WO2020052141A1 - 喷液环和制冷剂润滑轴承组件 - Google Patents

喷液环和制冷剂润滑轴承组件 Download PDF

Info

Publication number
WO2020052141A1
WO2020052141A1 PCT/CN2018/121878 CN2018121878W WO2020052141A1 WO 2020052141 A1 WO2020052141 A1 WO 2020052141A1 CN 2018121878 W CN2018121878 W CN 2018121878W WO 2020052141 A1 WO2020052141 A1 WO 2020052141A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
bearing
ring body
ring
hole
Prior art date
Application number
PCT/CN2018/121878
Other languages
English (en)
French (fr)
Inventor
刘华
张治平
李宏波
蒋楠
Original Assignee
珠海格力电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 珠海格力电器股份有限公司 filed Critical 珠海格力电器股份有限公司
Priority to US17/261,196 priority Critical patent/US11473625B2/en
Priority to EP18933543.3A priority patent/EP3795829B1/en
Publication of WO2020052141A1 publication Critical patent/WO2020052141A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0284Constructional details, e.g. reservoirs in the casing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6688Lubricant compositions or properties, e.g. viscosity
    • F16C33/6692Liquids other than oil, e.g. water, refrigerants, liquid metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B39/00Component parts, details, or accessories, of pumps or pumping systems specially adapted for elastic fluids, not otherwise provided for in, or of interest apart from, groups F04B25/00 - F04B37/00
    • F04B39/02Lubrication
    • F04B39/0215Lubrication characterised by the use of a special lubricant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B53/00Component parts, details or accessories not provided for in, or of interest apart from, groups F04B1/00 - F04B23/00 or F04B39/00 - F04B47/00
    • F04B53/18Lubricating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • F16C33/6674Details of supply of the liquid to the bearing, e.g. passages or nozzles related to the amount supplied, e.g. gaps to restrict flow of the liquid
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C37/00Cooling of bearings
    • F16C37/007Cooling of bearings of rolling bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • F16N7/30Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated the oil being fed or carried along by another fluid
    • F16N7/32Mist lubrication
    • F16N7/34Atomising devices for oil
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N7/00Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated
    • F16N7/38Arrangements for supplying oil or unspecified lubricant from a stationary reservoir or the equivalent in or on the machine or member to be lubricated with a separate pump; Central lubrication systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2210/00Fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/42Pumps with cylinders or pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16NLUBRICATING
    • F16N2210/00Applications
    • F16N2210/14Bearings

