WO2020052079A1 - 画素结构与液晶显示装置 - Google Patents

画素结构与液晶显示装置 Download PDF

Info

Publication number
WO2020052079A1
WO2020052079A1 PCT/CN2018/117264 CN2018117264W WO2020052079A1 WO 2020052079 A1 WO2020052079 A1 WO 2020052079A1 CN 2018117264 W CN2018117264 W CN 2018117264W WO 2020052079 A1 WO2020052079 A1 WO 2020052079A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel
liquid crystal
color filter
crystal display
display device
Prior art date
Application number
PCT/CN2018/117264
Other languages
English (en)
French (fr)
Inventor
刘忠念
Original Assignee
惠科股份有限公司
重庆惠科金渝光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠科股份有限公司, 重庆惠科金渝光电科技有限公司 filed Critical 惠科股份有限公司
Publication of WO2020052079A1 publication Critical patent/WO2020052079A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement

Definitions

  • the present application relates to the field of liquid crystal display technology, and in particular, to a liquid crystal display device capable of improving image color shift and its pixel structure.
  • liquid crystal display devices have been widely used in electronic product display devices.
  • the liquid crystal display has the advantages of high image quality, small size, light weight, low voltage driving, low power consumption, and wide application range. It has replaced the traditional cathode ray tube as the mainstream technology of the display.
  • a liquid crystal display device Liquid Crystal Display, LCD
  • LCD Liquid Crystal Display
  • a pixel electrode and a thin film transistor (TFT) are disposed on the substrate.
  • a color filter and a common electrode shared by each pixel are provided on another substrate.
  • the color filter includes three types of red (R), green (G), and blue (B), and a filter of one of the three colors is provided in each pixel. Red, green, and blue pixels are arranged next to each other to form a pixel together.
  • MVA multi-domain vertical alignment
  • LCD-TV liquid crystal display television
  • the technical feature is that it divides a pixel into four domains (4domain).
  • the liquid crystal display manufactured by MVA technology has the advantages of high contrast, wide viewing angle, and large size compatibility.
  • the LCD screen is compared with the front view and the side view, the color shift phenomenon in the side view will still be found, which will reduce the image of the MVA mode. quality.
  • the most efficient method is to use the eight-domain (8domain) technology on the thin-film transistor substrate, which means that the number of pixel domains (domains) increases from four to eight or more.
  • the pixel structure is complicated, and a thin-film transistor substrate needs to be added.
  • the display effect has a higher requirement on the performance of the thin-film transistor substrate and is easily affected by the manufacturing process.
  • this application provides a relatively simple pixel structure. Only the pattern of the transparent conductive film (Indium-Tin Oxide, ITO) on the color filter substrate side is changed. Eight domains are formed in the pixels to effectively improve the color shift phenomenon of the panel and increase the viewing angle.
  • ITO Indium-Tin Oxide
  • the present application provides a liquid crystal display device to improve the image quality of the MVA mode.
  • the embodiment of the present application provides a pixel structure suitable for a single pixel, including: a first pixel; and a second pixel, each having a slit between the first pixel and the first pixel; A first electric field on the first pixel is larger than a second electric field applied on the second pixel.
  • an embodiment of the present application provides a liquid crystal display device, including: a color filter substrate, a first transparent conductive film, disposed on the color filter substrate, and having a plurality of pixel structures, each of which The pixel structure includes: a first pixel; and a second pixel each having a slit between the first pixel; an array substrate disposed in a direction opposite to the color filter substrate; a second transparent conductive film Is disposed on the array substrate; and a liquid crystal layer is disposed between the array substrate and the color filter substrate, and has a plurality of liquid crystal molecules; wherein a first electric field applied to the first pixel is greater than A second electric field applied to the second pixel.
  • an embodiment of the present application provides a liquid crystal display device, including: a color filter substrate, a first transparent conductive film, disposed on the color filter substrate, and having a plurality of pixel structures, each of which The pixel structure includes: a first pixel; and a second pixel each having a slit between the first pixel; an array substrate disposed in a direction opposite to the color filter substrate; a second transparent conductive film Is disposed on the array substrate; and a liquid crystal layer is disposed between the array substrate and the color filter substrate, and has a plurality of liquid crystal molecules; wherein a first electric field applied to the first pixel is greater than A second electric field applied to the second pixel, the plurality of liquid crystal molecules corresponding to the first pixel have 4 different tilt directions, and the plurality of liquid crystal molecules corresponding to the second pixel Liquid crystal molecules have 4 different tilt directions.
  • the above technical solution provides a relatively simple pixel structure. Only the pattern of the transparent conductive film on the color filter substrate side is changed. Eight domains can be formed in a single pixel without changing the array substrate to effectively improve the color shift of the panel. Or whitening phenomenon, increase the panel viewing angle.
  • FIG. 1 is a schematic top view of an existing eight pixels formed in a single pixel.
  • FIG. 2 is a schematic cross-sectional view of a mixed effect of an existing light region and a dark region.
  • FIG. 3 is a schematic diagram of a pixel structure according to an embodiment of the present application.
  • FIG. 4 is a schematic cross-sectional view of a liquid crystal display device according to an embodiment of the present application.
  • FIG. 5 is a schematic cross-sectional view of a color filter substrate structure according to an embodiment of the present application.
  • FIG. 6 is a schematic top plan view of forming eight partitions in a single pixel according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a pixel structure with lateral distribution characteristics according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a pixel structure having a vertical distribution characteristic in an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another pixel structure with lateral distribution characteristics according to an embodiment of the present application.
