WO2018176776A1 - 阵列基板、显示面板以及显示装置 - Google Patents

阵列基板、显示面板以及显示装置 Download PDF

Info

Publication number
WO2018176776A1
WO2018176776A1 PCT/CN2017/104321 CN2017104321W WO2018176776A1 WO 2018176776 A1 WO2018176776 A1 WO 2018176776A1 CN 2017104321 W CN2017104321 W CN 2017104321W WO 2018176776 A1 WO2018176776 A1 WO 2018176776A1
Authority
WO
WIPO (PCT)
Prior art keywords
pixel region
sub
pixel
angle
electrode
Prior art date
Application number
PCT/CN2017/104321
Other languages
English (en)
French (fr)
Inventor
江亮亮
林仁旭
辛武根
尹傛俊
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US15/778,440 priority Critical patent/US11378847B2/en
Publication of WO2018176776A1 publication Critical patent/WO2018176776A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133357Planarisation layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle

Definitions

  • Embodiments of the present disclosure relate to an array substrate, a display panel, and a display device.
  • TFT-LCD Thin Film Transistor Liquid Crystal Display
  • LCD liquid crystal display
  • mobile phones computers due to its advantages of high resolution, power saving, and thin body.
  • TFT-LCD is a passive light-emitting display device.
  • the liquid crystal molecules themselves cannot emit light. They need to be matched with a backlight to control the intensity of the backlight light by controlling the deflection of the liquid crystal molecules, and then pass through the color filter. Filtering for full color image display and grayscale control.
  • RGBW red, green, blue, white
  • four-color display technology adds a highly transparent W (white) sub-pixel to the traditional RGB (red, green, blue) pixel unit structure to form an RGBW pixel structure.
  • RGBW four-color display technology has the advantages of improving the light transmittance of the liquid crystal panel, reducing power consumption, and improving brightness.
  • the transmittance of the W sub-pixel differs greatly from the transmittance of the RGB sub-pixel, resulting in a display device having an RGBW pixel structure being prone to undesirable phenomena such as gray scale and uneven brightness.
  • At least one embodiment of the present disclosure provides an array substrate, a display panel, and a display device.
  • the array substrate has an angle between the alignment direction of the alignment film and the extending direction of the electrode strip in the different sub-pixel regions of the pixel unit, so that the angle in the white sub-pixel region is larger than that in the color sub-pixel region.
  • the angle is reduced, and the ratio of the brightness of the white sub-pixels in the overall brightness is reduced without changing the aperture ratio of each sub-pixel, thereby effectively improving the gray scale, improving the contrast and display image quality, improving the product quality, and thereby improving the use of the array substrate.
  • the brightness of the display panel is uniform.
  • At least one embodiment of the present disclosure provides an array substrate including: a substrate substrate and an alignment film disposed on the substrate.
  • the array substrate is divided into a plurality of pixel units, each of which includes the first a pixel region and a second pixel region, a first slit electrode is disposed in the first pixel region, and a second slit electrode is disposed in the second pixel region, the first slit electrode includes a plurality of first electrode strips, and the second slit
  • the slit electrode includes a plurality of second electrode strips; the alignment film located in the first pixel region has a first alignment direction, and the alignment film located in the second pixel region has a second alignment direction; the extending direction of the first electrode strip and the first alignment direction Having a first angle, the extending direction of the second electrode strip and the second alignment direction have a second angle, the first angle and the second angle are both greater than or equal to zero degrees and less than or equal to 90 degrees, and the first angle is less than the first angle Two angles.
  • the first alignment direction and the second alignment direction are the same.
  • the extending direction of the first electrode strip and the extending direction of the second electrode strip are the same.
  • the extending direction of the first electrode strip and the extending direction of the second electrode strip are different, and the first alignment direction and the second alignment direction are different.
  • the first pixel region is a color sub-pixel region
  • the second pixel region is a white sub-pixel region.
  • the color sub-pixel region includes a red sub-pixel region, a green sub-pixel region, and a blue sub-pixel region.
  • the extending direction of the first electrode strip in the red sub-pixel region, the extending direction of the first electrode strip in the green sub-pixel region, and the blue sub-pixel region extend in the same direction.
  • the first slit electrode and the second slit electrode are pixel electrodes.
  • the first pixel region includes a first domain and a second domain, and the first electrode strip of the first domain and the first electrode strip of the second domain are mirror-symmetrical;
  • the two-pixel region includes a third domain and a fourth domain, and the second electrode strip of the third domain and the second electrode strip of the fourth domain are mirror-symmetrical.
  • At least one embodiment of the present disclosure provides a display panel including: a first display substrate and a second display substrate, wherein the first display substrate is the array substrate according to any one of the above.
  • the second display substrate is a color filter substrate disposed in a direction perpendicular to the second display substrate at a position corresponding to the first pixel region of the second display substrate.
  • the second display substrate further includes A flat layer disposed on the filter layer.
  • a distance between a surface of the flat layer corresponding to the first pixel region and a surface of the base substrate facing the second display substrate is less than or equal to a flat corresponding to the second pixel region. The distance between the surface of the layer and the surface of the substrate substrate facing the second display substrate.
  • the filter layer includes a red filter sub-layer, a green filter sub-layer, and a blue filter sub-layer.
  • At least one embodiment of the present disclosure provides a display device including the display panel of any of the above.
  • 1a is a schematic cross-sectional structural view of a color filter substrate of an RGBW liquid crystal display panel
  • FIG. 1b is a schematic diagram showing a simulation curve of liquid crystal transmittance of a display panel under different liquid crystal cell thickness states
  • 1c is a schematic cross-sectional view of an RGBW liquid crystal display panel
  • Figure 1d is a schematic diagram of a pixel structure design and a liquid crystal arrangement
  • Figure 1e is a schematic diagram showing a simulation curve of liquid crystal transmittance at different angles
  • FIG. 2a is a schematic diagram of an array substrate according to an embodiment of the present disclosure
  • 2b is a schematic structural diagram of a pixel unit of an array substrate according to an embodiment of the present disclosure
  • 2c is a schematic structural diagram of a pixel unit of another array substrate according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of still another pixel unit of an array substrate according to an embodiment of the present disclosure
  • FIG. 3 is a schematic cross-sectional view of a display panel according to an embodiment of the present disclosure.
  • RGBW red, green, blue, white
  • RGBW four-color display technology on the basis of RGB (red, green, blue) three sub-pixels, adding W (white) sub-pixels that do not need filtered light, so that the display device has relatively With high light transmittance, RGBW four-color display technology has gradually become the main means of increasing transmittance in liquid crystal display devices.
  • RGBW four-color display technology can effectively improve the transmittance of the display device, reduce the backlight brightness and power consumption of the display device; on the other hand, by adding W sub-pixels, it is possible to more precisely adjust the color density and brightness of individual pixels, and increase The transition color makes the color layer more distinct and the color display more abundant.
  • the flat portion coated on the color filter layer is mainly used to fill the opening portion of the W sub-pixel, thereby eliminating the process of separately filling the opening portion of the W sub-pixel, saving one mask and saving Production costs, reducing production time.
  • FIG. 1a is a schematic cross-sectional view showing a color filter substrate of an RGBW liquid crystal display panel.
  • the color filter substrate 61 includes a glass substrate 70 on which a black matrix 610 and an opening portion of each sub-pixel region partitioned by a black matrix 610 are provided.
  • the opening portion 614 of the W sub-pixel region is directly filled with the flat layer 71, and the opening portion 611 of the R sub-pixel region, the opening portion 612 of the G sub-pixel region, and the opening portion 613 of the B sub-pixel region are composed of the filter layer 615 and the flat layer.
  • the W sub-pixel region A pixel step difference exists between the opening of the domain and the R sub-pixel region, the G sub-pixel region, and the opening of the B sub-pixel region, and the pixel step difference ⁇ H is approximately 0.2-0.5 ⁇ m.
  • Fig. 1b is a schematic diagram showing a simulation curve of liquid crystal transmittance of a display panel in a state in which different liquid crystal cells are thick.
  • the liquid crystal transmittance is positively correlated with the thickness of the liquid crystal cell for the same pixel structure, that is, the liquid crystal transmittance increases as the thickness of the liquid crystal cell increases.
  • curve 80 shows the liquid crystal transmittance of the display panel having a liquid crystal cell thickness of 3.3 ⁇ m at different voltages
  • curve 81 shows the liquid crystal transmittance of the display panel having a liquid crystal cell thickness of 3.5 ⁇ m at different voltages.
  • the liquid crystal transmittance shown by the curve 80 is lower than the liquid crystal transmittance shown by the curve 81.
  • the liquid crystal transmittance is about 30% when the thickness of the liquid crystal cell is 3.3 ⁇ m, and the liquid crystal transmittance is about 27% when the thickness of the liquid crystal cell is 3.5 ⁇ m.
  • FIG. 1c shows a schematic cross-sectional structure of an RGBW liquid crystal display panel.
  • the RGBW liquid crystal display panel includes an array substrate 60 facing each other, a color filter substrate 61, and liquid crystal molecules 62 disposed between the array substrate 60 and the color filter substrate 61.
  • the distance between the surface of the flat layer 71 and the surface of the array substrate 60 facing the color filter substrate 61 is D1.
  • the distance between the surface of the flat layer 71 and the surface of the array substrate 60 facing the color filter substrate 61 is D2.
  • D1 is smaller than D2, that is, the liquid crystal cell thickness in the W sub-pixel region is larger than the liquid crystal cell thickness in the RGB sub-pixel region, so that the transmittance of the liquid crystal molecules 62 in the W sub-pixel region is larger than that in the RGB sub-pixel region.
  • the transmittance of 62 further increases the ratio of the brightness of white light in each pixel unit. As a result, when the screen is displayed, obvious grayscale unevenness, uneven brightness, and the like appear on the display panel.
  • the luminance and transmittance of the W sub-pixel are lowered by lowering the aperture ratio of the opening portion of the W sub-pixel, a phenomenon such as poor luminance at a periodic fixed position and poor image quality tend to occur on the display panel.
  • FIG. 1d shows a schematic diagram of a pixel structure design and a liquid crystal arrangement.
  • each sub-pixel region of the pixel unit may include a plurality of slit electrodes, and the slit electrode includes a plurality of electrode strips 92 separated by slits 90, and the slit period distance P includes a narrow The width W of the slit 90 and the slit pitch S (i.e., the width of the electrode strip 92).
  • the extending direction of the electrode strip 92 is the O2 direction