Definitions

  • the present application relates to the field of bearing lubrication, and in particular, to a liquid jet ring and a refrigerant-lubricated bearing assembly.
  • bearings are generally divided into oil lubricated bearings, magnetic suspension bearings and air suspension bearings. For magnetic suspension bearings and air suspension bearings, there is no direct contact and no oil lubrication is required. However, magnetic suspension bearings and air suspension bearings have higher requirements for the operating environment and higher manufacturing costs.
  • Oil-lubricated bearings have low cost, simple structure, high reliability, and are widely used. Oil-lubricated bearings are generally lubricated by lubricating oil, and the refrigerant exchanges heat. However, the mixed lubricating oil and refrigerant require additional devices for separation and purification, and if the refrigerant is mixed with lubricating oil, it will have a greater impact on the heat transfer performance of the refrigerant. Based on this, it was found that the refrigerant has a certain viscosity and can be used as a lubricating liquid to cool the bearings while lubricating. But generally the effect of using refrigerant lubrication is poor.
  • a liquid-spraying ring includes a ring body.
  • the ring body is provided with a liquid storage cavity and a plurality of liquid guide holes.
  • the liquid storage cavity surrounds an axis of the ring body.
  • the liquid storage cavity is communicated, the outlet of the liquid guide hole faces the end surface of the bearing to be lubricated, and a plurality of liquid guide holes are evenly spaced along the circumferential direction of the ring body.
  • the above solution provides a liquid ejection ring, which is configured to communicate with each liquid guide hole through a liquid storage cavity around the axis of the ring body, and the refrigerant is dispersed into each liquid guide hole through the liquid storage cavity.
  • the circumferential distribution of the ring body is evenly spaced, so that the liquid spray ring can uniformly spray liquid on the bearing to be lubricated, thereby improving the lubrication effect.
  • a liquid storage cavity around the axis of the ring body is used to conduct the refrigerant to each of the liquid guide holes evenly spaced, which can make the liquid supply process of each liquid guide hole more consistent, thereby improving the uniformity of lubrication. Sex.
  • the liquid storage cavity is an annular groove dug on an outer side surface of the ring body.
  • the number of the liquid guide holes is 4-8.
  • the liquid-conducting hole includes a transition hole and a liquid-spraying hole that are communicated with each other, the transition hole is communicated with the liquid storage cavity, and a plurality of transition holes are uniform along a circumferential direction of the ring body At intervals, the outlets of the liquid ejection holes face the end surface of the bearing to be lubricated.
  • a plurality of liquid ejection holes are evenly spaced along the circumferential direction of the ring body. The diameter of the liquid ejection holes is smaller than that of the transition hole.
  • the liquid ejection holes penetrate the ring body, and outlets are respectively formed on two end faces of the ring body, and the outlets of the liquid ejection holes located on the same end face of the ring body are along the ring body.
  • the circumferential direction is evenly spaced.
  • the volume of the liquid storage cavity is greater than or equal to the sum of the volumes of all the transition holes and all the liquid ejection holes, and the volume of each of the transition holes is greater than or equal to the volume of the corresponding liquid ejection hole.
  • a refrigerant lubricating bearing assembly includes a transmission shaft, a bearing, and the above-mentioned liquid ejection ring.
  • the bearing and the ring body are sleeved on the transmission shaft, and an end surface of the ring body and an end surface of the bearing.
  • the abutment, the outlet of the liquid guide hole faces the bearing.
  • the refrigerant-lubricated bearing assembly uses the liquid-spraying ring described in any of the above embodiments to make the refrigerant sprayed onto the bearing through the liquid-spraying ring more uniform, thereby improving the refrigerant's effect on the bearing.
  • the effect of bearing lubrication Specifically, the bearing and the liquid-spraying ring are sleeved on the transmission shaft during use, and the refrigerant is introduced through a liquid-storage cavity on the ring body, and is uniformly sprayed on the liquid-passing hole after passing through the liquid-conducting hole. Mentioned bearing.
  • each liquid guide hole arranged at even intervals is in communication with the liquid storage cavity, so that the refrigerant in each liquid guide hole is discharged during the conduction process.
  • the consistency of the liquid process is high, so that the uniformity of the lubrication is high, and further, the bearing can have a better lubrication effect.
  • the two bearings are respectively located on both sides of the ring body.
  • the ring body is sandwiched between the two bearings, and a part of the outlet of the liquid guide hole faces one of them.
  • the outlet of the other part of the liquid guide hole faces the end face of the other bearing, and the liquid guide holes corresponding to the same bearing are arranged at even intervals along the circumferential direction of the ring body.
  • the refrigerant-lubricated bearing assembly further includes a bearing support, which is sleeved on the periphery of the bearing and the liquid-spraying ring and abuts against the outer side surface of the bearing
  • the bearing support is provided with a liquid inlet hole communicating with the outside, and the liquid inlet hole is in communication with the liquid storage cavity.
  • the refrigerant-lubricated bearing assembly further includes an end cover, the end cover is sleeved on the transmission shaft and is spaced from the transmission shaft, and the bearing support is axially divided
  • the aperture of the first segment is larger than the aperture of the second segment
  • the inner diameter of the end cap is smaller than the aperture of the first segment
  • the end surface of the end cap and the first segment are The end surfaces of one segment are connected to form a clamping space between the fixed ring body and the bearing.
  • the abutting ring body and the bearing are installed in the clamping space.
  • the inner side surface of the first segment is in contact with the outer side surface of the bearing.
  • the second section is spaced from the transmission shaft.
  • the bearing is a deep groove ball bearing
  • the inner side of the bearing support is in contact with the outer side of the ring body
  • the liquid inlet hole is provided corresponding to the liquid storage cavity.
  • the ring body is disposed at a distance from the transmission shaft, an end surface of the ring body is in contact with an outer ring of the bearing, and the ring body is disposed at an interval from an inner ring of the bearing.
  • FIG. 1 is a schematic structural diagram of a refrigerant-lubricated bearing assembly according to the embodiment
  • FIG. 2 is a schematic structural diagram of a liquid ejection ring according to this embodiment.
