WO2020050348A1 - 繊維状セルロース含有物、フラッフ化セルロース及び組成物 - Google Patents

繊維状セルロース含有物、フラッフ化セルロース及び組成物 Download PDF

Info

Publication number
WO2020050348A1
WO2020050348A1 PCT/JP2019/034906 JP2019034906W WO2020050348A1 WO 2020050348 A1 WO2020050348 A1 WO 2020050348A1 JP 2019034906 W JP2019034906 W JP 2019034906W WO 2020050348 A1 WO2020050348 A1 WO 2020050348A1
Authority
WO
WIPO (PCT)
Prior art keywords
fibrous cellulose
cellulose
mass
containing material
group
Prior art date
Application number
PCT/JP2019/034906
Other languages
English (en)
French (fr)
Inventor
裕一 野口
孟晨 趙
雄右 轟
Original Assignee
王子ホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王子ホールディングス株式会社 filed Critical 王子ホールディングス株式会社
Priority to US17/274,004 priority Critical patent/US20210253744A1/en
Priority to EP19857424.6A priority patent/EP3848504B1/en
Priority to JP2020541289A priority patent/JP7255598B2/ja
Priority to CN201980058251.6A priority patent/CN112654746B/zh
Priority to KR1020217006997A priority patent/KR20210039466A/ko
Publication of WO2020050348A1 publication Critical patent/WO2020050348A1/ja

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/002Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • C08B15/05Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur
    • C08B15/06Derivatives containing elements other than carbon, hydrogen, oxygen, halogens or sulfur containing nitrogen, e.g. carbamates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/24Naturally occurring macromolecular compounds, e.g. humic acids or their derivatives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/261Synthetic macromolecular compounds obtained by reactions only involving carbon to carbon unsaturated bonds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28023Fibres or filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/2803Sorbents comprising a binder, e.g. for forming aggregated, agglomerated or granulated products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B15/00Preparation of other cellulose derivatives or modified cellulose, e.g. complexes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B5/00Preparation of cellulose esters of inorganic acids, e.g. phosphates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/08Cellulose derivatives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/001Modification of pulp properties
    • D21C9/002Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives
    • D21C9/005Modification of pulp properties by chemical means; preparation of dewatered pulp, e.g. in sheet or bulk form, containing special additives organic compounds
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H11/00Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only
    • D21H11/16Pulp or paper, comprising cellulose or lignocellulose fibres of natural origin only modified by a particular after-treatment
    • D21H11/20Chemically or biochemically modified fibres
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21HPULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
    • D21H17/00Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
    • D21H17/20Macromolecular organic compounds
    • D21H17/33Synthetic macromolecular compounds
    • D21H17/34Synthetic macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D21H17/35Polyalkenes, e.g. polystyrene

Definitions

  • the present invention relates to a fibrous cellulose-containing material, a fluffed cellulose and a composition.
  • fibrous cellulose (pulp) derived from wood has been widely used mainly for absorbent articles and paper products.
  • Patent Document 1 discloses an absorbent article including a liquid-permeable top sheet, a liquid-impermeable back sheet, an absorber, and a nonwoven sheet for the absorber, and a nonwoven sheet for the absorber. Contains pulp and hydrophilic fibers.
  • Patent Literature 1 discloses an embodiment in which fluff pulp, which is considered to have a higher ability to absorb bodily fluids and the like, is contained in an absorber.
  • Patent Document 2 discloses a coating comprising a porous cellulose layer containing at least one kind of cellulose selected from the group consisting of lightly beaten cellulose pulp, mercerized cellulose and fluffed cellulose, and internally added with a porous filler.
  • a recording medium is disclosed.
  • fluffed cellulose also called fluff pulp
  • the fluffed cellulose is obtained by fluffing a cellulose fiber, and is a fluffy or fluffy cellulose fiber.
  • Fluffed cellulose can quickly absorb and diffuse liquids by capillary action.
  • fluffed cellulose has been mainly used for the purpose of promoting the absorption of aqueous liquids, and at present, it has not been studied to modify the surface properties of fluffed cellulose.
  • the present inventors have studied the purpose of modifying the surface of fluffed cellulose to provide a fluffed cellulose having a completely new property and a fibrous cellulose-containing material capable of realizing the same.
  • the present inventors introduce an anionic group into fibrous cellulose, and further introduce an organic onium ion having a predetermined structure as a counter ion of the anionic group.
  • an organic onium ion having a predetermined structure as a counter ion of the anionic group.
  • fluffed cellulose having good fluffing properties and hydrophobicity and a fibrous cellulose-containing material capable of realizing the fluffed cellulose can be obtained.
  • the present invention has the following configuration.
  • a fibrous cellulose-containing material containing a fibrous cellulose having an anionic group The yield of the fibrous cellulose-containing material measured by the following measurement method is 50% by mass or more,
  • the fibrous cellulose-containing material has an organic onium ion as a counter ion of the anionic group, The organic onium ion satisfies at least one condition selected from the following (a) and (b): a fibrous cellulose-containing material; (A) containing a hydrocarbon group having 5 or more carbon atoms; (B) total carbon number is 17 or more; (Measuring method) After immersing the fibrous cellulose-containing material in ion-exchanged water for 24 hours, the solid content is adjusted to 20% by mass, and a dispersion treatment is performed for 15 minutes with a high-speed rotating disperser having a peripheral speed of 10 m / s; The liquid is subjected to wet classification on a JIS test sieve having an aperture of 150 ⁇ m, and the yield
  • Retention [mass%] absolute dry mass of fibrous cellulose-containing material remaining on test sieve / absolute dry mass of tested fibrous cellulose-containing material ⁇ 100
  • a fluffed cellulose obtained by fluffing the fibrous cellulose-containing material according to any one of [1] to [4].
  • a fluffed cellulose having a novel property can be provided. Specifically, it is possible to provide a fluffed cellulose having a good fluffing property and a hydrophobic property and a fibrous cellulose-containing material capable of realizing the same.
  • FIG. 1 is a graph showing the relationship between the amount of NaOH added to fibrous cellulose having a phosphate group and the electrical conductivity.
  • FIG. 2 is a graph showing the relationship between the amount of NaOH added to fibrous cellulose having a carboxy group and the electrical conductivity.
  • the present invention relates to a fibrous cellulose-containing material containing a fibrous cellulose having an anionic group.
  • the fibrous cellulose-containing material has an organic onium ion as a counter ion of the anionic group, and the organic onium ion satisfies at least one condition selected from the following (a) and (b).
  • the yield of the fibrous cellulose-containing material measured by the following method is 50% by mass or more.
  • the yield of the fibrous cellulose-containing material measured by the above-described measurement method may be 50% by mass or more, preferably 70% by mass or more, more preferably 80% by mass or more, and 90% by mass or more. More preferably, it is not less than mass%.
  • the upper limit of the yield of the fibrous cellulose-containing material is not particularly limited, and may be 100% by mass.
  • TK Robomix manufactured by Primix using a stirring blade having a radius of 15 mm
  • the obtained dispersion is subjected to wet classification on a JIS test sieve having an aperture of 150 ⁇ m.
  • a shower of ion-exchanged water having a flow rate of 150 mL / sec may be allowed to flow from above the test sieve so that the fibrous cellulose sufficiently spreads on the test sieve.
  • the fibrous cellulose-containing material of the present invention becomes fluffed cellulose having good fluffing properties.
  • the fluffing property can be evaluated by the fluffing recovery rate and the bulk of the fluffed cellulose when the fibrous cellulose-containing material is made into fluffed cellulose.
  • the fluffing property is good when the fluffing recovery rate when fluffing the fibrous cellulose-containing material is high and the bulk of the fluffed cellulose is large.
  • the fluffing recovery rate is a value calculated by the following method.
  • the fibrous cellulose-containing material was diluted to a concentration of 1% by mass with ion-exchanged water, adjusted to have a basis weight of 200 g / m 2 in terms of absolute dry mass, and again filtered under reduced pressure to form a sheet.
  • the sheet is dried under a condition of 30 ° C. and a relative humidity of 40% until a constant weight is obtained to obtain a fibrous cellulose-containing sheet.
  • 1 g (0.005 m 2 ) of the obtained fibrous cellulose-containing sheet is cut off in absolutely dry mass, and fluffing is performed by performing treatment at 20,000 rpm for 20 seconds with a crusher (Labo Mill Surplus) having a capacity of 75 mL.
  • the fibrous cellulose (fluffed cellulose) after the fluff treatment is spread on a test sieve having an aperture of 2 mm ⁇ , gently shaken, and the mass of the fibrous cellulose-containing material that has passed through the mesh is measured. And the fluffing recovery rate is calculated.
  • Fluffization recovery rate [mass%] absolute dry mass of fibrous cellulose-containing material passed through test sieve / absolute dry mass of tested fibrous cellulose-containing material ⁇ 100
  • the fluffing recovery calculated by the above method is preferably 30% by mass or more, more preferably 50% by mass or more, and even more preferably 60% by mass or more. Note that the fluffing recovery rate may be 100% by mass.
  • the bulk of the fluffed cellulose is measured by the following method.
  • the fibrous cellulose-containing material was diluted to a concentration of 1% by mass with ion-exchanged water, adjusted to have a basis weight of 200 g / m 2 in terms of absolute dry mass, and again filtered under reduced pressure to form a sheet.
  • the sheet is dried under a condition of 30 ° C. and a relative humidity of 40% until a constant weight is obtained to obtain a fibrous cellulose-containing sheet.
  • 1 g (0.005 m 2 ) of the obtained fibrous cellulose-containing sheet is cut off in absolutely dry mass, and fluffing is performed by performing treatment at 20,000 rpm for 20 seconds with a crusher (Labo Mill Surplus) having a capacity of 75 mL.
  • the fibrous cellulose (fluffed cellulose) after the fluff treatment is spread on a test sieve having an opening of 2 mm ⁇ , gently shaken, and the fibrous cellulose that has passed through the mesh is placed in a measuring cylinder arranged immediately below the test sieve. After dropping and accumulating a certain volume, the absolute dry mass of the fibrous cellulose occupying the volume is measured to calculate the bulk (mL / g).
  • the bulk of the fluffed cellulose measured by the above method is preferably 5 mL / g or more, more preferably 10 mL / g or more, and even more preferably 20 mL / g or more.
  • the upper limit of the bulk of the fluffed cellulose is not particularly limited, but is preferably 100 mL / g or less.
  • the fibrous cellulose-containing material of the present invention since it has the above-mentioned constitution, it becomes a fluffed cellulose having hydrophobicity.
  • the hydrophobicity of the fluffed cellulose can be evaluated by the degree of sedimentation when water is poured into the fluffed cellulose. Specifically, hydrophobicity can be evaluated by the rate of sedimentation from the water surface after water is poured into the fluffed cellulose by the following method. First, the fibrous cellulose-containing material was diluted to a concentration of 1% by mass with ion-exchanged water, adjusted to have a basis weight of 200 g / m 2 in terms of absolute dry mass, and again filtered under reduced pressure to form a sheet.
  • the sheet is dried under a condition of 30 ° C. and a relative humidity of 40% until a constant weight is obtained to obtain a fibrous cellulose-containing sheet.
  • 1 g (0.005 m 2 ) of the obtained fibrous cellulose-containing sheet is cut off in absolutely dry mass, and fluffing is performed by performing treatment at 20,000 rpm for 20 seconds with a crusher (Labo Mill Surplus) having a capacity of 75 mL. .
  • the fibrous cellulose (fluffed cellulose) after the fluff treatment was spread on a test sieve having a mesh size of 2 mm ⁇ , gently shaken, and the fibrous cellulose passed through the mesh was placed at a position 50 mm immediately below the test sieve. Drop into a container having a diameter of 40 mm ⁇ .
  • Sedimentation rate from water surface [mass%] absolute dry mass of sedimented fibrous cellulose-containing material / (absolute dry mass of sedimented fibrous cellulose-containing material + absolute dry mass of fibrous cellulose-containing material floating on water surface) ⁇ 100
  • the sedimentation rate of the fluffed cellulose calculated by the above method is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less.
  • the sedimentation rate of the fluffed cellulose is particularly preferably 10% by mass or less.
  • the yield when wet classification is performed on a JIS test sieve with a mesh size of 150 ⁇ m may be 50% by mass or more, but the wet classification is performed on a JIS test sieve with a mesh size of 300 ⁇ m.
  • the yield at the time of mixing is preferably 30% by mass or more, more preferably 60% by mass or more, and even more preferably 80% by mass or more.
  • the upper limit of the yield when wet classification is performed on a JIS test sieve having a mesh size of 300 ⁇ m is not particularly limited, but may be 100% by mass.
  • the above-described method was used except that a JIS test sieve with a mesh size of 300 ⁇ m was used instead of the JIS test sieve with a mesh size of 150 ⁇ m. It can be calculated by the same method as the method for measuring the yield when performing wet classification on a JIS test sieve having an opening of 150 ⁇ m.
  • the fact that the yield when performing wet classification on a JIS test sieve having an opening of 150 ⁇ m within the above range means that the fiber width of the fibrous cellulose is equal to or more than a certain value. It means that In addition, the fact that the yield when performing wet classification on a JIS test sieve having an aperture of 300 ⁇ m within the above range means that the fibrous cellulose is a coarser fiber.
  • the fibrous cellulose-containing material of the present invention may be composed of fibrous cellulose or may contain water and the like in addition to fibrous cellulose.
  • the fibrous cellulose-containing material is preferably a solid.
  • the form of the solid body is not particularly limited, and may be, for example, a sheet or a powder.
  • the fibrous cellulose-containing material may be in the form of a paste or tatter containing a solvent such as water.
  • the fibrous cellulose-containing material is preferably in the form of powder.
  • the granular material is a powdery and / or granular substance. Note that the powdery substance is smaller than the granular substance.
  • a powdery substance refers to fine particles having a particle diameter of 1 nm or more and less than 0.1 mm
  • a granular substance refers to particles having a particle diameter of 0.1 mm to 10 mm, but is not particularly limited.
  • a granular material may be called a powder.
  • the particle diameter of the granular material in the present specification can be measured and calculated using a laser diffraction method. Specifically, it is a value measured using a laser diffraction / scattering type particle size distribution analyzer (Microtrac 3300EXII, Nikkiso Co., Ltd.).
  • the solid content concentration of the fibrous cellulose-containing material is preferably 40% by mass or more, more preferably 60% by mass or more, and preferably 80% by mass or more based on the total mass of the fibrous cellulose-containing material. Is more preferable.
  • the solid content of the fibrous cellulose-containing material may be 100% by mass.
  • the fibrous cellulose-containing material of the present invention contains fibrous cellulose having an anionic group.
  • the fiber width of the fibrous cellulose is preferably larger than 1000 nm.
  • the fibrous cellulose-containing material may contain fine fibrous cellulose having a fiber width of 1000 nm or less.
  • the weight ratio of the fibrous cellulose having a fiber width larger than 1000 nm is determined by the fiber width. Is preferably larger than the weight ratio of the fibrous cellulose having a thickness of 1000 nm or less.
  • the proportion of the weight occupied by the fibrous cellulose having a fiber width of more than 1000 nm is greater than the proportion of the weight occupied by the fibrous cellulose having a fiber width of 1000 nm or less.
  • a fibrous cellulose having substantially no fibrous cellulose of 1000 nm or less before micronization was tested, and a fibrous cellulose suspension having a constant concentration C was observed with an optical microscope.
  • the area S occupied by cellulose fibers having a fiber width larger than 1000 nm observed in a certain area S 0 in the visual field is measured. At this time, the next value R 0 is calculated.
  • R 0 S / S 0 / C
  • R 0 at this time is defined as R.
  • C at the time of measurement has the same concentration.
  • the meaning of “at least” is derived from the fact that “thickness” of the fiber is not considered in “area” observed with an optical microscope. That is, if the thickness of the fiber can be ideally converted into an area, R 0 and R take larger values (hereinafter, these are expressed as true R 0 and true R).
  • the fiber width of the fibrous cellulose can be measured using, for example, a Kayani fiber length measuring instrument (model FS-200) manufactured by Kayani Automation or an optical microscope. It can be measured using a scanning microscope (SEM), a transmission electron microscope (TEM), an atomic force microscope (AFM) or the like according to the width of the fiber.
  • SEM scanning microscope
  • TEM transmission electron microscope
  • AFM atomic force microscope
  • a pulp aqueous suspension having a concentration of 0.05% by mass or more and 0.1% by mass or less is prepared, and the suspension is cast on a carbon film-coated grid that has been subjected to a hydrophilic treatment to prepare a TEM observation sample.
  • an SEM image of the surface cast on the glass may be observed.
  • Observation with an electron microscope image is performed at a magnification of 1,000 times, 5000 times, 10,000 times, or 50,000 times depending on the width of the constituent fibers.
  • the sample, observation conditions and magnification are adjusted so as to satisfy the following conditions.
  • One straight line X is drawn at an arbitrary position in the observation image, and 20 or more fibers intersect the straight line X.
  • a straight line Y perpendicular to the straight line is drawn in the same image, and 20 or more fibers intersect the straight line Y.
  • the width of the fiber intersecting with the straight lines X and Y is visually read. In this way, at least three or more sets of images of the non-overlapping surface portion are observed, and the width of the fiber intersecting the straight line X and the straight line Y is read for each image.
  • the fiber length of the fibrous cellulose contained in the fibrous cellulose-containing material of the present invention is not particularly limited, but is preferably 10 ⁇ m or more, more preferably 100 ⁇ m or more, and even more preferably 500 ⁇ m or more. Further, the fiber length of the fibrous cellulose is preferably 10000 ⁇ m or less, more preferably 5000 ⁇ m or less, and still more preferably 3000 ⁇ m or less. By setting the fiber length within the above range, a fibrous cellulose-containing material having excellent fluffing properties can be easily obtained.
  • the fiber length of the fibrous cellulose is measured using, for example, a Kayani fiber length measuring instrument (model FS-200) manufactured by Kayani Automation or an optical microscope. In addition, it can also be measured using a scanning microscope (SEM), a transmission electron microscope (TEM), an atomic force microscope (AFM) or the like according to the length of the fiber.
  • the fibrous cellulose preferably has an I-type crystal structure.
  • the proportion of the type I crystal structure in the fibrous cellulose is, for example, preferably 30% or more, more preferably 40% or more, still more preferably 50% or more, and preferably 70% or more. Most preferred.
  • the crystallinity can be determined by measuring the X-ray diffraction profile and using the pattern by a conventional method (Seagal et al., Textile Research Journal, Vol. 29, p. 786, 1959).
  • the axial ratio (fiber length / fiber width) of fibrous cellulose is not particularly limited, but is, for example, preferably 5 or more and 5000 or less, and more preferably 10 or more and 1000 or less.
  • the axial ratio is equal to or more than the lower limit, a sheet containing fibrous cellulose can be easily formed. It is preferable that the axial ratio be equal to or less than the above upper limit, for example, when handling fibrous cellulose as an aqueous dispersion, handling such as dilution becomes easy.
  • the supernatant yield of fibrous cellulose measured by the following measurement method is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 20% by mass or less.
  • the supernatant yield of fibrous cellulose may be 0% by mass.
  • fibrous cellulose is dispersed in ion-exchanged water so as to have a solid content concentration of 0.1% by mass to obtain a dispersion. This dispersion is centrifuged at 12000 G for 10 minutes using a cooling high-speed centrifuge (H-2000B, manufactured by Kokusan).
  • the obtained supernatant is collected, the solid content concentration of the supernatant is measured, and the supernatant yield of the cellulose fiber is calculated based on the following formula.
  • Supernatant yield (mass%) of fibrous cellulose solid content of supernatant (mass%) / 0.1 ⁇ 100
  • the supernatant yield after centrifugation is an index of the degree of fineness of the fibrous cellulose, and that the supernatant yield of the fibrous cellulose is within the above range indicates that the fiber width of the fibrous cellulose is within the above range. Within the above preferred range, meaning that the fibrous cellulose is a so-called coarse fiber.
  • Fibrous cellulose has an anionic group.
  • the anionic group include a phosphate group or a substituent derived from a phosphate group (sometimes simply referred to as a phosphate group), a carboxy group or a substituent derived from a carboxy group (sometimes referred to simply as a carboxy group), And at least one selected from a sulfone group or a substituent derived from a sulfone group (which may be simply referred to as a sulfone group), and preferably at least one selected from a phosphate group and a carboxy group. More preferably, it is particularly preferably a phosphate group.
  • a phosphate group has a larger number of anionic groups per molecule than a carboxy group or the like, and thus may have more organic onium ions as counterions. Thereby, the hydrophobicity of the fluffed cellulose obtained by fluffing the fibrous cellulose-containing material can be more effectively increased.