  • FIG. 10 is a schematic diagram of another pixel structure having a vertical distribution characteristic according to an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another pixel structure having a lateral distribution characteristic according to an embodiment of the present application.
  • FIG. 12 is a schematic diagram of another pixel structure having a vertical distribution characteristic according to an embodiment of the present application.
  • Pixel structure 100 first pixel 110, second pixel 120, slit 130, color filter substrate 140, glass substrate 141, light shielding layer 142, color filter film layer 143, protective layer 144, first transparent conductive film 150, an array substrate 160, a second transparent conductive film 170, a liquid crystal layer 180, liquid crystal molecules 181, a slit 190, a single pixel 200, and an oblique direction 300.
  • FIG. 1 is a schematic top view of an existing eight pixels formed in a single pixel.
  • FIG. 2 is a schematic cross-sectional view of a mixed effect of existing light and dark areas.
  • the liquid crystal display panel in color shift (LCS) mode includes an array substrate 160, a color filter substrate 140, and liquid crystal molecules 181.
  • the protrusions provided on the array substrate 160 and the color filter substrate 140 when an electric field is formed between the two substrates 3 and 4, can cause the liquid crystal molecules 181 to fall in different oblique directions 300, thereby making the bright area the first pixel 110.
  • the formation of four domains (4 domains) and the second pixel 120 in the dark area also form the distribution of the four domains (as shown in FIG. 1).
  • the liquid crystal molecules 181 of the first pixel 110 in the bright area are small, so there are eight areas of the first pixel 110 in the bright area and the second pixel 120 in the dark area in a single pixel 200 area.
  • the eight-division technology has a significant effect on suppressing color cast, but in contrast, the pixel structure 100 is complex, and the display effect requires high performance on the thin film transistor substrate 4 and is easily affected by the manufacturing process.
  • FIG. 3 is a schematic diagram of a pixel structure 100 according to an embodiment of the present application
  • FIG. 4 is a schematic cross-sectional view of a liquid crystal display device according to an embodiment of the present application; please refer to FIG. 3 and FIG.
  • the single pixel 200 is etched on the first transparent conductive film 150 of the color filter substrate 140 and includes a first pixel 110, a second pixel 120, and two slits 130. Two slits 130 are provided on the first transparent conductive film 150 of the color filter substrate 140, so that the first transparent conductive film 150 forms a first pixel 110 and a second pixel 120.
  • a first electric field E1 is applied to the first pixel 110 and a second electric field E2 is applied to the second pixel 120, and the first electric field E1 is larger than the second electric field E2.
  • FIG. 6 is a schematic plan view of an eight-division forming a single pixel in an embodiment of the present application. Please refer to FIG. 2 to FIG. 6, since the first electric field E1 applied to the first pixel 110 is greater than The second electric field E2 applied to the second pixel 120, therefore, the liquid crystal molecules 181 located in the region of the first pixel 110 and the liquid crystal molecules 181 located in the region of the second pixel 120 will further produce different degrees of dumping. (Similar to Figure 2). In this way, as shown in FIG.
  • each partition is further divided into two areas, a light area and a dark area, thereby forming eight areas.
  • the pixel structure 100 shown in FIG. 7, FIG. 9, and FIG. 11 has a lateral distribution feature, and the left and right sides of the panel can be used for the first pixel 110 area and the second pixel in the plane.
  • the electric field signal is input to each of the 120 areas; the pixel structure 100 shown in Fig. 8, Fig. 10, and Fig. 12 has a vertical distribution feature.
  • the electric field signals are respectively input in the regions.
  • the voltage difference between the input voltage V1 on the first pixel 110 and the input voltage V2 on the second pixel 120 is: 0 ⁇ V1-V2 ⁇ 3V.
  • the liquid crystal display device of this embodiment may be an LCD display panel, an Organic Light Emitting Display (OLED) display panel, a Quantum Dot Light Emitting Diode (QLED) display panel, an MVA type liquid crystal panel, and a curved display. Panel or other display panel.
  • OLED Organic Light Emitting Display
  • QLED Quantum Dot Light Emitting Diode
  • MVA MVA type liquid crystal panel
  • curved display Panel or other display panel.
  • the first transparent conductive film 150 on the color filter substrate 140 side is etched to have the first time.
  • the ratio of the area of the pixel 110 to the area of the second and second pixels 120 is between 1: 1 and 1: 2, in order to meet the needs of simultaneously improving color shift and providing appropriate brightness.
  • the pattern of the pixel structure 100 provided on the first transparent conductive film 150 on the color filter substrate 140 side may be rectangular or hexagonal. Shape or other shapes are not limited to this.
  • the first transparent conductive film 150 on the color filter substrate 140 side is provided with a pixel structure in which the first pixel 110 and the second pixel 120 overlap each other. 100 patterns, making the division of light and dark areas more fine.
  • a liquid crystal display device includes a color filter substrate 140, a first transparent conductive film 150, a second transparent conductive film 170, and an array substrate 160.
  • the color filter substrate 140 may be a glass substrate 141.
  • an anti-reflection light-shielding layer 142 may be fabricated on the glass substrate 141, that is, a (Black Matrix, BM) layer, and light-transmitting red, green, and
  • the color filter film layer 143 of the three primary colors of blue and RGB (the shape, size, and color arrangement of the filter layer depends on the liquid crystal display of different uses), and then a smooth protective layer 144 is coated on the filter layer (Coat), and finally plating the first transparent conductive film 150.
  • the first transparent conductive film 150 is disposed on the color filter substrate 140 and has a plurality of pixel structures 100.
  • Each pixel structure 100 includes: a first pixel 110 and a second pixel 120, respectively.
  • Each pixel structure 100 is suitable for a single pixel 200 and can be formed on the first transparent conductive film 150 of the color filter substrate 140 by etching. For example, two slits 130 are etched on the first transparent conductive film 150 of the color filter substrate 140, so that the first transparent conductive film 150 forms a first pixel 110 and a second pixel 120.
