US20080297706A1 - Liquid crystal display panel and manufacturing method thereof - Google Patents

Liquid crystal display panel and manufacturing method thereof Download PDF

Info

Publication number
US20080297706A1
US20080297706A1 US12/129,311 US12931108A US2008297706A1 US 20080297706 A1 US20080297706 A1 US 20080297706A1 US 12931108 A US12931108 A US 12931108A US 2008297706 A1 US2008297706 A1 US 2008297706A1
Authority
US
United States
Prior art keywords
substrate
liquid crystal
crystal display
display panel
patterned
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US12/129,311
Inventor
De-Jiun Li
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chunghwa Picture Tubes Ltd
Original Assignee
Chunghwa Picture Tubes Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chunghwa Picture Tubes Ltd filed Critical Chunghwa Picture Tubes Ltd
Assigned to CHUNGHWA PICTURE TUBES, LTD. reassignment CHUNGHWA PICTURE TUBES, LTD. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: LI, DE-JIUN
Publication of US20080297706A1 publication Critical patent/US20080297706A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133371Cells with varying thickness of the liquid crystal layer
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133753Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers with different alignment orientations or pretilt angles on a same surface, e.g. for grey scale or improved viewing angle
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • G02F1/1393Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent the birefringence of the liquid crystal being electrically controlled, e.g. ECB-, DAP-, HAN-, PI-LC cells