  • Refrigerant-lubricated bearing assembly 20, transmission shaft, 30, bearing, 40, liquid injection ring, 41, ring body, 411, liquid storage cavity, 412, liquid guide hole, 4121, transition hole, 4122, liquid injection hole , 50, bearing support, 51, liquid inlet, 52, first section, 53, second section, 60, end cover, 61, clamping space.
  • a liquid ejection ring 40 which includes a ring body 41.
  • the ring body 41 is provided with a liquid storage cavity 411 and a plurality of liquid guide holes 412.
  • the liquid storage cavity 411 surrounds the axis of the ring body 41 once, the inlet of the liquid guide hole 412 communicates with the liquid storage cavity 411, and the outlet of the liquid guide hole 412 faces the end surface of the bearing 30 to be lubricated.
  • the liquid guide holes 412 are evenly spaced along the circumferential direction of the ring body 41.
  • the above solution provides a liquid ejection ring 40.
  • the liquid storage cavity 411 provided around the axis of the ring body 41 communicates with each of the liquid guide holes 412, and the refrigerant is dispersed into each liquid guide hole 412 through the liquid storage cavity 411.
  • the plurality of liquid guide holes 412 are evenly spaced along the circumferential direction of the ring body 41, so that the liquid injection ring 40 can evenly spray liquid on the bearing 30 to be lubricated, thereby improving the lubrication effect.
  • the liquid storage cavity 411 around the axis of the ring body 41 is used to conduct the refrigerant into the liquid guide holes 412 evenly spaced, which can make the liquid supply process of each liquid guide hole 412 more consistent, thereby further Improved lubrication uniformity.
  • the liquid guide holes 412 are evenly spaced along the circumferential direction of the ring body 41, and each of the liquid guide holes 412 is in communication with the liquid storage cavity 411. That is, the inlets that communicate with each of the liquid guide holes 412 and the liquid storage cavity 411 are evenly spaced along the axial direction of the ring body 41, and the liquid supply channels and liquid supply processes of each liquid guide hole 412 are basically the same during use. , To further improve the uniformity of lubrication.
  • the liquid storage cavity 411 circulates around the axis of the ring body 41 to meet the requirement that each of the liquid guide holes 412 can communicate with it, so that the liquid supply process of each liquid guide hole 412 is more consistent.
  • the liquid storage cavity 411 may be an annular groove dug on the outer side surface of the ring body 41, or may be a cavity provided in the ring body 41, as long as a refrigerant can be stored in the cavity, and The ability to introduce a refrigerant into each of the liquid guide holes 412 is within the scope of the foregoing scheme.
  • the liquid storage cavity 411 is an annular groove dug on an outer side surface of the ring body 41.
  • the bearing support 50 for supporting the bearing 30 is in abutment with the outer surface of the ring body 41, as shown in FIG. 1, the bearing support 50 is provided with a liquid inlet hole that communicates with the liquid storage cavity 411. 51.
  • the liquid inlet hole 51 is easier to communicate with the annular groove, and the structure is simple.
  • the number of the liquid guide holes 412 is 4-8. Because the viscosity of the refrigerant is relatively low, a reasonable design is needed when the liquid guide holes 412 are set. Too many liquid guide holes 412 will increase the processing cost, and too few liquid guide holes 412 cannot guarantee good lubrication. effect.
  • the number of the liquid guide holes 412 is set to 4 to 8, and the liquid guide holes 412 are evenly spaced along the circumferential direction of the ring body 41, which not only guarantees the lubrication effect, but also rationally controls the manufacturing cost.
  • the liquid guide hole 412 includes a transition hole 4121 and a liquid ejection hole 4122 that are conductive with each other.
  • the circumferential direction is evenly spaced.
  • the refrigerant in the liquid storage chamber 411 first passes through the transition hole 4121, and then sprays on the bearing 30 to be lubricated through the liquid injection hole 4122.
  • the plurality of transition holes 4121 are evenly spaced along the circumferential direction of the ring body 41, and the plurality of liquid ejection holes 4122 are evenly spaced along the circumferential direction of the ring body 41. In this way, the liquid ejection process of each liquid ejection hole 4122 is consistent during use.
  • the uniformity of the lubrication of the bearing 30 is high.
  • the axis of the transition hole 4121 is set along the radial direction of the ring body 41, and the axis of the liquid injection hole 4122 is set along the axial direction of the ring body 41, and the structure is simple.
  • the axes of the transition holes 4121 and the liquid ejection holes 4122 may also be inclined, but it is necessary to ensure that the conduction state between each transition hole 4121 and the corresponding liquid ejection hole 4122, and the The outlet faces the bearing 30 to be lubricated.
  • the liquid guide hole 412 may also be formed by a through hole, or may be composed of a transition hole 4121 and a liquid ejection hole 4122.
  • the diameter of the liquid injection hole 4122 is smaller than the diameter of the transition hole 4121.
  • the liquid injection hole 4122 penetrates the ring body 41, and outlets are respectively formed on two end surfaces of the ring body 41, which are located on the same side of the ring body 41.
  • the outlets of the liquid ejection holes 4122 on the end face are evenly spaced along the circumferential direction of the ring body 41.
  • the volume of the liquid storage cavity 411 is greater than or equal to the sum of the volumes of all the transition holes 4121 and all the liquid ejection holes 4122, and each of the transition holes 4121 The volume is greater than or equal to the volume of the corresponding liquid ejection hole 4122. In this way, it is possible to ensure that each of the liquid injection holes 4122 is filled with the refrigerant during use, and to avoid the presence of gas in the refrigerant, which affects the lubrication effect.
  • a refrigerant-lubricated bearing assembly 10 which includes a transmission shaft 20, a bearing 30, and the above-mentioned liquid injection ring 40, the bearing 30 and the ring body. 41 are sleeved on the transmission shaft 20, an end surface of the ring body 41 abuts an end surface of the bearing 30, and an outlet of the liquid guide hole 412 faces the bearing 30.
  • the refrigerant-lubricated bearing assembly 10 provided by the above solution adopts the liquid injection ring 40 described in any of the above embodiments, so that the refrigerant sprayed on the bearing 30 through the liquid injection ring 40 is more uniform, thereby improving refrigeration. Effect of the lubricant on the bearing 30.
  • the bearing 30 and the liquid injection ring 40 are sleeved on the transmission shaft 20 during use, and the refrigerant is introduced through the liquid storage cavity 411 on the ring body 41 and passes through the liquid guide hole. After 412, the bearing 30 is evenly sprayed.
  • each liquid guide hole 412 arranged at even intervals is in communication with the liquid storage cavity 411, so that each liquid guide hole 412 is in the process of conduction
  • the consistency of the medium refrigerant discharge process is relatively high, so that the uniformity of the lubrication is high, and further, the bearing 30 can have a better lubrication effect.