  • the initial arrangement direction of the liquid crystal molecules 93 ie, the initial alignment direction of the liquid crystal molecules
  • the O2 direction has a certain angle ⁇ between the O1 directions.
  • the liquid crystal transmittance and response time in the pixel unit are also different.
  • the simulation study shows that the angle ⁇ is inversely related to the liquid crystal transmittance and response time, that is, the smaller the angle ⁇ , the higher the liquid crystal transmittance and the higher the response time.
  • Figure 1e shows a schematic diagram of a simulated curve of liquid crystal transmittance at different angles.
  • the curve 94 indicates the liquid crystal transmittance of the display panel when the angle ⁇ is 5 degrees at different slit widths; and the curve 95 indicates that the angle ⁇ is 9 degrees at different slit widths.
  • the liquid crystal transmittance of the panel For example, when the slit width W is 2.8 ⁇ m, when the angle ⁇ is 5 degrees, the liquid crystal transmittance is approximately 100%, the response time is approximately 26.36 ms, and when the angle ⁇ is 9 degrees, the liquid crystal transmittance is approximately 97.82%, the response time is roughly 25.82ms.
  • the liquid crystal transmittance in different sub-pixel regions can be changed, thereby adjusting between different sub-pixels. Brightness, improve the brightness uniformity of the display panel, and improve the display quality.
  • At least one embodiment of the present disclosure provides an array substrate, a display panel, and a display device.
  • the array substrate includes a base substrate and an alignment film disposed on the base substrate.
  • the array substrate is divided into a plurality of pixel units, each of the pixel units includes a first pixel region and a second pixel region, a first slit electrode is disposed in the first pixel region, and a second slit electrode is disposed in the second pixel region
  • the first slit electrode includes a plurality of first electrode strips, and the second slit electrode includes a plurality of second electrode strips;
  • the alignment film located in the first pixel region has a first alignment direction, and the alignment film located in the second pixel region has a second alignment direction;
  • the extending direction of the first electrode strip and the first alignment direction have a first angle
  • the extending direction of the second electrode strip and the second alignment direction have a second angle
  • the first angle and the second angle Both are greater than or equal to zero degrees and less than or equal
  • the array substrate has an angle between the alignment direction of the alignment film and the extending direction of the electrode strip in the different sub-pixel regions of the pixel unit, so that the angle in the white sub-pixel region is larger than that in the color sub-pixel region.
  • the angle is increased, thereby reducing the ratio of the brightness of the white sub-pixels in the overall brightness without changing the aperture ratio of each sub-pixel, effectively improving the gray scale, improving the contrast and display image quality, improving the product quality, and thereby improving the adoption of the array. Display brightness uniformity of the display panel of the substrate.
  • Embodiments of the present disclosure provide an array substrate.
  • 2a is a schematic diagram of an array substrate provided by an embodiment of the present disclosure
  • FIG. 2b is a schematic structural diagram of a pixel unit of an array substrate according to an embodiment of the present disclosure
  • FIG. 2c illustrates an embodiment of the present disclosure.
  • a schematic structural diagram of a pixel unit of another array substrate is provided.
  • FIG. 2d is a schematic structural diagram of a pixel unit of another array substrate according to an embodiment of the present disclosure.
  • the array substrate provided by the embodiment of the present disclosure includes: a first substrate substrate 10 and an alignment film 20 disposed on the first substrate substrate 10.
  • the array substrate is divided into a plurality of pixel sheets. Yuan 11.
  • each of the pixel units 11 includes a first pixel region 110 and a second pixel region 111.
  • the first pixel region 110 is provided with a first slit electrode 20, and the second pixel region 111 is provided with a first
  • the second slit electrode 21 includes a plurality of first electrode strips 201, and the second slit electrode 21 includes a plurality of second electrode strips 211.
  • the alignment film 20 located in the first pixel region 110 has a first alignment direction 30, and the alignment film 20 located in the second pixel region 111 has a second alignment direction 31.
  • the extending direction of the first electrode strip 201 is the first direction 32, and the extending direction of the second electrode strip 211 is the second direction 33.
  • the first direction 32 and the first alignment direction 30 have a first angle ⁇ 1
  • the second direction 33 and The second alignment direction 31 has a second included angle ⁇ 2
  • the first included angle ⁇ 1 and the second included angle ⁇ 2 are both greater than or equal to zero degrees and less than or equal to 90 degrees, and the first included angle ⁇ 1 is smaller than the second included angle ⁇ 2.
  • the plurality of first electrode strips 201 are electrically connected to each other and are spaced apart by the first slits 202.
  • the plurality of second electrode strips 211 are electrically connected to each other and are spaced apart by the second slits 212.
  • first included angle ⁇ 1 and the second included angle ⁇ 2 range from greater than zero degrees and less than or equal to 15 degrees.
  • the first alignment direction 30 and the second alignment direction 31 are the same, and the extending direction of the first electrode strip 201 and the extending direction of the second electrode strip 211 are different, that is, the first direction 32 and the second direction.
  • Direction 33 is not parallel.
  • the first pixel region 110 is a color sub-pixel region
  • the second pixel region 111 is a white sub-pixel region.
  • the second angle ⁇ 2 is greater than the first angle ⁇ 1, that is, the angle in the white sub-pixel region is larger than the angle in the color sub-pixel region, and the brightness of the white sub-pixel can be reduced without changing the aperture ratio of each sub-pixel.
  • the ratio in the overall brightness effectively improves the gray scale, improves the display image quality and brightness uniformity, increases the display contrast, and improves product quality.
  • the color sub-pixel region may include a red sub-pixel region 1101, a green sub-pixel region 1102, and a blue sub-pixel region 1103.
  • the red sub-pixel area 1101, the green sub-pixel area 1102, and the blue sub-pixel area 1103 may be arranged in the same row or in the same column, or may be arranged in a triangular manner, etc., which is not limited by the embodiment of the present disclosure.
  • the extending direction of the first electrode strip 201 in the red sub-pixel region 1101, the extending direction of the first electrode strip 201 in the green sub-pixel region 1102, and the extending direction of the first electrode strip 201 in the blue sub-pixel region 1103 can be the same or different.
  • the different filters absorb different light, so that the extending direction of the electrode strip can be set according to the actual situation, so that the light transmittance of the display panel is more uniform, and the display is further improved. quality.
  • the parameters of the filter for example, film thickness, material, etc.
  • the transmittance of the green filter is the highest, and the transmittance of the blue filter is the lowest, so that the extending direction of the first electrode strip 201 in the red sub-pixel region 1101 and the green sub-pixel can be made.
  • the extending direction of the first electrode strip 201 in the region 1102 is different from the extending direction of the first electrode strip 201 in the blue sub-pixel region 1103, for example, the extending direction of the first electrode strip 201 in the green sub-pixel region 1102 is
  • the angle between the first alignment directions 30 is the largest, and the angle between the extending direction of the first electrode strip 201 in the blue sub-pixel region 1103 and the first alignment direction 30 is the smallest.
  • the color sub-pixel region may also include sub-pixel regions of other colors, such as a yellow sub-pixel region, a magenta sub-pixel region, and a cyan sub-pixel region.
  • the color sub-pixel region may also include a monochrome sub-pixel region. The embodiment of the present disclosure does not limit this.
  • first slit electrode 20 and the second slit electrode 21 may be pixel electrodes, and may also be common electrodes.
  • the material of the first slit electrode 20 and the second slit electrode 21 may be a transparent conductive material, a metal material, or other suitable material.
  • the transparent conductive material may be, for example, indium tin oxide (ITO), indium zinc oxide (IZO), indium oxide (In 2 O 3 ), aluminum zinc oxide (AZO), carbon nanotubes, or the like.
  • each sub-pixel region of the first pixel region 110 may include a first domain 150 and a second domain 151.
  • the first electrode strip 201 of the first domain 150 and the first electrode strip 201 of the second domain 151 are mirror-symmetrical, and the axis of symmetry may be the X direction (for example, the horizontal direction).
  • the second pixel region 111 may include a third domain 160 and a fourth domain 161.
  • the second electrode strip 211 of the third domain 160 and the second electrode strip 211 of the fourth domain 161 are also mirror-symmetrical, and their axes of symmetry are also in the X direction.
  • the array substrate provided by the embodiment of the present disclosure provides a plurality of domains in one sub-pixel region, and the electrode strips of the plurality of domains have different extending directions, thereby compensating for color deviation, suppressing gray scale inversion, expanding the viewing angle, and shortening the response. Time to improve product quality.
  • each of the sub-pixel regions of the first pixel region 110 may further include two other domains that are mirror-symmetrical to the first domain 150 and the second domain 151 in the Y direction (eg, the longitudinal direction).
  • the sub-pixel region of the second pixel region 111 may further include two other domains that are mirror-symmetric with respect to the third domain 160 and the fourth domain 161 in the Y direction, that is, each sub-pixel region of the pixel unit may form a quad-shaped four-domain
  • the structure, the four-domain structure of the m-shaped shape can further suppress gray-scale inversion and color deviation, so that the compensation effect of light in each sub-pixel region is enhanced, thereby further improving display quality and improving product quality.
  • each sub-pixel region may also be an eight-domain structure or the like, and the eight domains may be arranged in a row, an array of one or more rows and columns, or the like.
  • the embodiments of the present disclosure do not limit this.
  • two domains are mirror-symmetrical with respect to the X direction, and embodiments of the present disclosure are not limited thereto.
  • the two domains may also be mirror-symmetrical with respect to the Y direction. It should be noted that the extending direction of the electrode strips of the two domains is not limited to that shown in the drawing.
  • the material of alignment film 20 can be polyimide or other suitable alignment material.
  • an additive having good adhesion can be added to the polyimide material to form the alignment film 20 having better adhesion.
  • the alignment film 20 can be formed by a method such as a polyimide immersion method, a printing method, or an inkjet method.
  • a method such as a polyimide immersion method, a printing method, or an inkjet method.
  • the embodiments of the present disclosure do not limit this.
  • the alignment film 20 can be subjected to an alignment treatment using a rubbing alignment or a non-friction alignment technique.
  • the non-friction alignment technique can avoid the problem of mechanical friction to the alignment film, and the non-friction alignment technique can include, for example, photoalignment, ion beam alignment, and the like.
  • the alignment film 20 may be subjected to alignment treatment by photo-alignment, that is, irradiation with polarized ultraviolet light on the alignment film 20, and the alignment film 20 is photochemically reacted (eg, dimerization, decomposition reaction, isomerism). The reaction, the photoreorientation reaction, and the like) generate anisotropy, so that the alignment film 20 has an alignment ability.
