WO2020052009A1 - 涂布头凝结物的检测方法及光学膜片的制作方法 - Google Patents

涂布头凝结物的检测方法及光学膜片的制作方法 Download PDF

Info

Publication number
WO2020052009A1
WO2020052009A1 PCT/CN2018/111910 CN2018111910W WO2020052009A1 WO 2020052009 A1 WO2020052009 A1 WO 2020052009A1 CN 2018111910 W CN2018111910 W CN 2018111910W WO 2020052009 A1 WO2020052009 A1 WO 2020052009A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
coating material
substrate
thickness value
value
Prior art date
Application number
PCT/CN2018/111910
Other languages
English (en)
French (fr)
Inventor
陈荣龙
Original Assignee
重庆惠科金渝光电科技有限公司
惠科股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆惠科金渝光电科技有限公司, 惠科股份有限公司 filed Critical 重庆惠科金渝光电科技有限公司
Priority to US16/338,679 priority Critical patent/US10996563B2/en
Publication of WO2020052009A1 publication Critical patent/WO2020052009A1/zh

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • G01B7/02Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness
    • G01B7/06Measuring arrangements characterised by the use of electric or magnetic techniques for measuring length, width or thickness for measuring thickness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • B05C11/10Storage, supply or control of liquid or other fluent material; Recovery of excess liquid or other fluent material
    • B05C11/1002Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves
    • B05C11/1005Means for controlling supply, i.e. flow or pressure, of liquid or other fluent material to the applying apparatus, e.g. valves responsive to condition of liquid or other fluent material already applied to the surface, e.g. coating thickness, weight or pattern
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/007After-treatment