  • the array substrate 160 of the liquid crystal display device of this embodiment is disposed in a direction facing the color filter substrate 140.
  • the second transparent conductive film 170 is disposed on the array substrate 160, and the extending direction of the slit 190 of the second transparent conductive film 170 corresponds to the extending direction of the two slits 130 of the first transparent conductive film 150.
  • a liquid crystal layer 180 is disposed between the array substrate 160 and the color filter substrate 140 and has a plurality of liquid crystal molecules 181 (similar to that shown in FIG. 2). As shown in FIG. 4, a first electric field E1 is applied to the first pixel 110 and a second electric field E2 is applied to the second pixel 120, and the first electric field E1 is larger than the second electric field E2.
  • FIG. 6 is a schematic plan view of an eight-division forming a single pixel in an embodiment of the present application. Please refer to FIG. 2 to FIG. 6, since the first electric field E1 applied to the first pixel 110 is greater than The second electric field E2 applied to the second pixel 120, therefore, the liquid crystal molecules 181 located in the region of the first pixel 110 and the liquid crystal molecules 181 located in the region of the second pixel 120 will further produce different degrees of dumping. (Similar to Figure 2). In this way, as shown in FIG.
  • each partition is further divided into two areas, a light area and a dark area, thereby forming eight areas.
  • the pixel structure 100 shown in FIG. 7, FIG. 9, and FIG. 11 has a lateral distribution feature.
  • the electric field signal is input to each of the 120 areas; the pixel structure 100 shown in Fig. 8, Fig. 10, and Fig. 12 has a vertical distribution feature.
  • the electric field signals are respectively input in the regions.
  • the voltage difference between the input voltage V1 on the first pixel 110 and the input voltage V2 on the second pixel 120 is: 0 ⁇ V1-V2 ⁇ 3V.
  • the first transparent conductive film 150 on the color filter substrate 140 side is etched to have the first time.
  • the ratio of the area of the pixel 110 to the area of the second and second pixels 120 is between 1: 1 and 1: 2, in order to meet the needs of simultaneously improving color shift and providing appropriate brightness.
  • the pattern of the pixel structure 100 etched by the first transparent conductive film 150 on the color filter substrate 140 side may be rectangular or hexagonal. Shape or other shapes are not limited to this.
  • the first transparent conductive film 150 on the side of the color filter substrate 140 is etched into a pixel structure having a first pixel 110 and a second pixel 120 overlapping each other. 100 patterns, making the division of light and dark areas more fine.
  • the liquid crystal display device suitable for the pixel structure 100 of this embodiment may be an LCD display panel, an OLED display panel, a QLED display panel, a vertical alignment (VA) type liquid crystal panel, a curved display panel, or other display panels.
  • a liquid crystal display device of a VA type liquid crystal panel includes a color filter substrate 140, a first transparent conductive film 150, a second transparent conductive film 170, and an array substrate 160.
  • the color filter substrate 140 can be a glass substrate 141.
  • an anti-reflection light-shielding layer 142 can be made on the glass substrate 141, that is, a BM layer (Black Matrix), and light-transmitting red, green, and blue can be sequentially produced.
  • RGB red, green, blue
  • a smooth protective layer is coated on the filter layer 144 (Over Coat), and finally plating the first transparent conductive film 150.
  • the first transparent conductive film 150 is disposed on the color filter substrate 140 and has a plurality of pixel structures 100.
  • Each pixel structure 100 includes: a first pixel 110 and a second pixel 120.
  • Each pixel structure 100 is suitable for a single pixel 200 and can be formed on the first transparent conductive film 150 of the color filter substrate 140 by etching. For example, two slits 130 are etched on the first transparent conductive film 150 of the color filter substrate 140, so that the first transparent conductive film 150 forms a first pixel 110 and a second pixel 120.
  • the array substrate 160 of the liquid crystal display device of this embodiment is disposed in a direction facing the color filter substrate 140.
  • the second transparent conductive film 170 is disposed on the array substrate 160, and the extending direction of the slit 190 of the second transparent conductive film 170 corresponds to the extending direction of the two slits 130 of the first transparent conductive film 150.
  • the liquid crystal layer 180 is provided between the array substrate 160 and the color filter substrate 140, and has a plurality of liquid crystal molecules 181 (similar to that shown in Fig. 2). As shown in FIG. 4, a first vertical electric field E1 is applied to the first pixel 110 and a second vertical electric field E2 is applied to the second pixel 120, and the first electric field E1 is larger than the second electric field E2.
  • FIG. 6 is a schematic plan view of eight partitions formed in a single pixel in an embodiment of the present application. Please refer to FIG. 2 to FIG. 6.
  • the electric field E1 is larger than the vertical second electric field E2 applied to the second pixel 120. Therefore, the liquid crystal molecules 181 located in the region of the first pixel 110 and the liquid crystal molecules 181 located in the region of the second pixel 120 will be further Different degrees of dumping occur (similar to that shown in Figure 2).
  • FIG. 6 in addition to the top view, it can be seen that the plurality of liquid crystal molecules 181 corresponding to the first pixel 110 and the plurality of liquid crystal molecules 181 corresponding to the second pixel 120 have four existing oblique directions 300.
  • each partition is further divided into two areas, a light area and a dark area, thereby forming eight areas. Therefore, by changing only the pattern of the first transparent conductive film 150 on the color filter substrate 140 side, it is possible to form eight partitions in a single pixel without changing the array substrate 160, so as to effectively improve the panel color shift or whitening phenomenon and increase the panel field of view. angle.
  • the present application provides a relatively simple pixel structure 100. Only the pattern of the transparent conductive film on the color filter substrate 140 side is changed, and eight partitions can be formed in a single pixel without changing the array substrate 160 to effectively improve the panel. Color shift or whitening phenomenon, increase the panel viewing angle.