  • the liquid crystal molecules can interact with molecules on the surface of the alignment film 20 to align the liquid crystal molecules along the direction in which the light alignment is defined to be the most force.
  • the light alignment has the advantages of avoiding contamination of the surface of the substrate, allowing a small area to be aligned, and a reticle through the reticle for a specific pattern.
  • the first alignment direction 30 and the second alignment direction 31 may not be parallel, and the extending direction of the first electrode strip 201 and the extending direction of the second electrode strip 211 may also be non-parallel.
  • the alignment film in the first pixel region 110 and the alignment film in the second pixel region 111 may be aligned by a photo-alignment technique such that the first alignment direction 30 and the second alignment direction 31 are not parallel.
  • the alignment film 20 may have the same alignment direction or may have different Direction of alignment.
  • the alignment direction of the alignment film 20 in the region corresponding to the first domain 150 and the alignment direction of the alignment film 20 in the region corresponding to the second domain 151 may be mirror-symmetrical, and the axis of symmetry may be the first domain 150 and the second domain 151.
  • An axis of symmetry such that in each sub-pixel region of the second pixel region 111, an angle between the extending direction of the first electrode strip 201 of the first domain 150 and the alignment direction of the alignment film 20 is The angle between the extending direction of the first electrode strip 201 of the two domains 151 and the alignment direction of the alignment film 20 is the same.
  • the alignment direction of the alignment film 20 may be symmetrical, as long as the first angle ⁇ 1 is smaller than the second angle ⁇ 2, and the present disclosure is implemented. This example does not limit this.
  • first angle ⁇ 1 may refer to an angle between the extending direction of the first electrode strip 201 and the alignment direction of the alignment film 20 in each domain in the first pixel region 110
  • second angle ⁇ 2 may refer to The angle between the extending direction of the second electrode strip 211 of each domain in the second pixel region 111 and the alignment direction of the alignment film 20, that is, the first angle ⁇ 1 may include a plurality of angles, and the second angle ⁇ 2 may also include Multiple corners.
  • the alignment directions of the alignment films 20 may be the first alignment direction 30 in the two sub-regions corresponding to the first domain 150 and the second domain 151.
  • the alignment direction of the alignment film 20 may be the second alignment direction 31.
  • the first alignment direction 30 and the second alignment direction 31 are not parallel.
  • the angle between the extending direction of the first electrode strip 201 of the first domain 150 and the alignment direction of the alignment film 20 is ⁇ 1, and the extending direction of the first electrode strip 201 of the second domain 151 and the alignment direction of the alignment film 20
  • the included angle is ⁇ 2, and the first included angle ⁇ 1 may include ⁇ 1 and ⁇ 2.
  • the angle between the extending direction of the second electrode strip 211 of the third domain 160 and the alignment direction of the alignment film 20 is ⁇ 3, and the extending direction of the second electrode strip 211 of the fourth domain 161 and the alignment direction of the alignment film 20 are
  • the angle between the two is ⁇ 4, and the second angle ⁇ 2 may include ⁇ 3 and ⁇ 4.
  • the first angle ⁇ 1 is smaller than the second angle ⁇ 2, that is, ⁇ 1 is smaller than ⁇ 3 and ⁇ 4, and ⁇ 2 is also smaller than ⁇ 3 and ⁇ 4.
  • the extending direction of the first electrode strip 201 and the extending direction of the second electrode strip 211 may be the same, that is, the first direction 32 and the second direction 33 are parallel to each other (ie, the same Or a difference of 180°), and the first alignment direction 30 and the second alignment direction 31 are different, that is, the first alignment direction 30 and the second alignment direction 31 are not parallel, as long as the first angle ⁇ 1 is smaller than the second angle ⁇ 2 can.
  • a data line 171 and a gate line 170 are further disposed on the first base substrate 10.
  • the data line 171 extends in the Y direction
  • the gate line 170 extends in the X direction
  • the pixel unit is disposed to cross each other.
  • the thin film transistor 172 is formed, for example, at a position where the data line 171 and the gate line 170 intersect, and the thin film transistor 172 can function as a switching element of the pixel unit.
  • the material of the data line 171 and/or the gate line 170 may include a copper-based metal, an aluminum-based metal, a nickel-based metal, or the like.
  • the copper-based metal is a copper-based metal alloy having stable properties such as copper (Cu), copper-zinc alloy (CuZn), copper-nickel alloy (CuNi), or copper-zinc-nickel alloy (CuZnNi).
  • the thin film transistor 172 may be an oxide thin film transistor, an amorphous silicon thin film transistor, or a polysilicon thin film transistor or the like.
  • the first base substrate 10 may be a transparent insulating substrate
  • the transparent insulating substrate may include, for example, a glass substrate, a quartz substrate, a plastic substrate, or other suitable substrate.
  • FIG. 3 is a schematic cross-sectional view showing a display panel according to an embodiment of the present disclosure.
  • the display panel includes a first display substrate 1 and a second display substrate 2.
  • the first display substrate 1 is the array substrate according to any of the above embodiments. Therefore, the display panel can make the transmittance and the response time when the first pixel region is displayed higher than the transmittance and the response time when the second pixel region is displayed without changing the aperture ratio of each sub-pixel, thereby reducing
  • the ratio of the brightness of the white sub-pixels in the second pixel region to the overall brightness effectively improves the gray scale, improves the display contrast and the display image quality, improves the display brightness uniformity of the display panel, and improves the product quality.
  • the first display substrate 1 may include a first base substrate 10, a first slit electrode 20 disposed on the first base substrate 10, a second slit electrode 21, and a first slit electrode 20 and a first A first alignment film (not shown) on the two slit electrodes 21.
  • the first slit electrode 20 is disposed in the first pixel region 110
  • the second slit electrode 21 is disposed in the second pixel region 111.
  • the first slit electrode 20 and the second slit electrode 21 may be pixel electrodes, and Can be a common electrode.
  • the second display substrate 2 is a color filter substrate.
  • the second display substrate 2 may include a second substrate substrate 24 on the second substrate substrate 24 in a direction perpendicular to the second substrate substrate 24, the position corresponding to the first pixel region 110 being a colored light region, And a filter layer 22 may be disposed in the colored light region.
  • the position corresponding to the second pixel region 111 is a white light region.
  • the color sub-regions of the colored light region and between the colored light region and the white light region may be spaced by the black matrix 25.
  • the filter layer 22 can include a red filter sub-layer, a green filter sub-layer, and a blue filter sub-layer.
  • the red filter sub-layer, the green filter sub-layer, and the blue filter sub-layer are provided with a red filter 220, a green filter 221, and a blue filter 222, respectively.
  • different filter sublayers in the filter layer 22 can absorb light of different colors in the backlight, thereby realizing full color display.
  • the materials of the red filter 220, the green filter 221, and the blue filter 222 may be photoresists or other suitable materials containing pigments or dyes of different colors.
  • the red color filter 220, the green color filter 221, and the blue color filter 222 can be prepared by a method such as a dyeing method, a pigment dispersion method, a printing method, or an inkjet method.
  • the filter sublayer in the filter layer 22 is not limited to three colors of red (R), green (G), and blue (B). Colored filter layer.
  • the filter layer 22 can also be a filter layer or a monochromatic filter sublayer of other colors.
  • the filter layer 22 may include a cyan filter layer, a magenta filter sub-layer, a yellow filter sub-layer, etc., and corresponding filters are disposed on the filter sub-layers of different colors to meet the needs of different color displays.
  • the color of the filter of the filter layer in the filter layer 22 can be variously designed according to specific needs, and the embodiment of the present disclosure does not limit this.
  • the second display substrate 2 further includes a flat layer 23 disposed on the filter layer 22, and the flat layer 23 can protect the filter layer 22 while achieving planarization of the surface of the second display substrate 2.
  • the flat layer 23 may cover the display regions of all the second base substrates 24, so that the flat layer 23 may fill the white light regions and the colored light regions, the opening portions 26 of the white light regions are directly filled by the flat layer 23, and the openings of the colored light regions are filtered.
  • the light layer 22 and the flat layer 23 are filled together. Therefore, it is possible to omit the transparent material filling of the opening portion 26 of the white light region alone, thereby saving a reticle, thereby saving production cost, reducing production time, and increasing productivity.
  • the material of the planarization layer 71 may include silicon nitride (SiNx), silicon oxide (SiOx), silicon oxynitride (SiNxOy), or other suitable materials.
  • a distance between a surface of the flat layer 23 corresponding to the first pixel region 110 and a surface of the first base substrate 10 facing the second display substrate 2 is H1
  • a surface of the flat layer 23 corresponding to the second pixel region 111 is The distance between the surface of a base substrate 10 facing the second display substrate 2
  • H1 is less than or equal to H2.
  • a light transmissive layer may be first filled, and then the flat layer 23 is disposed on the light transmissive layer and the filter layer 22, thereby reducing the first pixel region 110 and the second portion.
  • the difference in the thickness of the liquid crystal cell of the pixel region 11 reduces the difference in transmittance between the first pixel region 110 and the second pixel region 111, improves the contrast, and improves the display image quality.
  • the film thickness of the light transmissive layer and the filter layer 22 may be the same such that H1 is equal to H2.
  • the second display substrate 2 may further include a second alignment film (not shown).
  • the alignment direction of the first alignment film on the first display substrate 1 and the alignment direction of the second alignment film are parallel to each other, so that the display panel is in a normally black mode without an applied voltage.
  • the alignment direction of the first alignment film is the same as or different from the alignment direction of the second alignment film by 180°.
  • a spacer 19 may be provided on the flat layer 23 to maintain the uniformity of the thickness of the liquid crystal cell.
  • the material of the spacer 19 may be a suitable material such as an ultraviolet (UV) hardening type acryl resin.
  • the shape of the spacer 19 may be a column shape, a spherical shape, or the like.
  • An embodiment of the present disclosure provides a display device including the display panel of any of the above, and It may also include a gate driving circuit, a data driving circuit, a backlight, and the like.
  • the display device may be a liquid crystal display and any display product or component such as a television, a digital camera, a mobile phone, a watch, a tablet, a notebook computer, a navigator, or the like including these display devices.
  • any display product or component such as a television, a digital camera, a mobile phone, a watch, a tablet, a notebook computer, a navigator, or the like including these display devices.