Definitions

  • This application belongs to the field of coating equipment, and more particularly, to a method for detecting condensate on a coating head and a method for manufacturing an optical film.
  • a coating machine is mainly used for the production of a coating process on the surface of a substrate (such as a substrate, a film, a paper, etc.). It coats the surface of the substrate through a coating head and has a specific function (such as conductivity, Insulation, light transmission, etc.) coating material (such as paint, glue, ink, etc.), and then undergo curing treatment (such as light curing treatment, heat curing treatment, etc.), so that the product has the specific function of the coating material.
  • a coating head such as brush type, air knife type, doctor blade type, roller type, and nozzle type. When the coating machine is working, some coating materials are unavoidably attached to the coating head.
  • the water in the coating material on the coating head continuously evaporates, causing hard condensate on the coating head.
  • the condensate will block the coating head, which will affect the discharge effect of the coating head and cause the surface of the substrate to be coated.
  • the thickness of the coating material is not uniform, which affects the performance of the product. Therefore, the coating head of the coater needs to be cleaned regularly to remove the condensate and avoid the clogging of the coating head.
  • the adhesion of the condensate on the coating head is usually checked manually by manual methods, which is not efficient, especially When the applicator is installed inside the applicator, it is more difficult to inspect manually.
  • a filter is generally formed by coating a photoresist material on a substrate, and then forming a pattern after processes such as exposure, development, and baking. After the coater has been working for a long time, some photoresist materials will condense on the coating head. When there is too much condensed photoresist material, it will block the coating head, affect the coating effect of the coating head, and make the photoresist formed on the substrate. If the film thickness is too low, the photoresist film thickness of the produced filter will be unqualified, and there will be problems such as uneven brightness. Summary of invention
  • An object of the present application is to provide a method for detecting condensate on a coating head, so as to solve the technical problems of inconvenient and inefficient manual inspection of the condensate on the coating head of a coating machine.
  • Another object of the present application is to provide a method for manufacturing an optical film, so as to solve the technical problem of uneven brightness caused by an unacceptable film thickness of the optical film.
  • First aspect Provide a method for detecting condensate of a coating head, including:
  • the step of detecting the thickness value of the coating material on the substrate along its coating direction includes:
  • a transformer connected to the probe (3) outputs a voltage signal indicating the thickness of the coating material
  • the step of detecting the thickness value of the coating material on the substrate along its coating direction includes:
  • the probe emits ultrasonic waves to the coating material on the substrate during the movement
  • the receiver of the ultrasonic detection device receives the reflected ultrasonic waves
  • the ultrasonic detection device outputs a time signal according to the reflection time of the ultrasonic waves ; as well as
  • the method further includes:
  • the feedback signal is output to a coater and controls the coater to stop.
  • the present application provides a method for manufacturing an optical film, including:
  • the step of detecting a thickness value of a coating material on the substrate along a coating direction thereof includes:
  • a transformer connected to the probe outputs a voltage signal indicating a thickness of the coating material
  • the step of detecting the thickness value of the coating material on the substrate along its coating direction includes:
  • the probe emits ultrasonic waves to the coating material on the substrate during the movement, the receiver of the ultrasonic detection device receives the reflected ultrasonic waves, and the ultrasonic detection device outputs a time signal according to the reflection time of the ultrasonic waves ; as well as
  • the acquiring a first thickness value of a first position of the coating material along the coating direction and a second thickness value of a second position different from the first position In the step of calculating a difference between the first thickness value and the second thickness value, the first position and the second position are along the coating. The distance in the direction does not exceed 10mm
  • the acquiring a first thickness value of a first position of the coating material along the coating direction and a second thickness value of a second position different from the first position In the step of calculating a difference between the first thickness value and the second thickness value, a distance in the coating direction between the first position and the second position does not exceed 5 mm
  • the preset value is set to 0.05um
  • the step of cleaning the condensate on the coating head of the coating machine includes immersing the coating head in a cleaning solution for ultrasonic cleaning.
  • the cleaning solution is a propylene glycol methyl ether acetate solution.
  • the step of cleaning the condensate on the coating head of the coating machine is performed when the coating machine is stopped, and the condensate on the coating head is cleaned up. Turning on the coating machine again, and re-feeding the cleaned substrate to the step of applying a coating material on the surface of the substrate along the coating direction.
  • a coating solution on the substrate is cleaned by using a developing solution or a photoresist peeling film solution. Material, after the condensate on the coating head is cleaned, restart the coating machine, and re-feed the cleaned substrate to the surface where the coating material is coated along the coating direction step.
  • the steps of exposing and developing the coating material and performing a second curing process include
  • the coating material is a photoresist material.
  • the substrate coated with the coating material in the step of performing the first curing treatment on the coating material on the surface of the substrate, is pre-baked in an oven, and dried to remove the substrate. 80% of the solvent in the photoresist material.
  • the coating material on the surface of the substrate is completely cured.
  • the method for detecting condensate of the coating head monitors the thickness change of the coating material along the coating direction on the substrate, and indirectly reflects the adhesion and clogging of the condensate on the coating head. When an abnormality occurs, a feedback signal is automatically output to remind people to clean up the condensate on the coating head in a timely manner, without the need for workers to regularly check the coating head, which improves work efficiency, especially when the coating head is installed in the coating machine. When it is difficult to observe the interior, etc., it is possible to avoid frequent disassembly and assembly of the coating machine to regularly observe the condition of the coating head, which makes the inspection and cleaning of the coating head more convenient.
  • the manufacturing method of the optical film provided by the present application uses the above-mentioned method for detecting the condensate of the coating head. Therefore, in the production process of the optical film, it can be automatically judged whether the coating head of the coating machine is attached. The coating head is blocked due to a large amount of condensate, and the coating machine is controlled to stop, and the optical film with unqualified film thickness and uneven brightness is found in time, and the qualified rate of the optical film is improved.
  • FIG. 1 is a flowchart of a method for detecting a coating head condensate in an embodiment of the present application
  • FIG. 2 is a schematic diagram of a film detection device detecting a thickness of a coating material in an embodiment of the present application
  • FIG. 3 is a flowchart of a method for manufacturing an optical film in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a detection curve in an embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Therefore, the features defined as “first” and “second” may explicitly or implicitly include one or more of the features. In the description of this application, the meaning of "a plurality” is two or more, unless it is specifically and specifically defined otherwise.
  • This embodiment provides a method for detecting condensate on a coating head. As shown in FIG. 1 and FIG. 2, the method is used to automatically determine whether the coating head of the coating machine is attached due to excessive condensate. The coating head is blocked and includes the following steps:
  • Step S101 Thickness detection: detecting the thickness value h of each position of the coating material 2 on the substrate 1 along its coating direction.
  • Step S102 thickness difference calculation: obtaining a first thickness value h1 of a first position of the coating material 2 along the coating direction and a second thickness value h2 of a second position different from the first position, and calculating a first A difference H between a thickness value hi and a second thickness value h2.
  • Step S103 Comparison and feedback: The absolute value of the difference H is compared with a preset value X. If the absolute value of the difference H exceeds the preset value X, output is used to indicate that the condensate of the coating head has passed. Many feedback signals.
  • the absolute value of the difference H is compared with a preset value X set in advance, and the preset value X Indicates the allowable thickness variation range of the coating material 2 along the coating direction; if the absolute value of the difference H exceeds the preset value X, it indicates that there is an abnormality in the thickness change of the coating material 2 in the coating direction, resulting in coating
  • the absolute value of the difference H between the thicknesses of the two positions of the material 2 in the coating direction is too large. At this time, a feedback signal is output to remind people to clean up the condensate on the coating head of the coating machine in time.
  • a method for detecting condensate of a coating head is to monitor the thickness change of the coating material 2 on the substrate 1 along the coating direction (if the absolute value of the difference H does not exceed a preset value) X, the thickness changes normally; if the absolute value of the difference H exceeds the preset value X, the thickness changes abnormally), which indirectly reflects the adhesion and clogging of the condensate on the coating head, and can automatically automatically when an abnormality occurs
  • Output a feedback signal to remind people to clean up the condensate on the coating head in time, without the need for workers to regularly check the coating head, which improves the work efficiency, especially when the coating head is installed inside the coating machine, which is difficult to observe. When it is located, you can avoid frequent disassembly and assembly of the coating machine to observe the condition of the coating head on a regular basis, which makes the inspection and cleaning of the coating head more convenient.
  • the thin film detection device includes a probe 3, a lever mechanism 4, and a transformer 6, where the transformer 6 may be a differential transformer.
  • the probe 3 is fixedly connected to one end of the lever mechanism 4, and the other end of the lever mechanism 4 is hinged with a connecting rod 5, and the free end of the connecting rod 5 is connected to the transformer 6.
  • the needle of the probe 3 abuts the coating material 2 on the substrate 1, and the substrate 1 is transferred in a conveying direction (that is, the direction of the arrow in FIG. 2).
  • the coating direction on the material 1 is the same, so that the needle of the probe 3 slides in the coating direction of the coating material 2.
  • the thickness change of the coating material 2 in the coating direction will make the lever
  • the mechanism 4 moves accordingly, so that the corresponding displacement change or pressure change of the connecting rod 5 relative to the transformer 6 causes the transformer 6 to output a voltage signal, and the magnitude of the voltage signal varies with The thickness of the coating material 2 in the coating direction changes.
  • the voltage signal is converted into a digital signal by an analog-to-digital converter and output to a computer, and the computer can output a thickness value h of each position of the coating material in the coating direction according to the digital signal.
  • the thickness value h of each position of the coating material 2 in the coating direction may also be detected by other methods.
  • an ultrasonic detection device may be used: The probe of the ultrasonic detection device is disposed above the coating material 2 of the substrate 1, and the substrate 1 is conveyed in a conveying direction that is the same as that of the coating material 2 on the substrate 1. The coating direction is the same, so that the probe is moved in the coating direction of the coating material 2.
  • ultrasonic waves are transmitted to the coating material 2 on the substrate 1, and at the same time, the receiver of the ultrasonic detection device receives the reflected ultrasonic waves, and applies
  • the change of the thickness of the material 2 in the coating direction will change the reflection time of the ultrasonic wave, so that the ultrasonic detection device outputs a time signal, and the size of the time signal changes with the thickness of the coating material 2 in the coating direction.
  • the time signal is converted into a digital signal by an analog-to-digital converter and output to a computer, and the computer can output a thickness value h of each position of the coating material 2 in the coating direction according to the digital signal.