  • the phosphate group or a substituent derived from a phosphate group is, for example, a substituent represented by the following formula (1), and is generalized as a phosphorus oxo acid group or a substituent derived from a phosphorus oxo acid.
  • the phosphate group is a divalent functional group corresponding to, for example, phosphoric acid obtained by removing a hydroxy group. Specifically, it is a group represented by —PO 3 H 2 .
  • the substituent derived from the phosphate group includes substituents such as a salt of the phosphate group and a phosphate group.
  • the substituent derived from the phosphate group may be contained in the fibrous cellulose as a group in which the phosphate group is condensed (for example, a pyrophosphate group).
  • the phosphate group may be, for example, a phosphite group (phosphonate group), and the substituent derived from the phosphate group may be a salt of a phosphite group, a phosphite ester group, or the like. Is also good.
  • R represents a hydrogen atom, a saturated-straight hydrocarbon group, a saturated-branched hydrocarbon group, a saturated-cyclic hydrocarbon group, an unsaturated-straight hydrocarbon group, or an unsaturated-branched hydrocarbon group, respectively.
  • Examples of the saturated-linear hydrocarbon group include a methyl group, an ethyl group, an n-propyl group, and an n-butyl group, but are not particularly limited.
  • Examples of the saturated-branched hydrocarbon group include an i-propyl group and a t-butyl group, but are not particularly limited.
  • Examples of the saturated-cyclic hydrocarbon group include a cyclopentyl group and a cyclohexyl group, but are not particularly limited.
  • Examples of the unsaturated-linear hydrocarbon group include a vinyl group and an allyl group, but are not particularly limited.
  • Examples of the unsaturated-branched hydrocarbon group include an i-propenyl group and a 3-butenyl group, but are not particularly limited.
  • Examples of the unsaturated-cyclic hydrocarbon group include a cyclopentenyl group and a cyclohexenyl group, but are not particularly limited.
  • Examples of the aromatic group include a phenyl group and a naphthyl group, but are not particularly limited.
  • a functional group in which at least one of functional groups such as a carboxy group, a hydroxy group, or an amino group is added or substituted to a main chain or a side chain of the above various hydrocarbon groups is not particularly limited.
  • the number of carbon atoms constituting the main chain of R is not particularly limited, but is preferably 20 or less, more preferably 10 or less.
  • ⁇ b + is a monovalent or higher cation composed of an organic or inorganic substance.
  • the monovalent or higher cation composed of an organic substance include aliphatic ammonium and aromatic ammonium, and at least a part of ⁇ b + is an organic onium ion described later.
  • the monovalent or higher cation composed of an inorganic substance include ions of alkali metals such as sodium, potassium, and lithium, and cations of divalent metals such as calcium and magnesium, and hydrogen ions. There is no particular limitation. These can be applied alone or in combination of two or more.
  • the monovalent or higher cation composed of an organic or inorganic substance is preferably, but not particularly limited to, sodium or potassium ions that are less likely to yellow when a ⁇ -containing fiber material is heated and are easily industrially used.
  • the amount of anionic group introduced into the fibrous cellulose is, for example, preferably 0.10 mmol / g or more per 1 g (mass) of the fibrous cellulose, more preferably 0.20 mmol / g or more. It is more preferably at least 0.50 mmol / g, particularly preferably at least 1.00 mmol / g.
  • the amount of the anionic group introduced into the fibrous cellulose is, for example, preferably 5.20 mmol / g or less, more preferably 3.65 mmol / g or less, per 1 g (mass) of the fibrous cellulose. More preferably, it is not more than 00 mmol / g.
  • the unit mmol / g indicates the amount of the substituent per 1 g of the mass of fibrous cellulose when the counter ion of the anionic group is a hydrogen ion (H + ).
  • the amount of anionic group introduced into fibrous cellulose can be measured, for example, by conductivity titration.
  • the amount of introduction is measured by determining a change in conductivity while adding an alkali such as an aqueous sodium hydroxide solution to a slurry containing fine fibrous cellulose.
  • fibrous cellulose is refined prior to the measurement by the conductivity titration method. The fibrous cellulose is refined by treating a 2% by mass fibrous cellulose dispersion with a high-pressure homogenizer at a pressure of 200 MPa six times.
  • FIG. 1 is a graph showing the relationship between the amount of NaOH dropped and the electrical conductivity of fibrous cellulose having finely divided phosphate groups.
  • the amount of phosphate groups introduced into fibrous cellulose is measured, for example, as follows. First, a slurry containing fine fibrous cellulose is treated with a strongly acidic ion exchange resin. Next, a change in electric conductivity is observed while adding an aqueous solution of sodium hydroxide, and a titration curve as shown in FIG. 1 is obtained. As shown in FIG. 1, the electrical conductivity sharply decreases at first (hereinafter, referred to as “first region”). Thereafter, the conductivity starts to slightly increase (hereinafter, referred to as “second region”).
  • the increment of the conductivity increases (hereinafter, referred to as “third region”).
  • the boundary point between the second region and the third region is defined as the point at which the amount of change in the conductivity twice (ie, the increment (slope) of the conductivity) becomes maximum.
  • three regions appear in the titration curve.
  • the amount of alkali required in the first region is equal to the amount of strongly acidic groups in the slurry used for titration
  • the amount of alkali required in the second region is equal to the amount of weakly acidic groups in the slurry used for titration. Become equal.
  • the phosphate group introduction amount (or phosphate group amount) or the substituent group introduction amount (or substituent amount) indicates a strongly acidic group amount. Therefore, the value obtained by dividing the alkali amount (mmol) required in the first region of the titration curve obtained above by the solid content (g) in the slurry to be titrated is the phosphate group introduction amount (mmol / mmol). g).
  • FIG. 2 is a graph showing the relationship between the amount of NaOH dropped and the electrical conductivity of fibrous cellulose having a finely divided carboxy group.
  • the amount of carboxy groups introduced into fibrous cellulose is measured, for example, as follows. First, a slurry containing fine fibrous cellulose is treated with a strongly acidic ion exchange resin. Next, a change in electric conductivity is observed while adding an aqueous solution of sodium hydroxide, and a titration curve as shown in FIG. 2 is obtained. As shown in FIG. 2, the titration curve shows a first region where the increment (slope) of the conductivity becomes substantially constant after the decrease in the electric conductivity, and thereafter, the increment (slope) of the conductivity increases. It is divided into a second area.
  • the boundary point between the first region and the second region is defined as a point at which the amount of change in the conductivity twice (in other words, the increment (slope) of the conductivity becomes maximum).
  • the value obtained by dividing the amount of alkali (mmol) required in the first region of the titration curve by the solid content (g) in the slurry containing fine fibrous cellulose to be titrated is the amount of carboxy group introduced ( mmol / g).
  • the amounts of the phosphate groups and carboxy groups are values when the counter ion is a hydrogen ion (H + ).
  • the counter ion is a hydrogen ion (H + ).
  • acid treatment or the like is performed a sufficient number of times to convert the other counter ion to hydrogen ion. The measurement may be performed later.
  • the amount of the substituent may be lower than it should be. It is desirable to titrate the aqueous sodium solution by 50 ⁇ L every 30 seconds.
  • the denominator is converted into the mass of fibrous cellulose when the cation C is a counter ion.
  • the amount of carboxy groups of the fibrous cellulose having the cation C as a counter ion (hereinafter, the amount of carboxy groups (C type)) can be determined. That is, the carboxy group introduction amount is calculated by the following formula.
  • Carboxy group introduction amount (C type) carboxy group amount (acid type) / [1+ (W-1) ⁇ (carboxy group amount (acid type)) / 1000]
  • W Formula weight per valence of cation C (eg, 23 for Na, 9 for Al)
  • Fibrous cellulose is produced from a fiber raw material containing cellulose.
  • the fiber material containing cellulose is not particularly limited, but pulp is preferably used because it is easily available and inexpensive.
  • Pulp includes, for example, wood pulp, non-wood pulp, and deinked pulp. Examples of the wood pulp include, but are not particularly limited to, hardwood kraft pulp (LBKP), softwood kraft pulp (NBKP), sulfite pulp (SP), dissolved pulp (DP), soda pulp (AP), and unbleached kraft pulp (UKP).
  • Non-wood pulp includes, but is not limited to, cotton pulp such as cotton linter and cotton lint, and non-wood pulp such as hemp, straw and bagasse.
  • Examples of the deinked pulp include, but are not particularly limited to, deinked pulp made from waste paper.
  • one of the above-mentioned types may be used alone, or two or more types may be used in combination.
  • wood pulp and deinked pulp are preferable from the viewpoint of availability.
  • chemical pulp is more preferable
  • kraft pulp and sulfite pulp are more preferable, from the viewpoint of decomposing cellulose in the pulp and obtaining fibrous cellulose of long fiber having a large axial ratio.
  • cellulose raw material containing cellulose for example, cellulose contained in ascidians or bacterial cellulose produced by acetic acid bacteria can be used.
  • a fiber formed by a linear nitrogen-containing polysaccharide polymer such as chitin or chitosan can be used in place of the fiber material containing cellulose.
  • the step of producing the fibrous cellulose includes a step of introducing a phosphate group.
  • the phosphate group introduction step at least one compound selected from compounds capable of introducing a phosphate group by reacting with a hydroxyl group of a cellulose-containing fiber material (hereinafter, also referred to as “compound A”) is converted into cellulose. This is a step of acting on a fiber raw material containing. By this step, a phosphate group-introduced fiber is obtained.
  • the reaction between the fiber material containing cellulose and the compound A is performed in the presence of at least one selected from urea and its derivatives (hereinafter, also referred to as “compound B”). You may.
  • the reaction between the fiber raw material containing cellulose and the compound A may be performed in a state where the compound B is not present.
  • a method of mixing compound A and compound B with a dry, wet, or slurry fiber raw material may be mentioned.
  • a fiber material in a dry state or a wet state it is preferable to use a fiber material in a dry state, because of high uniformity of the reaction.
  • the form of the fiber raw material is not particularly limited, but is preferably, for example, cotton or a thin sheet.
  • the compound A and the compound B may be added to the fiber material in the form of a powder, a solution dissolved in a solvent, or a state in which the compound A and the compound B are heated to a melting point or higher and melted.
  • the compound A and the compound B may be added simultaneously to the fiber raw material, may be added separately, or may be added as a mixture.
  • the method of adding the compound A and the compound B is not particularly limited, but when the compound A and the compound B are in a solution state, the fiber raw material may be immersed in the solution, absorbed and then taken out. May be added dropwise to the solution.
  • the necessary amount of compound A and compound B may be added to the fiber raw material, or the excessive amount of compound A and compound B may be added to the fiber raw material, respectively, and then the excess compound A and compound B may be squeezed or filtered. It may be removed.
  • Examples of the compound A used in the present embodiment include a compound having a phosphorus atom and capable of forming an ester bond with cellulose, and specifically, phosphoric acid or a salt thereof, phosphorous acid or a salt thereof, dehydration condensation Examples thereof include phosphoric acid or a salt thereof, phosphoric anhydride (diphosphorus pentoxide), and the like, but are not particularly limited.
  • phosphoric acid those having various purities can be used. For example, 100% phosphoric acid (normal phosphoric acid) and 85% phosphoric acid can be used.
  • Examples of the phosphorous acid include 99% phosphorous acid (phosphonic acid).
  • the dehydrated condensed phosphoric acid is obtained by condensing two or more molecules of phosphoric acid by a dehydration reaction, and examples thereof include pyrophosphoric acid and polyphosphoric acid.
  • examples of the phosphate, phosphite, and dehydrated condensed phosphate include phosphoric acid, lithium salt, sodium salt, potassium salt, and ammonium salt of phosphoric acid or dehydrated condensed phosphoric acid. It can be the sum.
  • phosphoric acid, phosphoric acid, phosphoric acid from the viewpoint of high efficiency of introduction of the phosphate group, easier to improve the defibration efficiency in the defibration step described later, low cost, and industrially applicable
  • a sodium salt, a potassium salt of phosphoric acid, or an ammonium salt of phosphoric acid is preferable, and phosphoric acid, sodium dihydrogen phosphate, disodium hydrogen phosphate, or ammonium dihydrogen phosphate is more preferable.
  • the amount of the compound A added to the fiber raw material is not particularly limited.
  • the amount of the phosphorus atom added to the fiber raw material (absolute dry mass) is 0.5% by mass or more. It is preferably 100% by mass or less, more preferably 1% by mass or more and 50% by mass or less, further preferably 2% by mass or more and 30% by mass or less.
  • the amount of the phosphorus atom added to the fiber raw material within the above range, the yield of fibrous cellulose can be further improved.
  • the amount of phosphorus atoms added to the fiber raw material to be equal to or less than the above upper limit, the effect of improving the yield and the cost can be balanced.
  • the compound B used in this embodiment is at least one selected from urea and its derivatives as described above.
  • Compound B includes, for example, urea, biuret, 1-phenylurea, 1-benzylurea, 1-methylurea, 1-ethylurea and the like.
  • the compound B is preferably used as an aqueous solution.
  • the amount of the compound B to be added to the fiber raw material is not particularly limited, but is, for example, preferably 1% by mass or more and 500% by mass or less, more preferably 10% by mass or more and 400% by mass or less, More preferably, it is 100% by mass or more and 350% by mass or less.
  • amides or amines may be included in the reaction system.
  • the amide include formamide, dimethylformamide, acetamide, dimethylacetamide and the like.
  • amines include methylamine, ethylamine, trimethylamine, triethylamine, monoethanolamine, diethanolamine, triethanolamine, pyridine, ethylenediamine, hexamethylenediamine, and the like. Among these, it is known that triethylamine particularly works as a good reaction catalyst.
  • the phosphoric acid group introduction step it is preferable to add or mix the compound A or the like to the fiber raw material and then perform a heat treatment on the fiber raw material.
  • the heat treatment temperature it is preferable to select a temperature at which a phosphate group can be efficiently introduced while suppressing the thermal decomposition and hydrolysis of the fiber.
  • the heat treatment temperature is, for example, preferably from 50 ° C. to 300 ° C., more preferably from 100 ° C. to 250 ° C., and even more preferably from 130 ° C. to 200 ° C.
  • equipment having various heat media can be used for the heat treatment, for example, a stirring drying apparatus, a rotary drying apparatus, a disk drying apparatus, a roll heating apparatus, a plate heating apparatus, a fluidized bed drying apparatus, an air current A drying device, a reduced-pressure drying device, an infrared heating device, a far-infrared heating device, and a microwave heating device can be used.
  • the compound A is added to a thin sheet-form fiber material by impregnation or the like, and then the fiber material and the compound A are heated while kneading or stirring with a kneader or the like.
  • the concentration unevenness of the compound A in the fiber raw material and more uniformly introduce the phosphate group to the surface of the cellulose fiber contained in the fiber raw material.
  • the dissolved compound A is attracted to the water molecules by the surface tension and moves to the fiber material surface similarly (that is, the concentration unevenness of the compound A decreases). It can be considered that this is caused by the fact that it can be suppressed.
  • the heating device used for the heat treatment always generates, for example, the water retained by the slurry and the water generated by the dehydration condensation (phosphate esterification) reaction between compound A and the hydroxyl group contained in cellulose or the like in the fiber material. It is preferable that the device can be discharged outside the device system. As such a heating device, for example, an air-blowing oven or the like can be mentioned. By constantly discharging the water in the system, it is possible to suppress the hydrolysis reaction of the phosphate ester bond, which is the reverse reaction of the phosphorylation, and also to suppress the acid hydrolysis of the sugar chains in the fiber. it can. For this reason, it is possible to obtain fibrous cellulose having a high axial ratio.
  • the time of the heat treatment is, for example, preferably from 1 second to 300 minutes after water is substantially removed from the fiber raw material, more preferably from 1 second to 1000 seconds, and more preferably from 10 seconds to 800 seconds. Is more preferable.
  • the amount of the phosphate group introduced can be set in a preferable range.
  • the phosphate group introduction step may be performed at least once, but may be repeated twice or more. By performing the phosphate group introduction step twice or more, a large number of phosphate groups can be introduced into the fiber raw material.
  • a case where the phosphate group introduction step is performed twice is exemplified.
  • the amount of phosphate groups introduced into the fiber raw material is, for example, preferably 0.10 mmol / g or more, more preferably 0.20 mmol / g or more, and more preferably 0.50 mmol / g per 1 g (mass) of fibrous cellulose. More preferably, it is more preferably 1.00 mmol / g or more.
  • the amount of the phosphate group introduced into the fiber raw material is, for example, preferably 5.20 mmol / g or less, more preferably 3.65 mmol / g or less, and more preferably 3.00 mmol / g per 1 g (mass) of fibrous cellulose. / G or less.
  • the content of the organic onium ion that can be included in the fibrous cellulose can be set to an appropriate range, thereby fluffing the fibrous cellulose-containing material. Can increase the hydrophobicity of the fluffed cellulose obtained more effectively.
  • the step of producing the fibrous cellulose includes a step of introducing a carboxy group.
  • the carboxy group introduction step has a compound having a carboxylic acid-derived group or a derivative thereof, or a carboxylic acid-derived group, or a carboxylic acid-derived compound or a carboxylic acid-derived group, for a fiber raw material containing cellulose, such as ozone oxidation or oxidation by the Fenton method, or TEMPO oxidation treatment. It is carried out by treating with an acid anhydride of a compound or a derivative thereof.
  • Examples of the compound having a group derived from a carboxylic acid include, but are not particularly limited to, dicarboxylic acid compounds such as maleic acid, succinic acid, phthalic acid, fumaric acid, glutaric acid, adipic acid, and itaconic acid, and citric acid and aconitic acid. Tricarboxylic acid compounds.
  • the derivative of the compound having a group derived from a carboxylic acid is not particularly limited, and examples thereof include an imidized product of an acid anhydride of a compound having a carboxy group and a derivative of an acid anhydride of a compound having a carboxy group.
  • the imidized product of the acid anhydride of the compound having a carboxy group is not particularly limited, and examples thereof include imidized products of dicarboxylic acid compounds such as maleimide, succinimide and phthalic imide.
  • Examples of the acid anhydride of the compound having a group derived from a carboxylic acid include, but are not particularly limited to, maleic anhydride, succinic anhydride, phthalic anhydride, glutaric anhydride, adipic anhydride, and dicarboxylic acid compounds such as itaconic anhydride. Acid anhydrides.
  • the derivative of the acid anhydride of the compound having a group derived from a carboxylic acid is not particularly limited. For example, dimethylmaleic anhydride, diethylmaleic anhydride, and a compound having a carboxy group such as diphenylmaleic anhydride can be used.
  • An acid anhydride in which at least a part of hydrogen atoms are substituted with a substituent such as an alkyl group or a phenyl group is exemplified.
  • the treatment be performed, for example, at a pH of 6 to 8.
  • a neutral TEMPO oxidation process is also called a neutral TEMPO oxidation process.
  • the TEMPO oxidation treatment may be performed at a pH of 10 or more and 11 or less. Such a treatment is also called an alkaline TEMPO oxidation treatment.
  • the alkali TEMPO oxidation treatment can be performed, for example, by adding a nitroxy radical such as TEMPO as a catalyst, sodium bromide as a cocatalyst, and sodium hypochlorite as an oxidizing agent to pulp as a fiber raw material. .
  • the amount of the carboxy group introduced into the fiber raw material varies depending on the type of the substituent.
  • the amount is preferably 0.10 mmol / g or more per 1 g (mass) of fibrous cellulose, It is more preferably at least 0.20 mmol / g, even more preferably at least 0.50 mmol / g, particularly preferably at least 0.90 mmol / g. Further, it is preferably at most 2.5 mmol / g, more preferably at most 2.20 mmol / g, even more preferably at most 2.00 mmol / g.
  • the substituent when it is a carboxymethyl group, it may be 5.8 mmol / g or less per 1 g (mass) of fibrous cellulose.
  • the amount of the carboxy group By setting the amount of the carboxy group to be in the above range, the content of the organic onium ion that can be included in the fibrous cellulose can be set to an appropriate range, thereby fluffing the fibrous cellulose-containing material. The hydrophobicity of the obtained fluffed cellulose can be more effectively increased.
  • a washing step can be performed on the anionic group-introduced fiber as necessary.
  • the washing step is performed, for example, by washing the anionic group-introduced fiber with water or an organic solvent. Further, the cleaning step may be performed after each step described later, and the number of times of cleaning performed in each cleaning step is not particularly limited.