Abstract

一种阵列基板(60)、显示面板以及显示装置。阵列基板(60)被划分为多个像素单元(11),每个像素单元(11)包括第一像素区域(110)和第二像素区域(111)。阵列基板(60)包括设置在衬底基板(10)上的配向膜(20)、设置在第一像素区域(110)内的多个第一电极条(201)和设置在第二像素区域(111)内的多个第二电极条(211)。配向膜(20)具有第一配向方向(30)和第二配向方向(31)。第一电极条(201)的延伸方向(32)与第一配向方向(30)具有第一夹角(θ1),第二电极条(211)的延伸方向(33)与第二配向方向(31)具有第二夹角(θ2),第一夹角(θ1)小于第二夹角(θ2),从而使彩色子像素区域内的夹角小于白色子像素区域内的夹角,在不改变各子像素开口率的前提下,降低白色子像素区域的透过率,降低白光亮度在整体亮度中的比例,有效改善灰阶,提高对比度和显示画质。

Description

阵列基板、显示面板以及显示装置
本申请要求于2017年03月27日递交的中国专利申请第201710189501.2号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种阵列基板、显示面板以及显示装置。
背景技术
随着液晶显示技术的发展,薄膜晶体管液晶显示器(Thin Film Transistor Liquid Crystal Display,TFT-LCD)因具有高分辨率、省电、机身轻薄等优势,而广泛应用于液晶电视、移动电话、计算机等电子产品。TFT-LCD是一种被动发光式显示设备,液晶分子本身并不能发光,其需要搭配背光源,通过控制液晶分子的偏转,从而实现对背光源光线强弱的控制,然后通过彩色滤光片的滤光作用,实现全彩色图像显示和灰阶控制。RGBW(红、绿、蓝、白)四色显示技术在传统RGB(红、绿、蓝)像素单元结构的基础上增加一个高透的W(白)子像素,以构成RGBW像素结构。RGBW四色显示技术具有提升液晶面板的光透过率、降低功耗、提高亮度等优点。但是,W子像素的透过率与RGB子像素的透过率相差较大,导致具有RGBW像素结构的显示设备容易出现灰阶、亮度不均匀等不良现象。
发明内容
本公开至少一实施例提供一种阵列基板、显示面板以及显示装置。该阵列基板通过在像素单元不同的子像素区域中,使配向膜的配向方向与电极条的延伸方向之间的夹角不相同,使白色子像素区域内的夹角大于彩色子像素区域内的夹角,在不改变各子像素开口率的前提下,降低白色子像素的亮度在整体亮度中的比例,有效改善灰阶,提高对比度和显示画质,提升产品质量,从而提高采用该阵列基板的显示面板的显示亮度均匀性。
本公开至少一实施例提供一种阵列基板,其包括:衬底基板以及设置在衬底基板上的配向膜。阵列基板被划分为多个像素单元,每个像素单元包括第一 像素区域和第二像素区域,第一像素区域内设置有第一狭缝电极,第二像素区域内设置有第二狭缝电极,第一狭缝电极包括多个第一电极条,第二狭缝电极包括多个第二电极条;位于第一像素区域的配向膜具有第一配向方向,位于第二像素区域的配向膜具有第二配向方向;第一电极条的延伸方向和第一配向方向具有第一夹角,第二电极条的延伸方向和第二配向方向具有第二夹角,第一夹角和第二夹角均大于等于零度且小于等于90度,且第一夹角小于第二夹角。
例如,在本公开至少一个实施例提供的阵列基板中,第一配向方向和第二配向方向相同。
例如,在本公开至少一个实施例提供的阵列基板中,第一电极条的延伸方向和第二电极条的延伸方向相同。
例如,在本公开至少一个实施例提供的阵列基板中,第一电极条的延伸方向和第二电极条的延伸方向不相同,第一配向方向和第二配向方向不相同。
例如,在本公开至少一个实施例提供的阵列基板中,第一像素区域为彩色子像素区域,第二像素区域为白色子像素区域。
例如,在本公开至少一个实施例提供的阵列基板中,彩色子像素区域包括红色子像素区域、绿色子像素区域和蓝色子像素区域。
例如,在本公开至少一个实施例提供的阵列基板中,红色子像素区域中的第一电极条的延伸方向、绿色子像素区域中的第一电极条的延伸方向和蓝色子像素区域中的第一电极条的延伸方向相同。
例如,在本公开至少一个实施例提供的阵列基板中,第一狭缝电极和第二狭缝电极为像素电极。
例如,在本公开至少一个实施例提供的阵列基板中,第一像素区域包括第一畴和第二畴,第一畴的第一电极条和第二畴的第一电极条呈镜像对称;第二像素区域包括第三畴和第四畴,第三畴的第二电极条和第四畴的第二电极条呈镜像对称。
本公开至少一实施例提供一种显示面板,其包括:第一显示基板和第二显示基板,第一显示基板为上述任一项所述的阵列基板。
例如,在本公开至少一个实施例提供的显示面板中,第二显示基板为彩膜基板,在垂直于第二显示基板的方向上,在第二显示基板对应于第一像素区域的位置处设置有滤光层。
例如,在本公开至少一个实施例提供的显示面板中,第二显示基板还包括 设置在滤光层上的平坦层。
例如,在本公开至少一个实施例提供的显示面板中,第一像素区域对应的平坦层的表面与衬底基板面向第二显示基板的表面之间的距离小于或等于第二像素区域对应的平坦层的表面与衬底基板面向第二显示基板的表面之间的距离。
例如,在本公开至少一个实施例提供的显示面板中,滤光层包括红色滤光子层、绿色滤光子层和蓝色滤光子层。
本公开至少一实施例提供一种显示装置,其包括上述任一项所述的显示面板。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1a为一种RGBW液晶显示面板的彩膜基板的截面结构示意图;
图1b为不同液晶盒厚状态下显示面板的液晶透过率的模拟曲线示意图;
图1c为一种RGBW液晶显示面板的截面结构示意图;
图1d为一种像素结构设计和液晶排布的示意图;
图1e为不同夹角的液晶透过率的模拟曲线示意图;
图2a为本公开一实施例提供的一种阵列基板的示意图;
图2b为本公开一实施例提供的一种阵列基板的一个像素单元的结构示意图;
图2c为本公开一实施例提供的另一种阵列基板的一个像素单元的结构示意图;
图2d为本公开一实施例提供的又一种阵列基板的一个像素单元的结构示意图;以及
图3为本公开一实施例提供的一种显示面板的截面结构示意图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然, 所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
附图中各个部件或结构并非严格按照比例绘制,为了清楚起见,可能夸大或缩小各个部件或结构的尺寸,但是这些不应用于限制本公开的范围。为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
采用彩色滤光片的显示装置,背光源的光约有三分之一消耗在彩色滤光片上,从而使显示装置的透光率较低。RGBW(红、绿、蓝、白)四色显示技术在RGB(红、绿、蓝)三个子像素的基础上,增加不需经过滤光的W(白)子像素,使显示装置具有相对较高的光透过率,从而RGBW四色显示技术逐渐成为液晶显示装置中提升透过率的主要手段。RGBW四色显示技术可以有效提高显示装置的透过率,降低显示装置的背光亮度和功耗;另一方面,通过增加W子像素,能够更精准地调节单个像素点的色彩浓度和亮度,增加过渡色,使颜色层次更分明,颜色显示更丰富。
在RGBW显示装置中,主要利用彩色滤光层上涂覆的平坦层以填充W子像素的开口部,从而省去单独对W子像素的开口部进行填充的工序,节省一道掩模版,进而节省生产成本,降低生产时间。
图1a示出了一种RGBW液晶显示面板的彩膜基板的截面结构示意图。如图1a所示,彩膜基板61包括玻璃基板70,玻璃基板70上设置有黑矩阵610和由黑矩阵610间隔的各子像素区域的开口部。W子像素区域的开口部614直接由平坦层71填充,R子像素区域的开口部611、G子像素区域的开口部612和B子像素区域的开口部613则由滤光层615和平坦层71共同填充,由于黑矩阵610、滤光层615和平坦层71均存在一定的膜厚,从而W子像素区 域的开口部和R子像素区域、G子像素区域、B子像素区域的开口部之间存在像素段差,其像素段差ΔH约为0.2-0.5μm。
图1b示出了不同液晶盒厚状态下显示面板的液晶透过率的模拟曲线示意图。经过液晶光效(即液晶透过率)模拟研究表明,对于相同的像素结构,液晶透过率与液晶盒厚成正相关,也就是说,液晶透过率随着液晶盒厚的增加而增加。如图1b所示,曲线80表示在不同电压下液晶盒厚为3.3μm的显示面板的液晶透过率;曲线81表示在不同电压下液晶盒厚为3.5μm的显示面板的液晶透过率。在相同的电压下,曲线80所示的液晶透过率低于曲线81所示的液晶透过率。例如,当外加电压为6V,若液晶盒厚为3.3μm时,液晶透过率大约为30%,而若液晶盒厚为3.5μm时,液晶透过率大约为27%。