  • the thickness value h of each position of the coating material 2 in the coating direction may be input to In the computer, the computer draws a detection curve indicating the thickness of the coating material in the coating direction according to the thickness value h of each position of the coating material in the coating direction, which is convenient for people to observe the coating material 2 on the substrate 1. Changes along the coating direction, the detection curve can be used to judge and grasp the condensate adhesion on the coating head of the coating machine at any time.
  • step S102 the computer obtains the first thickness value hl of the first position of the coating material along the coating direction (that is, the position of point C in FIG. 2), and the second position (that is, the point of D at FIG. 2) Position) of the second thickness value h2, and calculate the difference H between the first thickness value hi and the second thickness value h2.
  • FIG. 3 shows a detection curve drawn by a computer according to the above detection step.
  • the horizontal axis is used to indicate various positions of the coating material 2 along the coating direction
  • the vertical axis is used to indicate the coating material 2 along the coating direction.
  • Points A and B on the detection curve correspond to points C and D in FIG. 2, respectively, and the computer displays that the thickness corresponding to point C is the first thickness value hi, and the thickness corresponding to point D is the second thickness value h2.
  • step S103 the absolute value of the difference H obtained in the calculation step is compared with a preset value X set in advance by a comparator. If the difference H exceeds the preset value X, the computer outputs an instruction to apply Feedback from excessive head condensation.
  • the above feedback signal may be issued in the form of a signal such as a light signal, an acoustic signal, or a shutdown signal.
  • the computer outputs the feedback signal to an indicator light on the coating machine to make the indicator light blink to remind people in time Clean up the condensation on the coating head; for another example, the computer outputs a feedback signal to the sound on the coating machine to make the sound sound to remind people to clean up the condensation on the coating head in time; for example, the computer outputs the feedback signal Go to the coater and control the shutdown of the coater to avoid waste caused by the coater continuing to work when there is too much condensate on the coater. After the worker sees the coater is stopped, check the condensate on the coater In this case, clean up the condensate on the coating head before turning on the coating machine.
  • the feedback signal is provided to a worker in the form of a shutdown signal, which is output to the coating machine and controls the shutdown of the coating machine, which can not only remind people to clean up the condensate on the coating head in time, but also avoid coating.
  • the cloth machine continues to work when there is too much condensate on the coating head, resulting in waste.
  • This embodiment also provides a method for manufacturing an optical film. As shown in FIG. 4, this method can be used to produce a variety of coating films, including color filters, diffusers, and reflective films.
  • An optical film includes the following steps:
  • Step S201 coating: coating the surface of the substrate 1 with a coating material 2 along a coating direction.
  • Step S202 First curing: The first curing treatment is performed on the coating material 2 on the surface of the substrate 1.
  • Step S203 Thickness detection: detecting the thickness value h of each position of the coating material 2 on the substrate 1 in the coating direction.
  • Step S204 thickness difference calculation: obtaining a first thickness value h1 of a first position of the coating material 2 along the coating direction and a second thickness value h2 of a second position different from the first position, and calculating a first A difference H between a thickness value hi and a second thickness value h2.
  • Step S205 Compare: Compare the absolute value of the difference H with a preset value X. If the absolute value of the difference H exceeds the preset value X, proceed to the following steps S206 and S207, if the difference H If the absolute value does not exceed the preset value X, step S208 is performed.
  • Step S206 Feedback: output a feedback signal.
  • the feedback signal may be sent in the form of light signal, sound signal, stop signal, etc., to remind the staff to perform corresponding processing.
  • Step S207 cleaning: cleaning the condensate on the coating head of the coating machine.
  • Step S208 expose and develop the coating material and perform a second curing process.
  • An optical film manufacturing method provided in this embodiment can automatically determine whether the coating head of the coating machine is stuck due to excessive condensate, and control the shutdown of the coating machine, Timely detection of optical film with unacceptable film thickness and uneven brightness, and enable people to clean the coating head in time to improve production Pass rate of optical film.
  • step S201 a coating material 2 is coated on the surface of the substrate 1 in a coating direction by a coating machine, and the coating material 2 is a photoresist material.
  • step S202 the substrate 1 coated with the coating material 2 is pre-baked using an oven, and is required to be dried to remove 80% of the solvent in the photoresist material, so that the coating material 2 is cured to a certain level. In order to avoid scratching the coating material 2 on the surface of the substrate 1 by the probe 3 during the detection step.
  • the thickness value h of each position of the coating material 2 in the coating direction may be detected using a thin film detection device.
  • the thin film detection device includes a probe 3, a lever mechanism 4, and a transformer 6, the probe 3 is fixedly connected to one end of the lever mechanism 4, and the other end of the lever mechanism 4 is hinged with a connecting rod 5, The free end of the connecting rod 5 is connected to the transformer 6.
  • the needle of the probe 3 abuts the coating material 2 on the substrate 1, and the substrate 1 is transferred in a conveying direction (that is, the direction of the arrow in FIG. 2).
  • the coating direction on the material 1 is the same, so that the needle of the probe 3 slides in the coating direction of the coating material 2.
  • the thickness change of the coating material 2 in the coating direction will make the lever
  • the mechanism 4 moves accordingly, so that the corresponding displacement change or pressure change of the connecting rod 5 relative to the transformer 6 causes the transformer 6 to output a voltage signal, and the magnitude of the voltage signal varies with The thickness of the coating material 2 in the coating direction changes.
  • the voltage signal is converted into a digital signal by an analog-to-digital converter and output to a computer, and the computer can output the thickness value h of each position of the coating material along the coating direction according to the digital signal.
  • the thickness value h of each position of the coating material 2 in the coating direction may also be detected by other methods.
  • an ultrasonic detection device may be used: The probe of the ultrasonic detection device is disposed above the coating material 2 of the substrate 1, and the substrate 1 is conveyed in a conveying direction that is the same as that of the coating material 2 on the substrate 1. The coating direction is the same, so that the probe is moved in the coating direction of the coating material 2. During the movement of the probe, an ultrasonic wave is transmitted to the coating material 2 on the substrate 1, and at the same time, the receiver of the ultrasonic detection device receives the reflected ultrasonic wave and applies the coating.
  • the change of the thickness of the material 2 in the coating direction will change the reflection time of the ultrasonic wave, so that the ultrasonic detection device outputs a time signal, and the size of the time signal changes with the thickness of the coating material 2 in the coating direction.
  • the time signal is converted into a digital signal by an analog-to-digital converter and output to a computer, and the computer can output each of the coating materials 2 along the coating direction according to the digital signal.
  • Position thickness value h is converted into a digital signal by an analog-to-digital converter and output to a computer, and the computer can output each of the coating materials 2 along the coating direction according to the digital signal.
  • the thickness value h of each position of the coating material 2 in the coating direction may be input.
  • the computer draws a detection curve representing the thickness of the coating material in the coating direction according to the thickness value h of each position of the coating material in the coating direction, which is convenient for people to observe the coating material on the substrate 1. 2 Changes along the coating direction. At any time, the detection curve can be used to determine and grasp the condensate adhesion on the coating head of the coating machine.
  • step S204 the computer obtains the first thickness value hi and the second position (that is, the position of point D in FIG. 2) of the first position (that is, the position of point C in FIG. 2) of the coating material along the coating direction. ) For the second thickness value h2, calculate the difference H between the first thickness value hi and the second thickness value h2.
  • FIG. 3 shows a detection curve drawn by a computer according to the above detection step.
  • the horizontal axis is used to indicate various positions of the coating material 2 along the coating direction
  • the vertical axis is used to indicate the coating material 2 along the coating direction.
  • Points A and B on the detection curve correspond to points C and D in FIG. 2, respectively, and the computer displays that the thickness corresponding to point C is the first thickness value hi, and the thickness corresponding to point D is the second thickness value h2.
  • the distance between the first position and the second position in the coating direction does not exceed 10 mm, and more optionally does not exceed 5 mm.
  • the absolute value of the difference H generated when the first position is closer to the second position exceeds the preset value X, the problem of uneven brightness of the optical film produced is more obvious;
  • the distance in the coating direction is controlled within an interval of not more than 10 mm.
  • the two positions along the coating direction of the coating material 2 used for calculation and comparison are closer to each other, so that the brightness of the optical film in a small local area. More even.
  • the optical film The overall brightness uniformity is acceptable.
  • the thickness of the coating material 2 in the coating direction is less affected. If the two positions of the coating material 2 corresponding to the two calculation points are along the coating direction, If the distance in the coating direction is too large, it may not be a problem of coating uniformity caused by the clogging of the coating head by the condensate. At this time, other faults of the coating machine should be checked.
  • step S205 the absolute value of the difference H obtained in step S204 is compared with a preset value X set in advance by a comparator.
  • the preset value X indicates the allowable thickness variation range of the coating material 2 along the coating direction.
  • the specific value of the set value X can be determined according to the surface accuracy of the film layer of the optical film. Generally, the preset value X is set to 0.05um, and the film layer of the produced optical film has a higher surface accuracy. The brightness uniformity of the film is better.
  • step S206 the computer outputs a feedback signal to the coater and controls the coater to stop.
  • the coating head may be immersed in a cleaning solution for ultrasonic cleaning to improve the cleaning effect of the coating head.
  • a cleaning solution for ultrasonic cleaning
  • a propylene glycol methyl ether acetate solution can be used to further improve the cleaning effect of the coating head.
  • step S207 if the absolute value of the difference H exceeds the preset value X, after step S207, the method further includes the following step S209:
  • Step S209 Rework: cleaning the coating material 2 on the substrate 1, drying the substrate 1, and after the condensate on the coating head is cleaned, restart the coating machine, and turn the substrate The material 1 is re-input to step S201.
  • step S209 the coating machine may be stopped for a period of time, the optical films in steps S201, S202, and S203 are collected, the coating material 2 on the substrate 1 is cleaned, and after the coating machine is turned on, Put it back into the coating step for production; since the coating material 2 on the substrate 1 is not completely cured in the first curing step, the coating material 2 on the substrate 1 is easily washed away.
  • the coating material 2 on the substrate 1 can be cleaned by using a developing solution or a photoresist stripping solution.
  • the developing solution can be used to clean the negative photoresist in the coating material 2.
  • the photoresist film liquid can be used to clean the coating. Positive photoresist in cloth material 2.
  • step S209 may be performed at the same time as step S207, or may not be performed at the same time, but the rework step and the cleaning step are performed after the feedback step.
  • step S208 may be performed: exposing the coating material The development and the second curing process further complete the production of the optical film.
  • Step S208 includes:
  • Exposure The coating material 2 on the substrate 1 is subjected to an exposure process.
  • Second curing The second curing treatment is performed on the coating material 2 on the surface of the substrate 1, and the coating material 2 on the surface of the substrate 1 is required to be completely cured.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Coating Apparatus (AREA)