Definitions

  • the present invention relates to a liquid crystal display panel and the manufacturing method thereof, and more especially, to the liquid crystal display panel with four color layers.
  • a color shift in different viewing-angle causes the degradation of display qualities.
  • MVA LCD multi-domain vertical alignment
  • One of conventional resolution on color shift is to modify the design of a pixel electrode in which there are different voltages imposed on a pixel unit to cause the different twisting angles of liquid crystal molecules.
  • Another resolution is to form the folding patterns on pixel electrodes and common electrodes respectively to cause a scattering field for reducing the color shift.
  • FIG. 1 is a schematic cross-sectional diagram illustrating an MVA LCD panel 10 in accordance with one prior art.
  • Two substrates 102 and 104 are in parallel.
  • a plurality of thin film transistors (not shown) are electrically connected pixel electrodes 106 disposed on the substrate 104 .
  • a color layer 108 and a plurality of common electrodes 110 are disposed on the substrate 102 .
  • a liquid crystal layer is sandwiched (not shown) between the substrates 102 and 104 .
  • Each of the pixel regions of the color layer 108 is divided into two sub-regions present with the marks “B” and “C” in FIG. 1 .
  • An organic layer 120 is disposed on the common electrodes 110 within the sub-region “B”, which makes different cell gaps in the sub-regions “B” and “C”.
  • the liquid crystal molecules within the sub-regions “B” and “C” are twisted in different angles under the same electric field. Thus, the color shift may be reduced because of the existence of the multi-cell gap.
  • the LCD panel 10 it is necessary for the LCD panel 10 to be implemented by additional steps and materials for forming a multi-cell gap design aforementioned. Thus, it is one of important issues on the manufacture of the multi-cell gap with the cost down and simplified steps.
  • One of objects of the present invention provides the design of a LCD panel and the manufacturing method thereof.
  • the LCD panel is in the different thickness by forming the transparent white color layer partially overlapped the other color layers.
  • Another object of the present invention provides a LCD panel and the manufacturing method thereof by changing the mask pattern of the transparent white color layer without additional steps or structures.
  • Another object of the present invention provides a LCD panel and the manufacturing method thereof.
  • the green, blue or red color layer is provided with at least two different thickness to form multi cell gaps.
  • a LCD panel includes a first substrate and a second substrate disposed face to face with the first substrate.
  • a black matrix is disposed on the first substrate and defines a plurality of sub-pixels.
  • a patterned transparent layer is disposed on the sub-pixels and a patterned color layer disposed on the sub-pixels to cover a part of the patterned transparent layer.
  • a method of manufacturing a LCD panel includes providing a first substrate and a second substrate disposed face to face the first substrate.
  • a black matrix is formed on the first substrate to define a plurality of sub-pixels.
  • a patterned color layer is formed on the sub-pixels and a patterned transparent layer is formed on the sub-pixels and covering a part of the color layer.
  • FIG. 1 is a schematic cross-sectional diagram illustrating an MVA LCD panel in accordance with one prior art.
  • FIG. 2 is a schematic cross-sectional diagram illustrating an MVA LCD panel in accordance with one embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional diagram illustrating manufacturing a structure in accordance with one embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional diagram illustrating manufacturing a structure in accordance with another embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional diagram illustrating an MVA LCD panel 20 in accordance with one embodiment of the present invention.
  • a first substrate 204 and a second substrate 202 are in parallel and separated from each other by a gap.
  • the first substrate 204 or the second substrate 202 may be a glass or transparent insulating substrate.
  • a liquid crystal layer (not shown) is sandwiched between the first substrate 204 and the second substrate 202 .
  • the first substrate 204 such as a color filter substrate, is provided with a color layer 208 and a conductive layer 210 .
  • the conductive layer 210 is made of a transparent conductive material, such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), on the color layer 208 and configured for a common electrode.
  • the second substrate 202 such as a TFT array substrate, includes a conductive layer 206 which is made of a transparent conductive material, such as ITO or IZO, and forms a protrusion or a slit configured for a transparent pixel electrode electrically connected to a TFT (not shown).