  • the refrigerant sprayed onto the bearing 30 during the use of the liquid spray ring 40 described herein can not only lubricate the bearing 30, but also play a cooling role.
  • the amount of refrigerant introduced increases, the deposited refrigerant flows out of the transmission shaft 20 in the axial direction, and new refrigerant can be continuously sprayed on the bearing 30.
  • the abutment between the end surface of the ring body 41 and the end surface of the bearing 30 described herein may be a direct contact abutment or an abutment through an intermediate element.
  • an annular gasket is provided between the ring body 41 and the bearing 30, and the ring body 41 abuts against the bearing 30 through the annular gasket, which also belongs to the contact range described in the foregoing scheme.
  • the contact between the ring body 41 and the bearing 30 can also support each other.
  • the number of the bearings 30 is two, and the two bearings 30 are respectively located on both sides of the ring body 41, and the ring body 41 is sandwiched between the two bearings. Between 30, an outlet of a part of the liquid guide hole 412 faces the end face of one of the bearings 30, an outlet of another part of the liquid guide hole 412 faces the end face of the other bearing 30, and the liquid guide hole 412 corresponding to the same bearing 30 is along the ring body 41 is arranged at even intervals in the circumferential direction.
  • the bearings 30 located on both sides of the ring body 41 can be lubricated by the refrigerant under the action of the corresponding liquid guide holes 412 to ensure that both bearings 30 are effectively lubricated.
  • the bearings located on both sides of the ring body 41 as described above 30 can be lubricated under the action of the liquid guide holes 412, thereby further improving the lubrication effect.
  • the bearings 30 on both sides of the ring body 41 can simultaneously abut the ring body 41.
  • the refrigerant-lubricated bearing assembly 10 further includes a bearing support 50, and the bearing support 50 is sleeved on the bearing 30 and the liquid injection ring 40.
  • the outer periphery of the bearing 30 is in contact with the outer surface of the bearing 30.
  • the bearing support 50 is provided with a liquid inlet hole 51 communicating with the outside, and the liquid inlet hole 51 communicates with the liquid storage cavity 411.
  • the refrigerant is introduced into the liquid storage cavity 411 through the liquid inlet hole 51.
  • the bearing support 50 is sleeved on the periphery of the bearing 30 and supports the bearing 30.
  • the liquid inlets 51 may be designed in multiples.
  • an axis of the liquid inlet hole 51 may be set along a radial direction of the bearing 30.
  • the diameter of the liquid inlet hole 51 is less than or equal to the width of the annular groove in the axial direction, so that the liquid inlet hole 51 can more reliably introduce the refrigerant into the annular groove. .
  • the bearing support 50 is divided into two parts, that is, the bearing 30 is clamped and fixed by the two parts, the liquid inlet holes 51 are symmetrically disposed on the two parts to further improve the uniformity of the liquid supply.
  • the refrigerant-lubricated bearing assembly 10 further includes an end cover 60, which is sleeved on the transmission shaft 20 and communicates with the transmission shaft. 20 intervals, the bearing support 50 is divided into a first section 52 and a second section 53 in the axial direction. The diameter of the first section 52 is larger than the diameter of the second section 53.
  • the inner diameter of the end cap 60 Smaller than the aperture of the first segment 52, the end surface of the end cap 60 is connected to the end surface of the first segment 52 to form a clamping space 61 for the fixed ring body 41 and the bearing 30, and the ring body 41 and A bearing 30 is installed in the clamping space 61, an inner side surface of the first section 52 abuts an outer side surface of the bearing 30, and the second section 53 is spaced from the transmission shaft 20.
  • the bearing seat and the end cover 60 fix the ring body 41 and the bearing 30 through the bearing 30, and the end cover 60, the second section 53 and the transmission shaft 20 are arranged at intervals.
  • the refrigerant introduced into the bearing 30 through the liquid inlet hole 51 and the liquid ejection ring 40 can flow out from the axial direction of the transmission shaft 20 without the need to separately provide a liquid outlet channel, which further simplifies the structure. That is, the setting of the liquid injection ring 40 only needs to consider the process of the refrigerant entering the bearing 30, thereby ensuring that the outlets of the plurality of liquid guide holes 412 on the ring body 41 are evenly spaced along the axial direction of the ring body 41, thereby ensuring The uniformity of lubrication improves the lubrication effect.
  • an inner side surface of the bearing support 50 abuts an outer side surface of the ring body 41, and the liquid inlet hole 51 corresponds to the liquid storage cavity 411
  • the ring body 41 is disposed at a distance from the transmission shaft 20, an end surface of the ring body 41 is in contact with an outer ring of the bearing 30, and the ring body 41 is disposed at an interval from an inner ring of the bearing 30.
  • the liquid-spraying ring 40 is a fixed piece, so the ring body 41 and the transmission shaft 20 are spaced apart from each other, and the end surface of the ring body 41 is in contact with the outer ring of the bearing 30. Then, the inner ring of the bearing 30 is arranged at a distance from each other, that is, the inner diameter of the ring body 41 is larger than the outer diameter of the transmission shaft 20, so that the transmission shaft 20 does not interfere with the ring body 41 during the rotation.
  • the unilateral gap between the inner side surface of the ring body 41 and the outer side surface of the transmission shaft 20 is 1 mm to 2 mm, so as to prevent the liquid ejection ring 40 and the transmission shaft 20 from being caused by cumulative errors in the manufacturing process. Interference.
  • the distance between the ring body 41 and the inner ring of the bearing 30 can be achieved by setting the inner diameter of the ring body 41 larger than the outer diameter of the inner ring, or by setting the end surface of the ring body 41 to the outer ring. It is realized that the opposite part of the inner ring is recessed into the ring body 41. In this way, the contact between the ring body 41 and the inner ring is avoided, and the interference between the ring body 41 and the inner ring during the rotation of the transmission shaft 20 is prevented, which may cause the ring body 41 to rotate.
  • the inner side surface of the bearing support 50 abuts the outer side surface of the ring body 41 to further support and fix the ring body 41 and prevent the ring body 41 from shaking in the bearing 30 support seat. Affecting the uniformity of lubrication, on the other hand, interference between the liquid injection ring 40 and the transmission shaft 20 is caused.
  • the liquid inlet hole 51 is provided corresponding to the liquid storage cavity 411, which better ensures that the liquid inlet hole 51 can introduce the refrigerant into the liquid storage cavity 411.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Sliding-Contact Bearings (AREA)
  • Rolling Contact Bearings (AREA)
  • Motor Or Generator Cooling System (AREA)