Abstract

本申请提供涂布头凝结物检测方法及光学膜片制作方法,包括探测涂布材料(2)沿其涂布方向的厚度值;获取第一、第二厚度值,计算差值;将差值的绝对值与预设值比较,若超过预设值则输出反馈信号。

Description

发明名称:涂布头凝结物的检测方法及光学膜片的制作方法 技术领域
[0001] 本申请属于涂布设备领域, 更具体地说, 是涉及一种涂布头凝结物的检测方法 以及一种光学膜片的制作方法。
背景技术
[0002] 目前, 涂布机主要用于基材 (如基板、 薄膜、 纸张等) 表面的涂布工艺生产, 它通过涂布头在基材的表面涂上一层具有特定功能 (如导电、 绝缘、 透光等) 的涂布材料 (如涂料、 胶、 油墨等) , 然后经过固化处理 (如光固化处理、 热 固化处理等) , 使产品则具有该涂布材料的特定功能。 涂布机上的涂布头具有 刷式、 气刀式、 刮刀式、 辊式、 喷嘴式等多个种类; 涂布机在工作时, 涂布头 上难以避免地会附着一些涂布材料, 附着在涂布头上的涂布材料中的水分不断 蒸发, 使涂布头上产生坚硬的凝结物, 凝结物堵塞涂布头, 会影响涂布头的出 料效果, 进而导致基材表面所涂上的涂布材料的厚度不均匀, 影响产品的性能 。 因此, 涂布机的涂布头需要定期地进行清洁, 以去除凝结物, 避免涂布头堵 塞; 范例技术中通常由人工定期检查涂布头上的凝结物附着情况, 效率不高, 特别是涂布头安装在涂布机的内部时, 人工更加难以检查。
[0003] 滤光片一般通过将光阻材料涂布于基材上, 经过曝光、 显影和烘烤等工序后形 成图形。 涂布机长时间工作后, 涂布头上会凝结一些光阻材料, 凝结的光阻材 料过多时, 会堵塞涂布头, 影响涂布头的涂布效果, 使基材上形成的光阻膜厚 偏低, 最终导致生产的滤光片的光阻膜厚不合格, 会存在亮度不均匀等问题。 发明概述
技术问题
[0004] 本申请的一个目的在于提供一种涂布头凝结物的检测方法, 以解决人工检查涂 布机的涂布头上的凝结物附着情况不方便、 效率不高的技术问题。
[0005] 本申请的另一个目的在于提供一种光学膜片的制作方法, 以解决光学膜片的膜 厚不合格而导致的亮度不均匀的技术问题。 问题的解决方案
技术解决方案
[0006] 为实现上述目的, 本申请采用的技术方案是: 第一方面: 提供一种涂布头凝结 物的检测方法, 包括:
[0007] 探测基材上的涂布材料沿其涂布方向的厚度值;
[0008] 获取所述涂布材料沿所述涂布方向的第一位置的第一厚度值, 以及区别于所述 第一位置的第二位置的第二厚度值, 计算所述第一厚度值和所述第二厚度值的 差值; 以及
[0009] 将所述差值的绝对值与预设值进行比较, 若所述差值的绝对值超过所述预设值 , 则输出反馈信号。
[0010] 在一个实施例中, 所述探测基材上的涂布材料沿其涂布方向的厚度值的步骤包 括:
[0011] 将探针抵接于所述涂布材料, 使所述探针沿所述涂布方向滑动;
[0012] 在所述探针滑动时, 与所述探针 (3)连接的变压器输出指示所述涂布材料厚度的 电压信号; 以及
[0013] 根据所述电压信号得到所述涂布材料沿所述涂布方向的厚度值。
[0014] 在一个实施例中, 所述探测基材上的涂布材料沿其涂布方向的厚度值的步骤包 括:
[0015] 将超声波探测装置的探头设置在基材的涂布材料的上方, 并使所述探头沿所述 涂布方向移动;
[0016] 所述探头在移动的过程中向所述基材上的涂布材料发射超声波, 所述超声波探 测装置的接收器接收反射的超声波, 所述超声波探测装置根据超声波的反射时 间输出时间信号; 以及
[0017] 根据所述时间信号得到所述涂布材料沿所述涂布方向的厚度值。
[0018] 在一个实施例中, 在得到所述涂布材料沿所述涂布方向的厚度值之后, 还包括
[0019] 根据所述厚度值绘制用于表示所述涂布材料沿所述涂布方向的厚度的探测曲线 [0020] 在一个实施例中, 所述反馈信号输出至涂布机并控制所述涂布机停机。
[0021] 第二方面, 本申请提供一种光学膜片的制作方法, 包括:
[0022] 在基材的表面沿涂布方向涂上涂布材料;
[0023] 对所述基材表面的涂布材料进行第一次固化处理;
[0024] 探测所述基材上的涂布材料沿其涂布方向的厚度值;
[0025] 获取所述涂布材料沿所述涂布方向的第一位置的第一厚度值, 以及区别于所述 第一位置的第二位置的第二厚度值, 计算所述第一厚度值和所述第二厚度值的 差值; 以及
[0026] 将所述差值的绝对值与预设值进行比较; 若所述差值的绝对值超过所述预设值 , 则输出反馈信号, 清理所述涂布机的涂布头上的凝结物; 若所述差值的绝对 值未超过所述预设值, 则对涂布材料曝光显影并进行第二次固化处理。
[0027] 在一个实施例中, 所述探测所述基材上的涂布材料沿其涂布方向的厚度值的步 骤包括:
[0028] 将探针抵接于所述涂布材料, 使所述探针沿所述涂布方向滑动;
[0029] 在所述探针滑动时, 与所述探针连接的变压器输出指示所述涂布材料厚度的电 压信号; 以及
[0030] 根据所述电压信号得到所述涂布材料沿所述涂布方向的厚度值。
[0031] 在一个实施例中, 所述探测基材上的涂布材料沿其涂布方向的厚度值的步骤包 括:
[0032] 将超声波探测装置的探头设置在基材的涂布材料的上方, 并使所述探头沿所述 涂布方向移动;
[0033] 所述探头在移动的过程中向所述基材上的涂布材料发射超声波, 所述超声波探 测装置的接收器接收反射的超声波, 所述超声波探测装置根据超声波的反射时 间输出时间信号; 以及
[0034] 根据所述时间信号得到所述涂布材料沿所述涂布方向的厚度值。
[0035] 在一个实施例中, 所述获取所述涂布材料沿所述涂布方向的第一位置的第一厚 度值以及区别于所述第一位置的第二位置的第二厚度值, 计算所述第一厚度值 和所述第二厚度值的差值的步骤中, 所述第一位置与所述第二位置沿所述涂布 方向的距离不超过 10mm
[0036] 在一个实施例中, 所述获取所述涂布材料沿所述涂布方向的第一位置的第一厚 度值以及区别于所述第一位置的第二位置的第二厚度值, 计算所述第一厚度值 和所述第二厚度值的差值的步骤中, 所述第一位置与所述第二位置沿所述涂布 方向的距离不超过 5mm
[0037] 在一个实施例中, 所述预设值设置为 0.05um
[0038] 在一个实施例中, 所述清理所述涂布机的涂布头上的凝结物的步骤包括, 将所 述涂布头浸入清洗液中进行超声波清洗。
[0039] 在一个实施例中, 所述清洗液采用丙二醇甲醚醋酸酯溶液。
[0040] 在一个实施例中, 所述的清理所述涂布机的涂布头上的凝结物的步骤在涂布机 停机状态下进行, 待所述涂布头上的凝结物清理完毕, 重新开启所述涂布机, 并将清理后的基材重新投入至所述沿涂布方向在基材的表面涂上涂布材料的步 骤。
[0041] 在一个实施例中, 在所述的清理所述涂布机的涂布头上的凝结物的步骤中, 采 用显影液或光阻剥膜液清洗掉所述基材上的涂布材料, 待所述涂布头上的凝结 物清理完毕, 重新开启所述涂布机, 并将清理后的基材重新投入至所述沿涂布 方向在基材的表面涂上涂布材料的步骤。
[0042] 在一个实施例中, 所述对涂布材料曝光显影和进行第二次固化处理的步骤包括
[0043] 对所述基材上的涂布材料进行曝光处理;
[0044] 对所述基材上的涂布材料进行显影处理; 以及
[0045] 对所述基材表面的涂布材料进行第二次固化处理。
[0046] 在一个实施例中, 所述涂布材料为光阻材料。
[0047] 在一个实施例中, 对所述基材表面的涂布材料进行第一次固化处理的步骤中, 采用烤炉对涂有涂布材料的基材进行预烤, 烘干至去除所述光阻材料中的 80%的 溶剂。
[0048] 在一个实施例中, 对所述基材表面的涂布材料进行第二次固化处理的步骤中, 使所述基材表面的的涂布材料完全固化。 [0049] 本申请提供的涂布头凝结物的检测方法通过监控基材上涂布材料沿涂布方向的 厚度变化情况, 间接地反映出涂布头上凝结物的附着和堵塞情况, 并能够在发 生异常时自动输出反馈信号, 提醒人们及时清理涂布头上的凝结物, 而无需工 人定期地对涂布头进行检测, 提高了工作效率, 特别是当涂布头安装在涂布机 的内部等不易观察到的位置时, 可避免频繁地对涂布机进行拆装以定期观察涂 布头的情况, 使涂布头的检查和清理更加方便。
[0050] 本申请提供的光学膜片的制作方法使用了上述涂布头凝结物的检测方法, 因此 , 在光学膜片的生产过程中, 能够自动判断涂布机的涂布头是否附着由过多的 凝结物而致使涂布头被堵塞, 并控制涂布机停机, 及时发现膜厚不合格、 亮度 不均匀的光学膜片, 提高光学膜片的合格率。 发明的有益效果
对附图的简要说明
附图说明
[0051] 为了更清楚地说明本申请实施例中的技术方案, 下面将对实施例或现有技术描 述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是 本申请的一些实施例, 对于本领域普通技术人员来讲, 在不付出创造性劳动性 的前提下, 还可以根据这些附图获得其他的附图。