  • the fiber raw material may be subjected to an alkali treatment (neutralization treatment) after the anionic group introduction step.
  • the method of the alkali treatment is not particularly limited, and includes, for example, a method of dipping the anionic group-introduced fiber in an alkaline solution.
  • the alkali compound contained in the alkali solution is not particularly limited, and may be an inorganic alkali compound or an organic alkali compound. In the present embodiment, it is preferable to use, for example, sodium hydroxide or potassium hydroxide as the alkali compound because of high versatility.
  • the solvent contained in the alkaline solution may be either water or an organic solvent. Among them, the solvent contained in the alkaline solution is preferably a polar solvent containing water or a polar organic solvent exemplified by alcohol, and more preferably an aqueous solvent containing at least water.
  • an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide is preferable because of high versatility.
  • the temperature of the alkali solution in the alkali treatment step is not particularly limited, but is preferably, for example, 5 ° C or more and 80 ° C or less, more preferably 10 ° C or more and 60 ° C or less.
  • the immersion time of the anionic group-introduced fiber in the alkali solution in the alkali treatment step is not particularly limited, but is preferably, for example, 5 minutes or more and 30 minutes or less, and more preferably 10 minutes or more and 20 minutes or less.
  • the amount of the alkali solution used in the alkali treatment is not particularly limited, but is, for example, preferably from 100% by mass to 100,000% by mass, and more preferably from 1,000% by mass to 10,000% by mass, based on the absolute dry mass of the anionic group-introduced fiber. Is more preferable.
  • the anionic group-introduced fiber may be washed with water or an organic solvent after the anionic group introduction step and before the alkali treatment step. It is also preferable to provide a washing step after the alkali treatment step.
  • the fibrous raw material may be subjected to an acid treatment after the anionic group introduction step.
  • an anionic group introduction step, an acid treatment and an alkali treatment may be performed in this order.
  • the method of the acid treatment is not particularly limited, and examples thereof include a method of immersing the fiber raw material in an acid-containing acid solution.
  • the concentration of the acidic liquid used is not particularly limited, but is preferably, for example, 10% by mass or less, and more preferably 5% by mass or less.
  • the pH of the acidic liquid used is not particularly limited, but is preferably, for example, 0 or more and 4 or less, and more preferably 1 or more and 3 or less.
  • As the acid contained in the acidic liquid for example, an inorganic acid, a sulfonic acid, a carboxylic acid and the like can be used.
  • Examples of the inorganic acid include sulfuric acid, nitric acid, hydrochloric acid, hydrobromic acid, hydroiodic acid, hypochlorous acid, chlorous acid, chloric acid, perchloric acid, phosphoric acid, boric acid and the like.
  • Examples of the sulfonic acid include methanesulfonic acid, ethanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, trifluoromethanesulfonic acid and the like.
  • Examples of the carboxylic acid include formic acid, acetic acid, citric acid, gluconic acid, lactic acid, oxalic acid, tartaric acid and the like. Among these, it is particularly preferable to use hydrochloric acid or sulfuric acid.
  • the temperature of the acid solution in the acid treatment is not particularly limited, but is preferably, for example, 5 ° C or more and 100 ° C or less, and more preferably 20 ° C or more and 90 ° C or less.
  • the immersion time in the acid solution in the acid treatment is not particularly limited, but is preferably, for example, 5 minutes or more and 120 minutes or less, and more preferably 10 minutes or more and 60 minutes or less.
  • the amount of the acid solution used in the acid treatment is not particularly limited, but is preferably, for example, 100% by mass to 100,000% by mass, and more preferably 1,000% by mass to 10,000% by mass, based on the absolute dry mass of the fiber raw material. Is more preferred.
  • the anionic group-introduced fiber may be subjected to a fibrillation treatment as necessary.
  • the yield of the fibrous cellulose-containing material does not fall below 50% by mass by appropriately selecting the defibration treatment method and defibration treatment conditions.
  • a mode in which the anionic group-introduced fiber is not subjected to defibration is also a preferable mode.
  • a defibration device can be used.
  • the defibrating apparatus is not particularly limited, but includes, for example, a high-speed defibrating machine, a grinder (stone mill-type crusher), a high-pressure homogenizer or an ultra-high-pressure homogenizer, a high-pressure collision-type crusher, a ball mill, a bead mill, a disc refiner, a conical refiner, and a twin-screw.
  • a kneader, a vibration mill, a homomixer under high-speed rotation, an ultrasonic disperser, a beater, or the like can be used.
  • the fibrillation treatment step for example, it is preferable to dilute the anionic group-introduced fiber with a dispersion medium to form a slurry.
  • a dispersion medium one or more kinds selected from water and an organic solvent such as a polar organic solvent can be used.
  • the polar organic solvent is not particularly limited, but, for example, alcohols, polyhydric alcohols, ketones, ethers, esters, aprotic polar solvents, and the like are preferable.
  • the alcohols include methanol, ethanol, isopropanol, n-butanol, isobutyl alcohol and the like.
  • polyhydric alcohols include ethylene glycol, propylene glycol, glycerin and the like.
  • ketones include acetone and methyl ethyl ketone (MEK).
  • the ethers include diethyl ether, tetrahydrofuran, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol mono n-butyl ether, and propylene glycol monomethyl ether.
  • the esters include ethyl acetate, butyl acetate and the like.
  • the aprotic polar solvent include dimethyl sulfoxide (DMSO), dimethylformamide (DMF), dimethylacetamide (DMAc), N-methyl-2-pyrrolidinone (NMP) and the like.
  • the solid content concentration of fibrous cellulose at the time of defibration can be set as appropriate. Further, the slurry obtained by dispersing the anionic group-introduced fiber in the dispersion medium may contain a solid content other than the anionic group-introduced fiber such as urea having hydrogen bonding properties.
  • the fibrous cellulose-containing material of the present invention contains an organic onium ion as a counter ion of the anionic group of the fibrous cellulose.
  • an organic onium ion exists as a counter ion of the fibrous cellulose, but a free organic onium ion may be present in the fibrous cellulose-containing material.
  • the organic onium ion satisfies at least one condition selected from the following (a) and (b).
  • the hydrocarbon group having 5 or more carbon atoms is preferably an alkyl group having 5 or more carbon atoms or an alkylene group having 5 or more carbon atoms, and an alkyl group having 6 or more carbon atoms or an alkylene having 6 or more carbon atoms.
  • the organic onium ion is preferably an organic onium ion having an alkyl group having 5 or more carbon atoms, more preferably an organic onium ion having an alkyl group having 5 or more carbon atoms and having a total carbon number of 17 or more. preferable.
  • the organic onium ion is preferably an organic onium ion represented by the following general formula (A).
  • M is preferably a nitrogen atom or a phosphorus atom
  • R 1 to R 4 each independently represent a hydrogen atom or an organic group.
  • at least one of R 1 to R 4 is preferably an organic group having 5 or more carbon atoms, or the total number of carbon atoms of R 1 to R 4 is preferably 17 or more.
  • M is preferably a nitrogen atom. That is, the organic onium ion is preferably an organic ammonium ion.
  • at least one of R 1 to R 4 is preferably an alkyl group having 5 or more carbon atoms, and the total number of carbon atoms of R 1 to R 4 is preferably 17 or more.
  • Such organic onium ions include, for example, lauryl trimethyl ammonium, cetyl trimethyl ammonium, stearyl trimethyl ammonium, octyl dimethyl ethyl ammonium, lauryl dimethyl ethyl ammonium, didecyl dimethyl ammonium, lauryl dimethyl benzyl ammonium, tributyl benzyl ammonium, methyl tri-n -Octyl ammonium, hexyl ammonium, n-octyl ammonium, dodecyl ammonium, tetradecyl ammonium, hexadecyl ammonium, stearyl ammonium, N, N-dimethyldodecyl ammonium, N, N-dimethyltetradecyl ammonium, N, N-dimethylhexadecyl Ammonium, N, N-dimethyl-n-octadecyl
  • the central element of the organic onium ion is bonded to a total of four groups or hydrogen.
  • the number of bonding groups is less than four, the remaining hydrogen atoms are bonded to form an organic onium ion.
  • N N-didodecylmethylammonium
  • hydrogen is bonded to the other one to form an organic onium ion.
  • the mass ratio of C atoms to O atoms is preferably as large as possible.
  • C / O ratio it is preferable that C / O> 5.
  • the molecular weight of the organic onium ion is preferably 2000 or less, more preferably 1800 or less.
  • the molecular weight of the organic onium ion is preferably 2000 or less, more preferably 1800 or less.
  • the content of the organic onium ion is preferably at least 1.0% by mass, more preferably at least 1.5% by mass, and preferably at least 2.0% by mass based on the total mass of the fibrous cellulose-containing material. Is more preferable. Further, the content of the organic onium ion is preferably at most 90% by mass, more preferably at most 80% by mass, based on the total mass of the fibrous cellulose-containing material.
  • the content of the organic onium ion in the fibrous cellulose-containing material is preferably from 0.5 to 2 times the molar amount of the anionic group contained in the fibrous cellulose, Not limited.
  • the content of the organic onium ion can be measured by tracking atoms typically contained in the organic onium ion. Specifically, the nitrogen atom is measured when the organic onium ion is an ammonium ion, and the phosphorus atom is measured when the organic onium ion is a phosphonium ion.
  • the fibrous cellulose contains a nitrogen atom or a phosphorus atom in addition to the organic onium ion
  • a method of extracting only the organic onium ion for example, performing an extraction operation with an acid, and then measuring the amount of the target atom do it.
  • the organic onium ion is preferably an ion exhibiting hydrophobicity. That is, the fluffed cellulose obtained by fluffing the fibrous cellulose-containing material in the present invention can exhibit hydrophobicity by having an organic onium ion. Further, as a result, the affinity of the fluffed cellulose for an organic solvent and a resin can be increased.
  • the fibrous cellulose-containing material may be composed of fibrous cellulose having an anionic group and an organic onium ion, but may further contain an optional component.
  • Optional components include, for example, surfactants, organic ions, coupling agents, inorganic layered compounds, inorganic compounds, leveling agents, preservatives, defoamers, organic particles, lubricants, antistatic agents, ultraviolet protection agents, Dyes, pigments, stabilizers, magnetic powders, alignment promoters, plasticizers, dispersants, crosslinking agents, binders and the like can be mentioned.
  • the content of the optional component contained in the fibrous cellulose-containing material is preferably 40% by mass or less, and more preferably 30% by mass or less, based on the total mass of the solid content contained in the fibrous cellulose-containing material. Is more preferable, and it is further preferable that it is 20 mass% or less.
  • the present invention also relates to fluffed cellulose obtained by fluffing the above-mentioned fibrous cellulose-containing material.
  • the fluffed cellulose is obtained by fluffing a cellulose fiber, and is a fluffy or fluffy cellulose fiber.
  • the fluffed cellulose of the present invention has good fluffing properties and has hydrophobicity.
  • the fluffing recovery rate of the fluffed cellulose is preferably 50% by mass or more, more preferably 60% by mass or more, and even more preferably 70% by mass or more. Note that the fluffing recovery rate may be 100% by mass.
  • the bulk of the fluffed cellulose is preferably at least 5 mL / g, more preferably at least 10 mL / g, even more preferably at least 20 mL / g.
  • the upper limit of the bulk of the fluffed cellulose is not particularly limited, but is preferably 100 mL / g or less.
  • the hydrophobicity of fluffed cellulose can be evaluated by the degree of sedimentation after pouring ion-exchanged water into fluffed cellulose as described above.
  • the sedimentation rate of the fluffed cellulose is preferably 50% by mass or less, more preferably 40% by mass or less, and even more preferably 30% by mass or less.
  • the sedimentation rate of the fluffed cellulose is particularly preferably 10% by mass or less.
  • the fluffed cellulose is compressible, that is, bulky in a stationary state, but it is also preferable that the volume is reduced by physical compressive force.
  • V i the volume of the fluffed cellulose in a stationary state
  • V f the volume of the fluffed cellulose after compression
  • V i / V f the compression ratio
  • Compressibility of fluffed cellulose is preferably 5 or more, more preferably 10 or more, still more preferably 20 or more, further not less than 50 preferable.
  • the step of producing a fibrous cellulose-containing material includes a step of adding an organic onium ion or a compound that forms an organic onium ion by neutralization to a slurry containing fibrous cellulose having an anionic group.
  • the above-mentioned organic onium ion or a compound that forms an organic onium ion by neutralization is added to the fibrous cellulose-containing slurry obtained in the above-described step.
  • the organic onium ion is preferably added as a solution containing the organic onium ion, and more preferably as an aqueous solution containing the organic onium ion.
  • the aqueous solution containing an organic onium ion usually contains an organic onium ion and a counter ion (anion).
  • a counter ion anion
  • the organic onium ion may be dissolved in water as it is.
  • Organic onium ions may be generated only after neutralization with an acid, for example, dodecylamine.
  • the organic onium ion is obtained by reacting a compound that forms an organic onium ion by neutralization with an acid.
  • the acid used for neutralization include inorganic acids such as hydrochloric acid, sulfuric acid, and nitric acid, and organic acids such as lactic acid, acetic acid, formic acid, and oxalic acid.
  • a compound that forms an organic onium by neutralization may be directly added to the fibrous cellulose-containing slurry, and the anionic group contained in the fibrous cellulose may be used as a counter ion to cause organic onium ionization.
  • the addition amount of the organic onium ion is preferably 2% by mass or more, more preferably 10% by mass or more, even more preferably 50% by mass or more, based on the total mass of the fibrous cellulose. It is particularly preferred that the amount is at least mass%. In addition, it is preferable that the addition amount of an organic onium ion is 1000 mass% or less with respect to the total mass of fibrous cellulose. Further, the number of moles of the organic onium ion to be added is preferably 0.2 times or more, more preferably 0.5 times or more of the value obtained by multiplying the amount (mol number) of the anionic group contained in the fibrous cellulose by the valence. Is more preferable, and it is still more preferable that it is 1.0 times or more. The number of moles of the organic onium ion to be added is preferably 10 times or less the value obtained by multiplying the amount (mol number) of the anionic group contained in the fibrous cellulose by the valence.
  • the fibrous cellulose-containing slurry (concentrate) can be recovered by vacuum filtration of the fibrous cellulose-containing slurry in which the aggregate is generated.
  • the obtained fibrous cellulose aggregate may be washed with ion-exchanged water. By repeatedly washing the fibrous cellulose aggregate with ion-exchanged water, excess organic onium ions and the like contained in the fibrous cellulose aggregate can be removed.
  • the ratio of the N atom content to the P atom content (the value of N / P) in the obtained fibrous cellulose aggregate is preferably larger than 1.2, and more preferably larger than 2.0. preferable.
  • the ratio of the content of N atoms to the content of P atoms in the obtained fibrous cellulose aggregate (value of N / P) is preferably 5.0 or less.
  • the content of P atoms and the content of N atoms in the fibrous cellulose aggregate can be appropriately calculated by elemental analysis.
  • the elemental analysis for example, a trace nitrogen analysis or a molybdenum blue method can be performed after an appropriate pretreatment.
  • the composition other than the fibrous cellulose aggregate contains P atoms and N atoms
  • the composition may be separated from the fibrous cellulose aggregate by an appropriate method, followed by elemental analysis.
  • the solid content concentration of the obtained fibrous cellulose aggregate is preferably 40% by mass or more, more preferably 60% by mass or more, even more preferably 80% by mass or more.
  • the solid content concentration of the fibrous cellulose aggregate may be 100% by mass.
  • the obtained fibrous cellulose aggregate (concentrate) is the fibrous cellulose-containing material in the present invention, and may be further provided with the following post-treatment step.
  • the post-treatment step for example, a drying step, an aging step, a spray drying step, a granulation step, a sheeting step, a heating step, a wetting step, a pulverizing step, a spraying step, a dipping step, a filtration step, a freezing step, a sublimation step, A water squeezing step, a pressure dehydration step, a centrifugal dehydration step, a surface treatment step, and the like can be given.
  • a drying step as a post-treatment step is preferably provided, and the drying step is preferably performed under a constant temperature and humidity condition.
  • the temperature at which the fibrous cellulose aggregate (concentrate) is dried under a constant temperature and humidity condition is preferably 10 ° C or more, more preferably 20 ° C or more.
  • the temperature under constant temperature and humidity conditions is preferably 100 ° C. or lower, more preferably 80 ° C. or lower, and further preferably 60 ° C. or lower.
  • the relative humidity under the condition of constant temperature and constant humidity is preferably 20% or more, and more preferably 30% or more.
  • the relative humidity under constant temperature and humidity conditions is preferably 70% or less.
  • the drying time for drying under constant temperature and humidity conditions is preferably 10 minutes or more, more preferably 20 minutes or more, and further preferably 30 minutes or more.
  • the drying time when drying under constant temperature and humidity conditions is preferably 100 hours or less, and more preferably 80 hours or less.
  • the fluffed cellulose is obtained, for example, by subjecting the above-mentioned fibrous cellulose-containing substance to a crushing treatment. Specifically, it is preferable to obtain a fluffed cellulose by performing a crushing treatment at a rotation speed of 1000 rpm or more and 100000 rpm or less for 0.01 seconds or more and 1000 seconds or less.
  • a laboratory mill surplus manufactured by Osaka Chemical Co., Ltd. can be mentioned.
  • the fibrous cellulose-containing material to be subjected to the crushing treatment is preferably a predetermined sheet material.
  • the fibrous cellulose-containing material is diluted with ion-exchanged water to a concentration of 1% by mass, the basis weight in terms of absolute dry mass is adjusted to 200 g / m 2, and the sheet is again formed under reduced pressure filtration. It is preferable to subject the fibrous cellulose-containing sheet obtained by drying under a condition of 30 ° C. and a relative humidity of 40% to a constant weight to a crushing treatment.
  • fluffing of the fibrous cellulose-containing material may be performed in a dry or semi-dry state using various refiners, or may be performed using a device such as a pin mill or a hammer mill.
  • composition may relate to a composition containing the above-mentioned fibrous cellulose-containing material or the above-mentioned fluffed cellulose and an organic solvent.
  • the organic solvent is not particularly limited, for example, methanol, ethanol, n-propyl alcohol, isopropyl alcohol (IPA), 1-butanol, m-cresol, glycerin, acetic acid, pyridine, tetrahydrofuran (THF), acetone , Methyl ethyl ketone (MEK), ethyl acetate, aniline, N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), N, N-dimethylformamide (DMF), hexane, cyclohexane, benzene, toluene, p-xylene, Examples thereof include diethyl ether chloroform. Among them, N-methyl-2-pyrrolidone (NMP), dimethyl sulfoxide (DMSO), methyl ethyl ketone (MEK), toluene and methanol are preferably used.
  • NMP N-methyl
  • the relative dielectric constant of the organic solvent at 25 ° C. is preferably 60 or less, more preferably 50 or less. Since the fibrous cellulose used in the present invention can exhibit excellent dispersibility even in an organic solvent having a low relative dielectric constant, the relative dielectric constant of the organic solvent at 25 ° C. may be 40 or less. , 30 or less, or 20 or less.
  • the organic solvent of Hansen Solubility Parameter (Hansen solubility parameter, HSP value) .delta.p of, is preferably 5 MPa 1/2 or more 20 MPa 1/2 or less, more preferably 10 MPa 1/2 or more 19 MPa 1/2 or less , further preferably 12 MPa 1/2 or more 18 MPa 1/2 or less.
  • .delta.h a hydrogen bond of the HSP value is preferably 20 MPa 1/2 or less, more preferably 15 MPa 1/2 or less, more preferably 7.5 MPa 1/2 or less.
  • ⁇ h is preferably 1.0 MPa 1/2 or more.
  • the fibrous cellulose-containing material of the present invention is well dispersed in an organic solvent having a hydrogen bond term of the HSP value that is somewhat low.
  • the content of the organic solvent contained in the composition is preferably at least 10% by mass, more preferably at least 50% by mass, based on the total mass of the solid content contained in the composition. Further, the content of the organic solvent is preferably at most 99.9% by mass, more preferably at most 99.0% by mass, based on the total mass of the solid content contained in the composition. More preferably, it is not more than 0.0% by mass.
  • the dispersion medium of the composition is preferably an organic solvent, but may further contain water in addition to the organic solvent.
  • the water content is preferably 10% by mass or less, more preferably 5% by mass or less, even more preferably 1% by mass or less based on the total mass of the composition.
  • the present invention may also relate to a composition containing the above-mentioned fibrous cellulose-containing material or the above-mentioned fluffed cellulose and a resin.
  • the type of the resin is not particularly limited, and examples thereof include a thermoplastic resin and a thermosetting resin.