Abstract

一种喷液环(40)和制冷剂润滑轴承组件,其中喷液环(40)包括环体(41),环体(41)上设有储液腔(411)和多个导液孔(412),储液腔(411)围绕环体(41)的轴线一周,导液孔(412)的入口与储液腔(411)导通,导液孔(412)的出口朝向待润滑的轴承(30)的端面,多个导液孔(412)沿环体(41)的周向均匀间隔分布。通过设置绕环体(41)轴线一周的储液腔(411)与各个导液孔(412)导通,制冷剂通过储液腔(411)分散到各个导液孔(412)中,且多个导液孔(412)的出口沿环体(41)的周向均匀间隔分布,使得喷液环(40)能够在待润滑的轴承(30)上均匀喷液,进而提高润滑效果。

Description

喷液环和制冷剂润滑轴承组件
相关申请
本申请要求2018年09月14日申请的,申请号为201811071910.3,名称为“喷液环和制冷剂润滑轴承组件”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及轴承润滑领域,特别是涉及一种喷液环和制冷剂润滑轴承组件。
背景技术
压缩机在运行过程中,转子需要做高速旋转,而轴承主要用于对转子进行支撑。因此在使用过程中轴承的内圈和外圈之间需要做相对转动,且转动速度会因转子转动速度的增加而增加。据此,需要对轴承进行润滑和制冷,以保障轴承的处于高效使用状态。轴承一般分为油润滑轴承、磁悬浮轴承和气悬浮轴承等。对于磁悬浮轴承和气悬浮轴承由于无直接接触,无需油润滑。但是磁悬浮轴承和气悬浮轴承对于运行环境要求较高,且制造成本较高。而油润滑轴承的成本低廉、结构简单、可靠性较高,应用较广泛。油润滑轴承中一般通过润滑油润滑,制冷剂换热。但是混合在一起后的润滑油和制冷剂需要额外装置进行分离提纯,且若制冷剂中混有润滑油将对制冷剂的换热性能产生较大影响。基于此,发现制冷剂具有一定的粘度,能够用作润滑液对轴承进行制冷的同时润滑。但是一般采用制冷剂润滑的效果较差。
发明内容
基于此,有必要提供一种喷液环和制冷剂润滑轴承组件,以提高制冷剂润滑的效果。
一种喷液环,包括环体,所述环体上设有储液腔和多个导液孔,所述储液腔围绕所述环体的轴线一周,所述导液孔的入口与所述储液腔导通,所述导液孔的出口朝向待润滑的轴承的端面,多个导液孔沿所述环体的周向均匀间隔分布。
上述方案提供了一种喷液环,通过设置绕环体轴线一周的储液腔与各个导液孔导通,制冷剂通过储液腔分散到各个导液孔中,且多个导液孔沿所述环体的周向均匀间隔分布,使得所述喷液环能够在待润滑的轴承上均匀喷液,进而提高润滑效果。具体地,采用绕环体轴线一周的储液腔将制冷剂导通到均匀间隔分布的各个导液孔中,能够使得各个导液孔 的供液过程一致性较高,从而提高了润滑的均匀性。
在其中一个实施例中,所述储液腔为在所述环体的外侧面挖设的环形槽。
在其中一个实施例中,所述导液孔为4~8个。
在其中一个实施例中,所述导液孔包括相互导通的过渡孔和喷液孔,所述过渡孔与所述储液腔导通,多个过渡孔沿所述环体的周向均匀间隔分布,所述喷液孔的出口朝向待润滑的轴承的端面,多个喷液孔沿所述环体的周向均匀间隔分布,所述喷液孔的孔径小于所述过渡孔的孔径。
在其中一个实施例中,所述喷液孔贯穿所述环体,且在所述环体的两个端面分别形成出口,位于所述环体同一端面的喷液孔的出口沿所述环体的周向均匀间隔分布。
在其中一个实施例中,所述储液腔的体积大于或等于所有过渡孔和所有喷液孔的体积之和,各个所述过渡孔的体积大于或等于对应的喷液孔的体积。
一种制冷剂润滑轴承组件,包括传动轴、轴承和上述的喷液环,所述轴承和所述环体均套设在所述传动轴上,所述环体的端面与所述轴承的端面抵接,所述导液孔的出口朝向所述轴承。
上述方案提供的制冷剂润滑轴承组件通过采用上述任一实施例中所述的喷液环,使得通过所述喷液环喷洒到所述轴承上的制冷剂更加均匀,从而提高制冷剂对所述轴承的润滑的效果。具体地,使用过程中所述轴承和所述喷液环均套设在所述传动轴上,制冷剂通过所述环体上的储液腔导入,经过所述导液孔后均匀喷洒在所述轴承上。而基于所述储液腔绕所述环体的轴线一周,且均匀间隔设置的各个导液孔均与所述储液腔导通,如此在传导的过程中各个导液孔中制冷剂的出液过程一致性较高,从而润滑的均匀性较高,进而能够对所述轴承起到较好的润滑效果。
在其中一个实施例中,所述轴承为两个,两个轴承分别位于所述环体的两侧,将所述环体夹持在两个轴承之间,一部分导液孔的出口朝向其中一个轴承的端面,另一部分导液孔的出口朝向另一个轴承的端面,且与同一个轴承对应的导液孔沿环体的周向均匀间隔设置。
在其中一个实施例中,所述制冷剂润滑轴承组件还包括轴承支座,所述轴承支座套设在所述轴承和所述喷液环的外围,且与所述轴承的外侧面抵接,所述轴承支座上设有与外界导通的进液孔,所述进液孔与所述储液腔连通。
在其中一个实施例中,所述进液孔为多个。
在其中一个实施例中,所述制冷剂润滑轴承组件还包括端盖,所述端盖套设在所述传动轴上,且与所述传动轴间隔设置,所述轴承支座沿轴向分为第一段和第二段,所述第一 段的孔径大于所述第二段的孔径,所述端盖的内径小于所述第一段的孔径,所述端盖的端面与所述第一段的端面连接,形成固定环体和轴承的夹持空间,相互抵接的环体和轴承安装在所述夹持空间中,所述第一段的内侧面与所述轴承的外侧面抵接,所述第二段与所述传动轴间隔设置。
在其中一个实施例中,所述轴承为深沟球轴承,所述轴承支座的内侧面与所述环体的外侧面抵接,所述进液孔与所述储液腔对应设置,所述环体与所述传动轴间隔设置,所述环体的端面与所述轴承的外圈抵接,所述环体与所述轴承的内圈间隔设置。
附图说明
以下将参照附图对根据本申请的喷液环和制冷剂润滑轴承组件的实施方式进行描述。图中:
图1为本实施例所述制冷剂润滑轴承组件的结构示意图;
图2为本实施例所述喷液环的结构示意图。
附图标记说明:
10、制冷剂润滑轴承组件,20、传动轴,30、轴承,40、喷液环,41、环体,411、储液腔,412、导液孔,4121、过渡孔,4122、喷液孔,50、轴承支座,51、进液孔,52、第一段,53、第二段,60、端盖,61、夹持空间。
具体实施方式
如图1和图2所示,在一个实施例中提供了一种喷液环40,包括环体41,所述环体41上设有储液腔411和多个导液孔412,所述储液腔411围绕所述环体41的轴线一周,所述导液孔412的入口与所述储液腔411导通,所述导液孔412的出口朝向待润滑的轴承30的端面,多个导液孔412沿所述环体41的周向均匀间隔分布。
上述方案提供了一种喷液环40,通过设置绕环体41轴线一周的储液腔411与各个导液孔412导通,制冷剂通过储液腔411分散到各个导液孔412中,且多个导液孔412沿所述环体41的周向均匀间隔分布,使得所述喷液环40能够在待润滑的轴承30上均匀喷液,进而提高润滑效果。具体地,采用绕环体41轴线一周的储液腔411将制冷剂导通到均匀间隔分布的各个导液孔412中,能够使得各个导液孔412的供液过程一致性较高,从而进一步提高了润滑的均匀性。
具体地,如图2所示,在一个实施例中,所述导液孔412沿所述环体41的周向均匀间隔分布,各个导液孔412均与所述储液腔411导通。即各个导液孔412与所述储液腔411 连通的导入口沿所述环体41的轴向均匀间隔分布,在使用过程中各个导液孔412的供液流道和供液过程基本一致,进一步提高润滑的均匀性。
进一步地,上述方案中所述储液腔411绕所述环体41的轴线一周主要为满足各个导液孔412均能够与其导通的需求,使得各个导液孔412的供液过程一致性较高。具体地,所述储液腔411可以是在所述环体41的外侧面挖设的环形槽,也可以是设置在所述环体41内的腔体,只要腔体内能够储存制冷剂,且能够将制冷剂导入到各个导液孔412中即属于前述方案所述范围。
在一个实施例中,如图1和图2所示,所述储液腔411为在所述环体41的外侧面挖设的环形槽。如此所述环形槽与外界需要将制冷剂导入的通道之间较方便连通。例如当用于支撑轴承30的轴承支座50与环体41的外侧面抵接时,如图1所示,所述轴承支座50上设置与所述储液腔411导通的进液孔51,通过将所述储液腔411设置为所述环形槽,如此所述进液孔51较易与所述环形槽导通,结构简单。
进一步地,在一个实施例中,如图2所示,所述导液孔412为4~8个。基于制冷剂的粘度相对较低,因此在设置所述导液孔412时,需要合理设计,过多的导液孔412将导致加工成本增加,过少的导液孔412又无法保障良好的润滑效果。而将所述导液孔412设置为4~8个,且沿所述环体41的周向均匀间隔分布,既保障了润滑效果,也合理控制了制造成本。