图1c示出了一种RGBW液晶显示面板的截面结构示意图。如图1c所示,RGBW液晶显示面板包括彼此对盒的阵列基板60、彩膜基板61以及设置在阵列基板60和彩膜基板61之间的液晶分子62。在RGB子像素区域内,平坦层71的表面与阵列基板60面向彩膜基板61的表面之间的距离为D1。在W子像素区域内,平坦层71的表面与阵列基板60面向彩膜基板61的表面之间的距离为D2。D1小于D2,也就是说,在W子像素区域的液晶盒厚大于RGB子像素区域的液晶盒厚,从而导致在W子像素区域内液晶分子62的透过率大于RGB子像素区域内液晶分子62的透过率,进一步增加了每个像素单元中白光亮度的比例。由此,在显示画面时,显示面板上出现明显的灰阶不均匀、亮度不均一等不良现象。若通过降低W子像素的开口部的开口率来降低W子像素的亮度和透过率,则在显示面板上容易出现周期性固定位置亮度不良、画质较差等现象。
图1d示出了一种像素结构设计和液晶排布的示意图。如图1d所示,像素单元的每个子像素区域可以包括多个狭缝电极,狭缝电极包括多个电极条92,该多个电极条92由狭缝90间隔,狭缝周期距离P包括狭缝90的宽度W和狭缝间距S(即电极条92的宽度)。电极条92的延伸方向为O2方向,液晶分子93的初始排布方向(即液晶分子初始配向方向)为O1方向,O2方向O1方向之间存在一定夹角α。夹角α不同,则像素单元内液晶透过率和响应时间也不同。经模拟研究表明,夹角α的大小与液晶透过率和响应时间成反相关,即夹角α越小,则液晶透过率越高、响应时间越高。
图1e示出了不同夹角的液晶透过率的模拟曲线示意图。如图1e所示,当 狭缝周期距离P为8μm时,曲线94表示在不同狭缝宽度下夹角α为5度时显示面板的液晶透过率;曲线95表示在不同狭缝宽度下夹角α为9度时显示面板的液晶透过率。例如,若狭缝宽度W为2.8μm,当夹角α为5度时,液晶透过率大致为100%,响应时间大致为26.36ms,当夹角α为9度时,液晶透过率大致为97.82%,响应时间大致为25.82ms。因此,改变像素单元中不同子像素区域内电极条的延伸方向与液晶初始排布方向之间的夹角,则可以改变不同子像素区域内的液晶透过率,从而调整不同子像素之间的亮度,提高显示面板的亮度均匀性,提升显示画质。
本公开至少一实施例提供一种阵列基板、显示面板以及显示装置。该阵列基板包括:衬底基板以及设置在衬底基板上的配向膜。阵列基板被划分为多个像素单元,每个像素单元包括第一像素区域和第二像素区域,第一像素区域内设置有第一狭缝电极,第二像素区域内设置有第二狭缝电极,第一狭缝电极包括多个第一电极条,第二狭缝电极包括多个第二电极条;位于第一像素区域的配向膜具有第一配向方向,位于第二像素区域的配向膜具有第二配向方向;第一电极条的延伸方向和第一配向方向具有第一夹角,第二电极条的延伸方向和第二配向方向具有第二夹角,第一夹角和第二夹角均大于等于零度且小于等于90度,且第一夹角小于第二夹角。
该阵列基板通过在像素单元不同的子像素区域中,使配向膜的配向方向与电极条的延伸方向之间的夹角不相同,使白色子像素区域内的夹角大于彩色子像素区域内的夹角,从而在不改变各子像素开口率的前提下,降低白色子像素的亮度在整体亮度中的比例,有效改善灰阶,提高对比度和显示画质,提升产品质量,进而提高采用该阵列基板的显示面板的显示亮度均匀性。
下面对本公开的几个实施例进行详细说明,但是本公开并不限于这些具体的实施例。
本公开实施例提供一种阵列基板。图2a示出了本公开实施例提供的一种阵列基板的示意图,图2b示出了本公开实施例提供的一种阵列基板的一个像素单元的结构示意图,图2c示出了本公开实施例提供的另一种阵列基板的一个像素单元的结构示意图,图2d示出了本公开实施例提供的又一种阵列基板的一个像素单元的结构示意图。
例如,如图2a所示,本公开实施例提供的阵列基板包括:第一衬底基板10以及设置在第一衬底基板10上的配向膜20,阵列基板被划分为多个像素单 元11。
例如,如图2b所示,每个像素单元11包括第一像素区域110和第二像素区域111,第一像素区域110内设置有第一狭缝电极20,第二像素区域111内设置有第二狭缝电极21,第一狭缝电极20包括多个第一电极条201,第二狭缝电极21包括多个第二电极条211。位于第一像素区域110内的配向膜20具有第一配向方向30,位于第二像素区域111内的配向膜20具有第二配向方向31。第一电极条201的延伸方向为第一方向32,第二电极条211的延伸方向为第二方向33,第一方向32和第一配向方向30具有第一夹角θ1,第二方向33和第二配向方向31具有第二夹角θ2,第一夹角θ1和第二夹角θ2均大于等于零度且小于等于90度,且第一夹角θ1小于第二夹角θ2。
例如,多个第一电极条201之间彼此电连接,且通过第一狭缝202间隔排列。多个第二电极条211之间彼此电连接,且通过第二狭缝212间隔排列。
例如,第一夹角θ1和第二夹角θ2的范围为大于零度且小于等于15度。
例如,如图2b所示,第一配向方向30和第二配向方向31相同,而第一电极条201的延伸方向和第二电极条211的延伸方向不相同,即第一方向32和第二方向33不平行。
例如,第一像素区域110为彩色子像素区域,第二像素区域111为白色子像素区域。第二夹角θ2大于第一夹角θ1,即白色子像素区域内的夹角大于彩色子像素区域内的夹角,在不改变各子像素开口率的前提下,可以降低白色子像素的亮度在整体亮度中的比例,有效改善灰阶,提高显示画质和亮度均匀性,增大显示对比度,提升产品质量。
例如,彩色子像素区域可以包括红色子像素区域1101、绿色子像素区域1102和蓝色子像素区域1103。红色子像素区域1101、绿色子像素区域1102和蓝色子像素区域1103可以排列在同一行或同一列中,或者还可以按照三角形方式排列等,本公开的实施例对此不作限制。
例如,红色子像素区域1101中的第一电极条201的延伸方向、绿色子像素区域1102中的第一电极条201的延伸方向和蓝色子像素区域1103中的第一电极条201的延伸方向可以相同,也可以不相同。白色背光源通过不同的滤光片之后,不同的滤光片对于光的吸收不相同,从而可以根据实际情况设置电极条的延伸方向,以使显示面板的光透过率更加均一,进一步提升显示质量。例如,在滤光片的参数(例如膜厚、材料等)相同的情况下,对于红、绿、蓝三 种颜色的滤光片,绿色滤光片的透过率最高,蓝色滤光片的透过率最低,从而可以使红色子像素区域1101中的第一电极条201的延伸方向、绿色子像素区域1102中的第一电极条201的延伸方向和蓝色子像素区域1103中的第一电极条201的延伸方向不相同,例如使绿色子像素区域1102中的第一电极条201的延伸方向与第一配向方向30之间的夹角最大,蓝色子像素区域1103中的第一电极条201的延伸方向与第一配向方向30之间的夹角最小。
需要说明的是,彩色子像素区域也可以包括其他颜色的子像素区域,例如黄色子像素区域、品红色子像素区域和青色子像素区域。彩色子像素区域还可以包括单色子像素区域。本公开实施例对此不作限定。
例如,第一狭缝电极20和第二狭缝电极21可以为像素电极,还可以为公共电极。
例如,第一狭缝电极20和第二狭缝电极21的材料可以为透明导电材料、金属材料或其他合适的材料。透明导电材料例如可以为氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟(In2O3)、氧化铝锌(AZO)和碳纳米管等。
例如,如图2b所示,第一像素区域110的每个子像素区域可以包括第一畴150和第二畴151。第一畴150的第一电极条201和第二畴151的第一电极条201呈镜像对称,其对称轴可以为X方向(例如水平方向)。第二像素区域111可以包括第三畴160和第四畴161。第三畴160的第二电极条211和第四畴161的第二电极条211也呈镜像对称,其对称轴也为X方向。本公开实施例提供的阵列基板通过在一个子像素区域内设置多个畴,且多个畴的电极条具有不同的延伸方向,从而可以补偿颜色偏差、抑制灰阶反转,扩大视角,缩短响应时间,提高产品品质。
例如,第一像素区域110的每个子像素区域还可以包括与第一畴150和第二畴151在Y方向(例如纵向方向)呈镜像对称的另外两个畴。第二像素区域111的子像素区域还可以包括与第三畴160和第四畴161在Y方向呈镜像对称的另外两个畴,即像素单元的每个子像素区域均可以形成米字形的四畴结构,米字形的四畴结构可进一步抑制灰阶反转和颜色偏差,使得每个子像素区域中光的补偿效果得到增强,从而进一步提升显示质量,提高产品品质。需要说明的是,本公开实施例中,每个像素单元的多畴结构不限于上述排布方式,也不限于上述畴的数量。例如,每个子像素区域还可以为八畴结构等,该八个畴可以排列为一行、一列或多行多列的阵列等。本公开实施例对此不作限制。
例如,如图2b所示,在每个子像素区域中,两个畴相对于X方向呈镜像对称,本公开实施例不限于此。如图2c所示,在每个子像素区域中,两个畴也可以相对于Y方向呈镜像对称。需要说明的是,两个畴的电极条的延伸方向不限于图中所示。
例如,配向膜20的材料可以为聚酰亚胺或其他合适的配向材料。又例如,可以对聚酰亚胺材料添加具有良好接着性的添加剂以形成接着性较好的配向膜20。