  • the resin examples include polyolefin resin, acrylic resin, polycarbonate resin, polyester resin, polyamide resin, silicone resin, fluorine resin, chlorine resin, epoxy resin, melamine resin, phenol resin, and polyurethane resin.
  • Resins, diallyl phthalate resins, alcohol resins, cellulose derivatives, and precursors of these resins can be mentioned.
  • a cellulose derivative carboxymethylcellulose, methylcellulose, hydroxyethylcellulose, etc. can be mentioned, for example.
  • the fibrous cellulose-containing material or the fluffed cellulose may contain a resin precursor as a resin.
  • the type of the resin precursor is not particularly limited, and examples thereof include a thermoplastic resin and a thermosetting resin precursor.
  • the precursor of the thermoplastic resin means a monomer or an oligomer having a relatively low molecular weight used for producing the thermoplastic resin.
  • the precursor of the thermosetting resin means a monomer or an oligomer having a relatively low molecular weight that can form a thermosetting resin by causing a polymerization reaction or a cross-linking reaction by the action of light, heat, and a curing agent.
  • the fibrous cellulose-containing material or the fluffed cellulose may further contain a water-soluble polymer as a resin in addition to the above-mentioned resin species.
  • a water-soluble polymer include synthetic water-soluble polymers (eg, carboxyvinyl polymer, polyvinyl alcohol, alkyl methacrylate / acrylic acid copolymer, polyvinylpyrrolidone, sodium polyacrylate, polyethylene glycol, diethylene glycol, triethylene glycol, propylene) Glycol, dipropylene glycol, polypropylene glycol, isoprene glycol, hexylene glycol, 1,3-butylene glycol, polyacrylamide, etc.), thickening polysaccharides (eg, xanthan gum, guar gum, tamarind gum, carrageenan, locust bean gum, quince seed) , Alginic acid, pullulan, carrageenan, pectin, etc.), cationized starch, raw starch
  • the content of the resin contained in the composition is preferably 10% by mass or more, more preferably 50% by mass or more, based on the total mass of the solid content contained in the composition. Further, the content of the resin is preferably 99.9% by mass or less, more preferably 99.0% by mass or less, and more preferably 99.0% by mass or less, based on the total mass of the solid content contained in the composition. More preferably, it is 0% by mass or less.
  • the fibrous cellulose-containing material of the present invention is preferably used for producing fluffed cellulose.
  • the obtained fluffed cellulose is preferably used for mixing an organic solvent or a resin. Particularly, it can be preferably used for mixing with an organic solvent containing a resin component.
  • a molded article or sheet can be produced by removing the organic solvent from the resin composition comprising the fluffed cellulose, the organic solvent and the resin and molding.
  • a resin composition comprising fluffed cellulose, an organic solvent and a resin can also be used as a coating material.
  • the fluffed cellulose may be directly mixed with the resin component by a melt-kneading method or the like. At the time of melt-kneading, the kneaded product may contain water or an organic solvent.
  • the fibrous cellulose-containing material of the present invention may not be used for producing fluffed cellulose.
  • the fibrous cellulose-containing material of the present invention may be used for producing a molded article or sheet without fluffing.
  • a molded article or sheet obtained by molding a fluffed cellulose, a resin composition comprising an organic solvent and a resin, or a fibrous cellulose-containing material, a resin composition comprising an organic solvent and a resin is a reinforcing material, an interior material. It is also suitable for applications such as exterior materials, packaging materials, electronic materials, optical materials, acoustic materials, process materials, transportation equipment members, electronic equipment members, and electrochemical element members.
  • the raw material pulp was phosphorylated as follows. First, a mixed aqueous solution of ammonium dihydrogen phosphate and urea is added to 100 parts by mass (absolute dry mass) of the raw material pulp to obtain 45 parts by mass of ammonium dihydrogen phosphate, 120 parts by mass of urea, and 150 parts by mass of water. To obtain a chemical-impregnated pulp. Next, the obtained chemical-impregnated pulp was heated with a hot air drier at 165 ° C. for 200 seconds to introduce a phosphate group into cellulose in the pulp, thereby obtaining phosphorylated pulp 1.
  • the obtained phosphorylated pulp 1 was subjected to a washing treatment.
  • a pulp dispersion obtained by pouring 10 L of ion-exchanged water into 100 g (absolute dry mass) of the phosphorylated pulp 1 is stirred so that the pulp is uniformly dispersed, and then filtered and dehydrated repeatedly. It was done by doing.
  • the electric conductivity of the filtrate became 100 ⁇ S / cm or less, it was regarded as the washing end point.
  • the phosphorylated pulp 1 after the washing was subjected to a neutralization treatment as follows. First, a phosphorylated pulp slurry having a pH of 12 or more and 13 or less is obtained by diluting the washed phosphorylated pulp 1 with 10 L of ion-exchanged water and then gradually adding a 1N aqueous sodium hydroxide solution with stirring. Was. Next, the phosphorylated pulp slurry was dehydrated to obtain a phosphorylated pulp 1 subjected to a neutralization treatment. Next, the above-mentioned washing treatment was performed on the phosphorylated pulp after the neutralization treatment.
  • the following table shows the fiber width of the obtained phosphorylated pulp 1 (fibrous cellulose) and the supernatant yield measured by the method described below.
  • the amount of a phosphate group (the amount of a strongly acidic group) measured by a measuring method described later was 1.45 mmol / g.
  • a fibrous cellulose-containing material was obtained in the same manner as in Production Example 1, except that the aqueous solution of polyoxyethylene dodecylamine lactate was added with 0.44 parts by mass of lactic acid.
  • the washing treatment is performed by dehydrating the pulp slurry after TEMPO oxidation, obtaining a dehydrated sheet, pouring 5,000 parts by mass of ion-exchanged water, stirring and uniformly dispersing, and then repeating filtration and dehydration.
  • the washing treatment was finished.
  • the obtained TEMPO oxidized pulp was used in place of the phosphorylated pulp 1 immediately before the addition of the organic onium salt aqueous solution, and 3.86% by mass of di-n-alkyldimethylammonium chloride (the alkyl chain had 16 carbon atoms) Or 18)
  • a fibrous cellulose-containing material was obtained in the same manner as in Production Example 1 except that the number of added portions of the aqueous solution was changed to 39 parts by mass.
  • Phosphorylated pulp 2 was obtained in the same manner as in Production Example 1, except that 33 parts by mass of phosphorous acid (phosphonic acid) was used instead of 45 parts by mass of ammonium dihydrogen phosphate.
  • An infrared absorption spectrum of the phosphorylated pulp 2 was measured using FT-IR.
  • absorption based on P O of the phosphonic acid group, which is a tautomer of the phosphite group, was observed at around 1210 cm ⁇ 1 , and the phosphite group (phosphonate group) was added to the pulp.
  • P phosphorous acid
  • ammonium dihydrogen phosphate ammonium dihydrogen phosphate
  • the fiber width of the obtained phosphorylated pulp 2 (fibrous cellulose) and the supernatant yield by centrifugation described later are shown in the table below.
  • the phosphite group amount (strongly acidic group amount) measured by the measurement method described in [Measurement of Phosphate Group Amount] described later was 1.50 mmol / g.
  • the amount of the weak acidic group was 0.13 mmol / g.
  • Phosphorylated pulp 2 is used in place of phosphorylated pulp 1 immediately before adding an aqueous solution of an organic onium salt, and 3.86% by mass of di-n-alkyldimethylammonium chloride (the alkyl chain has 16 or 18 carbon atoms) )
  • a fibrous cellulose-containing material was obtained in the same manner as in Production Example 1 except that the number of added parts of the aqueous solution was changed to 49 parts by mass.
  • the following table shows the fiber width of the obtained phosphorylated pulp 3 (fibrous cellulose) and the supernatant yield measured by the method described below.
  • the amount of phosphate groups (the amount of strongly acidic groups) measured by the measurement method described later was 2.00 mmol / g.
  • the phosphorylated pulp 3 was used in place of the phosphorylated pulp 1 immediately before the addition of the organic onium salt aqueous solution, and 3.86% by mass of di-n-alkyldimethylammonium chloride (the alkyl chain has 16 or 18 carbon atoms)
  • Example 2 A fibrous cellulose-containing material was obtained in the same manner as in Production Example 1 except that the number of added parts of the aqueous solution was changed to 100 parts by mass.
  • the infrared absorption spectrum of the obtained unbleached phosphorylated pulp was measured using FT-IR. As a result, absorption based on a phosphate group was observed at around 1230 cm ⁇ 1 , confirming that a phosphate group was added to the pulp.
  • the following table shows the fiber width of the obtained unbleached phosphorylated pulp (fibrous cellulose) and the supernatant yield measured by the method described below.
  • the amount of a phosphate group (the amount of a strongly acidic group) measured by a measuring method described later was 1.45 mmol / g.
  • a fibrous cellulose-containing material was obtained in the same manner as in Production Example 1 except that the unbleached phosphorylated pulp was used in place of the phosphorylated pulp 1 immediately before the addition of the organic onium salt aqueous solution.
  • a fibrous cellulose-containing material was obtained in the same manner as in Production Example 1, except that the obtained mechanically treated fibrous cellulose was used instead of the phosphorylated pulp 1 immediately before adding the organic onium salt aqueous solution.
  • a mechanically treated fibrous cellulose was obtained in the same manner as in Production Example 13 except that the TEMPO oxidized pulp obtained in Production Example 5 was used instead of the phosphorylated pulp 1 obtained in Production Example 1.
  • the fiber width of the mechanically treated fibrous cellulose and the supernatant yield measured by the method described below are shown in the table below. X-ray diffraction confirmed that the mechanically treated fibrous cellulose also maintained cellulose type I crystals.
  • a fibrous cellulose-containing material was obtained in the same manner as in Production Example 5, except that the obtained mechanically treated fibrous cellulose was used instead of the TEMPO oxidized pulp immediately before adding the organic onium salt aqueous solution.
  • Examples 1 to 10 and Comparative Examples 1 to 10 Regarding the fibrous cellulose-containing material obtained in Production Examples 1 to 20, [1] yield after wet classification, [2] fluffing recovery rate, [3] bulk, [4] sedimentation from the water surface, by the method described below. The rate was measured. The results are shown in the table below. In addition, about the fibrous cellulose content (production example) used in each Example and each Comparative Example, it described in the following table.
  • the fibrous cellulose-containing material was diluted with ion-exchanged water to a concentration of 1% by mass, adjusted to have a basis weight of 200 g / m 2 in terms of absolute dry mass, and again subjected to filtration under reduced pressure to form a sheet. And dried under a condition of a relative humidity of 40% to a constant weight to obtain a fibrous cellulose-containing sheet.
  • 1 g (0.005 m 2 ) of the obtained fibrous cellulose-containing sheet was cut off in absolutely dry mass and fluffed by performing treatment at 20,000 rpm for 20 seconds in a 75-mL capacity pulverizer (Labo Mill Surplus). Was.
  • the fibrous cellulose-containing material after fluff treatment (including both fluffed cellulose and non-fluffed cellulose) is spread on a test sieve having an aperture of 2 mm ⁇ , gently shaken, and the fiber that has passed through the test sieve
  • the absolute dry mass of the cellulose-containing material (fluffed cellulose) was measured, and the fluffing recovery rate was calculated according to the following equation.
  • Fluffization recovery rate [mass%] absolute dry mass of fibrous cellulose-containing material passed through test sieve / absolute dry mass of fibrous cellulose-containing sheet before fluffing ⁇ 100
  • Sedimentation rate from water surface [mass%] absolute dry mass of sedimented fibrous cellulose-containing material / (absolute dry mass of sedimented fibrous cellulose-containing material + absolute dry mass of fibrous cellulose-containing material floating on water surface) ⁇ 100
  • the phosphate group content of the fibrous cellulose was measured by treating the fine fibrous cellulose-containing slurry obtained as described below with an ion exchange resin, and then performing titration with an alkali.
  • the fine fibrous cellulose-containing slurry is obtained by sufficiently pulverizing the target fibrous cellulose (2% by mass of the fibrous cellulose dispersion is treated with a high-pressure homogenizer at a pressure of 200 MPa six times). It was prepared by diluting with ion-exchanged water so that the content became 0.2% by mass.
  • the treatment with the ion-exchange resin is performed by adding 1/10 by volume of a strongly acidic ion-exchange resin (Amberjet 1024; Organo, Inc., conditioned) to the fibrous cellulose-containing slurry and shaking for 1 hour.
  • the resin and the slurry were separated by pouring on a mesh having a mesh size of 90 ⁇ m.
  • titration using an alkali is performed by adding an aqueous 0.1 N sodium hydroxide solution to a fibrous cellulose-containing slurry after treatment with an ion-exchange resin at a rate of 50 ⁇ L once every 30 seconds while maintaining the electrical conductivity of the slurry.
  • the measurement was performed by measuring the change in the value.
  • the amount of phosphoric acid groups (mmol / g) is obtained by dividing the amount of alkali (mmol) required in the region corresponding to the first region shown in FIG. 1 by the solid content (g) in the slurry to be titrated. Was calculated.
  • the carboxy group content of the fibrous cellulose was measured by treating the slurry containing fine fibrous cellulose obtained as described below with an ion exchange resin, and then performing titration with an alkali.
  • the fine fibrous cellulose-containing slurry is obtained by sufficiently pulverizing the target fibrous cellulose (treating a 2% by mass fibrous cellulose dispersion with a high-pressure homogenizer at a pressure of 200 MPa six times), and then removing the fine fibrous cellulose.
  • the fibrous cellulose dispersion was diluted with ion-exchanged water so as to have a content of 0.2% by mass.
  • the treatment with the ion-exchange resin is performed by adding 1/10 by volume of a strongly acidic ion-exchange resin (Amberjet 1024; Organo, Inc., conditioned) to the fibrous cellulose-containing slurry and shaking for 1 hour.
  • the resin and the slurry were separated by pouring on a mesh having a mesh size of 90 ⁇ m.
  • titration using an alkali is performed by adding 50 ⁇ L of a 0.1N aqueous sodium hydroxide solution once every 30 seconds to a fibrous cellulose-containing slurry after treatment with an ion-exchange resin while maintaining the electric conductivity of the slurry. This was done by measuring the change in value.
  • the amount of carboxy groups (mmol / g) is obtained by dividing the amount of alkali (mmol) required in a region corresponding to the first region shown in FIG. 2 in the measurement results by the solid content (g) in the slurry to be titrated. Calculated.
  • the supernatant yield of fibrous cellulose was calculated by centrifuging the fibrous cellulose dispersion.
  • the supernatant yield after centrifugation is an index of the degree of micronization, and becomes higher as finer cellulose fibers are included.
  • a fibrous cellulose dispersion was adjusted to a solid concentration of 0.1% by mass, and centrifuged at 12,000 G for 10 minutes using a cooling high-speed centrifuge (H-2000B, manufactured by Kokusan). The obtained supernatant was collected and the solid content concentration of the supernatant was measured. Based on the following equation, the supernatant yield of the cellulose fiber was determined.
  • Supernatant yield (mass%) of fibrous cellulose solid content of supernatant (mass%) / 0.1 ⁇ 100
  • Fiber width For the fibrous celluloses of Production Examples 1 to 8 and 18 to 20, the average length of the fiber width was measured using a Kayani fiber length measuring instrument (model FS-200) manufactured by Kayani Automation. For Production Examples 13 to 17, the fiber width was measured by observation with a transmission electron microscope. For Production Examples 9-12 are not present in substantially the following fibrous cellulose width 1000 nm, based on the cellulose fibers tried subjected to Production Example 1 (R 0), by light microscopy as described above, at least there fiber The ratio of the weight of the cellulose fiber having a width of 1000 nm or less was calculated. The fibrous cellulose concentration (C) at the time of observation was 0.2% by mass, and the area S 0 of the visual field to be observed was 20 mm 2 in total (20 images of 1 mm 2 in different areas).
  • C fibrous cellulose concentration
  • DADMA di-n-alkyldimethylammonium
  • DDMA didodecylmethylammonium
  • POEDA polyoxyethylenedodecylammonium
  • ADMBA alkyldimethylbenzylammonium
  • TBA tetrabutylammonium Na: sodium * 1 Average value measured by Kayani Fiber Lab * 2 Optical Measurement result by microscope observation * 3 Observation result by TEM
  • the fiber diameter was measured, and this fiber diameter was equivalent to the fiber width of the fibrous cellulose constituting the fibrous cellulose-containing material obtained by adding an organic onium salt described later.
  • this fiber diameter was equivalent to the fiber width of the fibrous cellulose constituting the fibrous cellulose-containing material obtained by adding an organic onium salt described later.
  • the fibrous cellulose-containing material of the example had a high fluffing recovery rate, and the fluffed cellulose was bulky. Moreover, the fluffed cellulose obtained from the fibrous cellulose-containing material of the example had a low sedimentation rate from the water surface and was excellent in hydrophobicity. From this, in the examples, fluffed cellulose having good fluffing properties and excellent hydrophobicity after fluffing was obtained.
  • ⁇ Evaluation 2> The fluffed cellulose recovered under a test sieve having an aperture of 2 mm ⁇ by the method described in ⁇ Fluffing recovery rate> (using the fibrous cellulose-containing materials of Examples 1, 5, 8, and Comparative Examples 4, 7) was subjected to [1] solvent wetting test and [2] resin composite test by the following methods.