Abstract

本发明实施例提供一种画素结构,包括:第一次画素;以及第二次画素,分别与所述第一次画素之间具有狭缝;其中施加于所述第一次画素上的第一电场大于施加在所述第二次画素上的第二电场。本发明实施例通过此结构能够提供相对简单的画素结构,仅改变彩色滤光基板侧的透明导电膜的图案,不需要新增阵列基板就可以在单个画素内形成八分区,以有效改善面板色偏现象,提高可视角。

Description

画素结构与液晶显示装置 技术领域
本申请涉及液晶显示技术领域,尤其涉及一种能改善影像色偏的液晶显示装置及其画素结构。
背景技术
随着光学科技与半导体技术的进步,液晶显示设备已广泛的应用于电子产品显示设备上。液晶显示器具有高画质、体积小、重量轻、低电压驱动、低消耗功率及应用范围广等优点,其已取代传统的阴极射线管成为显示器的主流技术。
相关技术显示,液晶显示设备(Liquid Crystal Display,LCD)包含二基板并有液晶被密封于其间,画素电极及薄膜晶体管(Thin Film Transistor,TFT)被设置于基板上,而相对于各画素电极的彩色滤光膜及共享于各画素的共同电极被设置在另一基板上。彩色滤光膜包含红(R)、绿(G)、蓝(B)三种,而在每一画素中会设有此三种颜色中的一种滤光膜。红、绿、蓝色画素互相邻设而一起构成一画素。
另外,业界相关技术表明,具有高对比度、宽视角特性的多分区垂直配向(Multi-domain Vertical Alignment,MVA)式的液晶显示器可应用于液晶显示电视(Liquid Crystal Display Television,LCD-TV)上,技术特征在于其分割一个画素为四分区(4domain)。MVA技术所制造的液晶显示器具有高对比度、广视角及大尺寸兼容等优点,不过其液晶屏幕于前视与侧视的比较,仍会发现侧视产生色偏现象,这将降低MVA模式的影像质量。要降低色偏,最有效率的方法为采用于薄膜晶体管基板上的八分区(8domain)技术来解决,即画素分区数(domains)从四分区数增加到八分区数或更多,但与之相对的,画素结构复杂,需增加薄膜晶体管基板,显示效果对薄膜晶体管基板 性能要求较高,易受制程影响。
发明内容
鉴于现有技术中的上述问题,本申请提供了相对简单的画素结构,仅改变彩色滤光基板侧的透明导电膜(Indium-Tin Oxide,ITO)的图案,不需要改变阵列基板就可以在单个画素内形成八分区(8domain),以有效改善面板色偏现象,提高可视角。
鉴于现有技术中的上述问题,本申请提供一种液晶显示装置,提高MVA模式的影像质量。
一方面,本申请实施例提供了一种画素结构,适于单一画素上,包括:第一次画素;以及第二次画素,分别与所述第一次画素之间具有狭缝;其中施加于所述第一次画素上的第一电场大于施加在所述第二次画素上的第二电场。
另一方面,本申请实施例提供了一种液晶显示装置,包括:彩色滤光基板,第一透明导电膜,设置在所述彩色滤光基板上,具有多个画素结构,其中每一所述画素结构包括:第一次画素;及第二次画素,分别与所述第一次画素之间具有狭缝;阵列基板,设置于所述彩色滤光基板的正对方向;第二透明导电膜,设置在所述阵列基板上;以及液晶层,设置于所述阵列基板以及所述彩色滤光基板之间,具有多个液晶分子;其中施加于所述第一次画素上的第一电场大于施加在所述第二次画素上的第二电场。
另一方面,本申请实施例提供了一种液晶显示装置,包括:彩色滤光基板,第一透明导电膜,设置在所述彩色滤光基板上,具有多个画素结构,其中每一所述画素结构包括:第一次画素;及第二次画素,分别与所述第一次画素之间具有狭缝;阵列基板,设置于所述彩色滤光基板的正对方向;第二透明导电膜,设置在所述阵列基板上;以及液晶层,设置于所述阵列基板以及所述彩色滤光基板之间,具有多个液晶分子;其中施加于所述第一次画素上的第一电场大于施加在所述第二次画素上的第二电场,所述第一次画素所 对应的所述多个液晶分子具有4种不同的倾斜方向,所述第二次画素所对应的所述多个液晶分子具有4种不同的倾斜方向。
采用上述技术方案提供了相对简单的画素结构,仅改变彩色滤光基板侧的透明导电膜的图案,不需要改变阵列基板就可以在单个画素内形成八分区(8domain),以有效改善面板色偏或泛白现象,提高面板视野角。
附图说明
为了更清楚的说明本申请实施例技术方案,下面将对实施例描述中所需要使用的附图作简单的介绍,显而易见的,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一种现有单个画素内形成八分区的俯视示意图。
图2为一种现有亮区和暗区的混合效果剖面示意图。
图3为本申请一实施例中一种画素结构的示意图。
图4为本申请一实施例中一种液晶显示装置的剖面示意图。
图5为本申请一实施例中一种彩色滤光基板结构的剖面示意图。
图6为本申请一实施例中一种单个画素内形成八分区的俯视示意。
图7为本申请一实施例中一种具有横向分布特性的画素结构的示意图。
图8为本申请一实施例中一种具有纵向分布特性的画素结构的示意图。
图9为本申请一实施例中另一种具有横向分布特性的画素结构的示意图。
图10为本申请一实施例中另一种具有纵向分布特性的画素结构的示意图。
图11为本申请一实施例中再一种具有横向分布特性的画素结构的示意图。
图12为本申请一实施例中再一种具有纵向分布特性的画素结构的示意图。
附图标记
画素结构100、第一次画素110、第二次画素120、狭缝130、彩色滤光基板140、玻璃基板141、遮光层142、彩色滤光膜层143、保护层144、第一透明导电膜150、阵列基板160、第二透明导电膜170、液晶层180、液晶分子181、狭缝190、单一画素200、倾斜方向300。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述。显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