  • a black matrix 214 is distributed among a patterned color layer 216 and configured for preventing light leakage.
  • a pixel unit of the LCD panel 20 includes R, G, B and W color sub-pixels defined by the black matrix 214 .
  • each monochromatic patterned color layer 216 includes the region “D” and the region “E”.
  • a patterned transparent layer 220 is disposed within the region “D” to cause the different thickness in the region “D” and the region “E”.
  • the different cell gaps cause the liquid crystal molecules to be twisted in the different angles under an identical electrical field.
  • Such a multi-domain LCD panel within the pixel unit may reduce the viewing-angle color shift.
  • FIG. 3 Shown in FIG. 3 is a schematic cross-sectional diagram illustrating manufacturing a structure for reducing the viewing-angle color shift in accordance with one embodiment of the present invention.
  • the black matrix 214 kept a space from each another is formed on the first substrate 204 by any suitable method.
  • a patterned transparent layer 220 is formed on the first substrate 204 and is separated from the black matrix 214 .
  • a patterned color layer 216 covers a part of surface of the black matrix 214 and the patterned transparent layer 220 .
  • the black matrix 214 is implemented by, but not limited to, such as the method of a thin metal film, mixing pigment, resin black matrix or lithography from a back side, etc.
  • the patterned transparent layer 220 includes the pattern of white color sub-pixels for a four-color (RGBW) display.
  • the patterned transparent layer 220 is implemented by modifying the mask pattern of a white color transparent layer.
  • the size or geometric shape of the patterned transparent layer 220 is not limited as long as it may cause a profile with different thickness.
  • the patterned color layer 216 may be the color layer of red, green or blue, which is not limited to geometric shapes, sizes of alignment.
  • a transparent conductive structure 210 is formed on the patterned color layer 216 to be as a common electrode. It is appreciated that one or more slots or cutouts in the transparent conductive structure 210 , ITO or IZO layer, are associated with the protrusions to control the twist angles of the liquid crystal molecules.
  • FIG. 4 is a schematic cross-sectional diagram illustrating manufacturing a structure for reducing the viewing-angle color shift in accordance with another embodiment of the present invention.
  • Difference between the first embodiment and the second embodiment is that the patterned color layer 216 is formed to cover both the part of the black matrix 214 and the exposed surface of the second substrate 204 among the black matrix 214 , after the forming step of the black matrix 214 on the first substrate 204 . Then the patterned transparent layer 220 ′ is formed thereon.
  • the patterned transparent layer 220 ′ or 222 may be formed alternatively before or after the forming of the patterned color layer 216 .
  • the surface profile of a LCD panel would be with the different thickness.
  • the patterned color layer of red, green and blue color and the patterned transparent layer may be in any geometric shape and size to meet the requirement of the LCD panel 20 .
  • the patterned color layer of a single sub-pixel is divided into two regions by bumps and slits. One region of the patterned color layer is not overlapped with the patterned transparent layer. The other region of the patterned color layer is overlapped with the patterned transparent layer.
  • the patterned color layer of a single sub-pixel provided with the different thickness enhances the viewing-angle color shift on an MVA LCD panel 20 .
  • the present invention provides a white color layer to make a single pixel with the cell gaps in different spaces by adding the pattern of protrusion into the mask pattern of a white color filter, which needs neither additional masks nor other additional structures.
  • the method and structure are applied to, such as the type of color layer/bump-array/ITO-slit or the type of color layer/bump-array/bump for manufacturing multi-domain of a single pixel, or to various pixel types, such as patterned vertical alignment (PVA), advanced MVA or advanced super view (ASV), etc.
  • PVA patterned vertical alignment
  • ASV advanced super view
  • the LCD panel with the multi-domain design of the present invention is implemented by cost-down and simplified steps.
  • the color layer of the present invention provided with four color layers in a LCD panel may generate the display with a high gray level and be applied to any billboard in airports or train stations, etc.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Liquid Crystal (AREA)