  • styrene polymer (degree of polymerization: about 2,000) is dissolved in toluene to a concentration of 10% by mass, and fluffed cellulose is added to the solution at a concentration of 5% by mass with respect to the total mass of the styrene polymer. Gently stirred. The resulting styrene polymer / fluffed cellulose dispersion was cast-dried to a basis weight of 2000 g / m 2 , and the composite properties of fibrous cellulose and styrene resin were visually observed. :: fibrous cellulose is distributed over almost the entire area in the thickness direction x: fibrous cellulose is localized at the bottom in the thickness direction

Abstract

本発明は、従来にはない全く新しい性状を有するフラッフ化セルロースおよびこれを実現可能な繊維状セルロース含有物を提供することを課題とする。本発明は、アニオン性基を有する繊維状セルロースを含む繊維状セルロース含有物であって、繊維状セルロース含有物の下記測定方法で測定される歩留りが50質量%以上であり、繊維状セルロース含有物は、前記アニオン性基の対イオンとして有機オニウムイオンを有し、有機オニウムイオンは、所定条件を満たす、繊維状セルロース含有物に関する。

Description

繊維状セルロース含有物、フラッフ化セルロース及び組成物
 本発明は、繊維状セルロース含有物、フラッフ化セルロース及び組成物に関する。
 近年、石油資源の代替及び環境意識の高まりから、再生産可能な天然繊維を利用した材料が着目されている。特に木材由来の繊維状セルロース(パルプ)は、主に吸収性物品や紙製品に幅広く使用されてきた。
 木材由来の繊維状セルロースであるパルプは、一般的に親水性を有する。このため、パルプは、例えば吸収性物品において、吸水性や液透過性を発揮することが求められる構成部材に好ましく用いられている。特許文献1には、液透過性の表面シートと、液不透過性の裏面シートと、吸収体と、吸収体用の不織布シートを含む吸収性物品が開示されており、吸収体用の不織布シートがパルプ及び親水性繊維を含むことが記載されている。また、特許文献1には、体液等の吸収能がより高いとされるフラッフパルプを、吸収体に含有させる態様が開示されている。
 パルプを含む紙製品としては、多種多様な紙製品が知られている。例えば、インクジェット記録媒体用の紙製品が知られており、インクジェット記録媒体用の紙製品においては、インクの吸収性が求められる一方で、横方向へのインクの非拡散性が要求されるなど、高度な特性が求められる場合がある。例えば、特許文献2には、軽叩解セルロースパルプ、マーセル化セルロース及びフラッフ化セルロースからなる群から選択された少なくとも1種のセルロースを含み、多孔質填料が内添された多孔質セルロース層からなる被記録媒体が開示されている。
特開2015-213643号公報 特開2007-46219号公報
 上述したように、吸収性物品や紙製品にはフラッフ化セルロース(フラッフパルプともいう)を用いることがある。フラッフ化セルロースは、セルロース繊維を毛羽立たせたものであり、毛羽状もしくは軟毛状のセルロース繊維である。フラッフ化セルロースは、毛細管現象により液体を素早く吸収し、拡散させることができる。従来、フラッフ化セルロースは、主に水系の液体の吸収を促す目的で用いられてきたため、フラッフ化セルロースの表面性状を改質することなどは検討がなされていないのが現状である。
 そこで本発明者らは、フラッフ化セルロースの表面を改質し、従来にはない全く新しい性状を有するフラッフ化セルロースおよびこれを実現可能な繊維状セルロース含有物を提供することを目的として検討を進めた。
 上記の課題を解決するために鋭意検討を行った結果、本発明者らは、繊維状セルロースにアニオン性基を導入し、さらにアニオン性基の対イオンとして所定構造を有する有機オニウムイオンを導入することで、フラッフ性が良好であり、かつ疎水性を有するフラッフ化セルロースおよびこれを実現可能な繊維状セルロース含有物が得られることを見出した。
 具体的に、本発明は、以下の構成を有する。
[1] アニオン性基を有する繊維状セルロースを含む繊維状セルロース含有物であって、
 繊維状セルロース含有物の下記測定方法で測定される歩留りが50質量%以上であり、
 繊維状セルロース含有物は、アニオン性基の対イオンとして有機オニウムイオンを有し、
 有機オニウムイオンは、下記(a)及び(b)から選択される少なくとも一方の条件を満たす、繊維状セルロース含有物;
(a)炭素数が5以上の炭化水素基を含む;
(b)総炭素数が17以上である;
(測定方法)
 繊維状セルロース含有物を24時間、イオン交換水に浸漬した後、固形分濃度を20質量%に調製し、周速10m/sの高速回転ディスパーザーで15分間分散処理を行う;得られた分散液について、目開き150μmのJIS試験篩上で湿式分級を行い、下記式によって歩留りを算出する。
 歩留り[質量%]=試験篩上に残った繊維状セルロース含有物の絶乾質量/供試した繊維状セルロース含有物の絶乾質量×100
[2] 有機オニウムイオンは、有機アンモニウムイオンである[1]に記載の繊維状セルロース含有物。
[3] 繊維状セルロースの繊維幅は、1000nmより大きい、[1]又は[2]に記載の繊維状セルロース含有物。
[4] アニオン性基量が、0.50mmol/g以上である[1]~[3]のいずれかに記載の繊維状セルロース含有物。
[5] [1]~[4]のいずれかに記載の繊維状セルロース含有物をフラッフ化してなるフラッフ化セルロース。
[6] [1]~[4]のいずれかに記載の繊維状セルロース含有物、もしくは、[5]に記載のフラッフ化セルロースと、
 有機溶剤とを含む組成物。
[7] [1]~[4]のいずれかに記載の繊維状セルロース含有物、もしくは、[5]に記載のフラッフ化セルロースと、
 樹脂とを含む組成物。
 本発明の繊維状セルロース含有物を用いることで、新規性状を有するフラッフ化セルロースを提供することができる。具体的には、フラッフ性が良好であり、かつ疎水性を有するフラッフ化セルロースおよびこれを実現可能な繊維状セルロース含有物を提供することができる。
図1は、リン酸基を有する繊維状セルロースに対するNaOH滴下量と電気伝導度の関係を示すグラフである。 図2は、カルボキシ基を有する繊維状セルロースに対するNaOH滴下量と電気伝導度の関係を示すグラフである。
 以下において、本発明について詳細に説明する。以下に記載する構成要件の説明は、代表的な実施形態や具体例に基づいてなされることがあるが、本発明はそのような実施形態に限定されるものではない。
(繊維状セルロース含有物)
 本発明は、アニオン性基を有する繊維状セルロースを含む繊維状セルロース含有物に関する。繊維状セルロース含有物は、アニオン性基の対イオンとして有機オニウムイオンを有し、有機オニウムイオンは、下記(a)及び(b)から選択される少なくとも一方の条件を満たす。
(a)炭素数が5以上の炭化水素基を含む。
(b)総炭素数が17以上である。
 また、繊維状セルロース含有物の下記測定方法で測定される歩留りは50質量%以上である。
(測定方法)
 繊維状セルロース含有物を24時間、イオン交換水に浸漬した後、固形分濃度を20質量%に調製し、周速10m/sの高速回転ディスパーザーで15分間分散処理を行う。得られた分散液について、目開き150μmのJIS試験篩上で湿式分級を行い、下記式によって歩留りを算出する。
 歩留り[質量%]=試験篩上に残った繊維状セルロース含有物の絶乾質量/供試した繊維状セルロース含有物の絶乾質量×100
 本発明において、繊維状セルロース含有物の上記測定方法で測定される歩留りは50質量%以上であればよく、70質量%以上であることが好ましく、80質量%以上であることがより好ましく、90質量%以上であることがさらに好ましい。なお、繊維状セルロース含有物の歩留りの上限は特に限定されるものではなく、100質量%であってもよい。
 繊維状セルロース含有物の歩留りを測定する際には、まず、繊維状セルロース含有物を24時間、イオン交換水に浸漬した後、固形分濃度を20質量%に調製し、周速10m/sの高速回転ディスパーザーで15分間分散処理を行う。高速回転ディスパーザーとしては、例えば、プライミクス社製のTKロボミックス(半径15mmの撹拌羽根を使用)を用いることができる。次いで、得られた分散液を、目開き150μmのJIS試験篩上で湿式分級を行う。この際、流量150mL/secのイオン交換水のシャワーを試験篩上部から流し、十分に繊維状セルロースが試験篩上に広がるようにしてもよい。
 本発明の繊維状セルロース含有物は、上記構成を有するものであるため、フラッフ性が良好なフラッフ化セルロースとなる。ここで、フラッフ性とは、繊維状セルロース含有物をフラッフ化セルロースとする際のフラッフ化回収率やフラッフ化セルロースの嵩で評価することができる。繊維状セルロース含有物をフラッフ化した際のフラッフ化回収率が高く、かつフラッフ化セルロースの嵩が大きい場合に、本明細書ではフラッフ性が良好であると言う。
 フラッフ化回収率は、以下の方法で算出される値である。まず、繊維状セルロース含有物をイオン交換水で1質量%濃度に希釈し、絶乾質量換算での坪量が200g/m2となるよう調整して再度減圧濾過にてシート状態とした後、30℃、相対湿度40%の条件下で恒量となるまで乾燥し、繊維状セルロース含有シートとする。得られた繊維状セルロース含有シートを絶乾質量で1g(0.005m2)切り取り、容量75mLの粉砕機(ラボミルサープラス)にて、20,000rpmで20秒間処理を行うことでフラッフ化を行う。フラッフ処理後の繊維状セルロース(フラッフ化セルロース)を目開き2mmφの試験篩上に展開し、緩やかに振とうして、メッシュを通過した繊維状セルロース含有物の質量を測定し、下記式にしたがって、フラッフ化回収率を算出する。
 フラッフ化回収率[質量%]=試験篩を通過した繊維状セルロース含有物の絶乾質量/供試した繊維状セルロース含有物の絶乾質量×100
 上記方法で算出されるフラッフ化回収率は、30質量%以上であることが好ましく、50質量%以上であることがより好ましく、60質量%以上であることがさらに好ましい。なお、フラッフ化回収率は100質量%であってもよい。
 フラッフ化セルロースの嵩は、以下の方法で測定される。まず、繊維状セルロース含有物をイオン交換水で1質量%濃度に希釈し、絶乾質量換算での坪量が200g/m2となるよう調整して再度減圧濾過にてシート状態とした後、30℃、相対湿度40%の条件下で恒量となるまで乾燥し、繊維状セルロース含有シートとする。得られた繊維状セルロース含有シートを絶乾質量で1g(0.005m2)切り取り、容量75mLの粉砕機(ラボミルサープラス)にて、20,000rpmで20秒間処理を行うことでフラッフ化を行う。フラッフ処理後の繊維状セルロース(フラッフ化セルロース)を目開き2mmφの試験篩上に展開し、緩やかに振とうして、メッシュを通過した繊維状セルロースを、試験篩の直下に配備したメスシリンダーに落とし込み、一定体積溜まった後に、当該体積を占める繊維状セルロースの絶乾質量を測定することで、嵩(mL/g)を算出する。
 上記方法で測定されるフラッフ化セルロースの嵩は、5mL/g以上であることが好ましく、10mL/g以上であることがより好ましく、20mL/g以上であることがさらに好ましい。なお、フラッフ化セルロースの嵩の上限値は特に限定されるものではないが、100mL/g以下であることが好ましい。
 また、本発明の繊維状セルロース含有物は、上記構成を有するものであるため、疎水性を有するフラッフ化セルロースとなる。ここで、フラッフ化セルロースの疎水性は、フラッフ化セルロースに水を注ぎいれた際の沈降の程度で評価できる。具体的には、以下の方法でフラッフ化セルロースに水を注ぎいれた後の水面からの沈降率で疎水性を評価することができる。まず、繊維状セルロース含有物をイオン交換水で1質量%濃度に希釈し、絶乾質量換算での坪量が200g/m2となるよう調整して再度減圧濾過にてシート状態とした後、30℃、相対湿度40%の条件下で恒量となるまで乾燥し、繊維状セルロース含有シートとする。得られた繊維状セルロース含有シートを絶乾質量で1g(0.005m2)切り取り、容量75mLの粉砕機(ラボミルサープラス)にて、20,000rpmで20秒間処理を行うことでフラッフ化を行う。フラッフ処理後の繊維状セルロース(フラッフ化セルロース)を目開き2mmφの試験篩上に展開し、緩やかに振とうして、メッシュを通過した繊維状セルロースを、試験篩の直下50mmの位置に配備した40mmφの直径を有する容器に落下させる。この容器の壁面を伝わせながら、イオン交換水を20g/minの速度で、50g静かに注ぎ入れた直後に、撥水して水面に浮き上がった繊維状セルロースと、底部に沈降した繊維状セルロースとを別々に回収し、下記式にしたがって、水面からの沈降率を算出する。この値が小さいほど、繊維状セルロースの疎水性が強い。
 水面からの沈降率[質量%]=沈降した繊維状セルロース含有物の絶乾質量/(沈降した繊維状セルロース含有物の絶乾質量+水面に浮上した繊維状セルロース含有物の絶乾質量)×100
 上記方法で算出されるフラッフ化セルロースの沈降率は、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることがさらに好ましい。なお、フラッフ化セルロースの沈降率は、10質量%以下質量%であることが特に好ましい。
 本発明においては、上述したとおり、目開き150μmのJIS試験篩上で湿式分級を行った際の歩留りは50質量%以上であればよいが、目開き300μmのJIS試験篩上で湿式分級を行った際の歩留りは30質量%以上であることが好ましく、60質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。なお、目開き300μmのJIS試験篩上で湿式分級を行った際の歩留りの上限は特に限定されるものではないが、100質量%であってもよい。
 目開き300μmのJIS試験篩上で湿式分級を行った際の歩留りを算出する際には、開き150μmのJIS試験篩に代えて、目開き300μmのJIS試験篩を用いること以外は、上述した目開き150μmのJIS試験篩上で湿式分級を行った際の歩留りの測定方法と同様の方法で算出することができる。
 なお、目開き150μmのJIS試験篩上で湿式分級を行った際の歩留りが上記範囲内であることは、繊維状セルロースの繊維幅が一定以上であることを意味し、繊維状セルロースが粗大繊維であることを意味している。また、目開き300μmのJIS試験篩上で湿式分級を行った際の歩留りが上記範囲内であることは、繊維状セルロースがより粗大繊維であることを意味している。
 本発明の繊維状セルロース含有物は、繊維状セルロースからなるものであってもよく、繊維状セルロースに加えて水分等を含むものであってもよい。但し、繊維状セルロース含有物は、固形状体であることが好ましい。ここで、固形状体の形態は、特に限定されるものではなく、例えば、シート状や粉粒状であってもよい。なお、繊維状セルロース含有物は水などの溶媒を含む、ペースト状、そぼろ状であってもよい。中でも、繊維状セルロース含有物は、粉粒状であることが好ましい。ここで、粉粒状体は、粉状及び/又は粒状の物質である。なお、粉状物質は、粒状物質よりも小さいものをいう。一般的には、粉状物質は粒子径が1nm以上0.1mm未満の微粒子をいい、粒状物質は、粒子径が0.1mm以上10mm以下の粒子をいうが、特に限定されない。なお、本明細書においては、粉粒状体は粉体と呼ぶこともある。本明細書における粉粒状体の粒子径はレーザー回折法を用いて測定・算出することができる。具体的には、レーザー回折散乱式粒子径分布測定装置(Microtrac3300EXII、日機装株式会社)を用いて測定した値とする。
 繊維状セルロース含有物の固形分濃度は、繊維状セルロース含有物の全質量に対して、40質量%以上であることが好ましく、60質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。なお、繊維状セルロース含有物の固形分濃度は、100質量%であってもよい。
(繊維状セルロース)
 本発明の繊維状セルロース含有物は、アニオン性基を有する繊維状セルロースを含有する。ここで、繊維状セルロースの繊維幅は、1000nmよりも大きいものであることが好ましい。なお、繊維状セルロース含有物には、繊維幅が1000nm以下の微細繊維状セルロースが含まれていてもよいが、この場合、繊維幅が1000nmより大きい繊維状セルロースの占める重量の割合が、繊維幅が1000nm以下の繊維状セルロースが占める重量の割合よりも大きいものとなることが好ましい。
 ここで、繊維幅が1000nmより大きい繊維状セルロースの占める重量の割合が、繊維幅が1000nm以下の繊維状セルロースが占める重量の割合よりも大きいことは下記の方法によって確認することができる。まず、微細化を行う前の1000nm以下の繊維状セルロースが実質的に存在しない繊維状セルロースを供試して、一定濃度Cの繊維状セルロース懸濁液を光学顕微鏡で観察を行った際に、観察視野内の一定面積S0に観察される繊維幅が1000nmより大きいセルロース繊維が占める面積Sを測定する。この時の、次の値R0を算出する。
0=S/S0/C
 次に、この繊維状セルロースに対して微細化を行なった後の繊維状セルロースについて同様に測定を行い、この時のR0をRとする。なお、測定する際のCは同じ濃度とする。ここで、Q=1-R/R0の値が、少なくとも存在する繊維幅が1000nm以下のセルロース繊維の重量の割合を示す。
 なお、「少なくとも」の意味は、光学顕微鏡で観察される「面積」に、繊維の厚さが勘案されていないことに起因する。すなわち、理想的に、繊維の厚さも面積に変換できたとすれば、R0、Rは、より大きな値を取ることになる(以降、これらを真のR0、真のRと表現する)。繊維厚さを面積に変換した際に増加する面積は、R0の方がRよりも大きい。すなわち、(真のR0/R0)>(真のR/R)となる。
 これより、1-(真のR/新のR0)>1-R/R0が成り立つから、Q=1-R/R0の値が、少なくとも存在する繊維幅が1000nm以下のセルロース繊維の重量の割合を示すことになる。
 ここで、繊維状セルロースの繊維幅は、例えば、カヤーニオートメーション社のカヤーニ繊維長測定器(FS-200形)や、光学顕微鏡を用いて測定することが出来る。繊維の幅に応じて走査型顕微鏡(SEM)、透過電子顕微鏡(TEM)、原子間力顕微鏡(AFM)等を用いて測定することが出来る。
 ここで、電子顕微鏡観察を用いる場合は、以下の方法で測定することができる。まず、濃度0.05質量%以上0.1質量%以下のパルプ水系懸濁液を調製し、この懸濁液を親水化処理したカーボン膜被覆グリッド上にキャストしてTEM観察用試料とする。この際、ガラス上にキャストした表面のSEM像を観察してもよい。構成する繊維の幅に応じて1000倍、5000倍、10000倍あるいは50000倍のいずれかの倍率で電子顕微鏡画像による観察を行う。但し、試料、観察条件や倍率は下記の条件を満たすように調整する。
(1)観察画像内の任意箇所に一本の直線Xを引き、該直線Xに対し、20本以上の繊維が交差する。
(2)同じ画像内で該直線と垂直に交差する直線Yを引き、該直線Yに対し、20本以上の繊維が交差する。
 上記条件を満足する観察画像に対し、直線X、直線Yと交錯する繊維の幅を目視で読み取る。こうして少なくとも重なっていない表面部分の画像を3組以上観察し、各々の画像に対して、直線X、直線Yと交錯する繊維の幅を読み取る。このように少なくとも20本×2×3=120本の繊維幅を読み取る。
 本発明の繊維状セルロース含有物が含有する繊維状セルロースの繊維長は、特に限定されないが、10μm以上であることが好ましく、100μm以上であることがより好ましく500μm以上であることがさらに好ましい。また、繊維状セルロースの繊維長は、10000μm以下であることが好ましく、5000μm以下であることがより好ましく、3000μm以下であることがさらに好ましい。繊維長を上記範囲内とすることにより、フラッフ性に優れた繊維状セルロース含有物が得られやすい。ここで、繊維状セルロースの繊維長は、例えば、カヤーニオートメーション社のカヤーニ繊維長測定器(FS-200形)や光学顕微鏡を用いて測定される。また、繊維の長さに応じて走査型顕微鏡(SEM)、透過電子顕微鏡(TEM)、原子間力顕微鏡(AFM)等を用いて測定することもできる。
 繊維状セルロースはI型結晶構造を有していることが好ましい。ここで、繊維状セルロースがI型結晶構造を有することは、グラファイトで単色化したCuKα(λ=1.5418Å)を用いた広角X線回折写真より得られる回折プロファイルにおいて同定できる。具体的には、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークをもつことから同定することができる。繊維状セルロースに占めるI型結晶構造の割合は、たとえば30%以上であることが好ましく、40%以上であることがより好ましく、50%以上であることがさらに好ましく、70%以上であることが最も好ましい。これにより、耐熱性と低線熱膨張率発現の点でさらに優れた性能が期待できる。結晶化度については、X線回折プロファイルを測定し、そのパターンから常法により求められる(Seagalら、Textile Research Journal、29巻、786ページ、1959年)。