具体地,在一个实施例中,如图1和图2所示,所述导液孔412包括相互导通的过渡孔4121和喷液孔4122,所述过渡孔4121与所述储液腔411导通,多个过渡孔4121沿所述环体41的周向均匀间隔分布,所述喷液孔4122的出口朝向待润滑的轴承30的端面,多个喷液孔4122沿所述环体41的周向均匀间隔分布。
使用过程中,所述储液腔411中的制冷剂先通过所述过渡孔4121,然后经过所述喷液孔4122喷洒在所述待润滑的轴承30上。多个过渡孔4121沿所述环体41的周向均匀间隔分布,多个喷液孔4122沿环体41的周向均匀间隔分布,如此,使用过程中各个喷液孔4122的喷液过程一致,轴承30润滑的均匀性较高。
具体地,所述过渡孔4121的轴线沿所述环体41的径向设置,所述喷液孔4122的轴线沿所述环体41的轴向设置,结构简洁。可选的,所述过渡孔4121和喷液孔4122的轴线也可以有所倾斜,但是需要保障各个过渡孔4121与对应的喷液孔4122之间为导通状态,且各个喷液孔4122的出口朝向待润滑的轴承30。
可选地,所述导液孔412也可以是一个通孔形成,或者采用过渡孔4121和喷液孔4122组成。而且如图1所示,喷液孔4122的孔径小于过渡孔4121的孔径,如此依次经过所述 过渡孔4121和喷液孔4122的制冷剂在流出喷液孔4122时,喷洒速度较大,润滑效果更佳。
进一步地,在一个实施例中,如图1所示,所述喷液孔4122贯穿所述环体41,且在所述环体41的两个端面分别形成出口,位于所述环体41同一端面的喷液孔4122的出口沿所述环体41的周向均匀间隔分布。
通过设置将所述喷液孔4122设置为贯穿所述环体41的结构,在使用的过程中若喷液环40的两侧均设有待润滑的轴承30时,则可同时对两个轴承30进行润滑,提高适用范围。
进一步地,在一个实施例中,如图1和图2所示,所述储液腔411的体积大于或等于所有过渡孔4121和所有喷液孔4122的体积之和,各个所述过渡孔4121的体积大于或等于对应的喷液孔4122的体积。如此,使用过程中能够保障各个喷液孔4122中均填满制冷剂,避免制冷剂中存在气体,影响润滑效果。
进一步地,如图1所示,在另一个实施例中提供了一种制冷剂润滑轴承组件10,包括传动轴20、轴承30和上述的喷液环40,所述轴承30和所述环体41均套设在所述传动轴20上,所述环体41的端面与所述轴承30的端面抵接,所述导液孔412的出口朝向所述轴承30。
上述方案提供的制冷剂润滑轴承组件10通过采用上述任一实施例中所述的喷液环40,使得通过所述喷液环40喷洒到所述轴承30上的制冷剂更加均匀,从而提高制冷剂对所述轴承30的润滑效果。具体地,使用过程中所述轴承30和所述喷液环40均套设在所述传动轴20上,制冷剂通过所述环体41上的储液腔411导入,经过所述导液孔412后均匀喷洒在所述轴承30上。而基于所述储液腔411绕所述环体41的轴线一周,且均匀间隔设置的各个导液孔412均与所述储液腔411导通,如此在传导的过程中各个导液孔412中制冷剂的出液过程一致性较高,从而润滑的均匀性较高,进而能够对所述轴承30起到较好的润滑效果。
且具体地,本文中所述喷液环40在使用过程中,喷洒到所述轴承30上的制冷剂既能够对所述轴承30起到润滑作用,也能够起到制冷作用。随着制冷剂导入量的增加,沉积的制冷剂从所述传动轴20的轴向流出,新的制冷剂能够不断喷洒在轴承30上。
具体地,本文中所述环体41的端面与轴承30的端面之间的抵接既可以是直接接触抵接,也可以是通过中间元件实现抵接。例如在所述环体41与轴承30之间设置环形垫片,环体41通过环形垫片与轴承30抵接,也属于前述方案所述抵接范围。且所述环体41与轴承30之间的抵接也可以相互之间起到支撑作用。
进一步地,在一个实施例中,如图1所示,所述轴承30为两个,两个轴承30分别位于所述环体41的两侧,将所述环体41夹持在两个轴承30之间,一部分导液孔412的出口朝向其中一个轴承30的端面,另一部分导液孔412的出口朝向另一个轴承30的端面,且与同一个轴承30对应的导液孔412沿环体41的周向均匀间隔设置。使用过程中,位于所述环体41两侧的轴承30能够在对对应的导液孔412的作用下得到制冷剂的润滑,保障两个轴承30均得到有效润滑。
具体地,当所述环体41上的导液孔412包括过渡孔4121和喷液孔4122,且喷液孔4122贯穿环体41时,如前所述位于所述环体41两侧的轴承30均能够在所述导液孔412的作用下得到润滑,从而进一步提高润滑效果。且位于环体41两侧的轴承30能够同时对所述环体41起到抵接的作用,当采用轴承支座50和端盖60对轴承30进行支撑时,也对所述环体41起到固定作用。
进一步地,在一个实施例中,如图1所示,所述制冷剂润滑轴承组件10还包括轴承支座50,所述轴承支座50套设在所述轴承30和所述喷液环40的外围,且与所述轴承30的外侧面抵接,所述轴承支座50上设有与外界导通的进液孔51,所述进液孔51与所述储液腔411连通。
使用过程中,通过所述进液孔51将制冷剂导入所述储液腔411内。具体地,所述轴承支座50套设在所述轴承30的外围,对轴承30起到支撑作用。所述进液孔51可以设计为多个。在设置所述进液孔51时,可以将所述进液孔51的轴线沿所述轴承30的径向设置。特别当所述储液腔411为所述环形槽时,进液孔51的孔径小于或等于环形槽沿轴向上的宽度,如此保障进液孔51能够更加可靠的将制冷剂导入环形槽中。若所述轴承支座50分为两部分组成,即由两部分将轴承30夹持固定,则分别在两部分上对称设置所述进液孔51,以进一步提高供液的均匀性。
进一步地,在一个实施例中,如图1所示,所述制冷剂润滑轴承组件10还包括端盖60,所述端盖60套设在所述传动轴20上,且与所述传动轴20间隔设置,所述轴承支座50沿轴向分为第一段52和第二段53,所述第一段52的孔径大于所述第二段53的孔径,所述端盖60的内径小于所述第一段52的孔径,所述端盖60的端面与所述第一段52的端面连接,形成固定环体41和轴承30的夹持空间61,相互抵接的环体41和轴承30安装在所述夹持空间61中,所述第一段52的内侧面与所述轴承30的外侧面抵接,所述第二段53与所述传动轴20间隔设置。
通过所述轴承30支撑座和端盖60对所述环体41和轴承30起到固定的作用,且所述端盖60和第二段53与所述传动轴20之间均为间隔设置,使得由所述进液孔51和喷液环 40导入到轴承30中润滑的制冷剂能够从传动轴20的轴向流出,无需另行设置出液通道,进一步简化结构。即所述喷液环40的设置只用考虑制冷剂进入轴承30的过程,从而能够保障所述环体41上多个导液孔412的出口沿环体41的轴向均匀间隔分布,从而保障润滑的均匀性,提高润滑效果。
进一步地,在一个实施例中,如图1所示,所述轴承支座50的内侧面与所述环体41的外侧面抵接,所述进液孔51与所述储液腔411对应设置,所述环体41与所述传动轴20间隔设置,所述环体41的端面与所述轴承30的外圈抵接,所述环体41与所述轴承30的内圈间隔设置。
在使用过程中,所述喷液环40为固定件,因此将所述环体41与所述传动轴20之间间隔设置,而且所述环体41的端面与所述轴承30的外圈抵接,与所述轴承30的内圈间隔设置,即环体41的内径大于所述传动轴20的外径,从而使得传动轴20转动过程中不会与所述环体41之间产生干涉。具体地,所述环体41的内侧面与所述传动轴20的外侧面之间设计的单边间隙为1mm~2mm,避免由于制造过程的累计误差导致喷液环40与传动轴20之间产生干涉。所述环体41与所述轴承30的内圈间隔设置可以通过将所述环体41的内径设置的大于所述内圈的外径来实现,或者通过将所述环体41的端面与所述内圈相对的部分向环体41内凹陷来实现。如此,避免环体41与内圈之间接触,避免传动轴20转动的过程中,环体41与内圈之间干涉,导致环体41转动的情况发生。
而且,所述轴承支座50的内侧面与所述环体41的外侧面抵接,进一步对所述环体41起到支撑固定作用,避免环体41在轴承30支撑座内晃动,一方面影响润滑的均匀性,另一方面导致喷液环40与传动轴20之间产生干涉。而所述进液孔51与所述储液腔411对应设置,较好的保障了进液孔51能够将制冷剂导入储液腔411内。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (12)