Abstract

With the pattern modification of a white color layer, a liquid crystal display panel is provided with a part of transparent layer overlapped with a color layer, such that a color layer is implemented with different thickness. Such a color filter substrate applied on a liquid crystal display panel enhances the problem of a viewing-angle color shift.

Description

    BACKGROUND OF THE INVENTION
  • 1. Field of the Invention
  • The present invention relates to a liquid crystal display panel and the manufacturing method thereof, and more especially, to the liquid crystal display panel with four color layers.
  • 2. Background of the Related Art
  • For a multi-domain vertical alignment (MVA) liquid crystal display (LCD) panel, a color shift in different viewing-angle causes the degradation of display qualities. Thus, it is important to resolve the problem of the color shift on the MVA LCD panel. One of conventional resolution on color shift is to modify the design of a pixel electrode in which there are different voltages imposed on a pixel unit to cause the different twisting angles of liquid crystal molecules. Another resolution is to form the folding patterns on pixel electrodes and common electrodes respectively to cause a scattering field for reducing the color shift.
  • On the other hand, the method of manufacturing multi-domain with a multi-cell gap is applied to the MVA LCD panel. Shown in FIG. 1 is a schematic cross-sectional diagram illustrating an MVA LCD panel 10 in accordance with one prior art. Two substrates 102 and 104 are in parallel. A plurality of thin film transistors (not shown) are electrically connected pixel electrodes 106 disposed on the substrate 104. A color layer 108 and a plurality of common electrodes 110 are disposed on the substrate 102. A liquid crystal layer is sandwiched (not shown) between the substrates 102 and 104. Each of the pixel regions of the color layer 108 is divided into two sub-regions present with the marks “B” and “C” in FIG. 1. An organic layer 120 is disposed on the common electrodes 110 within the sub-region “B”, which makes different cell gaps in the sub-regions “B” and “C”. The liquid crystal molecules within the sub-regions “B” and “C” are twisted in different angles under the same electric field. Thus, the color shift may be reduced because of the existence of the multi-cell gap.
  • However, it is necessary for the LCD panel 10 to be implemented by additional steps and materials for forming a multi-cell gap design aforementioned. Thus, it is one of important issues on the manufacture of the multi-cell gap with the cost down and simplified steps.
  • SUMMARY OF THE INVENTION
  • One of objects of the present invention provides the design of a LCD panel and the manufacturing method thereof. The LCD panel is in the different thickness by forming the transparent white color layer partially overlapped the other color layers.
  • Another object of the present invention provides a LCD panel and the manufacturing method thereof by changing the mask pattern of the transparent white color layer without additional steps or structures.
  • Another object of the present invention provides a LCD panel and the manufacturing method thereof. The green, blue or red color layer is provided with at least two different thickness to form multi cell gaps.
  • Accordingly, a LCD panel includes a first substrate and a second substrate disposed face to face with the first substrate. A black matrix is disposed on the first substrate and defines a plurality of sub-pixels. A patterned transparent layer is disposed on the sub-pixels and a patterned color layer disposed on the sub-pixels to cover a part of the patterned transparent layer.
  • Accordingly, a method of manufacturing a LCD panel includes providing a first substrate and a second substrate disposed face to face the first substrate. A black matrix is formed on the first substrate to define a plurality of sub-pixels. A patterned color layer is formed on the sub-pixels and a patterned transparent layer is formed on the sub-pixels and covering a part of the color layer.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a schematic cross-sectional diagram illustrating an MVA LCD panel in accordance with one prior art.
  • FIG. 2 is a schematic cross-sectional diagram illustrating an MVA LCD panel in accordance with one embodiment of the present invention.
  • FIG. 3 is a schematic cross-sectional diagram illustrating manufacturing a structure in accordance with one embodiment of the present invention.
  • FIG. 4 is a schematic cross-sectional diagram illustrating manufacturing a structure in accordance with another embodiment of the present invention.
  • DETAILED DESCRIPTION OF THE INVENTION
  • FIG. 2 is a schematic cross-sectional diagram illustrating an MVA LCD panel 20 in accordance with one embodiment of the present invention. A first substrate 204 and a second substrate 202 are in parallel and separated from each other by a gap. The first substrate 204 or the second substrate 202 may be a glass or transparent insulating substrate. A liquid crystal layer (not shown) is sandwiched between the first substrate 204 and the second substrate 202. In an embodiment, the first substrate 204, such as a color filter substrate, is provided with a color layer 208 and a conductive layer 210. The conductive layer 210 is made of a transparent conductive material, such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide), on the color layer 208 and configured for a common electrode. On the other hand, the second substrate 202, such as a TFT array