 繊維状セルロースの軸比(繊維長/繊維幅)は、とくに限定されないが、たとえば5以上5000以下であることが好ましく、10以上1000以下であることがより好ましい。軸比を上記下限値以上とすることにより、繊維状セルロースを含有するシートを形成しやすい。軸比を上記上限値以下とすることにより、たとえば繊維状セルロースを水分散液として扱う際に、希釈等のハンドリングがしやすくなる点で好ましい。
 以下の測定方法で測定される繊維状セルロースの上澄み収率は、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。なお、繊維状セルロースの上澄み収率は、0質量%であってもよい。ここで、繊維状セルロースの上澄み収率を測定する際には、まず、繊維状セルロースを固形分濃度が0.1質量%となるように、イオン交換水に分散させて分散液を得る。この分散液を、冷却高速遠心分離機(コクサン社製、H-2000B)を用い、12000G、10分の条件で遠心分離する。次いで、得られた上澄み液を回収し、上澄み液の固形分濃度を測定し、下記式に基づいて、セルロース繊維の上澄み収率を算出する。
 繊維状セルロースの上澄み収率(質量%)=上澄みの固形分濃度(質量%)/0.1×100
 なお、遠心分離後の上澄み収率は、繊維状セルロースの微細化度の指標となるものであり、繊維状セルロースの上澄み収率が上記範囲内であることは、繊維状セルロースの繊維幅が上述した好ましい範囲内にあり、繊維状セルロースがいわゆる粗大繊維であることを意味する。
 繊維状セルロースはアニオン性基を有する。アニオン性基としては、たとえばリン酸基またはリン酸基に由来する置換基(単にリン酸基ということもある)、カルボキシ基またはカルボキシ基に由来する置換基(単にカルボキシ基ということもある)、およびスルホン基またはスルホン基に由来する置換基(単にスルホン基ということもある)から選択される少なくとも1種であることが好ましく、リン酸基およびカルボキシ基から選択される少なくとも1種であることがより好ましく、リン酸基であることがとくに好ましい。リン酸基は、カルボキシ基等と比較して、1分子あたりのアニオン性基数が多いため、より多くの有機オニウムイオンを対イオンとして有し得る。これにより、繊維状セルロース含有物をフラッフ化することで得られるフラッフ化セルロースの疎水性をより効果的に高めることができる。
 リン酸基又はリン酸基に由来する置換基は、たとえば下記式(1)で表される置換基であり、リンオキソ酸基またはリンオキソ酸に由来する置換基として一般化される。
 リン酸基は、たとえばリン酸からヒドロキシ基を取り除いたものにあたる、2価の官能基である。具体的には-PO32で表される基である。リン酸基に由来する置換基には、リン酸基の塩、リン酸エステル基などの置換基が含まれる。なお、リン酸基に由来する置換基は、リン酸基が縮合した基(たとえばピロリン酸基)として繊維状セルロースに含まれていてもよい。また、リン酸基は、たとえば、亜リン酸基(ホスホン酸基)であってもよく、リン酸基に由来する置換基は、亜リン酸基の塩、亜リン酸エステル基などであってもよい。
Figure JPOXMLDOC01-appb-C000001
 式(1)中、a、b及びnは自然数である(ただし、a=b×mである)。α1,α2,・・・,αn及びα’のうちa個がO-であり、残りはR,ORのいずれかである。なお、各αn及びα’の全てがO-であっても構わない。Rは、各々、水素原子、飽和-直鎖状炭化水素基、飽和-分岐鎖状炭化水素基、飽和-環状炭化水素基、不飽和-直鎖状炭化水素基、不飽和-分岐鎖状炭化水素基、不飽和-環状炭化水素基、芳香族基、またはこれらの誘導基である。なお、βb+の少なくとも一部は後述する有機オニウムイオンである。
 飽和-直鎖状炭化水素基としては、メチル基、エチル基、n-プロピル基、又はn-ブチル基等が挙げられるが、特に限定されない。飽和-分岐鎖状炭化水素基としては、i-プロピル基、又はt-ブチル基等が挙げられるが、特に限定されない。飽和-環状炭化水素基としては、シクロペンチル基、又はシクロヘキシル基等が挙げられるが、特に限定されない。不飽和-直鎖状炭化水素基としては、ビニル基、又はアリル基等が挙げられるが、特に限定されない。不飽和-分岐鎖状炭化水素基としては、i-プロペニル基、又は3-ブテニル基等が挙げられるが、特に限定されない。不飽和-環状炭化水素基としては、シクロペンテニル基、シクロヘキセニル基等が挙げられるが、特に限定されない。芳香族基としては、フェニル基、又はナフチル基等が挙げられるが、特に限定されない。
 また、Rにおける誘導基としては、上記各種炭化水素基の主鎖又は側鎖に対し、カルボキシ基、ヒドロキシ基、又はアミノ基などの官能基のうち、少なくとも1種類が付加又は置換した状態の官能基が挙げられるが、特に限定されない。また、Rの主鎖を構成する炭素原子数は特に限定されないが、20以下であることが好ましく、10以下であることがより好ましい。Rの主鎖を構成する炭素原子数を上記範囲とすることにより、リン酸基の分子量を適切な範囲とすることができ、繊維原料への浸透を容易にし、繊維状セルロースの収率を高めることもできる。
 βb+は有機物又は無機物からなる1価以上の陽イオンである。有機物からなる1価以上の陽イオンとしては、脂肪族アンモニウム、又は芳香族アンモニウムが挙げられ、βb+の少なくとも一部は後述する有機オニウムイオンである。また、無機物からなる1価以上の陽イオンとしては、ナトリウム、カリウム、若しくはリチウム等のアルカリ金属のイオンや、カルシウム、若しくはマグネシウム等の2価金属の陽イオン、又は水素イオン等が挙げられるが、特に限定されない。これらは1種又は2種類以上を組み合わせて適用することもできる。有機物又は無機物からなる1価以上の陽イオンとしては、βを含む繊維原料を加熱した際に黄変しにくく、また工業的に利用し易いナトリウム、又はカリウムのイオンが好ましいが、とくに限定されない。
 繊維状セルロースにおけるアニオン性基の導入量(アニオン性基量)は、たとえば繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.50mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることがとくに好ましい。また、繊維状セルロースにおけるアニオン性基の導入量は、たとえば繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましい。ここで、単位mmol/gは、アニオン性基の対イオンが水素イオン(H+)であるときの繊維状セルロースの質量1gあたりの置換基量を示す。アニオン性基の導入量を上記範囲内とすることにより、繊維状セルロースが含み得る有機オニウムイオンの含有量を適切な範囲とすることができる。これにより、繊維状セルロース含有物をフラッフ化することで得られるフラッフ化セルロースの疎水性をより効果的に高めることができる。
 繊維状セルロースに対するアニオン性基の導入量は、たとえば伝導度滴定法により測定することができる。伝導度滴定法による測定では、微細繊維状セルロースを含有するスラリーに、水酸化ナトリウム水溶液などのアルカリを加えながら伝導度の変化を求めることにより、導入量を測定する。なお、本明細書においては、アニオン性基の導入量を測定する際には、伝導度滴定法による測定に先んじて、繊維状セルロースを微細化する。繊維状セルロースの微細化は2質量%の繊維状セルロース分散液を圧力200MPaの高圧ホモジナイザーで6回処理することで行う。
 図1は、微細化したリン酸基を有する繊維状セルロースに対するNaOH滴下量と電気伝導度の関係を示すグラフである。繊維状セルロースに対するリン酸基の導入量は、たとえば次のように測定される。まず、微細繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。次いで、水酸化ナトリウム水溶液を加えながら電気伝導度の変化を観察し、図1に示すような滴定曲線を得る。図1に示すように、最初は急激に電気伝導度が低下する(以下、「第1領域」という)。その後、わずかに伝導度が上昇を始める(以下、「第2領域」という)。さらにその後、伝導度の増分が増加する(以下、「第3領域」という)。なお、第2領域と第3領域の境界点は、伝導度の2回微分値、すなわち伝導度の増分(傾き)の変化量が最大となる点で定義される。このように、滴定曲線には、3つの領域が現れる。このうち、第1領域で必要としたアルカリ量が、滴定に使用したスラリー中の強酸性基量と等しく、第2領域で必要としたアルカリ量が滴定に使用したスラリー中の弱酸性基量と等しくなる。リン酸基が縮合を起こす場合、見かけ上弱酸性基が失われ、第1領域に必要としたアルカリ量と比較して第2領域に必要としたアルカリ量が少なくなる。一方、強酸性基量は、縮合の有無に関わらずリン原子の量と一致する。このため、単にリン酸基導入量(またはリン酸基量)または置換基導入量(または置換基量)と言った場合は、強酸性基量のことを表す。したがって、上記で得られた滴定曲線の第1領域で必要としたアルカリ量(mmol)を滴定対象スラリー中の固形分(g)で除して得られる値が、リン酸基導入量(mmol/g)となる。
 図2は、微細化したカルボキシ基を有する繊維状セルロースに対するNaOH滴下量と電気伝導度の関係を示すグラフである。繊維状セルロースに対するカルボキシ基の導入量は、たとえば次のように測定される。まず、微細繊維状セルロースを含有するスラリーを強酸性イオン交換樹脂で処理する。次いで、水酸化ナトリウム水溶液を加えながら電気伝導度の変化を観察し、図2に示すような滴定曲線を得る。滴定曲線は、図2に示すように、電気伝導度が減少した後、伝導度の増分(傾き)がほぼ一定となるまでの第1領域と、その後に伝導度の増分(傾き)が増加する第2領域に区分される。なお、第1領域、第2領域の境界点は、伝導度の2回微分値、すなわち伝導度の増分(傾き)の変化量が最大となる点で定義される。そして、滴定曲線の第1領域で必要としたアルカリ量(mmol)を、滴定対象の微細繊維状セルロース含有スラリー中の固形分(g)で除して得られる値が、カルボキシ基の導入量(mmol/g)となる。
 なお、これらリン酸基量、カルボキシ基量は、対イオンが水素イオン(H+)のときの値である。他の対イオンが導入されている場合であって、イオン交換樹脂による処理で当該対イオンが除去できない場合は、例えば、酸処理などを十分な回数行い、他の対イオンを水素イオンに変換した後に測定を行ってもよい。また、滴定法による置換基量の測定においては、水酸化ナトリウム水溶液の滴定間隔が短すぎる場合、本来より低い置換基量となることがあるため、適切な滴定間隔、例えば、0.1N水酸化ナトリウム水溶液を30秒に50μLずつ滴定するなどが望ましい。
 また、カルボキシ基の対イオンが電荷当量となるように任意の陽イオンCに置換されている場合は、分母を当該陽イオンCが対イオンであるときの繊維状セルロースの質量に変換することで、陽イオンCが対イオンである繊維状セルロースが有するカルボキシ基量(以降、カルボキシ基量(C型))を求めることができる。
すなわち、下記計算式によってカルボキシ基導入量を算出する。
カルボキシ基導入量(C型)=カルボキシ基量(酸型)/[1+(W-1)×(カルボキシ基量(酸型))/1000]
W:陽イオンCの1価あたりの式量(例えば、Naは23、Alは9)
<繊維状セルロースの製造工程>
<繊維原料>
 繊維状セルロースは、セルロースを含む繊維原料から製造される。セルロースを含む繊維原料としては、とくに限定されないが、入手しやすく安価である点からパルプを用いることが好ましい。パルプとしては、たとえば木材パルプ、非木材パルプ、および脱墨パルプが挙げられる。木材パルプとしては、とくに限定されないが、たとえば広葉樹クラフトパルプ(LBKP)、針葉樹クラフトパルプ(NBKP)、サルファイトパルプ(SP)、溶解パルプ(DP)、ソーダパルプ(AP)、未晒しクラフトパルプ(UKP)および酸素漂白クラフトパルプ(OKP)等の化学パルプ、セミケミカルパルプ(SCP)およびケミグラウンドウッドパルプ(CGP)等の半化学パルプ、砕木パルプ(GP)およびサーモメカニカルパルプ(TMP、BCTMP)等の機械パルプ等が挙げられる。非木材パルプとしては、とくに限定されないが、たとえばコットンリンターおよびコットンリント等の綿系パルプ、麻、麦わらおよびバガス等の非木材系パルプが挙げられる。脱墨パルプとしては、とくに限定されないが、たとえば古紙を原料とする脱墨パルプが挙げられる。本実施態様のパルプは上記の1種を単独で用いてもよいし、2種以上混合して用いてもよい。
 上記パルプの中でも、入手のしやすさという観点からは、たとえば木材パルプおよび脱墨パルプが好ましい。また、木材パルプの中でも、パルプ中のセルロースの分解が小さく軸比の大きい長繊維の繊維状セルロースが得られる観点から、たとえば化学パルプがより好ましく、クラフトパルプ、サルファイトパルプがさらに好ましい。
 セルロースを含む繊維原料としては、たとえばホヤ類に含まれるセルロースや、酢酸菌が生成するバクテリアセルロースを利用することもできる。また、セルロースを含む繊維原料に代えて、キチン、キトサンなどの直鎖型の含窒素多糖高分子が形成する繊維を用いることもできる。
<リン酸基導入工程>
 繊維状セルロースがリン酸基を有する場合、繊維状セルロースの製造工程は、リン酸基導入工程を含む。リン酸基導入工程は、セルロースを含む繊維原料が有する水酸基と反応することで、リン酸基を導入できる化合物から選択される少なくとも1種の化合物(以下、「化合物A」ともいう)を、セルロースを含む繊維原料に作用させる工程である。この工程により、リン酸基導入繊維が得られることとなる。
 本実施形態に係るリン酸基導入工程では、セルロースを含む繊維原料と化合物Aの反応を、尿素及びその誘導体から選択される少なくとも1種(以下、「化合物B」ともいう)の存在下で行ってもよい。一方で、化合物Bが存在しない状態において、セルロースを含む繊維原料と化合物Aの反応を行ってもよい。
 化合物Aを化合物Bとの共存下で繊維原料に作用させる方法の一例としては、乾燥状態、湿潤状態またはスラリー状の繊維原料に対して、化合物Aと化合物Bを混合する方法が挙げられる。これらのうち、反応の均一性が高いことから、乾燥状態または湿潤状態の繊維原料を用いることが好ましく、特に乾燥状態の繊維原料を用いることが好ましい。繊維原料の形態は、とくに限定されないが、たとえば綿状や薄いシート状であることが好ましい。化合物Aおよび化合物Bは、それぞれ粉末状または溶媒に溶解させた溶液状または融点以上まで加熱して溶融させた状態で繊維原料に添加する方法が挙げられる。これらのうち、反応の均一性が高いことから、溶媒に溶解させた溶液状、特に水溶液の状態で添加することが好ましい。また、化合物Aと化合物Bは繊維原料に対して同時に添加してもよく、別々に添加してもよく、混合物として添加してもよい。化合物Aと化合物Bの添加方法としては、とくに限定されないが、化合物Aと化合物Bが溶液状の場合は、繊維原料を溶液内に浸漬し吸液させたのちに取り出してもよいし、繊維原料に溶液を滴下してもよい。また、必要量の化合物Aと化合物Bを繊維原料に添加してもよいし、過剰量の化合物Aと化合物Bをそれぞれ繊維原料に添加した後に、圧搾や濾過によって余剰の化合物Aと化合物Bを除去してもよい。
 本実施態様で使用する化合物Aとしては、リン原子を有し、セルロースとエステル結合を形成可能な化合物が挙げられ、具体的には、リン酸もしくはその塩、亜リン酸もしくはその塩、脱水縮合リン酸もしくはその塩、無水リン酸(五酸化二リン)などが挙げられるが、特に限定されない。リン酸としては、種々の純度のものを使用することができ、たとえば100%リン酸(正リン酸)や85%リン酸を使用することができる。亜リン酸としては、たとえば99%亜リン酸(ホスホン酸)が挙げられる。脱水縮合リン酸は、リン酸が脱水反応により2分子以上縮合したものであり、例えばピロリン酸、ポリリン酸等を挙げることができる。リン酸塩、亜リン酸塩、脱水縮合リン酸塩としては、リン酸、亜リン酸または脱水縮合リン酸のリチウム塩、ナトリウム塩、カリウム塩、アンモニウム塩などが挙げられ、これらは種々の中和度とすることができる。これらのうち、リン酸基の導入の効率が高く、後述する解繊工程で解繊効率がより向上しやすく、低コストであり、かつ工業的に適用しやすい観点から、リン酸、リン酸のナトリウム塩、リン酸のカリウム塩、またはリン酸のアンモニウム塩が好ましく、リン酸、リン酸二水素ナトリウム、リン酸水素二ナトリウム、またはリン酸二水素アンモニウムがより好ましい。
 繊維原料に対する化合物Aの添加量は、特に限定されないが、たとえば化合物Aの添加量をリン原子量に換算した場合において、繊維原料(絶乾質量)に対するリン原子の添加量が0.5質量%以上100質量%以下となることが好ましく、1質量%以上50質量%以下となることがより好ましく、2質量%以上30質量%以下となることがさらに好ましい。繊維原料に対するリン原子の添加量を上記範囲内とすることにより、繊維状セルロースの収率をより向上させることができる。一方で、繊維原料に対するリン原子の添加量を上記上限値以下とすることにより、収率向上の効果とコストのバランスをとることができる。
 本実施態様で使用する化合物Bは、上述のとおり尿素及びその誘導体から選択される少なくとも1種である。化合物Bとしては、たとえば尿素、ビウレット、1-フェニル尿素、1-ベンジル尿素、1-メチル尿素、および1-エチル尿素などが挙げられる。
反応の均一性を向上させる観点から、化合物Bは水溶液として用いることが好ましい。また、反応の均一性をさらに向上させる観点からは、化合物Aと化合物Bの両方が溶解した水溶液を用いることが好ましい。
 繊維原料(絶乾質量)に対する化合物Bの添加量は、とくに限定されないが、たとえば1質量%以上500質量%以下であることが好ましく、10質量%以上400質量%以下であることがより好ましく、100質量%以上350質量%以下であることがさらに好ましい。
 セルロースを含む繊維原料と化合物Aの反応においては、化合物Bの他に、たとえばアミド類またはアミン類を反応系に含んでもよい。アミド類としては、たとえばホルムアミド、ジメチルホルムアミド、アセトアミド、ジメチルアセトアミドなどが挙げられる。アミン類としては、たとえばメチルアミン、エチルアミン、トリメチルアミン、トリエチルアミン、モノエタノールアミン、ジエタノールアミン、トリエタノールアミン、ピリジン、エチレンジアミン、ヘキサメチレンジアミンなどが挙げられる。これらの中でも、特にトリエチルアミンは良好な反応触媒として働くことが知られている。
 リン酸基導入工程においては、繊維原料に化合物A等を添加又は混合した後、当該繊維原料に対して加熱処理を施すことが好ましい。加熱処理温度としては、繊維の熱分解や加水分解反応を抑えながら、リン酸基を効率的に導入できる温度を選択することが好ましい。加熱処理温度は、たとえば50℃以上300℃以下であることが好ましく、100℃以上250℃以下であることがより好ましく、130℃以上200℃以下であることがさらに好ましい。また、加熱処理には、種々の熱媒体を有する機器を利用することができ、たとえば撹拌乾燥装置、回転乾燥装置、円盤乾燥装置、ロール型加熱装置、プレート型加熱装置、流動層乾燥装置、気流乾燥装置、減圧乾燥装置、赤外線加熱装置、遠赤外線加熱装置、マイクロ波加熱装置を用いることができる。
 本実施形態に係る加熱処理においては、たとえば薄いシート状の繊維原料に化合物Aを含浸等の方法により添加した後、加熱する方法や、ニーダー等で繊維原料と化合物Aを混練又は撹拌しながら加熱する方法を採用することができる。これにより、繊維原料における化合物Aの濃度ムラを抑制して、繊維原料に含まれるセルロース繊維表面へより均一にリン酸基を導入することが可能となる。これは、乾燥に伴い水分子が繊維原料表面に移動する際、溶存する化合物Aが表面張力によって水分子に引き付けられ、同様に繊維原料表面に移動してしまう(すなわち、化合物Aの濃度ムラを生じてしまう)ことを抑制できることに起因するものと考えられる。
 また、加熱処理に用いる加熱装置は、たとえばスラリーが保持する水分、及び化合物Aと繊維原料中のセルロース等が含む水酸基等との脱水縮合(リン酸エステル化)反応に伴って生じる水分、を常に装置系外に排出できる装置であることが好ましい。このような加熱装置としては、例えば送風方式のオーブン等が挙げられる。装置系内の水分を常に排出することにより、リン酸エステル化の逆反応であるリン酸エステル結合の加水分解反応を抑制できることに加えて、繊維中の糖鎖の酸加水分解を抑制することもできる。このため、軸比の高い繊維状セルロースを得ることが可能となる。
 加熱処理の時間は、たとえば繊維原料から実質的に水分が除かれてから1秒以上300分以下であることが好ましく、1秒以上1000秒以下であることがより好ましく、10秒以上800秒以下であることがさらに好ましい。本実施形態では、加熱温度と加熱時間を適切な範囲とすることにより、リン酸基の導入量を好ましい範囲内とすることができる。
 リン酸基導入工程は、少なくとも1回行えば良いが、2回以上繰り返して行うこともできる。2回以上のリン酸基導入工程を行うことにより、繊維原料に対して多くのリン酸基を導入することができる。本実施形態においては、好ましい態様の一例として、リン酸基導入工程を2回行う場合が挙げられる。
 繊維原料に対するリン酸基の導入量は、たとえば繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.50mmol/g以上であることがさらに好ましく、1.00mmol/g以上であることがとくに好ましい。また、繊維原料に対するリン酸基の導入量は、たとえば繊維状セルロース1g(質量)あたり5.20mmol/g以下であることが好ましく、3.65mmol/g以下であることがより好ましく、3.00mmol/g以下であることがさらに好ましい。リン酸基の導入量を上記範囲内とすることにより、繊維状セルロースが含み得る有機オニウムイオンの含有量を適切な範囲とすることができ、これにより、繊維状セルロース含有物をフラッフ化することで得られるフラッフ化セルロースの疎水性をより効果的に高めることができる。