  1. 一种喷液环,其特征在于,包括环体,所述环体上设有储液腔和多个导液孔,所述储液腔围绕所述环体的轴线一周,所述导液孔的入口与所述储液腔导通,所述导液孔的出口朝向待润滑的轴承的端面,多个导液孔沿所述环体的周向均匀间隔分布。
  2. 根据权利要求1所述的喷液环,其特征在于,所述储液腔为在所述环体的外侧面挖设的环形槽。
  3. 根据权利要求1或2所述的喷液环,其特征在于,所述导液孔为4~8个。
  4. 根据权利要求1或2所述的喷液环,其特征在于,所述导液孔包括相互导通的过渡孔和喷液孔,所述过渡孔与所述储液腔导通,多个过渡孔沿所述环体的周向均匀间隔分布,所述喷液孔的出口朝向待润滑的轴承的端面,多个喷液孔沿所述环体的周向均匀间隔分布,所述喷液孔的孔径小于所述过渡孔的孔径。
  5. 根据权利要求4所述的喷液环,其特征在于,所述喷液孔贯穿所述环体,且在所述环体的两个端面分别形成出口,位于所述环体同一端面的喷液孔的出口沿所述环体的周向均匀间隔分布。
  6. 根据权利要求5所述的喷液环,其特征在于,所述储液腔的体积大于或等于所有过渡孔和所有喷液孔的体积之和,各个所述过渡孔的体积大于或等于对应的喷液孔的体积。
  7. 一种制冷剂润滑轴承组件,其特征在于,包括传动轴、轴承和权利要求1至6任一项所述的喷液环,所述轴承和所述环体均套设在所述传动轴上,所述环体的端面与所述轴承的端面抵接,所述导液孔的出口朝向所述轴承。
  8. 根据权利要求7所述的制冷剂润滑轴承组件,其特征在于,所述轴承为两个,两个轴承分别位于所述环体的两侧,将所述环体夹持在两个轴承之间,一部分导液孔的出口朝向其中一个轴承的端面,另一部分导液孔的出口朝向另一个轴承的端面,且与同一个轴承对应的导液孔沿环体的周向均匀间隔设置。
  9. 根据权利要求7或8所述的制冷剂润滑轴承组件,其特征在于,还包括轴承支座,所述轴承支座套设在所述轴承和所述喷液环的外围,且与所述轴承的外侧面抵接,所述轴承支座上设有与外界导通的进液孔,所述进液孔与所述储液腔连通。
  10. 根据权利要求9所述的制冷剂润滑轴承组件,其特征在于,所述进液孔为多个。
  11. 根据权利要求9所述的制冷剂润滑轴承组件,其特征在于,还包括端盖,所述端 盖套设在所述传动轴上,且与所述传动轴间隔设置,所述轴承支座沿轴向分为第一段和第二段,所述第一段的孔径大于所述第二段的孔径,所述端盖的内径小于所述第一段的孔径,所述端盖的端面与所述第一段的端面连接,形成固定环体和轴承的夹持空间,相互抵接的环体和轴承安装在所述夹持空间中,所述第一段的内侧面与所述轴承的外侧面抵接,所述第二段与所述传动轴间隔设置。
  12. 根据权利要求9所述的制冷剂润滑轴承组件,其特征在于,所述轴承为深沟球轴承,所述轴承支座的内侧面与所述环体的外侧面抵接,所述进液孔与所述储液腔对应设置,所述环体与所述传动轴间隔设置,所述环体的端面与所述轴承的外圈抵接,所述环体与所述轴承的内圈间隔设置。
PCT/CN2018/121878 2018-09-14 2018-12-19 喷液环和制冷剂润滑轴承组件 WO2020052141A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US17/261,196 US11473625B2 (en) 2018-09-14 2018-12-19 Liquid injection ring and refrigerant lubricated bearing assembly
EP18933543.3A EP3795829B1 (en) 2018-09-14 2018-12-19 Liquid spraying ring and refrigerant lubricating bearing assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811071910.3A CN109058079A (zh) 2018-09-14 2018-09-14 喷液环和制冷剂润滑轴承组件
CN201811071910.3 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020052141A1 true WO2020052141A1 (zh) 2020-03-19