图1为一种现有单个画素内形成八分区的俯视示意图;图2为一种现有亮区和暗区的混合效果剖面示意图,请参阅图1及图2,现有低色偏(Low color shift,LCS)模式的液晶显示面板包括:阵列基板160、彩色滤光基板140以及液晶分子181。设置在阵列基板160及彩色滤光基板140的突起物,当在两基板3、4之间形成电场时,可使液晶分子181往不同的倾斜方向300倾倒,而使亮区第一次画素110形成四分区(4domain)以及暗区第二次画素120也形成四分区的分布(如图1所示),而由图2所示暗区第二次画素120的液晶分子181倾斜程度相较于亮区第一次画素110的液晶分子181小,因此于单一画素200区域内具有亮区第一次画素110和暗区第二次画素120共八分区,侧看显示面板时通过两个区可以产生相互补偿的效果,从而达到降低色偏的目的。八分区技术对抑制色偏有明显的效果,但与之相对的,画素结构100复杂,显示效果对薄膜晶体管基板4性能要求较高,易受制程影响。
图3为本申请一实施例中一种画素结构100的示意图;图4为本申请一实施例中一种液晶显示装置的剖面示意图;请参阅图3及图4,一种画素结构100,适于单一画素200上,且可蚀刻于彩色滤光基板140的第一透明导电膜150上,包括第一次画素110、第二次画素120以及二狭缝130。于彩色 滤光基板140的第一透明导电膜150上设有二狭缝130,使第一透明导电膜150形成第一次画素110以及第二次画素120。如图4所示,于第一次画素110上施加第一电场E1,于第二次画素120上施加第二电场E2,而第一电场E1大于第二电场E2。
在本实施例中,图6为本申请一实施例中一种单个画素内形成八分区的俯视示意,请参阅图2至图6,由于施加于第一次画素110上的第一电场E1大于施加在第二次画素120上的第二电场E2,因此,位于第一次画素110的区域中的液晶分子181以及位于第二次画素120区域中的液晶分子181会进一步产生不同的程度的倾倒(类似于图2所示)。如此一来,如图6所示,除了由俯视图可见第一次画素110所对应的多个液晶分子181及第二次画素120所对应的多个液晶分子181具有四种现有的倾斜方向300外,第二次画素120所对应的多个液晶分子181的倾斜程度受第二电场E2影响会较第一次画素110所对应的多个液晶分子181小,因此画素结构100在单个画素内可以在四分区画素基础上,每一个分区又分为亮区和暗区两个区,从而形成八分区。因此,仅改变彩色滤光基板140侧的第一透明导电膜150的图案,不需要改变阵列基板160就可以在单个画素内形成八分区,以有效改善面板色偏或泛白现象,提高面板视野角。
此外,在具体实施例中,如图7、图9、图11所示的画素结构100具有横向分布的特征,可于面板的左右两侧向面内第一次画素110区、第二次画素120区分别输入电场信号;如图8、图10、图12所示的画素结构100具有纵向分布的特征,可于面板的上下两侧向面内第一次画素110区、第二次画素120区分别输入电场信号,其中,在实施例中,输入第一次画素110上的电压V1与输入第二次画素120上的电压V2压差为:0<V1-V2<3V。
本实施例的液晶显示装置可为LCD显示面板、有机发光二极管(Organic Light Emitting Display,OLED)显示面板、量子点发光二极管(Quantum Dot light Emitting Diode,QLED)显示面板、MVA型液晶面板、曲面显示面板或其他显示面板。
另外,在具体实施例中,如图7、图8、图9、图10、图11、图12所示,于彩色滤光基板140侧的第一透明导电膜150刻蚀成具有第一次画素110的面积与二第二次画素120的面积比例介于1:1~1:2之间,以符合同时改善色偏与提供适当亮度的需求。
此外,如图7、图8、图9、图10、图11、图12所示,于彩色滤光基板140侧的第一透明导电膜150设有的画素结构100图案可以是长方形、六边形或者其它形状,并不限于此。
在具体实施例中,如图11和图12所示,于彩色滤光基板140侧的第一透明导电膜150设有成具有第一次画素110与第二次画素120相互交叠的画素结构100图案,使亮暗区划分更加精细。
在另一实施例中,请参阅图3及图4,一种液晶显示设备,包括彩色滤光基板140、第一透明导电膜150、第二透明导电膜170以及阵列基板160。彩色滤光基板140可为玻璃基板141,另外,可于玻璃基板141上制作防反射的遮光层142,即为(Black Matrix,BM)层,再依序制作上具有透光性红、绿、蓝RGB三原色的彩色滤光膜层143(滤光层的形状、尺寸、色泽配列,依不同用途的液晶显示器而异),然后在滤光层上涂布(Coating)一层平滑的保护层144(Over Coat),最后镀上第一透明导电膜150。
在本实施例中,第一透明导电膜150是设置在彩色滤光基板140上,具有多个画素结构100,每一画素结构100包括:第一次画素110以及第二次画素120系分别与第一次画素110之间具有二狭缝130。而每一画素结构100适于单一画素200上,且可用蚀刻的方式来形成于彩色滤光基板140的第一透明导电膜150上。例如,于彩色滤光基板140的第一透明导电膜150上蚀刻二狭缝130,使第一透明导电膜150形成第一次画素110以及第二次画素120。
此外,本实施例的液晶显示设备的阵列基板160设置于彩色滤光基板140的正对方向。第二透明导电膜170系设置在阵列基板160上,而第二透明导电膜170的狭缝190的延伸方向与第一透明导电膜150的二狭缝130的延伸 方向相对应。另外,一液晶层180,设置于阵列基板160以及彩色滤光基板140之间,具有多个液晶分子181(类似于图2所示)。如图4所示,于第一次画素110上施加第一电场E1,于第二次画素120上施加第二电场E2,而第一电场E1大于第二电场E2。