<カルボキシ基導入工程>
 繊維状セルロースがカルボキシ基を有する場合、繊維状セルロースの製造工程は、カルボキシ基導入工程を含む。カルボキシ基導入工程は、セルロースを含む繊維原料に対し、オゾン酸化やフェントン法による酸化、TEMPO酸化処理などの酸化処理やカルボン酸由来の基を有する化合物もしくはその誘導体、またはカルボン酸由来の基を有する化合物の酸無水物もしくはその誘導体によって処理することにより行われる。
 カルボン酸由来の基を有する化合物としては、特に限定されないが、たとえばマレイン酸、コハク酸、フタル酸、フマル酸、グルタル酸、アジピン酸、イタコン酸等のジカルボン酸化合物やクエン酸、アコニット酸等のトリカルボン酸化合物が挙げられる。また、カルボン酸由来の基を有する化合物の誘導体としては、特に限定されないが、たとえばカルボキシ基を有する化合物の酸無水物のイミド化物、カルボキシ基を有する化合物の酸無水物の誘導体が挙げられる。カルボキシ基を有する化合物の酸無水物のイミド化物としては、特に限定されないが、たとえばマレイミド、コハク酸イミド、フタル酸イミド等のジカルボン酸化合物のイミド化物が挙げられる。
 カルボン酸由来の基を有する化合物の酸無水物としては、特に限定されないが、たとえば無水マレイン酸、無水コハク酸、無水フタル酸、無水グルタル酸、無水アジピン酸、無水イタコン酸等のジカルボン酸化合物の酸無水物が挙げられる。また、カルボン酸由来の基を有する化合物の酸無水物の誘導体としては、特に限定されないが、たとえばジメチルマレイン酸無水物、ジエチルマレイン酸無水物、ジフェニルマレイン酸無水物等のカルボキシ基を有する化合物の酸無水物の少なくとも一部の水素原子が、アルキル基、フェニル基等の置換基により置換されたものが挙げられる。
 カルボキシ基導入工程において、TEMPO酸化処理を行う場合には、たとえばその処理をpHが6以上8以下の条件で行うことが好ましい。このような処理は、中性TEMPO酸化処理ともいう。中性TEMPO酸化処理は、例えばリン酸ナトリウム緩衝液(pH=6.8)に、繊維原料としてパルプと、触媒としてTEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)等のニトロキシラジカル、犠牲試薬として次亜塩素酸ナトリウムを添加することで行うことができる。さらに亜塩素酸ナトリウムを共存させることによって、酸化の過程で発生するアルデヒドを、効率的にカルボキシ基まで酸化することができる。
 また、TEMPO酸化処理は、その処理をpHが10以上11以下の条件で行ってもよい。このような処理は、アルカリTEMPO酸化処理ともいう。アルカリTEMPO酸化処理は、たとえば繊維原料としてのパルプに対し、触媒としてTEMPO等のニトロキシラジカルと、共触媒として臭化ナトリウムと、酸化剤として次亜塩素酸ナトリウムを添加することにより行うことができる。
 繊維原料に対するカルボキシ基の導入量は、置換基の種類によっても変わるが、たとえばTEMPO酸化によりカルボキシ基を導入する場合、繊維状セルロース1g(質量)あたり0.10mmol/g以上であることが好ましく、0.20mmol/g以上であることがより好ましく、0.50mmol/g以上であることがさらに好ましく、0.90mmol/g以上であることがとくに好ましい。また、2.5mmol/g以下であることが好ましく、2.20mmol/g以下であることがより好ましく、2.00mmol/g以下であることがさらに好ましい。その他、置換基がカルボキシメチル基である場合、繊維状セルロース1g(質量)あたり5.8mmol/g以下であってもよい。カルボキシ基の導入量を上記範囲内とすることにより、繊維状セルロースが含み得る有機オニウムイオンの含有量を適切な範囲とすることができ、これにより、繊維状セルロース含有物をフラッフ化することで得られるフラッフ化セルロースの疎水性をより効果的に高めることができる。
<洗浄工程>
 本実施形態における繊維状セルロースの製造方法においては、必要に応じてアニオン性基導入繊維に対して洗浄工程を行うことができる。洗浄工程は、たとえば水や有機溶媒によりアニオン性基導入繊維を洗浄することにより行われる。また、洗浄工程は後述する各工程の後に行われてもよく、各洗浄工程において実施される洗浄回数は、とくに限定されない。
<アルカリ処理工程(中和処理工程)>
 繊維状セルロースを製造する場合、アニオン性基導入工程の後に、繊維原料に対してアルカリ処理(中和処理)を行ってもよい。アルカリ処理の方法としては、特に限定されないが、例えばアルカリ溶液中に、アニオン性基導入繊維を浸漬する方法が挙げられる。
 アルカリ溶液に含まれるアルカリ化合物は、特に限定されず、無機アルカリ化合物であってもよいし、有機アルカリ化合物であってもよい。本実施形態においては、汎用性が高いことから、たとえば水酸化ナトリウムまたは水酸化カリウムをアルカリ化合物として用いることが好ましい。また、アルカリ溶液に含まれる溶媒は、水または有機溶媒のいずれであってもよい。中でも、アルカリ溶液に含まれる溶媒は、水、またはアルコールに例示される極性有機溶媒などを含む極性溶媒であることが好ましく、少なくとも水を含む水系溶媒であることがより好ましい。アルカリ溶液としては、汎用性が高いことから、たとえば水酸化ナトリウム水溶液、または水酸化カリウム水溶液が好ましい。
 アルカリ処理工程におけるアルカリ溶液の温度は、特に限定されないが、たとえば5℃以上80℃以下であることが好ましく、10℃以上60℃以下であることがより好ましい。アルカリ処理工程におけるアニオン性基導入繊維のアルカリ溶液への浸漬時間は、特に限定されないが、たとえば5分以上30分以下であることが好ましく、10分以上20分以下であることがより好ましい。アルカリ処理におけるアルカリ溶液の使用量は、特に限定されないが、たとえばアニオン性基導入繊維の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。
 アルカリ処理工程におけるアルカリ溶液の使用量を減らすために、アニオン性基導入工程の後であってアルカリ処理工程の前に、アニオン性基導入繊維を水や有機溶媒により洗浄してもよい。また、アルカリ処理工程の後に洗浄工程を設けることも好ましい。
<酸処理工程>
 繊維状セルロースを製造する場合、アニオン性基導入工程の後に、繊維原料に対して酸処理を行ってもよい。例えば、アニオン性基導入工程、酸処理及びアルカリ処理をこの順で行ってもよい。
 酸処理の方法としては、特に限定されないが、たとえば酸を含有する酸性液中に繊維原料を浸漬する方法が挙げられる。使用する酸性液の濃度は、特に限定されないが、たとえば10質量%以下であることが好ましく、5質量%以下であることがより好ましい。また、使用する酸性液のpHは、特に限定されないが、たとえば0以上4以下であることが好ましく、1以上3以下であることがより好ましい。酸性液に含まれる酸としては、たとえば無機酸、スルホン酸、カルボン酸等を用いることができる。無機酸としては、たとえば硫酸、硝酸、塩酸、臭化水素酸、ヨウ化水素酸、次亜塩素酸、亜塩素酸、塩素酸、過塩素酸、リン酸、ホウ酸等が挙げられる。スルホン酸としては、たとえばメタンスルホン酸、エタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、トリフルオロメタンスルホン酸等が挙げられる。カルボン酸としては、たとえばギ酸、酢酸、クエン酸、グルコン酸、乳酸、シュウ酸、酒石酸等が挙げられる。これらの中でも、塩酸または硫酸を用いることがとくに好ましい。
 酸処理における酸溶液の温度は、特に限定されないが、たとえば5℃以上100℃以下が好ましく、20℃以上90℃以下がより好ましい。酸処理における酸溶液への浸漬時間は、特に限定されないが、たとえば5分以上120分以下が好ましく、10分以上60分以下がより好ましい。酸処理における酸溶液の使用量は、特に限定されないが、たとえば繊維原料の絶対乾燥質量に対して100質量%以上100000質量%以下であることが好ましく、1000質量%以上10000質量%以下であることがより好ましい。
<解繊処理>
 アニオン性基導入繊維には、必要に応じて解繊処理を施してもよい。但し、本発明においては、上述した方法で測定される繊維状セルロース含有物の歩留りが、50質量%を下回らない程度に解繊処理を施す必要がある。例えば、解繊処理方法や解繊処理条件を適宜選択することにより、繊維状セルロース含有物の歩留りが50質量%を下回らないようにすることが好ましい。なお、本発明においては、アニオン性基導入繊維に解繊処理を施さない態様も好ましい態様である。
 解繊処理工程においては、たとえば解繊処理装置を用いることができる。解繊処理装置は、特に限定されないが、たとえば高速解繊機、グラインダー(石臼型粉砕機)、高圧ホモジナイザーや超高圧ホモジナイザー、高圧衝突型粉砕機、ボールミル、ビーズミル、ディスク型リファイナー、コニカルリファイナー、二軸混練機、振動ミル、高速回転下でのホモミキサー、超音波分散機、またはビーターなどを使用することができる。上記解繊処理装置の中でも、ディスク型リファイナー、コニカルリファイナーを用いるのがより好ましい。
 解繊処理工程においては、たとえばアニオン性基導入繊維を、分散媒により希釈してスラリー状にすることが好ましい。分散媒としては、水、および極性有機溶媒などの有機溶媒から選択される1種または2種以上を使用することができる。極性有機溶媒としては、とくに限定されないが、たとえばアルコール類、多価アルコール類、ケトン類、エーテル類、エステル類、非プロトン性極性溶媒等が好ましい。アルコール類としては、たとえばメタノール、エタノール、イソプロパノール、n-ブタノール、イソブチルアルコール等が挙げられる。多価アルコール類としては、たとえばエチレングリコール、プロピレングリコール、グリセリンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトン(MEK)等が挙げられる。エーテル類としては、たとえばジエチルエーテル、テトラヒドロフラン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノn-ブチルエーテル、プロピレングリコールモノメチルエーテル等が挙げられる。エステル類としては、たとえば酢酸エチル、酢酸ブチル等が挙げられる。非プロトン性極性溶媒としてはジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)、ジメチルアセトアミド(DMAc)、N-メチル-2-ピロリジノン(NMP)等が挙げられる。
 解繊処理時の繊維状セルロースの固形分濃度は適宜設定できる。また、アニオン性基導入繊維を分散媒に分散させて得たスラリー中には、例えば水素結合性のある尿素などのアニオン性基導入繊維以外の固形分が含まれていてもよい。
(有機オニウムイオン)
 本発明の繊維状セルロース含有物は、繊維状セルロースが有するアニオン性基の対イオンとして、有機オニウムイオンを含む。本発明においては、少なくとも一部の有機オニウムイオンは、繊維状セルロースの対イオンとして存在しているが、繊維状セルロース含有物中には、遊離した有機オニウムイオンが存在していてもよい。
 有機オニウムイオンは、下記(a)及び(b)から選択される少なくとも一方の条件を満たす。
(a)炭素数が5以上の炭化水素基を含む。
(b)総炭素数が17以上である。
 すなわち、繊維状セルロースは、炭素数が5以上の炭化水素基を含む有機オニウムイオン、及び総炭素数が17以上の有機オニウムイオンから選択される少なくとも一方を、アニオン性基の対イオンとして含む。有機オニウムイオンを、上記(a)及び(b)から選択される少なくとも一方の条件を満たすものとすることにより、繊維状セルロース含有物をフラッフ化することで得られるフラッフ化セルロースの疎水性を高めることができる。
 炭素数が5以上の炭化水素基は、炭素数が5以上のアルキル基又は炭素数が5以上のアルキレン基であることが好ましく、炭素数が6以上のアルキル基又は炭素数が6以上のアルキレン基であることがより好ましく、炭素数が7以上のアルキル基又は炭素数が7以上のアルキレン基であることがさらに好ましく、炭素数が10以上のアルキル基又は炭素数が10以上のアルキレン基であることが特に好ましい。中でも、有機オニウムイオンは炭素数が5以上のアルキル基を有するものであることが好ましく、炭素数が5以上のアルキル基を含み、かつ総炭素数が17以上の有機オニウムイオンであることがより好ましい。
 有機オニウムイオンは、下記一般式(A)で表される有機オニウムイオンであることが好ましい。
Figure JPOXMLDOC01-appb-C000002
 上記一般式(A)中、Mは窒素原子又はリン原子であることが好ましく、R1~R4は、それぞれ独立に水素原子又は有機基を表す。但し、R1~R4の少なくとも1つは、炭素数が5以上の有機基であるか、R1~R4の炭素数の合計が17以上であることが好ましい。
 中でも、Mは、窒素原子であることが好ましい。すなわち、有機オニウムイオンは有機アンモニウムイオンであることが好ましい。また、R1~R4の少なくとも1つは、炭素数が5以上のアルキル基であり、かつR1~R4の炭素数の合計が17以上であることが好ましい。
 このような有機オニウムイオンとしては、例えば、ラウリルトリメチルアンモニウム、セチルトリメチルアンモニウム、ステアリルトリメチルアンモニウム、オクチルジメチルエチルアンモニウム、ラウリルジメチルエチルアンモニウム、ジデシルジメチルアンモニウム、ラウリルジメチルベンジルアンモニウム、トリブチルベンジルアンモニウム、メチルトリ-n-オクチルアンモニウム、ヘキシルアンモニウム、n-オクチルアンモニウム、ドデシルアンモニウム、テトラデシルアンモニウム、ヘキサデシルアンモニウム、ステアリルアンモニウム、N,N-ジメチルドデシルアンモニウム、N,N-ジメチルテトラデシルアンモニウム、N,N-ジメチルヘキサデシルアンモニウム、N,N-ジメチル-n-オクタデシルアンモニウム、ジヘキシルアンモニウム、ジ(2-エチルヘキシル)アンモニウム、ジーn-オクチルアンモニウム、ジデシルアンモニウム、ジドデシルアンモニウム、ジデシルメチルアンモニウム、N,N-ジドデシルメチルアンモニウム、ポリオキシエチレンドデシルアンモニウム、アルキルジメチルベンジルアンモニウム、ジ-n-アルキルジメチルアンモニウム、ベヘニルトリメチルアンモニウム、テトラフェニルホスホニウム、テトラオクチルホスホニウム、アセトニルトリフェニルホスホニウム、アリルトリフェニルホスホニウム、アミルトリフェニルホスホニウム、ベンジルトリフェニルホスホニウム、エチルトリフェニルホスホニウム、ジフェニルプロピルホスホニウム、トリフェニルホスホニウム、トリシクロヘキシルホスホニウム、トリ-n-オクチルホスホニウム等を挙げることができる。なお、アルキルジメチルベンジルアンモニウム、ジ-n-アルキルジメチルアンモニウムにおけるアルキル基として、炭素数が8以上18以下の直鎖アルキル基が挙げられる。
 なお、一般式(A)に示した通り、有機オニウムイオンの中心元素は合計4つの基または水素と結合している。上述した有機オニウムイオンの名称で、結合している基が4つ未満である場合、残りは水素原子が結合して有機オニウムイオンを形成している。例えば、N,N-ジドデシルメチルアンモニウムであれば、名称からドデシル基が2つ、メチル基が1つ結合していると判断できる。この場合、残りの1つには水素が結合し、有機オニウムイオンを形成している。
 有機オニウムがO原子を含む場合、O原子に対するC原子の質量比率(C/O比)は大きいほど好ましく、例えば、C/O>5であることが好ましい。C/O比を5よりも大きくすることにより、繊維状セルロース含有スラリーに、有機オニウムイオンまたは、中和により有機オニウムイオンを形成する化合物を添加した際に、繊維状セルロース濃縮物が得られやすくなる。
 有機オニウムイオンの分子量は、2000以下であることが好ましく、1800以下であることがより好ましい。有機オニウムイオンの分子量を上記範囲内とすることにより、繊維状セルロースのハンドリング性を高めることができる。また、有機オニウムイオンの分子量を上記範囲内とすることにより、繊維状セルロース含有物における繊維状セルロースの含有率が低下してしまうことを抑制できる。
 有機オニウムイオンの含有量は、繊維状セルロース含有物の全質量に対して1.0質量%以上であることが好ましく、1.5質量%以上であることがより好ましく、2.0質量%以上であることがさらに好ましい。また、有機オニウムイオンの含有量は繊維状セルロース含有物の全質量に対して90質量%以下であることが好ましく、80質量%以下であることがより好ましい。
 また、繊維状セルロース含有物における有機オニウムイオンの含有量は、繊維状セルロース中に含まれるアニオン性基量に対して、0.5倍モル量から2倍モル量であることが好ましいが、特に限定されない。なお、有機オニウムイオンの含有量は、有機オニウムイオンに典型的に含まれる原子を追跡することで測定することができる。具体的には、有機オニウムイオンがアンモニウムイオンの場合は窒素原子を、有機オニウムイオンがホスホニウムイオンの場合はリン原子の量を測定する。なお、繊維状セルロースが有機オニウムイオン以外に、窒素原子やリン原子を含む場合は、有機オニウムイオンのみを抽出する方法、例えば、酸による抽出操作などを行ってから、目的の原子の量を測定すればよい。
 有機オニウムイオンは、上述したとおり、疎水性を発揮するイオンであることが好ましい。すなわち、本発明における繊維状セルロース含有物をフラッフ化することで得られるフラッフ化セルロースは、有機オニウムイオンを有することにより疎水性を発揮することができる。さらに、その結果、フラッフ化セルロースの有機溶媒や樹脂への親和性を高めることができる。
(任意成分)
 繊維状セルロース含有物は、アニオン性基を有する繊維状セルロースと有機オニウムイオンからなるものであってもよいが、さらに任意成分を含有していてもよい。
 任意成分としては、例えば、界面活性剤、有機イオン、カップリング剤、無機層状化合物、無機化合物、レベリング剤、防腐剤、消泡剤、有機系粒子、潤滑剤、帯電防止剤、紫外線防御剤、染料、顔料、安定剤、磁性粉、配向促進剤、可塑剤、分散剤、架橋剤、バインダー剤等を挙げることができる。
 繊維状セルロース含有物に含まれる任意成分の含有量は、繊維状セルロース含有物中に含まれる固形分の全質量に対して、40質量%以下であることが好ましく、30質量%以下であることがより好ましく、20質量%以下であることがさらに好ましい。
(フラッフ化セルロース)
 本発明は、上述した繊維状セルロース含有物をフラッフ化してなるフラッフ化セルロースに関するものでもある。フラッフ化セルロースは、セルロース繊維を毛羽立たせたものであり、毛羽状もしくは軟毛状のセルロース繊維である。本発明のフラッフ化セルロースは、フラッフ性が良好であり、かつ疎水性を有している。
 フラッフ化セルロースのフラッフ化回収率は、50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることがさらに好ましい。なお、フラッフ化回収率は100質量%であってもよい。また、フラッフ化セルロースの嵩は、5mL/g以上であることが好ましく、10mL/g以上であることがより好ましく、20mL/g以上であることがさらに好ましい。なお、フラッフ化セルロースの嵩の上限値は特に限定されるものではないが、100mL/g以下であることが好ましい。フラッフ化セルロースのフラッフ化回収率が上記範囲内であり、かつフラッフ化セルロースの嵩が上記範囲内である場合に、フラッフ化セルロースのフラッフ性が良好であると評価できる。
 フラッフ化セルロースの疎水性は、上述したようにフラッフ化セルロースにイオン交換水を注ぎいれた後の沈降の程度で評価できる。フラッフ化セルロースの沈降率は、50質量%以下であることが好ましく、40質量%以下であることがより好ましく、30質量%以下であることがさらに好ましい。なお、フラッフ化セルロースの沈降率は、10質量%以下であることが特に好ましい。
 フラッフ化セルロースは、圧縮可能であること、すなわち静置状態では嵩が大きいが、物理的な圧縮力によってその体積が減ることも好ましい。フラッフ化セルロースの静置状態での体積をViとし、フラッフ化セルロースを圧縮した後の体積をVfとした場合、圧縮率は、Vi/Vfで表される。フラッフ化セルロースの圧縮率(Vi/Vfの値)は、5以上であることが好ましく、10以上であることがより好ましく、20以上であることがさらに好ましく、50以上であることがさらに好ましい。
(繊維状セルロース含有物の製造方法)
 繊維状セルロース含有物の製造工程は、アニオン性基を有する繊維状セルロースを含有するスラリーに、有機オニウムイオン、または、中和により有機オニウムイオンを形成する化合物を添加する工程を含む。具体的には、上述した工程で得られた繊維状セルロース含有スラリーに、上述したような有機オニウムイオンまたは、中和により有機オニウムイオンを形成する化合物を添加する。この際、有機オニウムイオンは、有機オニウムイオンを含有した溶液として添加することが好ましく、有機オニウムイオンを含有した水溶液として添加することがより好ましい。
 有機オニウムイオンを含有した水溶液は、通常、有機オニウムイオンと、対イオン(アニオン)を含んでいる。有機オニウムイオンの水溶液を調製する際、有機オニウムイオンと、対応する対イオンが既に塩を形成している場合は、そのまま水に溶解させればよい。有機オニウムイオンの水溶液を調製する際、有機オニウムイオンと、対応する対イオンが既に塩を形成している場合は、水又は熱水に溶解することが好ましい。