例如,配向膜20可以采用聚酰亚胺浸泡方式、印刷方式或喷墨方式等方法形成。本公开实施例对此不作限制。
例如,配向膜20可以采用摩擦配向或非摩擦配向技术进行配向处理。非摩擦配向技术可以避免机械摩擦给配向膜带来的不良问题,非摩擦配向技术例如可以包括光配向、离子束配向等。例如,在一个实施例中,配向膜20可以为采用光配向方式进行配向处理,即利用偏振紫外光照射在配向膜20上,配向膜20因光化学反应(如二聚反应、分解反应、异构化反应、光再取向反应等)产生各向异性,使得配向膜20具有配向能力。为了达到能量最小的稳定状态,液晶分子可以与配向膜20表面的分子相互作用,以使液晶分子沿着光配向所定义的受力最大的方向排列。光配向具有可以避免基板表面被污染、可以进行小面积配向、透过光罩可作特定图形的配向等优点。
例如,在本公开实施例的一个示例中,第一配向方向30和第二配向方向31可以不平行,第一电极条201的延伸方向和第二电极条211的延伸方向也可以不平行。
例如,可以采用光配向技术分别对第一像素区域110内的配向膜和第二像素区域111内的配向膜进行配向,以使第一配向方向30和第二配向方向31不平行。
例如,如图2b和图2c所示,对于具有双畴结构的阵列基板,在每个子像素区域的两个畴对应的两个子区域中,配向膜20可以具有相同的配向方向,也可以具有不同的配向方向。
例如,第一畴150对应的区域内配向膜20的配向方向和第二畴151对应的区域内配向膜20的配向方向可以呈镜像对称,其对称轴可以为第一畴150和第二畴151的对称轴,从而在第二像素区域111的每个子像素区域内,第一畴150的第一电极条201的延伸方向和配向膜20的配向方向之间的夹角与第 二畴151的第一电极条201的延伸方向和配向膜20的配向方向之间的夹角相同。同样地,在第三畴160和第四畴161对应的两个子区域中,配向膜20的配向方向也可以相对称,只要保证第一夹角θ1小于第二夹角θ2即可,本公开实施例对此不作限制。
需要说明的是,第一夹角θ1可以指代第一像素区域110内每个畴内的第一电极条201的延伸方向和配向膜20的配向方向的夹角,第二夹角θ2可以指代第二像素区域111内每个畴的第二电极条211的延伸方向和配向膜20的配向方向的夹角,即第一夹角θ1可以包括多个角,第二夹角θ2也可以包括多个角。
例如,如图2d所示,对于双畴结构,在第一畴150和第二畴151对应的两个子区域内,配向膜20的配向方向可以均为第一配向方向30。在第三畴160和第四畴161对应的两个子区域内,配向膜20的配向方向可以均为第二配向方向31。第一配向方向30和第二配向方向31不平行。第一畴150的第一电极条201的延伸方向与配向膜20的配向方向之间的夹角为σ1,第二畴151的第一电极条201的延伸方向与配向膜20的配向方向之间的夹角为σ2,第一夹角θ1可以包括σ1和σ2。而第三畴160的第二电极条211的延伸方向与配向膜20的配向方向之间的夹角为σ3,第四畴161的第二电极条211的延伸方向与配向膜20的配向方向之间的夹角为σ4,第二夹角θ2可以包括σ3和σ4。第一夹角θ1小于第二夹角θ2,即σ1小于σ3和σ4,且σ2也小于σ3和σ4。
例如,在本公开实施例的一个示例中,第一电极条201的延伸方向和第二电极条211的延伸方向可以相同,也就是说,第一方向32和第二方向33相互平行(即相同或相差180°),而第一配向方向30和第二配向方向31不相同,即第一配向方向30和第二配向方向31不平行,只要保证第一夹角θ1小于第二夹角θ2即可。
例如,如图2b所示,第一衬底基板10上还设置有数据线171和栅线170,数据线171沿Y方向延伸,栅线170沿X方向延伸,像素单元设置在二者彼此交叉限定的区域内,薄膜晶体管172例如形成在数据线171和栅线170交叉的位置处,薄膜晶体管172可以作为像素单元的开关元件。
例如,数据线171和/或栅线170的材料可以包括铜基金属、铝基金属、镍基金属等。例如,该铜基金属为铜(Cu)、铜锌合金(CuZn)、铜镍合金(CuNi)或铜锌镍合金(CuZnNi)等性能稳定的铜基金属合金。
例如,薄膜晶体管172可以为氧化物薄膜晶体管、非晶硅薄膜晶体管、或多晶硅薄膜晶体管等。
例如,该第一衬底基板10可以为透明绝缘基板,透明绝缘基板例如可以包括玻璃基板、石英基板、塑料基板或其他合适的基板。
本公开实施例提供一种显示面板。图3示出了本公开实施例提供的一种显示面板的截面结构示意图。
例如,如图3所示,该显示面板包括第一显示基板1和第二显示基板2,第一显示基板1为上述实施例任一项所述的阵列基板。因此,该显示面板可以在不改变各子像素开口率的前提下,使第一像素区域显示时的透过率和响应时间高于第二像素区域显示时的透过率和响应时间,从而降低第二像素区域中的白色子像素的亮度在整体亮度中的比例,有效改善灰阶,提高显示对比度和显示画质,提高显示面板的显示亮度均匀性,提升产品质量。
例如,第一显示基板1可以包括第一衬底基板10、设置在第一衬底基板10上的第一狭缝电极20、第二狭缝电极21以及设置在第一狭缝电极20和第二狭缝电极21上的第一配向膜(未示出)。第一狭缝电极20设置在第一像素区域110内,第二狭缝电极21设置在第二像素区域111内,该第一狭缝电极20和第二狭缝电极21可以为像素电极,也可以为公共电极。
例如,第二显示基板2为彩膜基板。第二显示基板2可以包括第二衬底基板24,在垂直于第二衬底基板24的方向上,在第二衬底基板24上,对应于第一像素区域110的位置为彩色光区域,且在该彩色光区域内可以设置滤光层22。对应于第二像素区域111的位置为白光区域。彩色光区域的各颜色子区域之间以及彩色光区域与白光区域之间可以通过黑矩阵25间隔。
例如,滤光层22可以包括红色滤光子层、绿色滤光子层和蓝色滤光子层。红色滤光子层、绿色滤光子层和蓝色滤光子层分别设置有红色滤光片220、绿色滤光片221和蓝色滤光片222。从而滤光层22中不同的滤光子层可以吸收背光源中的不同颜色的光,进而实现全彩显示。
例如,红色滤光片220、绿色滤光片221和蓝色滤光片222的材料可以为含有不同颜色颜料或染料的光阻或其他合适的材料。
例如,红色滤光片220、绿色滤光片221和蓝色滤光片222可以采用染色法、颜料分散法、印刷法或喷墨法等方法制备。
例如,滤光层22中的滤光子层不限于红(R)、绿(G)、蓝(B)三种颜 色的滤光子层。滤光层22还可以为其他颜色的滤光子层或单色滤光子层。例如,滤光层22可以包括青色滤光子层、品红滤光子层、黄色滤光子层等,在不同颜色的滤光子层上设置相应的滤光片,以满足不同颜色显示的需要。滤光层22中滤光子层的滤光片的颜色可以根据具体需求有多种设计方式,本公开的实施例对此不作限制。
例如,第二显示基板2还包括设置在滤光层22上的平坦层23,平坦层23可以保护滤光层22,同时实现第二显示基板2表面平坦化。平坦层23可以覆盖全部第二衬底基板24的显示区域,从而平坦层23可以填充白光区域和彩色光区域,白光区域的开口部26直接由平坦层23填充,彩色光区域的开口部由滤光层22和平坦层23共同填充。因此,可以省去单独对白光区域的开口部26进行透明材料填充,节省一道掩模版,进而节省生产成本,降低生产时间,提升产能。
例如,平坦层71的材料可以包括氮化硅(SiNx)、氧化硅(SiOx)、氮氧化硅(SiNxOy)或其他合适的材料。
例如,第一像素区域110对应的平坦层23的表面与第一衬底基板10面向第二显示基板2的表面之间的距离为H1,第二像素区域111对应的平坦层23的表面与第一衬底基板10面向第二显示基板2的表面之间的距离为H2,且H1小于或等于H2。
需要说明的是,在白光区域的开口部26处也可以先填充一层透光层,再在透光层和滤光层22上设置平坦层23,从而减小第一像素区域110和第二像素区域11的液晶盒厚差异,降低第一像素区域110和第二像素区域111的透过率差异,改善对比度,提升显示画质。例如,透光层和滤光层22的膜厚可以相同,从而使H1等于H2。
例如,第二显示基板2还可以包括第二配向膜(未示出)。第一显示基板1上的第一配向膜的配向方向与第二配向膜的配向方向相互平行,从而在无外加电压条件下,显示面板为常黑模式。例如,第一配向膜的配向方向与第二配向膜的配向方向相同或相差180°。
例如,在平坦层23上还可以设置垫隔物19,以保持液晶盒厚的均一性。垫隔物19的材料可以为紫外(UV)硬化型的丙烯树脂等合适的材料。垫隔物19的形状可以为柱状、球状等。
本公开实施例提供一种显示装置,其包括上述任一项所述的显示面板,并 且还可以包括栅极驱动电路、数据驱动电路以及背光源等。
例如,显示装置可以为液晶显示器以及包括这些显示器件的电视、数码相机、手机、手表、平板电脑、笔记本电脑、导航仪等任何具有显示功能的产品或者部件。
对于本公开,还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上所述仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (15)