在本实施例中,图6为本申请一实施例中一种单个画素内形成八分区的俯视示意,请参阅图2至图6,由于施加于第一次画素110上的第一电场E1大于施加在第二次画素120上的第二电场E2,因此,位于第一次画素110的区域中的液晶分子181以及位于第二次画素120区域中的液晶分子181会进一步产生不同的程度的倾倒(类似于图2所示)。如此一来,如图6所示,除了由俯视图可见第一次画素110所对应的多个液晶分子181及第二次画素120所对应的多个液晶分子181具有四种现有的倾斜方向300外,第二次画素120所对应的多个液晶分子181的倾斜程度受第二电场E2影响会较第一次画素110所对应的多个液晶分子181小,因此画素结构100在单个画素内可以在四分区画素基础上,每一个分区又分为亮区和暗区两个区,从而形成八分区。因此,仅改变彩色滤光基板140侧的第一透明导电膜150的图案,不需要改变阵列基板160就可以在单个画素内形成八分区,以有效改善面板色偏或泛白现象,提高面板视野角。
此外,在具体实施例中,如图7、图9、图11所示的画素结构100具有横向分布的特征,可于面板的左右两侧向面内第一次画素110区、第二次画素120区分别输入电场信号;如图8、图10、图12所示的画素结构100具有纵向分布的特征,可于面板的上下两侧向面内第一次画素110区、第二次画素120区分别输入电场信号,其中,在实施例中,输入第一次画素110上的电压V1与输入第二次画素120上的电压V2压差为:0<V1-V2<3V。
另外,在具体实施例中,如图7、图8、图9、图10、图11、图12所示,于彩色滤光基板140侧的第一透明导电膜150刻蚀成具有第一次画素110的面积与二第二次画素120的面积比例介于1:1~1:2之间,以符合同时改善色偏与提供适当亮度的需求。
此外,如图7、图8、图9、图10、图11、图12所示,于彩色滤光基板140侧的第一透明导电膜150刻蚀的画素结构100图案可以是长方形、六边形或者其它形状,并不限于此。
在具体实施例中,如图11和图12所示,于彩色滤光基板140侧的第一透明导电膜150刻蚀成具有第一次画素110与第二次画素120相互交叠的画素结构100图案,使亮暗区划分更加精细。
本实施例的画素结构100适用的液晶显示装置可为LCD显示面板、OLED显示面板、QLED显示面板、垂直配向(Vertical Alignment,VA)型液晶面板、曲面显示面板或其他显示面板,请参阅图3及图4,一种VA型液晶面板的液晶显示设备,包括彩色滤光基板140、第一透明导电膜150、第二透明导电膜170以及阵列基板160。彩色滤光基板140可为玻璃基板141,另外,可于玻璃基板141上制作防反射的遮光层142,即为BM层(Black Matrix),再依序制作上具有透光性红、绿、蓝(RGB)三原色的彩色滤光膜层143(滤光层的形状、尺寸、色泽配列,依不同用途的液晶显示器而异),然后在滤光层上涂布(Coating)一层平滑的保护层144(Over Coat),最后镀上第一透明导电膜150。
在本实施例中,第一透明导电膜150是设置在彩色滤光基板140上,具有多个画素结构100,每一画素结构100包括:第一次画素110以及二第二次画素120系分别与第一次画素110之间具有二狭缝130。而每一画素结构100适于单一画素200上,且可用蚀刻的方式来形成于彩色滤光基板140的第一透明导电膜150上。例如,于彩色滤光基板140的第一透明导电膜150上蚀刻二狭缝130,使第一透明导电膜150形成第一次画素110以及第二次画素120。
此外,本实施例的液晶显示设备的阵列基板160系设置于彩色滤光基板140的正对方向。第二透明导电膜170系设置在阵列基板160上,而第二透明导电膜170的狭缝190的延伸方向与第一透明导电膜150的二狭缝130的延伸方向相对应。另外,液晶层180,设置于阵列基板160以及彩色滤光基 板140之间,具有多个液晶分子181(类似于图2所示)。如图4所示,于第一次画素110上施加垂直方向的第一电场E1,于第二次画素120上施加垂直方向的第二电场E2,而第一电场E1大于第二电场E2。
在本实施例中,图6为本申请一实施例中一种单个画素内形成八分区的俯视示意,请参阅图2至图6,由于施加于第一次画素110上的垂直方向的第一电场E1大于施加在第二次画素120上的垂直方向的第二电场E2,因此,位于第一次画素110的区域中的液晶分子181以及位于第二次画素120区域中的液晶分子181会进一步产生不同的程度的倾倒(类似于图2所示)。如此一来,如图6所示,除了由俯视图可见第一次画素110所对应的多个液晶分子181及第二次画素120所对应的多个液晶分子181具有四种现有的倾斜方向300外,第二次画素120所对应的多个液晶分子181的倾斜程度受第二电场E2影响会较第一次画素110所对应的多个液晶分子181小,因此画素结构100在单个画素内可以在四分区画素基础上,每一个分区又分为亮区和暗区两个区,从而形成八分区。因此,仅改变彩色滤光基板140侧的第一透明导电膜150的图案,不需要改变阵列基板160就可以在单个画素内形成八分区,以有效改善面板色偏或泛白现象,提高面板视野角。
基于所述,本申请提供了相对简单的画素结构100,仅改变彩色滤光基板140侧的透明导电膜的图案,不需要改变阵列基板160就可以在单个画素内形成八分区,以有效改善面板色偏或泛白现象,提高面板视野角。
需要说明的是,在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详细描述的部分,可以参见其他实施例的相关描述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到各种等效的修改或替换,这些修改或替换都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (20)