substrate, includes a conductive layer 206 which is made of a transparent conductive material, such as ITO or IZO, and forms a protrusion or a slit configured for a transparent pixel electrode electrically connected to a TFT (not shown). Moreover, a black matrix 214 is distributed among a patterned color layer 216 and configured for preventing light leakage. In the embodiment, a pixel unit of the LCD panel 20 includes R, G, B and W color sub-pixels defined by the black matrix 214. Shown in FIG. 2, each monochromatic patterned color layer 216 includes the region “D” and the region “E”. A patterned transparent layer 220 is disposed within the region “D” to cause the different thickness in the region “D” and the region “E”. The different cell gaps cause the liquid crystal molecules to be twisted in the different angles under an identical electrical field. Such a multi-domain LCD panel within the pixel unit may reduce the viewing-angle color shift.
  • Shown in FIG. 3 is a schematic cross-sectional diagram illustrating manufacturing a structure for reducing the viewing-angle color shift in accordance with one embodiment of the present invention. In the first embodiment, the black matrix 214 kept a space from each another is formed on the first substrate 204 by any suitable method. A patterned transparent layer 220 is formed on the first substrate 204 and is separated from the black matrix 214. Then a patterned color layer 216 covers a part of surface of the black matrix 214 and the patterned transparent layer 220. In the first embodiment, the black matrix 214 is implemented by, but not limited to, such as the method of a thin metal film, mixing pigment, resin black matrix or lithography from a back side, etc. In addition to covering the surface among the black matrix 214, the patterned transparent layer 220 includes the pattern of white color sub-pixels for a four-color (RGBW) display. Thus, according to the spirit of the present invention, without the addition of any process or structure, the patterned transparent layer 220 is implemented by modifying the mask pattern of a white color transparent layer. Furthermore, the size or geometric shape of the patterned transparent layer 220 is not limited as long as it may cause a profile with different thickness. Moreover, the patterned color layer 216 may be the color layer of red, green or blue, which is not limited to geometric shapes, sizes of alignment. Furthermore, a transparent conductive structure 210 is formed on the patterned color layer 216 to be as a common electrode. It is appreciated that one or more slots or cutouts in the transparent conductive structure 210, ITO or IZO layer, are associated with the protrusions to control the twist angles of the liquid crystal molecules.
  • FIG. 4 is a schematic cross-sectional diagram illustrating manufacturing a structure for reducing the viewing-angle color shift in accordance with another embodiment of the present invention. Difference between the first embodiment and the second embodiment is that the patterned color layer 216 is formed to cover both the part of the black matrix 214 and the exposed surface of the second substrate 204 among the black matrix 214, after the forming step of the black matrix 214 on the first substrate 204. Then the patterned transparent layer 220′ is formed thereon.
  • Accordingly, the patterned transparent layer 220′ or 222 may be formed alternatively before or after the forming of the patterned color layer 216. In both cases aforementioned, the surface profile of a LCD panel would be with the different thickness.
  • Accordingly, the patterned color layer of red, green and blue color and the patterned transparent layer may be in any geometric shape and size to meet the requirement of the LCD panel 20. For example, the patterned color layer of a single sub-pixel is divided into two regions by bumps and slits. One region of the patterned color layer is not overlapped with the patterned transparent layer. The other region of the patterned color layer is overlapped with the patterned transparent layer. Thus, the patterned color layer of a single sub-pixel provided with the different thickness enhances the viewing-angle color shift on an MVA LCD panel 20.
  • Accordingly, the present invention provides a white color layer to make a single pixel with the cell gaps in different spaces by adding the pattern of protrusion into the mask pattern of a white color filter, which needs neither additional masks nor other additional structures. The method and structure are applied to, such as the type of color layer/bump-array/ITO-slit or the type of color layer/bump-array/bump for manufacturing multi-domain of a single pixel, or to various pixel types, such as patterned vertical alignment (PVA), advanced MVA or advanced super view (ASV), etc. Compared with one display in use of various voltages for controlling the twisting angles of the liquid crystal molecules, or other with an organic layer implemented in use of additional masks materials or manufacturing steps, the LCD panel with the multi-domain design of the present invention is implemented by cost-down and simplified steps. Moreover, the color layer of the present invention provided with four color layers in a LCD panel may generate the display with a high gray level and be applied to any billboard in airports or train stations, etc.
  • Although the present invention has been explained in relation to its preferred embodiment, it is to be understood that other modifications and variation can be made without departing the spirit and scope of the invention as hereafter claimed.