[0052] 图 1为本申请实施例中涂布头凝结物的检测方法的流程图;
[0053] 图 2为本申请实施例中薄膜探测装置探测涂布材料厚度的示意图;
[0054] 图 3为本申请实施例中光学膜片的制作方法的流程图;
[0055] 图 4为本申请实施例中探测曲线的示意图。
[0056] 其中, 图中各附图标记:
[0057] 1、 基材; 2、 涂布材料; 3、 探针; 4、 杠杆机构; 5、 连接杆; 6、 变压器。 发明实施例 本发明的实施方式
[0058] 为了使本申请所要解决的技术问题、 技术方案及有益效果更加清楚明白, 以下 结合附图及实施例, 对本申请进行进一步详细说明。 应当理解, 此处所描述的 具体实施例仅仅用以解释本申请, 并不用于限定本申请。
[0059] 需要说明的是, 当元件被称为“固定于”或“设置于”另一个元件, 它可以直接在 另一个元件上或者间接在该另一个元件上。 当一个元件被称为是“连接于”另一个 元件, 它可以是直接连接到另一个元件或间接连接至该另一个元件上。
[0060] 需要理解的是, 术语“长度”、 “宽度”、 “上”、 “下”、 “前”、 “后”、 “左”、 “右”、 “竖直”、 “水平”、 “顶”、 “底”“内”、 “外”等指示的方位或位置关系为基于附图所 示的方位或位置关系, 仅是为了便于描述本申请和简化描述, 而不是指示或暗 示所指的装置或元件必须具有特定的方位、 以特定的方位构造和操作, 因此不 能理解为对本申请的限制。
[0061] 此外, 术语“第一”、 “第二”仅用于描述目的, 而不能理解为指示或暗示相对重 要性或者隐含指明所指示的技术特征的数量。 由此, 限定有“第一”、 “第二”的特 征可以明示或者隐含地包括一个或者更多个该特征。 在本申请的描述中, “多个” 的含义是两个或两个以上, 除非另有明确具体的限定。
[0062] 本实施例提供一种涂布头凝结物的检测方法, 如图 1和图 2所示, 该方法用于自 动判断涂布机的涂布头是否附着由过多的凝结物而致使涂布头被堵塞, 包括以 下步骤:
[0063] 步骤 S101 : 厚度探测: 探测基材 1上的涂布材料 2沿其涂布方向的每个位置的厚 度值 h。
[0064] 步骤 S102: 厚度差计算: 获取涂布材料 2沿涂布方向的第一位置的第一厚度值 h 1, 以及区别于第一位置的第二位置的第二厚度值 h2 , 计算第一厚度值 hi和第二 厚度值 h2的差值 H。
[0065] 步骤 S103 : 比较和反馈: 将差值 H的绝对值与一预设值 X进行比较, 若差值 H的 绝对值超过预设值 X, 则输出用于指示涂布头凝结物过多的反馈信号。
[0066] 涂布机在工作过程中, 涂布头上凝结了越来越多的凝结物, 堵塞住了涂布头, 使涂布头的涂料量 (即涂布头在单位时间内涂布材料 2的出料体积) 不稳定, 通 常而言涂料量会减小, 令基材 1上对应位置的涂布材料 2的厚度减小, 从而导致 该位置的厚度与其它位置的厚度的差值 H的绝对值变大, 涂布材料 2的均匀性降 低。 通过上述四个步骤, 可探测出基材 1上的涂布材料 2沿涂布方向的每个位置 的厚度值 h, 并计算出涂布材料 2在涂布方向上的两个位置的厚度的差值 H, 该差 值 H的绝对值和提前设置的预设值 X进行比较, 预设值 X表示涂布材料 2沿涂布方 向的允许的厚度变化范围; 若该差值 H的绝对值超过预设值 X, 则表示涂布材料 2 在涂布方向上的厚度变化存在异常, 致使涂布材料 2在涂布方向上的两个位置的 厚度的差值 H的绝对值过大, 此时, 输出一个反馈信号, 提醒人们及时清理涂布 机的涂布头上的凝结物。
[0067] 本实施例提供的一种涂布头凝结物的检测方法, 通过监控基材 1上涂布材料 2沿 涂布方向的厚度变化情况 (若差值 H的绝对值不超过预设值 X, 则厚度变化正常 ; 若差值 H的绝对值超过预设值 X, 则厚度变化不正常) , 间接地反映出涂布头 上凝结物的附着和堵塞情况, 并能够在发生异常时自动输出反馈信号, 提醒人 们及时清理涂布头上的凝结物, 而无需工人定期地对涂布头进行检测, 提高了 工作效率, 特别是当涂布头安装在涂布机的内部等不易观察到的位置时, 可避 免频繁地对涂布机进行拆装以定期观察涂布头的情况, 使涂布头的检查和清理 更加方便。
[0068] 下面结合附图, 对上述步骤作详细的描述。
[0069] 在步骤 S101中, 由于基材 1上涂覆的涂布材料 2通常呈薄膜状, 可使用薄膜探测 装置探测涂布材料 2沿涂布方向的每个位置的厚度值 h。 具体的, 如图 2所示, 薄 膜探测装置包括探针 3、 杠杆机构 4和变压器 6 , 其中, 变压器 6可采用差动变压 器。 探针 3与杠杆机构 4的一端固定连接, 杠杆机构 4的另一端则铰接有一根连接 杆 5 , 该连接杆 5的自由端与变压器 6连接。 工作时, 探针 3的针头抵接于基材 1上 的涂布材料 2, 基材 1沿一传送方向 (即图 2中的箭头方向) 被传送, 该传送方向 与涂布材料 2在基材 1上的涂布方向一致, 使探针 3的针头沿涂布材料 2的涂布方 向滑动; 探针 3滑动的过程中, 涂布材料 2沿涂布方向的厚度的变化将会使杠杆 机构 4随之运动, 进而使连接杆 5相对于变压器 6发生相应的位移变化量或压力变 化量, 该相应的位移变化量或压力变化量使变压器 6输出一个电压信号, 该电压 信号的大小随涂布材料 2沿涂布方向的厚度变化而变化。 电压信号经模数转换器 转换成数字信号, 并输出至计算机, 则计算机可根据该数字信号输出涂布材料 沿涂布方向的每个位置的厚度值 h。 [0070] 在其它实施例中, 也可以通过其它方式探测涂布材料 2沿涂布方向的每个位置 的厚度值 h。 例如, 可以使用超声波探测装置: 超声波探测装置的探头设置在基 材 1的涂布材料 2的上方, 基材 1沿一传送方向被传送, 该传送方向与涂布材料 2 在基材 1上的涂布方向一致, 使探头沿涂布材料 2的涂布方向移动; 探头移动的 过程中向基材 1上的涂布材料 2发射超声波, 同时超声波探测装置的接收器接收 反射的超声波, 涂布材料 2沿涂布方向的厚度的变化将会使超声波的反射时间随 之变化, 进而使超声波探测装置输出一个时间信号, 该时间信号的大小随涂布 材料 2沿涂布方向的厚度变化而变化。 时间信号经模数转换器转换成数字信号, 并输出至计算机, 则计算机可根据该数字信号输出涂布材料 2沿涂布方向的每个 位置的厚度值 h。
[0071] 在一个实施例中, 通过探测步骤得到涂布材料 2沿涂布方向的每个位置的厚度 值 h之后, 涂布材料 2沿涂布方向的每个位置的厚度值 h可输入到计算机中, 计算 机根据涂布材料沿涂布方向的每个位置的厚度值 h绘制一条用于表示涂布材料沿 涂布方向的厚度的探测曲线, 便于人们观察基材 1上的涂布材料 2沿涂布方向的 变化情况, 通过探测曲线随时判断并掌握涂布机的涂布头上的凝结物附着情况
[0072] 在步骤 S102中, 计算机获取涂布材料沿涂布方向的第一位置 (即图 2中 C点的位 置) 的第一厚度值 hl, 以及第二位置 (即图 2中 D点的位置) 的第二厚度值 h2, 计算第一厚度值 hi和第二厚度值 h2的差值 H。
[0073] 图 3示出的是根据上述探测步骤由计算机绘制得到的探测曲线, 横轴用于表示 涂布材料 2沿涂布方向的各个位置, 纵轴用于表示涂布材料 2沿涂布方向的对应 位置的厚度。 探测曲线上的 A点和 B点分别对应图 2中的 C点和 D点, 则计算机显 示 C点对应的厚度为第一厚度值 hi, D点对应的厚度为第二厚度值 h2。
[0074] 在步骤 S103中, 通过比较器将计算步骤得到的差值 H的绝对值与提前设置的预 设值 X进行比较, 若差值 H超过预设值 X, 则计算机输出一个指示涂布头凝结物 过多的反馈信号。
[0075] 上述反馈信号可以通过光信号、 声信号或停机信号等信号的形式发出: 例如, 计算机将反馈信号输出至涂布机上的指示灯, 使指示灯闪烁, 以提醒人们及时 清理涂布头上的凝结物; 又例如, 计算机将反馈信号输出至涂布机上的音响, 使音响发出声音, 以提醒人们及时清理涂布头上的凝结物; 再例如, 计算机将 反馈信号输出至涂布机, 控制涂布机停机, 避免涂布机在涂布头上的凝结物过 多的情况下继续工作而产生废品, 工人看到涂布机停机后, 检查涂布头上凝结 物的情况, 清理涂布头上的凝结物后再开启涂布机工作。
[0076] 可选的, 该反馈信号通过停机信号的形式提供给工作人员, 输出至涂布机并控 制涂布机停机, 不仅能够提醒人们及时清理涂布头上的凝结物, 还能够避免涂 布机在涂布头上的凝结物过多的情况下继续工作而产生废品。
[0077] 本实施例还提供一种光学膜片的制作方法, 如图 4所示, 该方法可用于生产包 括彩色滤光片、 扩散片、 反光片在内的多种需要涂覆膜层的光学膜片, 包括以 下步骤:
[0078] 步骤 S201 : 涂布: 沿一涂布方向在基材 1的表面涂上涂布材料 2。
[0079] 步骤 S202: 第一次固化: 对基材 1表面的涂布材料 2进行第一次固化处理。
[0080] 步骤 S203: 厚度探测: 探测基材 1上的涂布材料 2沿涂布方向的每个位置的厚度 值 h。
[0081] 步骤 S204: 厚度差计算: 获取涂布材料 2沿涂布方向的第一位置的第一厚度值 h 1, 以及区别于第一位置的第二位置的第二厚度值 h2, 计算第一厚度值 hi和第二 厚度值 h2的差值 H。
[0082] 步骤 S205: 比较: 将差值 H的绝对值与一预设值 X进行比较, 若差值 H的绝对值 超过预设值 X, 则进入以下步骤 S206和 S207 , 若差值 H的绝对值未超过预设值 X , 则进行步骤 S208。
[0083] 步骤 S206: 反馈: 输出反馈信号。 在该步骤中, 反馈信号可以通过光信号、 声 信号、 停机信号等形式发出, 以提醒工作人员进行相应处理。
[0084] 步骤 S207: 清理: 清理涂布机的涂布头上的凝结物。
[0085] 步骤 S208: 对涂布材料曝光显影以及第二次固化处理。
[0086] 本实施例提供的一种光学膜片的制作方法, 能够自动判断涂布机的涂布头是否 附着由过多的凝结物而致使涂布头被堵塞, 并控制涂布机停机, 及时发现膜厚 不合格、 亮度不均匀的光学膜片, 并且使人们能够及时清理涂布头, 提高生产 的光学膜片的合格率。
[0087] 下面结合附图, 对上述步骤作详细的描述。
[0088] 在步骤 S201中, 通过涂布机在基材 1的表面沿一涂布方向涂上涂布材料 2, 该涂 布材料 2为光阻材料。
[0089] 在步骤 S202中, 采用烤炉对涂有涂布材料 2的基材 1进行预烤, 要求烘干至去除 光阻材料中的 80%的溶剂, 使涂布材料 2固化到一定的程度, 避免在探测步骤中 探针 3刮伤基材 1表面的涂布材料 2。
[0090] 在步骤 S203中, 可使用薄膜探测装置探测涂布材料 2沿涂布方向的每个位置的 厚度值 h。 具体的, 如图 2所示, 薄膜探测装置包括探针 3、 杠杆机构 4和变压器 6 , 探针 3与杠杆机构 4的一端固定连接, 杠杆机构 4的另一端则铰接有一根连接杆 5 , 该连接杆 5的自由端与变压器 6连接。 工作时, 探针 3的针头抵接于基材 1上的 涂布材料 2, 基材 1沿一传送方向 (即图 2中的箭头方向) 被传送, 该传送方向与 涂布材料 2在基材 1上的涂布方向一致, 使探针 3的针头沿涂布材料 2的涂布方向 滑动; 探针 3滑动的过程中, 涂布材料 2沿涂布方向的厚度的变化将会使杠杆机 构 4随之运动, 进而使连接杆 5相对于变压器 6发生相应的位移变化量或压力变化 量, 该相应的位移变化量或压力变化量使变压器 6输出一个电压信号, 该电压信 号的大小随涂布材料 2沿涂布方向的厚度变化而变化。 电压信号经模数转换器转 换成数字信号, 并输出至计算机, 则计算机可根据该数字信号输出涂布材料沿 涂布方向的每个位置的厚度值 h。
[0091] 在其它实施例中, 也可以通过其它方式探测涂布材料 2沿涂布方向的每个位置 的厚度值 h。 例如, 可以使用超声波探测装置: 超声波探测装置的探头设置在基 材 1的涂布材料 2的上方, 基材 1沿一传送方向被传送, 该传送方向与涂布材料 2 在基材 1上的涂布方向一致, 使探头沿涂布材料 2的涂布方向移动; 探头移动的 过程中向基材 1上的涂布材料 2发射超声波, 同时超声波探测装置的接收器接收 反射的超声波, 涂布材料 2沿涂布方向的厚度的变化将会使超声波的反射时间随 之变化, 进而使超声波探测装置输出一个时间信号, 该时间信号的大小随涂布 材料 2沿涂布方向的厚度变化而变化。 时间信号经模数转换器转换成数字信号, 并输出至计算机, 则计算机可根据该数字信号输出涂布材料 2沿涂布方向的每个 位置的厚度值 h。
[0092] 在另一实施例中, 通过探测步骤得到涂布材料 2沿涂布方向的每个位置的厚度 值 h之后, 涂布材料 2沿涂布方向的每个位置的厚度值 h可输入到计算机中, 计算 机根据涂布材料沿涂布方向的每个位置的厚度值 h绘制一条用于表示涂布材料沿 涂布方向的厚度的探测曲线, 便于人们观察基材 1上的涂布材料 2沿涂布方向的 变化情况, 通过探测曲线随时判断并掌握涂布机的涂布头上的凝结物附着情况
[0093] 在步骤 S204中, 计算机获取涂布材料沿涂布方向的第一位置 (即图 2中 C点的位 置) 的第一厚度值 hi以及第二位置 (即图 2中 D点的位置) 的第二厚度值 h2, 计 算第一厚度值 hi和第二厚度值 h2的差值 H。
[0094] 图 3示出的是根据上述探测步骤由计算机绘制得到的探测曲线, 横轴用于表示 涂布材料 2沿涂布方向的各个位置, 纵轴用于表示涂布材料 2沿涂布方向的对应 位置的厚度。 探测曲线上的 A点和 B点分别对应图 2中的 C点和 D点, 则计算机显 示 C点对应的厚度为第一厚度值 hi, D点对应的厚度为第二厚度值 h2。
[0095] 可选的, 在计算步骤中, 第一位置与第二位置沿涂布方向的距离 (即图 2中的 S ) 不超过 10mm, 更可选情况下不超过 5mm。 当第一位置越靠近第二位置时所产 生的差值 H的绝对值超过预设值 X, 则生产得到的光学膜片的亮度不均匀问题越 明显; 通过将第一位置与第二位置沿涂布方向的距离控制在一个不超过 10mm的 区间内, 使用于计算和比较的涂布材料 2沿涂布方向的两个位置更加靠近, 进而 使光学膜片在局部的较小范围内的亮度更加均匀。 反过来说, 只要光学膜片上 的涂布材料 2在局部的较小的范围内的两个位置的厚度之间的差值 H的绝对值不 超过预设值 X, 那么该光学膜片的整体的亮度均匀性是合格的。 另外, 在实际生 产过程中, 由于凝结物堵塞涂布头对涂布材料 2在涂布方向的厚度影响较小, 若 与两个计算点对应的涂布材料 2沿涂布方向的两个位置之间的沿涂布方向的距离 过大, 则可能不属于凝结物堵塞涂布头导致的涂布均匀性的问题, 此时应当检 查涂布机的其他故障。
[0096] 在步骤 S205中, 通过比较器将步骤 S204得到的差值 H的绝对值与提前设置的预 设值 X进行比较。 预设值 X表示涂布材料 2沿涂布方向的允许的厚度变化范围,预 设值 X的具体数值可根据光学膜片的膜层的表面精度确定, 一般情况下, 预设值 X设置为 0.05um, 生产得到的光学膜片的膜层具有较高的表面精度, 光学膜片的 亮度均匀性更优。
[0097] 在步骤 S206中, 计算机输出一个反馈信号至涂布机并控制涂布机停机。
[0098] 在步骤 S207中, 可将涂布头浸入清洗液中进行超声波清洗, 以提高涂布头的清 理效果。 清洗液可选采用丙二醇甲醚醋酸酯溶液, 进一步提高涂布头的清理效 果。
[0099] 在一个实施例中, 若差值 H的绝对值超过预设值 X, 则在步骤 S207之后, 还包 括以下步骤 S209:
[0100] 步骤 S209: 返工: 清洗掉基材 1上的涂布材料 2, 对该基材 1进行烘干, 待涂布 头上的凝结物清理完毕, 重新开启涂布机, 并将该基材 1重新投入至步骤 S201。
[0101] 在步骤 S209中, 可以使涂布机停机一段时间, 收集步骤 S201、 S202、 和 S203中 的光学膜片, 清洗掉基材 1上的涂布材料 2, 并在涂布机开启后重新投入到涂布 步骤中进行生产; 由于第一次固化步骤并未完全将基材 1上的涂布材料 2固化, 因此, 基材 1上的涂布材料 2容易被清洗掉。 可选的, 可使用显影液或光阻剥膜 液对基材 1上的涂布材料 2进行清洗, 显影液可用于清洗涂布材料 2中的负光阻, 光阻薄膜液可用于清洗涂布材料 2中的正光阻。 另外, 步骤 S209可与步骤 S207同 时进行, 也可不同时进行, 但返工步骤和清理步骤均在反馈步骤之后进行。
[0102] 在一个实施例中, 若差值 H的绝对值未超过预设值 X, 则表示涂布材料 2沿涂布 方向的厚度变化是合格的, 可进行步骤 S208: 对涂布材料曝光显影和第二次固 化处理, 进一步完成光学膜片的生产, 步骤 S208包括:
[0103] 曝光: 对基材 1上的涂布材料 2进行曝光处理。
[0104] 显影: 对基材 1上的涂布材料 2进行显影处理。
[0105] 第二次固化: 对基材 1表面的涂布材料 2进行第二次固化处理, 要求使基材 1表 面的的涂布材料 2完全固化。
[0106] 通过以上步骤, 可以获得表面平整, 厚度均匀的光学膜片。 通过上述方法, 可 以在光学膜片的制作过程中实时监控涂布材料的厚度是否均匀, 对涂布不均的 基材进行及时处理, 提高制作效率和加工精度。 [0107] 以上所述仅为本申请的较佳实施例而已, 并不用以限制本申请, 凡在本申请的 精神和原则之内所作的任何修改、 等同替换和改进等, 均应包含在本申请的保 护范围之内。