  1. 一种阵列基板,包括:
    衬底基板以及设置在所述衬底基板上的配向膜,
    其中,所述阵列基板被划分为多个像素单元,每个所述像素单元包括第一像素区域和第二像素区域,所述第一像素区域内设置有第一狭缝电极,所述第二像素区域内设置有第二狭缝电极,所述第一狭缝电极包括多个第一电极条,所述第二狭缝电极包括多个第二电极条;
    位于所述第一像素区域的所述配向膜具有第一配向方向,位于所述第二像素区域的所述配向膜具有第二配向方向;
    所述第一电极条的延伸方向和所述第一配向方向具有第一夹角,所述第二电极条的延伸方向和所述第二配向方向具有第二夹角,所述第一夹角和所述第二夹角均大于等于零度且小于等于90度,且所述第一夹角小于所述第二夹角。
  2. 根据权利要求1所述的阵列基板,其中,所述第一配向方向和所述第二配向方向相同。
  3. 根据权利要求1或2所述的阵列基板,其中,所述第一电极条的延伸方向和所述第二电极条的延伸方向相同。
  4. 根据权利要求1所述的阵列基板,其中,所述第一电极条的延伸方向和所述第二电极条的延伸方向不相同,所述第一配向方向和所述第二配向方向不相同。
  5. 根据权利要求1-4任一项所述的阵列基板,其中,所述第一像素区域为彩色子像素区域,所述第二像素区域为白色子像素区域。
  6. 根据权利要求5所述的阵列基板,其中,所述彩色子像素区域包括红色子像素区域、绿色子像素区域和蓝色子像素区域。
  7. 根据权利要求6所述的阵列基板,其中,所述红色子像素区域中的所述第一电极条的延伸方向、所述绿色子像素区域中的所述第一电极条的延伸方向和所述蓝色子像素区域中的所述第一电极条的延伸方向相同。
  8. 根据权利要求1-7任一项所述的阵列基板,其中,所述第一狭缝电极和所述第二狭缝电极为像素电极。
  9. 根据权利要求2或4所述的阵列基板,其中,所述第一像素区域包括第一畴和第二畴,所述第二像素区域包括第三畴和第四畴,
    所述第一畴的所述第一电极条和所述第二畴的所述第一电极条呈镜像对称,所述第三畴的所述第二电极条和所述第四畴的所述第二电极条呈镜像对称。
  10. 一种显示面板,包括:第一显示基板和第二显示基板,其中,所述第一显示基板为权利要求1-9任一项所述的阵列基板。
  11. 根据权利要求10所述的显示面板,其中,所述第二显示基板为彩膜基板,在垂直于所述第二显示基板的方向上,在所述第二显示基板对应于所述第一像素区域的位置处设置有滤光层。
  12. 根据权利要求11所述的显示面板,其中,所述第二显示基板还包括设置在所述滤光层上的平坦层。
  13. 根据权利要求12所述的显示面板,其中,所述第一像素区域对应的所述平坦层的表面与所述衬底基板面向所述第二显示基板的表面之间的距离小于或等于所述第二像素区域对应的所述平坦层的表面与所述衬底基板面向所述第二显示基板的表面之间的距离。
  14. 根据权利要求11-13任一项所述的显示面板,其中,所述滤光层包括红色滤光子层、绿色滤光子层和蓝色滤光子层。
  15. 一种显示装置,包括权利要求10-14任一项所述的显示面板。
PCT/CN2017/104321 2017-03-27 2017-09-29 阵列基板、显示面板以及显示装置 WO2018176776A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/778,440 US11378847B2 (en) 2017-03-27 2017-09-29 Array substrate, display panel, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710189501.2 2017-03-27
CN201710189501.2A CN106707627A (zh) 2017-03-27 2017-03-27 阵列基板、显示面板以及显示装置