Claims (16)

1. A liquid crystal display panel, comprising:
a first substrate;
a black matrix disposed on the first substrate and defining a plurality of sub-pixels;
a patterned transparent layer disposed on the sub-pixels;
a patterned color layer disposed on the sub-pixels and covering the patterned transparent layer; and
a second substrate disposed face to face with the first substrate.
2. The liquid crystal display panel according to claim 1, further comprising a liquid crystal layer disposed between the first substrate and the second substrate.
3. The liquid crystal display panel according to claim 1, wherein the patterned transparent layer comprises a white color layer.
4. The liquid crystal display panel according to claim 1, wherein the patterned color layer comprises one color of red, green, and blue.
5. The liquid crystal display panel according to claim 1, wherein the second substrate comprises a conductive layer.
6. The liquid crystal display panel according to claim 1, wherein any of the sub-pixels comprises a red, a green or a blue regions.
7. The liquid crystal display panel according to claim 1, wherein the first substrate is a color filter substrate.
8. The liquid crystal display panel according to claim 1, wherein the second substrate is a thin-film-transistor array substrate.
9. A liquid crystal display panel, comprising:
a first substrate;
a black matrix disposed on the first substrate and defining a plurality of sub-pixels;
a patterned color layer disposed on the sub-pixels;
a patterned transparent layer disposed on the patterned color layer and covering a part of the patterned color layer; and
a second substrate disposed face to face with the first substrate.
10. The liquid crystal display panel according to claim 9, wherein the second substrate further comprises a conductive layer disposed on the patterned color layer and the patterned transparent layer.
11. The liquid crystal display panel according to claim 9, wherein the patterned transparent layer comprises a white color layer.
12. The liquid crystal display panel according to claim 9, wherein the patterned color layer comprises one color of red, green, and blue.
13. The liquid crystal display panel according to claim 9, further comprising a liquid crystal layer disposed between the first substrate and the second substrate.
14. The liquid crystal display panel according to claim 9, wherein the first substrate is a color filter substrate.
15. The liquid crystal display panel according to claim 9, wherein the second substrate is a thin-film-transistor array substrate.
16. The liquid crystal display panel according to claim 9, wherein the sub-pixels comprise a plurality of red, green, blue and white regions.
US12/129,311 2007-06-01 2008-05-29 Liquid crystal display panel and manufacturing method thereof Abandoned US20080297706A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
TW096119630A TW200848838A (en) 2007-06-01 2007-06-01 Liquid crystal display and manufacture method thereof
TW96119630 2007-06-01

Publications (1)

Publication Number Publication Date
US20080297706A1 true US20080297706A1 (en) 2008-12-04

Family

ID=40087731

Family Applications (1)

Application Number Title Priority Date Filing Date
US12/129,311 Abandoned US20080297706A1 (en) 2007-06-01 2008-05-29 Liquid crystal display panel and manufacturing method thereof

Country Status (2)

Country Link
US (1) US20080297706A1 (en)
TW (1) TW200848838A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150349029A1 (en) * 2014-05-27 2015-12-03 Lg Display Co., Ltd. Display panel and method for manufacturing thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110018596A (en) * 2019-04-08 2019-07-16 成都中电熊猫显示科技有限公司 A kind of array substrate, display panel and electronic device

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040135937A1 (en) * 2002-12-31 2004-07-15 Dong-Ho Lee Color filtering device for improved brightness
US20040196427A1 (en) * 2001-11-22 2004-10-07 Samsung Electronics Co., Ltd. Liquid crystal display and thin film transistor array panel
US20050068281A1 (en) * 2003-08-11 2005-03-31 Kyong-Ju Shin Liquid crystal display
US20050083457A1 (en) * 2001-10-02 2005-04-21 Sharp Kabushiki Kaisha Liquid crystal display device
US20050117092A1 (en) * 2003-11-27 2005-06-02 Lg.Philips Lcd Co., Ltd. Color filter array substrate and fabricating method thereof
US20050134788A1 (en) * 2003-12-23 2005-06-23 Jong-Jin Park Substrate for a liquid crystal display and a fabricating method thereof
US20050168672A1 (en) * 2004-02-02 2005-08-04 Fujitsu Display Technologies Corporation Liquid crystal display and method for fabricating the same
US6947110B2 (en) * 2002-09-19 2005-09-20 Kabushiki Kaisha Toshiba Liquid crystal display device
US20050237447A1 (en) * 2004-04-21 2005-10-27 Kikuo Ono Liquid crystal display device
US20050270449A1 (en) * 2004-05-21 2005-12-08 Norio Koma Transflective liquid crystal display device and color liquid crystal display device
US6999139B2 (en) * 2000-02-29 2006-02-14 Lg.Philips Lcd Co., Ltd. Method for fabricating transflective color LCD device and the transflective color LCD device
US7304696B2 (en) * 2000-12-25 2007-12-04 Sony Corporation Image display