Claims

权利要求书
[权利要求 1] 一种涂布头凝结物的检测方法, 包括:
探测基材上的涂布材料沿其涂布方向的厚度值; 获取所述涂布材料沿所述涂布方向的第一位置的第一厚度值, 以及区 别于所述第一位置的第二位置的第二厚度值, 计算所述第一厚度值和 所述第二厚度值的差值; 以及
将所述差值的绝对值与预设值进行比较, 若所述差值的绝对值超过所 述预设值, 则输出反馈信号。
[权利要求 2] 如权利要求 1所述的涂布头凝结物的检测方法, 所述探测基材上的涂 布材料沿其涂布方向的厚度值的步骤包括:
将探针抵接于所述涂布材料, 使所述探针沿所述涂布方向滑动; 在所述探针滑动时, 与所述探针 (3)连接的变压器输出指示所述涂布 材料厚度的电压信号; 以及
根据所述电压信号得到所述涂布材料沿所述涂布方向的厚度值。
[权利要求 3] 如权利要求 1所述的涂布头凝结物的检测方法, 所述探测基材上的涂 布材料沿其涂布方向的厚度值的步骤包括:
将超声波探测装置的探头设置在基材的涂布材料的上方, 并使所述探 头沿所述涂布方向移动;
所述探头在移动的过程中向所述基材上的涂布材料发射超声波, 所述 超声波探测装置的接收器接收反射的超声波, 所述超声波探测装置根 据超声波的反射时间输出时间信号; 以及
根据所述时间信号得到所述涂布材料沿所述涂布方向的厚度值。
[权利要求 4] 如权利要求 1所述的涂布头凝结物的检测方法, 在得到所述涂布材料 沿所述涂布方向的厚度值之后, 还包括:
根据所述厚度值绘制用于表示所述涂布材料沿所述涂布方向的厚度的 探测曲线。
[权利要求 5] 如权利要求 1所述的涂布头凝结物的检测方法, 所述反馈信号输出至 涂布机并控制所述涂布机停机。
[权利要求 6] 一种光学膜片的制作方法, 包括:
在基材的表面沿涂布方向涂上涂布材料;
对所述基材表面的涂布材料进行第一次固化处理; 探测所述基材上的涂布材料沿其涂布方向的厚度值;
获取所述涂布材料沿所述涂布方向的第一位置的第一厚度值, 以及区 别于所述第一位置的第二位置的第二厚度值, 计算所述第一厚度值和 所述第二厚度值的差值; 以及
将所述差值的绝对值与预设值进行比较; 若所述差值的绝对值超过所 述预设值, 则输出反馈信号, 清理所述涂布机的涂布头上的凝结物; 若所述差值的绝对值未超过所述预设值, 则对涂布材料曝光显影并进 行第二次固化处理。
[权利要求 7] 如权利要求 6所述的光学膜片的制作方法, 所述探测所述基材上的涂 布材料沿其涂布方向的厚度值的步骤包括:
将探针抵接于所述涂布材料, 使所述探针沿所述涂布方向滑动; 在所述探针滑动时, 与所述探针连接的变压器输出指示所述涂布材料 厚度的电压信号; 以及
根据所述电压信号得到所述涂布材料沿所述涂布方向的厚度值。
[权利要求 8] 如权利要求 6所述的光学膜片的制作方法, 所述探测基材上的涂布材 料沿其涂布方向的厚度值的步骤包括:
将超声波探测装置的探头设置在基材的涂布材料的上方, 并使所述探 头沿所述涂布方向移动;
所述探头在移动的过程中向所述基材上的涂布材料发射超声波, 所述 超声波探测装置的接收器接收反射的超声波, 所述超声波探测装置根 据超声波的反射时间输出时间信号; 以及
根据所述时间信号得到所述涂布材料沿所述涂布方向的厚度值。
[权利要求 9] 如权利要求 6所述的光学膜片的制作方法, 所述获取所述涂布材料沿 所述涂布方向的第一位置的第一厚度值以及区别于所述第一位置的第 二位置的第二厚度值, 计算所述第一厚度值和所述第二厚度值的差值 的步骤中, 所述第一位置与所述第二位置沿所述涂布方向的距离不超 过 10mm。
[权利要求 10] 如权利要求 6所述的光学膜片的制作方法, 所述获取所述涂布材料沿 所述涂布方向的第一位置的第一厚度值以及区别于所述第一位置的第 二位置的第二厚度值, 计算所述第一厚度值和所述第二厚度值的差值 的步骤中, 所述第一位置与所述第二位置沿所述涂布方向的距离不超 过 5mm。
[权利要求 11] 如权利要求 6所述的光学膜片的制作方法, 所述预设值设置为 0.05um
[权利要求 12] 如权利要求 6所述的光学膜片的制作方法, 所述清理所述涂布机的涂 布头上的凝结物的步骤包括, 将所述涂布头浸入清洗液中进行超声波 清洗。
[权利要求 13] 如权利要求 12所述的光学膜片的制作方法, 所述清洗液采用丙二醇甲 醚醋酸酯溶液。
[权利要求 14] 如权利要求 6所述的光学膜片的制作方法, 所述的清理所述涂布机的 涂布头上的凝结物的步骤在涂布机停机状态下进行, 待所述涂布头上 的凝结物清理完毕, 重新开启所述涂布机, 并将清理后的基材重新投 入至所述沿涂布方向在基材的表面涂上涂布材料的步骤。
[权利要求 15] 如权利要求 6所述的光学膜片的制作方法, 在所述的清理所述涂布机 的涂布头上的凝结物的步骤中, 采用显影液或光阻剥膜液清洗掉所述 基材上的涂布材料, 待所述涂布头上的凝结物清理完毕, 重新开启所 述涂布机, 并将清理后的基材重新投入至所述沿涂布方向在基材的表 面涂上涂布材料的步骤。
[权利要求 16] 如权利要求 6所述的光学膜片的制作方法, 所述对涂布材料曝光显影 和进行第二次固化处理的步骤包括:
对所述基材上的涂布材料进行曝光处理;
对所述基材上的涂布材料进行显影处理; 以及
对所述基材表面的涂布材料进行第二次固化处理。
[权利要求 17] 如权利要求 6所述的光学膜片的制作方法, 所述涂布材料为光阻材料
[权利要求 18] 如权利要求 17所述的光学膜片的制作方法, 对所述基材表面的涂布材 料进行第一次固化处理的步骤中, 采用烤炉对涂有涂布材料的基材进 行预烤, 烘干至去除所述光阻材料中的 80%的溶剂。
[权利要求 19] 如权利要求 16所述的光学膜片的制作方法, 对所述基材表面的涂布材 料进行第二次固化处理的步骤中, 使所述基材表面的的涂布材料完全 固化。
PCT/CN2018/111910 2018-09-14 2018-10-25 涂布头凝结物的检测方法及光学膜片的制作方法 WO2020052009A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/338,679 US10996563B2 (en) 2018-09-14 2018-10-25 Method for detecting coagula on coater head and method for fabricating optical diaphragm