  1. 一种画素结构,其中,包括:
    第一次画素;以及
    第二次画素,分别与所述第一次画素之间具有狭缝;
    其中施加于所述第一次画素上的第一电场大于施加在所述第二次画素上的第二电场。
  2. 如权利要求1所述的画素结构,其中,其中输入所述第一次画素上的电压V1与输入所述第二次画素上的电压V2压差为:0<V1-V2<3V。
  3. 如权利要求1所述的画素结构,其中,所述第一次画素与所述二第二次画素相互交叠。
  4. 如权利要求1所述的画素结构,其中,所述第一次画素的面积与所述第二次画素的面积比例介于1:1~1:2之间。
  5. 一种液晶显示装置,其中,包括:
    彩色滤光基板;
    第一透明导电膜,设置在所述彩色滤光基板上,具有多个画素结构,其中每一所述画素结构包括:
    第一次画素;
    第二次画素,分别与所述第一次画素之间具有狭缝;
    阵列基板,设置于所述彩色滤光基板的正对方向;
    第二透明导电膜,设置在所述阵列基板上;以及
    液晶层,设置于所述阵列基板以及所述彩色滤光基板之间,具有多个液晶分子;
    其中施加于所述第一次画素上的第一电场大于施加在所述第二次画素上的第二电场。
  6. 如权利要求5所述的液晶显示装置,其中,输入所述第一次画素上的电压V1与输入所述第二次画素上的电压V2压差为:0<V1-V2<3V。
  7. 如权利要求5所述的液晶显示装置,其中,所述第一次画素与所述第 二次画素相互交叠。
  8. 如权利要求5所述的液晶显示装置,其中,所述第一次画素的面积与所述第二次画素的面积比例介于1:1~1:2之间。
  9. 如权利要求5所述的液晶显示装置,其中,所述第一透明导电膜的所述狭缝延伸方向与所述第二透明导电膜的狭缝延伸方向相对应。
  10. 如权利要求5所述的液晶显示装置,其中,所述彩色滤光基板包括:
    玻璃基板;
    遮光层,覆盖所述玻璃基板;以及
    彩色滤光膜层,覆盖所述遮光层,位于所述遮光层远离所述玻璃基板的一侧。
  11. 如权利要求10所述的液晶显示装置,其中,所述彩色滤光基板还包括保护层,涂布于所述彩色滤光膜层,位于所述彩色滤光膜层远离所述遮光层的一侧。
  12. 如权利要求5所述的液晶显示装置,其中,所述阵列基板为薄膜晶体管基板。
  13. 一种液晶显示装置,其中,包括:
    彩色滤光基板,
    第一透明导电膜,设置在所述彩色滤光基板上,具有多个画素结构,其中每一所述画素结构包括:
    第一次画素;
    第二次画素,分别与所述第一次画素之间具有狭缝;
    阵列基板,设置于所述彩色滤光基板的正对方向;
    第二透明导电膜,设置在所述阵列基板上;以及
    液晶层,设置于所述阵列基板以及所述彩色滤光基板之间,具有多个液晶分子;
    其中施加于所述第一次画素上的第一电场大于施加在所述第二次画素上的第二电场,所述第一次画素所对应的所述多个液晶分子具有四种不同的倾 斜方向,所述第二次画素所对应的所述多个液晶分子具有四种不同的倾斜方向。
  14. 如权利要求13所述的液晶显示装置,其中,输入所述第一次画素上的电压V1与输入所述第二次画素上的电压V2压差为:0<V1-V2<3V。
  15. 如权利要求13所述的液晶显示装置,其中,所述第一次画素与所述第二次画素相互交叠。
  16. 如权利要求13所述的液晶显示装置,其中,所述第一次画素的面积与所述第二次画素的面积比例介于1:1~1:2之间。
  17. 如权利要求13所述的液晶显示装置,其中,所述第一透明导电膜的所述狭缝延伸方向与所述第二透明导电膜的狭缝延伸方向相对应。
  18. 如权利要求13所述的液晶显示装置,其中,所述彩色滤光基板包括:
    玻璃基板;
    遮光层,覆盖所述玻璃基板;以及
    彩色滤光膜层,覆盖所述遮光层,位于所述遮光层远离所述玻璃基板的一侧。
  19. 如权利要求18所述的液晶显示装置,其中,所述彩色滤光基板还包括保护层,涂布于所述彩色滤光膜层,位于所述彩色滤光膜层远离所述遮光层的一侧。
  20. 如权利要求13所述的液晶显示装置,其中,所述阵列基板为薄膜晶体管基板。
PCT/CN2018/117264 2018-09-10 2018-11-23 画素结构与液晶显示装置 WO2020052079A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811052189.3A CN108957875B (zh) 2018-09-10 2018-09-10 一种画素结构与液晶显示装置
CN201811052189.3 2018-09-10