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6999139B2 (en) * 2000-02-29 2006-02-14 Lg.Philips Lcd Co., Ltd. Method for fabricating transflective color LCD device and the transflective color LCD device
US7304696B2 (en) * 2000-12-25 2007-12-04 Sony Corporation Image display
US20050083457A1 (en) * 2001-10-02 2005-04-21 Sharp Kabushiki Kaisha Liquid crystal display device
US20040196427A1 (en) * 2001-11-22 2004-10-07 Samsung Electronics Co., Ltd. Liquid crystal display and thin film transistor array panel
US6947110B2 (en) * 2002-09-19 2005-09-20 Kabushiki Kaisha Toshiba Liquid crystal display device
US20040135937A1 (en) * 2002-12-31 2004-07-15 Dong-Ho Lee Color filtering device for improved brightness
US20050068281A1 (en) * 2003-08-11 2005-03-31 Kyong-Ju Shin Liquid crystal display
US20050117092A1 (en) * 2003-11-27 2005-06-02 Lg.Philips Lcd Co., Ltd. Color filter array substrate and fabricating method thereof
US20050134788A1 (en) * 2003-12-23 2005-06-23 Jong-Jin Park Substrate for a liquid crystal display and a fabricating method thereof
US20050168672A1 (en) * 2004-02-02 2005-08-04 Fujitsu Display Technologies Corporation Liquid crystal display and method for fabricating the same
US20050237447A1 (en) * 2004-04-21 2005-10-27 Kikuo Ono Liquid crystal display device
US20050270449A1 (en) * 2004-05-21 2005-12-08 Norio Koma Transflective liquid crystal display device and color liquid crystal display device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150349029A1 (en) * 2014-05-27 2015-12-03 Lg Display Co., Ltd. Display panel and method for manufacturing thereof
US10388705B2 (en) * 2014-05-27 2019-08-20 Lg Display Co., Ltd. Display panel and method for manufacturing thereof

Also Published As

Publication number Publication date
TW200848838A (en) 2008-12-16

Similar Documents

Publication Publication Date Title
US10684520B2 (en) Display device and manufacturing method thereof
WO2018176776A1 (en) Array substrate, display panel, and display device
US10013938B2 (en) Display panel and display device, and fabrication method thereof
US9606392B2 (en) Display panel and liquid crystal display including the same
US7545466B2 (en) Liquid crystal display device and substrate therefor
US8698995B2 (en) Liquid crystal display panel having particular laminate spacer
JP4762297B2 (en) Liquid crystal display
CN106873230B (en) Display device and method for manufacturing the same
US20120147314A1 (en) Display device and color filter substrate
US20090309821A1 (en) Display Device
US9766506B2 (en) Array substrate and liquid crystal display device including the same
US9563083B2 (en) Display device including main light blocking portion and spacers
CN103309081A (en) Array substrate and manufacturing method thereof and display device
JP2015087600A (en) Liquid crystal display device
EP3349061B1 (en) Array substrate, preparation method therefor, display panel, and display device
CN103353683A (en) Array substrate and display device comprising same
US9971212B2 (en) Array substrate, liquid crystal display panel, and liquid crystal display
US9740039B2 (en) Display device
US9158163B2 (en) Display apparatus
KR102000648B1 (en) Array substrate, display device and manufacturing method of the array substrate
TWI658454B (en) Liquid crystal display device
CN203259747U (en) Array substrate and displaying device
CN108227273B (en) Display panel, color filter substrate and manufacturing method of color filter substrate
US20140267996A1 (en) Liquid crystal display device
US8810756B2 (en) Liquid crystal display panel

Legal Events

Date Code Title Description
AS Assignment

Owner name: CHUNGHWA PICTURE TUBES, LTD., TAIWAN

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LI, DE-JIUN;REEL/FRAME:021016/0941

Effective date: 20080523

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION