014.),关于镁基的研究报道极少。近年来,李锐等(李锐.高锰含量镁锰中间合金及高熵镁合金制备工艺与性能研究[D].重庆大学,2009. DOI:10.7666/d.y1666537.)首次利用高混合熵的概念设计了Mg x(MnAlZnCu) 100-x合金,研究表明Mg x(MnAlZnCu) 100-x系合金最高硬度可达440HV,最高抗压强度为490MPa,但合金的断后压缩率均小于3%,为典型的脆性材料。R. Li等人(R. Li et al. Microstructure and Mechanical Properties of MgMnAlZnCu High Entropy Alloy Cooling in Three Conditions[J]. Materials Science Forum, Vol. 686, pp. 235-241, 2011.)采用等原子比和高熵混合思想设计了MgMnAlZnCu合金,合金具有较高的抗压强度(428MPa-450MPa)和硬度(431HV-467HV)但塑性差(3.29%-5.53%)。尹可心等(尹可心,武保林.高熵合金Al7Mg3.6Cu1.2Zn7Ti1.2的制备与组织结构分析[J].沈阳航空航天大学学报,2015,32(3):25-30.)制备出了Al 7Mg 3.6Cu 1.2Zn 7Ti 1.2含镁高熵合金,抗压强度可高达到572. 89MPa,但其脆性依然较大,其断后压缩率为5.56%。可见,目前所公开报道的镁基高熵合金同Fe基、Co基一样,均为脆性材料。高混合熵合金脆性大成为其应用的一个瓶颈。因此利用高熵合金概念设计新型镁合金,在提高镁合金强硬性的同时,提高镁合金塑韧性就成为目前亟待解决的关键问题。
技术问题
本发明的目的是提供一种基于高熵合金思想设计的镁基合金及制备方法。通过向镁中加入四种金属元素形成固溶体,获得具有高强韧性、高硬度的镁基高熵合金,并且该镁基高熵合金的制备方法简单、条件易控制。
技术解决方案
本发明的具体技术方案为:
一种高强韧性高硬度的镁基高熵合金,该镁基高熵合金包含Mg、Al、Gd、Y、Zn五种元素,各组分原子百分比(at.%)为:Mg:30~35% 、Al:20~25%、Gd:15~20%、Y:10~15%、Zn:10~15%。
上述镁基高熵合金,其显微硬度为HV103.3~HV123.7,室温抗压强度为458.01~496.65MPa,断后压缩率为14.83~17.28%。
上述一种高强韧性高硬度的镁基高熵合金制备方法,包括如下步骤:
(1)熔炼:根据镁基高熵合金中各成分的目标含量,取纯度为99.9wt.%的Al锭、纯度为99.9wt.%的Zn锭、Mg-30Y中间合金和Mg-30Gd中间合金,置于真空熔炼炉的坩埚中进行熔炼,保温搅拌混合均匀,得到合金液体;
(2)浇铸:将合金液体浇注到带有水冷系统的石墨铸型中,冷却至室温后从石墨铸型中取出合金铸锭即得。
上述的镁基高熵合金的制备方法中,所述步骤(1)中使用真空熔炼炉进行熔炼时真空度为0.024Pa,熔化温度为740~820℃,保温时间为15~20min。
上述的镁基高熵合金的制备方法中,所述步骤(2)中合金液体浇注的温度为700~780℃。
上述的镁基高熵合金的制备方法中,所述步骤(2)中水冷系统温度恒温为20℃。
本发明以提高镁合金强韧性为目的,基于高熵合金材料成分设计新思想,以Mg为基,主元元素包含Al、Gd、Y和Zn与Mg具有明显“固溶度效应”、且对镁合金增强、增硬有益的合金元素,开发出高强韧性、高硬度的镁基高熵合金。
本发明中,各金属组元熔化后在搅拌作用下混合均匀。高熵合金组元众多,混合熵大,由吉布斯自由能方程∆G=∆H-T∆S可以看出,高熵效应能显著降低熔体系统的自由能∆G,使各元素处于混合状态时比形成金属间化合物更加稳定。因此熔体快速凝固后,不产生复杂的金属间化合物,而形成原子堆垛紧密的固溶体结构;虽然各组元密度不同,但来不及产生宏观偏析,从而保证了显微结构和宏观成分的均匀性。
有益效果
本发明的有益效果是:
本发明在镁合金设计成分上进行突破,改变以往只添加2-3种元素来改善性能。基于高熵合金设计理念,添加四种或四种元素以上,利用高熵效应形成固溶体,产生固溶强化,提高了镁合金的整体性能,得到了显微硬度为HV101.4~HV128.4,室温抗压强度为458.01~496.65MPa,断后压缩率为14.83~17.28%的镁基高熵合金。
附图说明
图1是实施例1的金相照片:(a) 100x,(b)200x,(c)500x,(d)1000x;
图2是实施例2的金相照片:(a) 100x,(b) 200x,(c)500x,(d) 1000x;
图3是实施例3的金相照片:(a) 100x,(b) 200x,(c)500x,(d) 1000x;
图4是实施例4的金相照片:(a) 100x,(b) 200x,(c)500x,(d) 1000x;
图5是实施例1室温下工程应力-应变曲线图;
图6是实施例2室温下工程应力-应变曲线图;
图7是实施例3室温下工程应力-应变曲线图;
图8是实施例4室温下工程应力-应变曲线图。
本发明的实施方式
实施例 1
一种高强韧性高硬度的镁基高熵合金制备方法,包括以下步骤:按镁基高熵合金中原子百分比(at.%)Mg:35%、Al:25%、Gd:20%、Y:10%、Zn:10%,取纯度为99.9wt.%的Al锭5.43g和Zn锭5.26g、Mg-30Y中间合金23.85g和Mg-30Gd中间合金84.36g置于坩埚中进行熔炼。熔化温度为760℃(保温15min),浇铸温度为740℃。将合金液体浇铸到石墨铸型中(水冷),得到Mg 35Al 25Gd 20Y 10Zn 10合金铸锭。所得合金铸锭通过显微硬度计测定(载荷29.42N,保压时间10秒),硬度为HV115.6。所得合金铸锭通过UTM−5305电子万能试验机压缩测定,室温抗压强度为496.65MPa、延伸率15.42%。
实施例 2
一种高强韧性高硬度的镁基高熵合金制备方法,包括以下步骤:按镁基高熵合金中原子百分比(at.%)Mg:35%、Al:20%、Gd:20%、Y:10%、Zn:15%,取纯度为99.9wt.%的Al锭4.21g和Zn锭7.65g、Mg-30Y中间合金23.13g和Mg-30Gd中间合金81.83g置于坩埚中进行熔炼。熔化温度为760℃(保温15min),浇铸温度为740℃。将合金液体浇铸到石墨铸型中(水冷),得到Mg 35Al 20Gd 20Y 10Zn 15合金铸锭。所得合金铸锭通过显微硬度计测定(载荷29.42N,保压时间10秒),硬度为HV103.3。所得合金铸锭通过UTM−5305电子万能试验机压缩测定,室温抗压强度为481.48MPa、延伸率17.28%。
实施例 3
一种高强韧性高硬度的镁基高熵合金制备方法,包括以下步骤:按镁基高熵合金中原子百分比(at.%)Mg:30%、Al:25%、Gd:20%、Y:15%、Zn:10%,取纯度为99.9wt.%的Al锭4.128g和Zn锭4.002g、Mg-30Y中间合金27.20g和Mg-30Gd中间合金64.16g置于坩埚中进行熔炼。熔化温度为760℃(保温15min),浇铸温度为740℃。将合金液体浇铸到石墨铸型中(水冷),得到Mg 30Al 25Gd 20Y 15Zn 10合金铸锭。所得合金铸锭通过显微硬度计测定(载荷29.42N,保压时间10秒),硬度为HV123.7。所得合金铸锭通过UTM−5305电子万能试验机压缩测定,室温抗压强度为458.23MPa、延伸率16.35%。
实施例 4
一种高强韧性高硬度的镁基高熵合金制备方法,包括以下步骤:按镁基高熵合金中原子百分比(at.%)Mg:35%、Al:25%、Gd:15%、Y:15%、Zn:10%,取纯度为99.9wt.%的Al锭5.744g和Zn锭5.568g、Mg-30Y中间合金37.86g和Mg-30Gd中间合金66.96g置于坩埚中进行熔炼。熔化温度为760℃(保温15min),浇铸温度为740℃。将合金液体浇铸到石墨铸型中(水冷),得到Mg 35Al 25Gd 15Y 15Zn 10合金铸锭。所得合金铸锭通过显微硬度计测定(载荷29.42N,保压时间10秒),硬度为HV111.4。所得合金铸锭通过UTM−5305电子万能试验机压缩测定,室温抗压强度为458.01MPa、延伸率14.83%。

Claims (7)

  1. 一种高强韧性高硬度的镁基高熵合金,其特征在于,该镁基高熵合金由Mg、Al、Gd、Y、Zn五种元素组成,各组分原子百分比(at.%)为:Mg:30~35% 、Al:20~25%、Gd:15~20%、Y:10~15%、Zn:10~15%。
  2. 根据权利要求1所述高强韧性高硬度的镁基高熵合金,其特征在于,该镁基高熵合金显微硬度为HV103.3~HV123.7,室温抗压强度为458.01~496.65MPa,断后压缩率为14.83~17.28%。
  3. 权利要求1或2所述高强韧性高硬度的镁基高熵合金制备方法,其特征在于,包括如下步骤:
    (1)熔炼:根据镁基高熵合金中各成分的目标含量,取纯度为99.9wt.%的Al锭、纯度为99.9wt.%的Zn锭、Mg-30Y中间合金和Mg-30Gd中间合金,置于真空熔炼炉的坩埚中进行熔炼,保温搅拌混合均匀,得到合金液体;
    (2)浇铸:将合金液体浇注到带有水冷系统的石墨铸型中,冷却至室温后从石墨铸型中取出合金铸锭即得。
  4. 根据权利要求3所述高强韧性高硬度的镁基高熵合金制备方法,其特征在于,所述步骤(1)中使用真空熔炼炉进行熔炼时真空度为0.024Pa,熔化温度为740~820℃,保温时间为15~20min。
  5. 根据权利要求3或4所述高强韧性高硬度的镁基高熵合金制备方法,其特征在于,所述步骤(2)中合金液体浇注的温度为700~780℃。
  6. 根据权利要求3或4所述高强韧性高硬度的镁基高熵合金制备方法,其特征在于,所述步骤(2)中水冷系统温度恒温为20℃。
  7. 根据权利要求5所述高强韧性高硬度的镁基高熵合金制备方法,其特征在于,所述步骤(2)中水冷系统温度恒温为20℃。
PCT/CN2019/092753 2018-09-10 2019-06-25 一种高强韧性高硬度的镁基高熵合金及制备方法 WO2020052314A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811048915.4 2018-09-10
CN201811048915.4A CN109082582B (zh) 2018-09-10 2018-09-10 一种高强韧性高硬度的镁基高熵合金及制备方法

Publications (1)

Publication Number Publication Date
WO2020052314A1 true WO2020052314A1 (zh) 2020-03-19

Family

ID=64841285

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/092753 WO2020052314A1 (zh) 2018-09-10 2019-06-25 一种高强韧性高硬度的镁基高熵合金及制备方法

Country Status (2)

Country Link
CN (1) CN109082582B (zh)
WO (1) WO2020052314A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109082582B (zh) * 2018-09-10 2019-08-09 东北大学 一种高强韧性高硬度的镁基高熵合金及制备方法
CN110479959B (zh) * 2019-08-28 2020-09-01 黑龙江科技大学 一种消失模铸造制备镁基复合材料的方法
CN110804712B (zh) * 2019-11-22 2021-10-08 长沙经阁新材料有限公司 一种含镁的高熵合金及其制备方法
TWI748340B (zh) * 2020-02-12 2021-12-01 國立成功大學 應用高熵合金之通訊元件及其製備方法
CN115261701B (zh) * 2022-08-29 2023-03-10 广东省科学院新材料研究所 镁基高熵合金及其制备方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101824572A (zh) * 2010-03-09 2010-09-08 扬州宏福铝业有限公司 含富钇稀土高强耐蚀Mg-Al-Zn-RE挤压镁合金及其生产方法、应用
JP2011195929A (ja) * 2010-03-23 2011-10-06 Kumamoto Univ マグネシウム合金およびその製造方法
CN104372225A (zh) * 2014-11-20 2015-02-25 上海交通大学 具有LPSO结构的铸态Mg-Gd-Zn(-Zr)合金的制备方法
CN107099713A (zh) * 2017-05-27 2017-08-29 东北大学 一种镁合金及其制备方法和应用
CN107312989A (zh) * 2017-06-07 2017-11-03 河海大学 一种含有lpso结构的纳米晶‑超细晶梯度镁合金的制备方法
CN107460386A (zh) * 2017-07-25 2017-12-12 上海交通大学 一种磁场铸造调控含lpso结构高强韧镁合金制备方法
CN108085548A (zh) * 2017-11-28 2018-05-29 袁颖宏 一种快速溶解具有功能性力学特性镁合金及其制造方法
CN109082582A (zh) * 2018-09-10 2018-12-25 东北大学 一种高强韧性高硬度的镁基高熵合金及制备方法
US10260130B2 (en) * 2010-03-31 2019-04-16 National University Corporation Kumamoto University Magnesium alloy sheet material

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5454998A (en) * 1994-02-04 1995-10-03 Ybm Technologies, Inc. Method for producing permanent magnet
CN101787481B (zh) * 2010-03-22 2011-07-27 北京工业大学 含Mg-Zn-Gd基准晶中间合金及其制备方法
JP6269279B2 (ja) * 2014-04-15 2018-01-31 Tdk株式会社 永久磁石およびモータ
CN105220055B (zh) * 2015-11-02 2017-05-10 武汉科技大学 一种准晶增强Mg‑Zn‑Gd‑Y镁合金及其制备方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101824572A (zh) * 2010-03-09 2010-09-08 扬州宏福铝业有限公司 含富钇稀土高强耐蚀Mg-Al-Zn-RE挤压镁合金及其生产方法、应用
JP2011195929A (ja) * 2010-03-23 2011-10-06 Kumamoto Univ マグネシウム合金およびその製造方法
US10260130B2 (en) * 2010-03-31 2019-04-16 National University Corporation Kumamoto University Magnesium alloy sheet material
CN104372225A (zh) * 2014-11-20 2015-02-25 上海交通大学 具有LPSO结构的铸态Mg-Gd-Zn(-Zr)合金的制备方法
CN107099713A (zh) * 2017-05-27 2017-08-29 东北大学 一种镁合金及其制备方法和应用
CN107312989A (zh) * 2017-06-07 2017-11-03 河海大学 一种含有lpso结构的纳米晶‑超细晶梯度镁合金的制备方法
CN107460386A (zh) * 2017-07-25 2017-12-12 上海交通大学 一种磁场铸造调控含lpso结构高强韧镁合金制备方法
CN108085548A (zh) * 2017-11-28 2018-05-29 袁颖宏 一种快速溶解具有功能性力学特性镁合金及其制造方法
CN109082582A (zh) * 2018-09-10 2018-12-25 东北大学 一种高强韧性高硬度的镁基高熵合金及制备方法

Also Published As

Publication number Publication date
CN109082582B (zh) 2019-08-09
CN109082582A (zh) 2018-12-25

Similar Documents

Publication Publication Date Title
WO2020052314A1 (zh) 一种高强韧性高硬度的镁基高熵合金及制备方法
Kulkarni et al. Effect of fly ash hybrid reinforcement on mechanical property and density of aluminium 356 alloy
CN107747014B (zh) 一种具有高延展性高强镁合金及其制备方法
Dong et al. Microstructures and properties of A356–10% SiC particle composite castings at different solidification pressures
CN104073699A (zh) 一种Al-Si-Cu-Mg系铸造铝合金及其制备方法
CN108977710B (zh) 一种挤压铸造镁合金材料及其制备方法
Hong et al. Effects of Nd on microstructure and mechanical properties of as-cast Mg-12Gd-2Zn-x Nd-0.4 Zr alloys with stacking faults
WO2015135253A1 (zh) 铝硅系合金及其生产方法
CN110952002A (zh) 一种应用于5g手机中板的非热处理强化高强高韧铝合金材料及其制备方法
Li et al. Effect of Y content on microstructure and mechanical properties of 2519 aluminum alloy
CN103993213A (zh) 一种双特殊结构相复合增强Mg-Zn-Y合金的制备方法
Yang et al. Comparison of as-cast microstructure, tensile and creep properties for Mg-3Sn-1Ca and Mg-3Sn-2Ca magnesium alloys
EP2487273A1 (en) Aluminum-zirconium-titanium-carbon crystal grain refiner for magnesium and magnesium alloys and preparation method thereof
Qian et al. Evolutions of Microstructure and Mechanical Properties in Mg–5Li–1Zn–0.5 Ag–0.5 Zr–x Gd Alloy
Xu et al. Microstructure and mechanical properties of superlight Mg-Li-Al-Zn wrought alloy
JP6590814B2 (ja) 高性能耐クリープ性マグネシウム合金
Yi et al. Phase, microstructure and compressive properties of refractory high-entropy alloys CrHfNbTaTi and CrHfMoTaTi
Mandal et al. Chemical modification of morphology of Mg2Si phase in hypereutectic aluminium–silicon–magnesium alloys
CN108220705B (zh) 一种含镧耐腐蚀铝合金材料的制备方法
CN110629081B (zh) 新型耐热高强度高塑性耐腐蚀Al-Cu-Mg-Zn-Ti系铝合金及其制备方法
Saikawa et al. Microstructure and mechanical properties of an Al-Zn-Mg-Cu alloy produced by gravity casting process
CN103966494A (zh) 一种含钙与稀土的高耐热镁铝合金
CN108070755B (zh) 一种含钐和钇的耐腐蚀压铸铝合金的制备方法
CN108220704B (zh) 一种含镨和镱的耐腐蚀压铸铝合金的制备方法
CN103866160B (zh) 一种Al‑Ti‑B‑RE合金变质锌合金的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19859312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19859312

Country of ref document: EP

Kind code of ref document: A1