Publications (1)

Publication Number Publication Date
WO2020052079A1 true WO2020052079A1 (zh) 2020-03-19

Family

ID=64476386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/117264 WO2020052079A1 (zh) 2018-09-10 2018-11-23 画素结构与液晶显示装置

Country Status (2)

Country Link
CN (1) CN108957875B (zh)
WO (1) WO2020052079A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114660856B (zh) * 2022-03-16 2024-02-20 Tcl华星光电技术有限公司 阵列基板及显示装置
CN114815408B (zh) * 2022-04-14 2023-09-26 Tcl华星光电技术有限公司 显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7133098B2 (en) * 2002-10-16 2006-11-07 Chi Mei Optoelectronics Corp. Liquid crystal display including array of protrusions in a broken zigzag pattern all formed within area of light-shielding matrix
KR20060128416A (ko) * 2005-06-10 2006-12-14 엘지.필립스 엘시디 주식회사 멀티도메인 수직 배향 모드 액정표시장치와 그 제조방법
CN1983000A (zh) * 2005-12-12 2007-06-20 Lg.菲利浦Lcd株式会社 垂直取向模式液晶显示器件
CN101021655A (zh) * 2006-12-19 2007-08-22 上海广电光电子有限公司 多畴垂直取向模式的液晶显示装置
CN101126877A (zh) * 2007-06-26 2008-02-20 上海广电光电子有限公司 多畴垂直取向模式的液晶显示装置
CN201251666Y (zh) * 2008-09-05 2009-06-03 上海广电光电子有限公司 多畴垂直取向模式的液晶显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI291764B (en) * 2006-01-26 2007-12-21 Chi Mei Optoelectronics Corp Liquid crystal display device and manufacturing process thereof
TWI387827B (zh) * 2008-03-12 2013-03-01 Chunghwa Picture Tubes Ltd 多域垂直配向型(mva)畫素結構
CN107741663A (zh) * 2017-11-21 2018-02-27 武汉华星光电技术有限公司 显示组件的制造方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7133098B2 (en) * 2002-10-16 2006-11-07 Chi Mei Optoelectronics Corp. Liquid crystal display including array of protrusions in a broken zigzag pattern all formed within area of light-shielding matrix
KR20060128416A (ko) * 2005-06-10 2006-12-14 엘지.필립스 엘시디 주식회사 멀티도메인 수직 배향 모드 액정표시장치와 그 제조방법
CN1983000A (zh) * 2005-12-12 2007-06-20 Lg.菲利浦Lcd株式会社 垂直取向模式液晶显示器件
CN101021655A (zh) * 2006-12-19 2007-08-22 上海广电光电子有限公司 多畴垂直取向模式的液晶显示装置
CN101126877A (zh) * 2007-06-26 2008-02-20 上海广电光电子有限公司 多畴垂直取向模式的液晶显示装置
CN201251666Y (zh) * 2008-09-05 2009-06-03 上海广电光电子有限公司 多畴垂直取向模式的液晶显示装置

Also Published As

Publication number Publication date
CN108957875A (zh) 2018-12-07
CN108957875B (zh) 2019-12-27

Similar Documents

Publication Publication Date Title
US9971188B2 (en) Display device
TWI484272B (zh) 透明液晶顯示面板之畫素結構
WO2018176776A1 (zh) 阵列基板、显示面板以及显示装置
WO2020259561A1 (zh) 彩膜基板及其制作方法和显示装置
US9638951B2 (en) Color filter substrate, array substrate, liquid crystal panel and liquid crystal display device
KR20050003262A (ko) 4화소구조 횡전계모드 액정표시소자
TWI678583B (zh) 顯示裝置
US10146082B2 (en) Display devices and the color filters thereof
WO2021018024A1 (zh) 显示基板、显示面板和显示装置
KR20040098728A (ko) 수평 전계 인가형 액정 표시 패널
US10203545B2 (en) Display panels and polarizers thereof
US20140168585A1 (en) Color filter substrate, manfacturing method for the same, and display device
TW201734605A (zh) 陣列基板以及曲面液晶顯示面板
CN213987120U (zh) 显示模组及显示装置
WO2020073568A1 (zh) 一种像素电极结构及显示装置
WO2021184506A1 (zh) 液晶显示面板
WO2017186095A1 (zh) 显示面板及其制备方法、显示装置
WO2020052079A1 (zh) 画素结构与液晶显示装置
US7064348B2 (en) VVA-mode liquid crystal display
WO2021196282A1 (zh) 液晶显示面板及其制备方法
US10768486B2 (en) Display device
US20080024704A1 (en) Liquid crystal display panel
WO2021082213A1 (zh) 液晶显示面板及液晶显示装置
US20150378219A1 (en) Array substrate, liquid crystal module and display device
WO2020206779A1 (zh) 彩膜基板以及显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 29.06.2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18933086

Country of ref document: EP

Kind code of ref document: A1