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811072570.6A CN108917580B (zh) 2018-09-14 2018-09-14 涂布头凝结物的检测方法及滤光片的生产工艺
CN201811072570.6 2018-09-14

Publications (1)

Publication Number Publication Date
WO2020052009A1 true WO2020052009A1 (zh) 2020-03-19

Family

ID=64408897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111910 WO2020052009A1 (zh) 2018-09-14 2018-10-25 涂布头凝结物的检测方法及光学膜片的制作方法

Country Status (2)

Country Link
CN (1) CN108917580B (zh)
WO (1) WO2020052009A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109556679A (zh) * 2019-01-23 2019-04-02 尹贤龙 一种底泥厚度变化在线监测装置及方法
CN112518849A (zh) * 2020-11-10 2021-03-19 四川羽玺新材料股份有限公司 光学级pet离型膜分切工艺质量监控系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201259416Y (zh) * 2008-02-04 2009-06-17 上海永超真空镀铝有限公司 在线测定镀铝薄膜微涂层厚度变化测量的装置
CN101504274A (zh) * 2008-02-04 2009-08-12 上海永超真空镀铝有限公司 在线测定镀铝薄膜微涂层厚度变化测量的装置
CN102054721A (zh) * 2009-11-05 2011-05-11 中芯国际集成电路制造(上海)有限公司 检测半导体晶圆表面涂层的涂布情况的方法及装置
CN202802938U (zh) * 2012-08-09 2013-03-20 深圳市浩能科技有限公司 一种涂布机过滤装置
CN103895346A (zh) * 2014-04-04 2014-07-02 深圳市华星光电技术有限公司 一种喷墨涂布装置及喷涂方法
CN104307707A (zh) * 2014-09-19 2015-01-28 合肥乐凯科技产业有限公司 一种改善薄膜涂布表观质量的方法
CN104344791A (zh) * 2013-08-01 2015-02-11 原力精密仪器股份有限公司 微观几何形貌量测系统
CN106840052A (zh) * 2017-03-21 2017-06-13 广州中国科学院沈阳自动化研究所分所 极片涂层厚度在线检测系统及检测方法
CN106979761A (zh) * 2016-01-18 2017-07-25 中国电力科学研究院 一种锂离子电池内部各层级厚度及表面形貌的检测方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104056753A (zh) * 2013-03-20 2014-09-24 新世纪光电股份有限公司 喷涂装置
CN104808586A (zh) * 2015-04-20 2015-07-29 京东方科技集团股份有限公司 涂布机
CN207405228U (zh) * 2016-06-02 2018-05-25 鄂尔多斯市源盛光电有限责任公司 一种蒸发源系统
CN107541293A (zh) * 2016-06-23 2018-01-05 通用电气公司 形成有铬涂层的气化元件及用铬涂层保护气化元件的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201259416Y (zh) * 2008-02-04 2009-06-17 上海永超真空镀铝有限公司 在线测定镀铝薄膜微涂层厚度变化测量的装置
CN101504274A (zh) * 2008-02-04 2009-08-12 上海永超真空镀铝有限公司 在线测定镀铝薄膜微涂层厚度变化测量的装置
CN102054721A (zh) * 2009-11-05 2011-05-11 中芯国际集成电路制造(上海)有限公司 检测半导体晶圆表面涂层的涂布情况的方法及装置
CN202802938U (zh) * 2012-08-09 2013-03-20 深圳市浩能科技有限公司 一种涂布机过滤装置
CN104344791A (zh) * 2013-08-01 2015-02-11 原力精密仪器股份有限公司 微观几何形貌量测系统
CN103895346A (zh) * 2014-04-04 2014-07-02 深圳市华星光电技术有限公司 一种喷墨涂布装置及喷涂方法
CN104307707A (zh) * 2014-09-19 2015-01-28 合肥乐凯科技产业有限公司 一种改善薄膜涂布表观质量的方法
CN106979761A (zh) * 2016-01-18 2017-07-25 中国电力科学研究院 一种锂离子电池内部各层级厚度及表面形貌的检测方法
CN106840052A (zh) * 2017-03-21 2017-06-13 广州中国科学院沈阳自动化研究所分所 极片涂层厚度在线检测系统及检测方法

Also Published As

Publication number Publication date
CN108917580A (zh) 2018-11-30
CN108917580B (zh) 2020-07-07

Similar Documents

Publication Publication Date Title
WO2020052009A1 (zh) 涂布头凝结物的检测方法及光学膜片的制作方法
US9480938B2 (en) Method for using acoustic waves for purging filters in semiconductor manufacturing equipment
WO2023221374A1 (zh) 一种雾化芯的制备方法及雾化芯
CN101271275A (zh) 一种喇叭网的蚀刻法生产工艺
WO2019200859A1 (zh) 一种表面耐刮擦性能的测试方法
JP4166465B2 (ja) 塗布装置、塗布方法、および塗布基板の製造方法
US10996563B2 (en) Method for detecting coagula on coater head and method for fabricating optical diaphragm
CN207197465U (zh) 一种丝网印刷用网版检测装置
US20090061074A1 (en) Technology of detecting abnormal operation of plasma process
CN108330449B (zh) 磨砂面上的高漫反射铝膜及其制备方法
CN108554669A (zh) 一种喷嘴、涂布机及涂布方法
CN103868766A (zh) 一种扫描电镜测长用长度标准样品的制备方法
CN204694989U (zh) 负压干燥丝印网版的烘干装置
US20210396608A1 (en) Method of manufacture of a strain gage or flexible polyimide-based resistor
CN101059501B (zh) 化验采集板的制备方法
JP2001269606A (ja) 塗布装置
JP2004358380A (ja) 塗布装置
TW201427918A (zh) 玻璃再生處理方法及再生玻璃基板暨使用其之光罩坯料與光罩
CN103968881A (zh) 洁净室自净时间测试装置及方法
TWI832913B (zh) 光學形貌量測之方法
CN211416815U (zh) 一种陶瓷彩绘用旋转台
CN101881926B (zh) 玻璃基片镀sio2的掩膜体的方法
CN107991798B (zh) 取向膜的检验方法及系统
CN210377028U (zh) 基于图像识别的涂胶显影设备
RU2370799C1 (ru) Способ изготовления прецизионных оптических шкал обратной фотолитографией

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18933300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18933300

Country of ref document: EP

Kind code of ref document: A1