Publications (1)

Publication Number Publication Date
WO2018176776A1 true WO2018176776A1 (zh) 2018-10-04

Family

ID=58887079

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104321 WO2018176776A1 (zh) 2017-03-27 2017-09-29 阵列基板、显示面板以及显示装置

Country Status (3)

Country Link
US (1) US11378847B2 (zh)
CN (1) CN106707627A (zh)
WO (1) WO2018176776A1 (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106707627A (zh) * 2017-03-27 2017-05-24 京东方科技集团股份有限公司 阵列基板、显示面板以及显示装置
CN107479269B (zh) * 2017-08-25 2020-05-15 厦门天马微电子有限公司 异形显示面板和显示装置
CN107561792A (zh) * 2017-09-26 2018-01-09 京东方科技集团股份有限公司 一种阵列基板及显示装置
CN107561795A (zh) * 2017-09-29 2018-01-09 京东方科技集团股份有限公司 一种阵列基板、rgbw液晶显示面板及显示装置
CN108388052B (zh) * 2018-03-01 2022-07-26 上海天马微电子有限公司 一种显示面板及显示装置
JP2019174632A (ja) * 2018-03-28 2019-10-10 シャープ株式会社 液晶パネル及びその製造方法
CN108732805B (zh) * 2018-05-28 2021-09-14 京东方科技集团股份有限公司 一种显示基板、显示面板及显示装置
CN109521618A (zh) * 2018-12-03 2019-03-26 昆山龙腾光电有限公司 液晶显示面板及液晶显示装置
CN110297364A (zh) * 2019-04-26 2019-10-01 上海中航光电子有限公司 一种阵列基板、液晶显示面板及液晶显示装置
CN111929952B (zh) * 2019-05-13 2023-12-01 瀚宇彩晶股份有限公司 显示面板
CN110299085B (zh) * 2019-06-28 2021-08-10 上海天马微电子有限公司 一种显示面板及显示装置
CN110618554A (zh) * 2019-09-26 2019-12-27 厦门天马微电子有限公司 一种彩膜基板、显示面板及显示装置
CN111025773A (zh) * 2019-12-11 2020-04-17 成都中电熊猫显示科技有限公司 液晶显示面板及显示装置
CN114063332A (zh) * 2020-07-31 2022-02-18 京东方科技集团股份有限公司 阵列基板及显示装置
CN113050319B (zh) * 2021-04-02 2022-07-19 厦门天马微电子有限公司 一种显示面板及显示装置
CN114355641B (zh) * 2021-12-31 2024-01-26 惠科股份有限公司 阵列基板、显示面板以及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104483781A (zh) * 2014-12-30 2015-04-01 厦门天马微电子有限公司 一种液晶显示器及其制作方法及电子设备
CN104597676A (zh) * 2015-02-13 2015-05-06 厦门天马微电子有限公司 一种液晶显示面板及其制造方法
US20150124207A1 (en) * 2013-11-06 2015-05-07 Japan Display Inc. Liquid crystal display device
CN104730754A (zh) * 2015-02-13 2015-06-24 厦门天马微电子有限公司 液晶显示面板
CN105093723A (zh) * 2015-09-08 2015-11-25 深圳市华星光电技术有限公司 改善色偏的液晶显示面板
CN106707627A (zh) * 2017-03-27 2017-05-24 京东方科技集团股份有限公司 阵列基板、显示面板以及显示装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040051724A1 (en) * 2002-09-13 2004-03-18 Elliott Candice Hellen Brown Four color arrangements of emitters for subpixel rendering
US7768597B2 (en) * 2006-12-14 2010-08-03 Hannstar Display Corp. Liquid crystal display
JP5593921B2 (ja) * 2010-07-27 2014-09-24 ソニー株式会社 液晶表示装置
CN102998860B (zh) 2012-12-14 2015-09-16 京东方科技集团股份有限公司 像素电极结构、阵列基板、液晶显示面板及驱动方法
JP6350980B2 (ja) * 2013-10-09 2018-07-04 Tianma Japan株式会社 制御回路及び当該制御回路を備えた表示装置
CN103645590B (zh) 2013-12-12 2016-10-05 京东方科技集团股份有限公司 一种阵列基板及其制备方法、液晶显示装置
JP6338392B2 (ja) * 2014-02-13 2018-06-06 三菱電機株式会社 液晶表示装置
CN104701354B (zh) * 2015-04-03 2017-11-03 京东方科技集团股份有限公司 一种显示基板、显示面板和显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150124207A1 (en) * 2013-11-06 2015-05-07 Japan Display Inc. Liquid crystal display device
CN104483781A (zh) * 2014-12-30 2015-04-01 厦门天马微电子有限公司 一种液晶显示器及其制作方法及电子设备
CN104597676A (zh) * 2015-02-13 2015-05-06 厦门天马微电子有限公司 一种液晶显示面板及其制造方法
CN104730754A (zh) * 2015-02-13 2015-06-24 厦门天马微电子有限公司 液晶显示面板
CN105093723A (zh) * 2015-09-08 2015-11-25 深圳市华星光电技术有限公司 改善色偏的液晶显示面板
CN106707627A (zh) * 2017-03-27 2017-05-24 京东方科技集团股份有限公司 阵列基板、显示面板以及显示装置

Also Published As

Publication number Publication date
US11378847B2 (en) 2022-07-05
US20210165287A1 (en) 2021-06-03
CN106707627A (zh) 2017-05-24

Similar Documents

Publication Publication Date Title
WO2018176776A1 (zh) 阵列基板、显示面板以及显示装置
US10261358B2 (en) Liquid crystal display panel and manufacturing method thereof
US9606392B2 (en) Display panel and liquid crystal display including the same
CN106873230B (zh) 显示装置及其制造方法
US20160342033A1 (en) Liquid crystal display pixel structure and manufacture method thereof
KR101320072B1 (ko) 액정표시장치와 이의 제조방법
KR20080060182A (ko) 액정 표시장치
US9971212B2 (en) Array substrate, liquid crystal display panel, and liquid crystal display
US9740039B2 (en) Display device
US20180088458A1 (en) Color filter substrate manufacturing method and color filter substrate manufactured with same
US9158163B2 (en) Display apparatus
US10768486B2 (en) Display device
CN108957875B (zh) 一种画素结构与液晶显示装置
US7855771B2 (en) Liquid crystal display panel and active matrix substrate thereof
US10634956B2 (en) Display panel and display device
US20080297706A1 (en) Liquid crystal display panel and manufacturing method thereof
US10838261B2 (en) Display devices
CN109445197B (zh) 显示面板的液晶配向结构、显示面板及显示装置
US10288916B2 (en) Liquid crystal display device
CN115774358A (zh) 液晶显示装置及驱动方法
JP5723673B2 (ja) 反射型液晶表示装置
JP2007072424A (ja) 電気光学装置、電気光学装置の製造方法、及び電子機器
KR20170076384A (ko) 액정 표시 패널 및 그를 가지는 액정 표시 장치
KR20080022244A (ko) 액정표시패널

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17903514

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17903514

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 17.03.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17903514

Country of ref document: EP

Kind code of ref document: A1