Family

ID=64761670

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121878 WO2020052141A1 (zh) 2018-09-14 2018-12-19 喷液环和制冷剂润滑轴承组件

Country Status (4)

Country Link
US (1) US11473625B2 (zh)
EP (1) EP3795829B1 (zh)
CN (1) CN109058079A (zh)
WO (1) WO2020052141A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116951285A (zh) * 2023-09-18 2023-10-27 常州市华立液压润滑设备有限公司 一种用于机泵摩擦副的油雾润滑装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112682311A (zh) * 2020-12-25 2021-04-20 珠海格力电器股份有限公司 螺杆压缩机润滑结构、螺杆压缩机以及具有其的设备
CN113399717B (zh) * 2021-06-08 2022-05-24 杭州职业技术学院 一种数控机床加工用轴体冷却散热装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB762293A (en) * 1953-02-05 1956-11-28 Gratzmuller Jean Louis Improvements in or relating to shaft and bearing assemblies especially for reciprocating machines
EP0864751A2 (en) * 1997-03-12 1998-09-16 Zexel Corporation Compressor for use in a transcritical refrigeration cycle system
CN106340995A (zh) * 2016-11-22 2017-01-18 宁波市君纬电气有限公司 一种电机
CN207568805U (zh) * 2017-11-30 2018-07-03 重庆气体压缩机厂有限责任公司 一种向心轮油泵

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1168394A (en) * 1968-02-06 1969-10-22 Rolls Royce Bearing Assembly
DE19538553B4 (de) 1995-10-17 2010-01-14 Schaeffler Kg Rotorlagerung eines Abgasturboladers
US6623251B2 (en) * 1999-06-21 2003-09-23 Nsk Ltd. Spindle apparatus
DE60107364T2 (de) 2000-10-13 2005-05-04 Nsk Ltd. Spindelgerät
JP4151472B2 (ja) 2003-04-25 2008-09-17 株式会社ジェイテクト ころ軸受装置およびころ軸受の潤滑方法
JP2006118526A (ja) 2004-10-19 2006-05-11 Ntn Corp 転がり軸受の潤滑装置
JP2010007726A (ja) * 2008-06-25 2010-01-14 Ntn Corp モータ一体型の磁気軸受装置
JP2013096465A (ja) 2011-10-31 2013-05-20 Nsk Ltd 軸受潤滑機構
JP6050072B2 (ja) 2012-09-24 2016-12-21 Ntn株式会社 軸受装置の冷却構造
EP3567267B1 (en) * 2012-09-24 2021-06-16 NTN Corporation Bearing device with a cooling structure
DE102014212600B4 (de) 2014-06-30 2019-04-25 Danfoss Power Solutions Gmbh & Co. Ohg Integrierte Schmierpumpe
JP6495700B2 (ja) 2015-03-17 2019-04-03 Ntn株式会社 軸受装置および機械装置
CN205025807U (zh) * 2015-10-14 2016-02-10 重庆美的通用制冷设备有限公司 离心式压缩机用轴承组件
CN208749513U (zh) * 2018-09-14 2019-04-16 珠海格力电器股份有限公司 喷液环和制冷剂润滑轴承组件

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB762293A (en) * 1953-02-05 1956-11-28 Gratzmuller Jean Louis Improvements in or relating to shaft and bearing assemblies especially for reciprocating machines
EP0864751A2 (en) * 1997-03-12 1998-09-16 Zexel Corporation Compressor for use in a transcritical refrigeration cycle system
CN106340995A (zh) * 2016-11-22 2017-01-18 宁波市君纬电气有限公司 一种电机
CN207568805U (zh) * 2017-11-30 2018-07-03 重庆气体压缩机厂有限责任公司 一种向心轮油泵

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3795829A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116951285A (zh) * 2023-09-18 2023-10-27 常州市华立液压润滑设备有限公司 一种用于机泵摩擦副的油雾润滑装置
CN116951285B (zh) * 2023-09-18 2023-11-28 常州市华立液压润滑设备有限公司 一种用于机泵摩擦副的油雾润滑装置

Also Published As

Publication number Publication date
EP3795829A4 (en) 2021-08-11
CN109058079A (zh) 2018-12-21
US20210270321A1 (en) 2021-09-02
EP3795829B1 (en) 2024-08-21
US11473625B2 (en) 2022-10-18
EP3795829A1 (en) 2021-03-24

Similar Documents

Publication Publication Date Title
WO2020052141A1 (zh) 喷液环和制冷剂润滑轴承组件
CN106838010B (zh) 一种航空发动机的主轴承保持装置组件及航空发动机
US9366295B2 (en) Rolling bearing assembly
US20210131437A1 (en) Oil Line Structure of Compressor and Compressor
EP3842651B1 (en) Pump body and compressor with pump body
JPS6344929B2 (zh)
JP2014062618A (ja) 軸受装置の潤滑構造
US20200240469A1 (en) Rolling bearing
US11802589B2 (en) Bearing assembly and compressor with bearing assembly
CN110293415B (zh) 一种电主轴管路布局系统
CN112013019B (zh) 一种滚子轴承组件和航空发动机
US10428868B2 (en) Ball bearing assembly
CN109798302B (zh) 一种滚动轴承及其润滑方法、润滑隔圈和隔圈组件
CN217029232U (zh) 轴承冷却结构及轴承及压缩机及制冷设备
CN208749513U (zh) 喷液环和制冷剂润滑轴承组件
CN213017714U (zh) 一种具有叶轮的机械密封
JP2014043920A (ja) ターボチャージャー用転がり軸受装置
CN111365279A (zh) 具有环形进气腔的轴承座装配结构及压缩机
CN110756290A (zh) 一种旋转轴冷却结构、砂磨机及冷却方法
JP2015034563A (ja) 軸受装置
CN220732512U (zh) 一种油冷电机轴承润滑结构
CN113154237B (zh) 共轴对转直升机传动系统润滑结构及直升机
JP6434094B2 (ja) 軸受装置の潤滑構造
CN211371037U (zh) 一种双层连续狭缝的静压气浮球面轴承定子
CN107947477B (zh) 电机、压缩机及具有其的空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933543

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018933543

Country of ref document: EP

Effective date: 20201217

NENP Non-entry into the national phase

Ref country code: DE