 また、有機オニウムイオンは、例えば、ドデシルアミンなどのように、酸によって中和されて始めて生成する場合もある。この場合、有機オニウムイオンは、中和により有機オニウムイオンを形成する化合物と酸との反応により得られる。この場合、中和に使用する酸としては、塩酸、硫酸、硝酸等の無機酸や乳酸、酢酸、ギ酸、シュウ酸等の有機酸が挙げられる。凝集工程では、中和により有機オニウムを形成する化合物を繊維状セルロース含有スラリーに直接加え、繊維状セルロースが含むアニオン性基を対イオンとして、有機オニウムイオン化させても良い。
 有機オニウムイオンの添加量は、繊維状セルロースの全質量に対し、2質量%以上であることが好ましく、10質量%以上であることがより好ましく、50質量%以上であることがさらに好ましく、100質量%以上であることが特に好ましい。なお、有機オニウムイオンの添加量は、繊維状セルロースの全質量に対し、1000質量%以下であることが好ましい。
 また、添加する有機オニウムイオンのモル数は、繊維状セルロースが含むアニオン性基の量(モル数)に価数を乗じた値の0.2倍以上であることが好ましく、0.5倍以上であることがより好ましく、1.0倍以上であることがさらに好ましい。なお、添加する有機オニウムイオンのモル数は、繊維状セルロースが含むアニオン性基の量(モル数)に価数を乗じた値の10倍以下であることが好ましい。
 有機オニウムイオンを添加し、撹拌を行うと、繊維状セルロース含有スラリー中に凝集物が生じる。この凝集物は、対イオンとして有機オニウムイオンを有する繊維状セルロースが凝集したものである。本明細書においては、このような凝集物を繊維状セルロース濃縮物ともいう。凝集物が生じた繊維状セルロース含有スラリーを減圧濾過することで、繊維状セルロース凝集物(濃縮物)を回収することができる。
 得られた繊維状セルロース凝集物は、イオン交換水で洗浄してもよい。繊維状セルロース凝集物をイオン交換水で繰り返し洗うことで、繊維状セルロース凝集物に含まれる余剰な有機オニウムイオン等を除去することができる。
 得られた繊維状セルロース凝集物中のP原子の含有量に対するN原子の含有量の比(N/Pの値)は1.2よりも大きいことが好ましく、2.0よりも大きいことがより好ましい。また、得られた繊維状セルロース凝集物中のP原子の含有量に対するN原子の含有量の比(N/Pの値)は5.0以下であることが好ましい。なお、繊維状セルロース凝集物中のP原子の含有量とN原子の含有量は適宜元素分析により算出することができる。元素分析としては、例えば、適当な前処理の後に微量窒素分析やモリブデンブルー法などを行うことができる。なお、繊維状セルロース凝集物以外の組成物が、P原子、N原子を含む場合は、当該組成物と繊維状セルロース凝集物を適当な方法で分離した後に元素分析を行ってもよい。
 得られた繊維状セルロース凝集物の固形分濃度は、40質量%以上であることが好ましく、60質量%以上であることがより好ましく、80質量%以上であることがさらに好ましい。なお、繊維状セルロース凝集物の固形分濃度は、100質量%であってもよい。
 得られた繊維状セルロース凝集物(濃縮物)は本発明でいう繊維状セルロース含有物であるが、さらに以下のような後処理工程を設けてもよい。後処理工程としては、例えば、乾燥工程、エージング工程、スプレードライ工程、造粒工程、シート化工程、加熱工程、湿潤工程、粉砕工程、噴霧工程、浸漬工程、濾過工程、凍結工程、昇華工程、搾水工程、加圧脱水工程、遠心脱水工程、表面処理工程等を挙げることができる。中でも、後処理工程とした乾燥工程を設けることが好ましく、乾燥工程は、恒温恒湿条件下で行うことが好ましい。
 繊維状セルロース凝集物(濃縮物)を恒温恒湿条件下で乾燥する際の温度は、10℃以上であることが好ましく、20℃以上であることがより好ましい。恒温恒湿条件における温度は、100℃以下であることが好ましく、80℃以下であることがより好ましく、60℃以下であることがさらに好ましい。また、恒温恒湿条件における相対湿度は、20%以上であることが好ましく、30%以上であることがより好ましい。恒温恒湿条件における相対湿度は、70%以下であることが好ましい。なお、恒温恒湿条件下で乾燥する際の乾燥時間は、10分以上であることが好ましく、20分以上であることがより好ましく、30分以上であることがさらに好ましい。恒温恒湿条件下で乾燥する際の乾燥時間は、100時間以下であることが好ましく、80時間以下であることがより好ましい。
(フラッフ化セルロースの製造方法)
 フラッフ化セルロースは、例えば、上述した繊維状セルロース含有物を解砕処理することで得られる。具体的には、1000rpm以上100000rpm以下の回転数で0.01秒以上1000秒以下解砕処理することでフラッフ化セルロースを得ることが好ましい。この際に用いる装置としては、例えば、大阪ケミカル社製のラボミルサープラス等を挙げることができる。
 解砕処理に供する繊維状セルロース含有物は、所定のシート物であることが好ましい。例えば、繊維状セルロース含有物をイオン交換水で1質量%濃度に希釈し、絶乾質量換算での坪量が200g/m2となるよう調整して再度減圧濾過にてシート状態とした後、30℃、相対湿度40%の条件下で恒量となるまで乾燥することで得られた繊維状セルロース含有シートを解砕処理に供することが好ましい。
 この他、繊維状セルロース含有物のフラッフ化は、各種のリファイナーを用いて乾燥または半乾燥状態で行ってもよいし、ピンミル、ハンマーミルなどの機器を用いて行ってもよい。
(組成物)
 本発明は、上述した繊維状セルロース含有物、もしくは、上述したフラッフ化セルロースと、有機溶剤とを含む組成物に関するものであってもよい。
 有機溶媒は、特に限定されるものではないが、例えば、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール(IPA)、1-ブタノール、m-クレゾール、グリセリン、酢酸、ピリジン、テトラヒドロフラン(THF)、アセトン、メチルエチルケトン(MEK)、酢酸エチル、アニリン、N-メチル-2-ピロリドン(NMP)、ジメチルスルホキシド(DMSO)、N,N-ジメチルホルムアミド(DMF)、ヘキサン、シクロヘキサン、ベンゼン、トルエン、p-キシレン、ジエチルエーテルクロロホルム等を挙げることができる。中でも、N-メチル-2-ピロリドン(NMP)、ジメチルスルホキシド(DMSO)、メチルエチルケトン(MEK)、トルエン、メタノールは好ましく用いられる。
 有機溶媒の25℃における比誘電率は、60以下であることが好ましく、50以下であることがより好ましい。本発明で用いられる繊維状セルロースは、比誘電率の低い有機溶媒中においても優れた分散性を発揮することができるため、有機溶媒の25℃における比誘電率は、40以下であってもよく、30以下であってもよく、20以下であってもよい。
 有機溶媒のハンセン溶解度パラメーター(Hansen solubility parameter,HSP値)のδpは、5MPa1/2以上20MPa1/2以下であることが好ましく、10MPa1/2以上19MPa1/2以下であることがより好ましく、12MPa1/2以上18MPa1/2以下であることがさらに好ましい。また、HSP値の水素結合項であるδhは、20MPa1/2以下であることが好ましく、15MPa1/2以下であることがより好ましく、7.5MPa1/2以下であることがさらに好ましい。また、δhは、1.0MPa1/2以上であることが好ましい。本発明の繊維状セルロース含有物は、HSP値の水素結合項がある程度低い値の有機溶媒にも良好に分散する。
 組成物中に含まれる有機溶媒の含有量は、組成物中に含まれる固形分の全質量に対して、10質量%以上であることが好ましく、50質量%以上であることがより好ましい。また、有機溶媒の含有量は、組成物中に含まれる固形分の全質量に対して、99.9質量%以下であることが好ましく、99.0質量%以下であることがより好ましく、95.0質量%以下であることがさらに好ましい。
 なお、組成物の分散媒は有機溶媒であることが好ましいが、有機溶媒の他に水をさらに含有していてもよい。この場合、水分含有量は、組成物の全質量に対して、10質量%以下であることが好ましく、5質量%以下であることがより好ましく、1質量%以下であることがさらに好ましい。
 また、本発明は、上述した繊維状セルロース含有物、もしくは、上述したフラッフ化セルロースと、樹脂とを含む組成物に関するものであってもよい。
 樹脂の種類は特に限定されるものではないが、例えば、熱可塑性樹脂や熱硬化性樹脂を挙げることができる。
 樹脂としては、ポリオレフィン系樹脂、アクリル系樹脂、ポリカーボネート系樹脂、ポリエステル系樹脂、ポリアミド系樹脂、シリコーン系樹脂、フッ素系樹脂、塩素系樹脂、エポキシ系樹脂、メラミン系樹脂、フェノール系樹脂、ポリウレタン系樹脂、ジアリルフタレート系樹脂、アルコール系樹脂、セルロース誘導体、これらの樹脂の前駆体を挙げることができる。なお、セルロース誘導体としては、たとえば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシエチルセルロースなどを挙げることができる。
 繊維状セルロース含有物もしくはフラッフ化セルロースは、樹脂として、樹脂の前駆体を含んでいてもよい。樹脂の前駆体の種類は特に限定されるものではないが、たとえば、熱可塑性樹脂や熱硬化性樹脂の前駆体を挙げることができる。熱可塑性樹脂の前駆体とは、熱可塑性樹脂を製造するために使用されるモノマーや分子量が比較的低いオリゴマーを意味する。また、熱硬化性樹脂の前駆体とは、光、熱、硬化剤の作用によって重合反応または架橋反応を起こして熱硬化性樹脂を形成しうるモノマーや分子量が比較的低いオリゴマーを意味する。
 繊維状セルロース含有物もしくはフラッフ化セルロースは、樹脂として、上述した樹脂種とは別にさらに水溶性高分子を含んでいてもよい。水溶性高分子としては、たとえば、合成水溶性高分子(例えば、カルボキシビニルポリマー、ポリビニルアルコール、メタクリル酸アルキル・アクリル酸コポリマー、ポリビニルピロリドン、ポリアクリル酸ナトリウム、ポリエチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、イソプレングリコール、ヘキシレングリコール、1,3-ブチレングリコール、ポリアクリルアミドなど)、増粘多糖類(例えば、キサンタンガム、グアーガム、タマリンドガム、カラギーナン、ローカストビーンガム、クインスシード、アルギン酸、プルラン、カラギーナン、ペクチンなど)、カチオン化デンプン、生デンプン、酸化デンプン、エーテル化デンプン、エステル化デンプン、アミロース等のデンプン類、グリセリン、ジグリセリン、ポリグリセリン等のグリセリン類等、ヒアルロン酸、ヒアルロン酸の金属塩等を挙げることができる。
 組成物中に含まれる樹脂の含有量は、組成物中に含まれる固形分の全質量に対して、10質量%以上であることが好ましく、50質量%以上であることがより好ましい。また、樹脂の含有量は、組成物中に含まれる固形分の全質量に対して、99.9質量%以下であることが好ましく、99.0質量%以下であることがより好ましく、95.0質量%以下であることがさらに好ましい。
(用途)
 本発明の繊維状セルロース含有物は、フラッフ化セルロース製造用であることが好ましい。そして、得られるフラッフ化セルロースは、有機溶媒混合用や樹脂混合用として好ましく用いられる。特に樹脂成分を含む有機溶媒との混合に好ましく用いることができる。例えば、フラッフ化セルロース、有機溶媒及び樹脂からなる樹脂組成物から有機溶媒を除き、成形することで成形体やシートを製造することができる。また、フラッフ化セルロース、有機溶媒および樹脂からなる樹脂組成物を塗料として用いることも出来る。さらに、フラッフ化セルロースを溶融混練法などにより、樹脂成分に直接混合させてもよい。なお、溶融混練の際には、混練物に水や有機溶媒が含まれていてもよい。
 なお、本発明の繊維状セルロース含有物は、フラッフ化セルロースを製造するために用いられなくともよい。たとえば、本発明の繊維状セルロース含有物をフラッフ化せずに、成形体やシートの製造に用いてもよい。
 また、フラッフ化セルロース、有機溶媒及び樹脂からなる樹脂組成物、または繊維状セルロース含有物、有機溶媒及び樹脂からなる樹脂組成物を成形することで得られる成形体やシートは、補強材、内装材、外装材、包装用資材、電子材料、光学材料、音響材料、プロセス材料、輸送機器の部材、電子機器の部材、電気化学素子の部材等の用途にも適している。
 以下の実施例により本発明を更に具体的に説明するが、本発明の範囲は以下の実施例により限定されるものではない。
<製造例1>
 原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量208g/m2シート状、離解してJIS P 8121に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。
 この原料パルプに対してリン酸化処理を次のようにして行った。まず、上記原料パルプ100質量部(絶乾質量)に、リン酸二水素アンモニウムと尿素の混合水溶液を添加して、リン酸二水素アンモニウム45質量部、尿素120質量部、水150質量部となるように調整し、薬液含浸パルプを得た。次いで、得られた薬液含浸パルプを165℃の熱風乾燥機で200秒加熱し、パルプ中のセルロースにリン酸基を導入し、リン酸化パルプ1を得た。
 次いで、得られたリン酸化パルプ1に対して洗浄処理を行った。洗浄処理は、100g(絶乾質量)のリン酸化パルプ1に対して10Lのイオン交換水を注いで得たパルプ分散液を、パルプが均一に分散するよう撹拌した後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
 次いで、洗浄後のリン酸化パルプ1に対して中和処理を次のようにして行った。まず、洗浄後のリン酸化パルプ1を10Lのイオン交換水で希釈した後、撹拌しながら1Nの水酸化ナトリウム水溶液を少しずつ添加することにより、pHが12以上13以下のリン酸化パルプスラリーを得た。次いで、当該リン酸化パルプスラリーを脱水して、中和処理が施されたリン酸化パルプ1を得た。次いで、中和処理後のリン酸化パルプに対して、上記洗浄処理を行った。
 得られたリン酸化パルプ1に対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基に基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。
 また、得られたリン酸化パルプ1を供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
 得られたリン酸化パルプ1(繊維状セルロース)の繊維幅と、後述する方法で測定した上澄み収率を下表に示した。なお、後述する測定方法で測定されるリン酸基量(強酸性基量)は1.45mmol/gだった。
 3.86質量%のジ-n-アルキルジメチルアンモニウムクロリド(アルキル鎖の炭素原子数は16個又は18個)水溶液74質量部を、リン酸化パルプ1をイオン交換水で希釈して得た2質量%の懸濁液100質量部に攪拌しながら少しずつ加えたところ、繊維状セルロースが凝集した。得られた繊維状セルロース凝集物を減圧濾過により回収し、さらに、イオン交換水で繰り返し洗うことで、繊維状セルロース凝集物に含まれる余剰なジ-n-アルキルジメチルアンモニウムクロリド及び溶出したイオン等を除去して、ケーキ状の繊維状セルロース含有物を得た。
<製造例2>
 製造例1における3.86質量%のジ-n-アルキルジメチルアンモニウムクロリド水溶液74質量部を、2.43質量%のN,N-ジドデシルメチルアミン水溶液74質量部に0.44質量部の乳酸を添加してなるN,N-ジドデシルメチルアミン乳酸塩水溶液に変更した以外は、製造例1と同様にして、繊維状セルロース含有物を得た。
<製造例3>
 製造例1における3.86質量%のジ-n-アルキルジメチルアンモニウムクロリド水溶液74質量部を、1.83質量%のポリオキシエチレンドデシルアミン(オキシエチレン残基の個数は2)水溶液74質量部に0.44質量部の乳酸を添加してなるポリオキシエチレンドデシルアミン乳酸塩水溶液に変更した以外は、製造例1と同様にして、繊維状セルロース含有物を得た。
<製造例4>
 製造例1における3.86質量%のジ-n-アルキルジメチルアンモニウムクロリド水溶液74質量部を、2.33質量%のアルキルジメチルベンジルアンモニウムクロリド水溶液74質量部に変更した以外は、製造例1と同様にして、繊維状セルロース含有物を得た。
<製造例5>
 原料パルプとして、王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量208g/m2シート状、離解してJIS P 8121に準じて測定されるカナダ標準濾水度(CSF)が700ml)を使用した。この原料パルプに対してTEMPO酸化処理を次のようにして行った。
 まず、乾燥質量100質量部相当の上記原料パルプと、TEMPO(2,2,6,6-テトラメチルピペリジン-1-オキシル)1.6質量部と、臭化ナトリウム10質量部を、水10000質量部に分散させた。次いで、13質量%の次亜塩素酸ナトリウム水溶液を、1.0gのパルプに対して3.8mmolになるように加えて反応を開始した。反応中は0.5Mの水酸化ナトリウム水溶液を滴下してpHを10以上10.5以下に保ち、pHに変化が見られなくなった時点で反応終了と見なした。
 次いで、得られたTEMPO酸化パルプに対して洗浄処理を行った。洗浄処理は、TEMPO酸化後のパルプスラリーを脱水し、脱水シートを得た後、5000質量部のイオン交換水を注ぎ、撹拌して均一に分散させた後、濾過脱水する操作を繰り返すことにより行った。ろ液の電気伝導度が100μS/cm以下となった時点で、洗浄終点とした。
 また、得られたTEMPO酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
 得られたTEMPO酸化パルプ(繊維状セルロース)の繊維幅と、後述する方法で測定した上澄み収率を下表に示した。なお、後述する測定方法で測定されるカルボキシ基量は、1.30mmol/gだった。
 得られたTEMPO酸化パルプを、有機オニウム塩水溶液を加える直前のリン酸化パルプ1の代わりに使用し、3.86質量%のジ-n-アルキルジメチルアンモニウムクロリド(アルキル鎖の炭素原子数は16個又は18個)水溶液の添加部数を39質量部とした以外は製造例1と同様にし、繊維状セルロース含有物を得た。
<製造例6>
 リン酸二水素アンモニウム45質量部の代わりに、亜リン酸(ホスホン酸)33質量部を用いた以外は製造例1と同様に操作を行い、リン酸化パルプ2を得た。
 得られたリン酸化パルプ2に対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1210cm-1付近に亜リン酸基の互変異性体であるホスホン酸基のP=Oに基づく吸収が観察され、パルプに亜リン酸基(ホスホン酸基)が付加されていることが確認された。
 また、得られたリン酸化パルプ2を供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
 得られたリン酸化パルプ2(繊維状セルロース)の繊維幅、後述する遠心分離法による上澄み収率を下表に示した。なお、後述する〔リン酸基量の測定〕に記載の測定方法で測定される亜リン酸基量(強酸性基量)は1.50mmol/gだった。なお、弱酸性基量は、0.13mmol/gであった。
 リン酸化パルプ2を有機オニウム塩水溶液を加える直前のリン酸化パルプ1の代わりに使用し、3.86質量%のジ-n-アルキルジメチルアンモニウムクロリド(アルキル鎖の炭素原子数は16個又は18個)水溶液の添加部数を49質量部とした以外は製造例1と同様にし、繊維状セルロース含有物を得た。
<製造例7>
 製造例1における洗浄後のリン酸化パルプ1に対して、さらに製造例1におけるリン酸化処理、洗浄処理をこの順に1回ずつ行い、リン酸化パルプ3を得た。
 得られたリン酸化パルプ3に対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基に基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。
 また、得られたリン酸化パルプ3を供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
 得られたリン酸化パルプ3(繊維状セルロース)の繊維幅と、後述する方法で測定した上澄み収率を下表に示した。なお、後述する測定方法で測定されるリン酸基量(強酸性基量)は2.00mmol/gだった。
 リン酸化パルプ3を、有機オニウム塩水溶液を加える直前のリン酸化パルプ1の代わりに使用し、3.86質量%のジ-n-アルキルジメチルアンモニウムクロリド(アルキル鎖の炭素原子数は16個又は18個)水溶液の添加部数を100質量部とした以外は製造例1と同様にし、繊維状セルロース含有物を得た。
<製造例8>
 原料パルプとして、王子製紙製の未漂白針葉樹クラフトパルプ(固形分93質量%、坪量208g/m2シート状、離解してJIS P 8121に準じて測定されるカナダ標準濾水度(CSF)が700ml、カッパー価45)を使用した以外は製造例1と同様にし、未漂白リン酸化パルプを得た。
 得られた未漂白リン酸化パルプに対しFT-IRを用いて赤外線吸収スペクトルの測定を行った。その結果、1230cm-1付近にリン酸基に基づく吸収が観察され、パルプにリン酸基が付加されていることが確認された。
 また、得られた未漂白リン酸化パルプを供試して、X線回折装置にて分析を行ったところ、2θ=14°以上17°以下付近と2θ=22°以上23°以下付近の2箇所の位置に典型的なピークが確認され、セルロースI型結晶を有していることが確認された。
 得られた未漂白リン酸化パルプ(繊維状セルロース)の繊維幅と、後述する方法で測定した上澄み収率を下表に示した。なお、後述する測定方法で測定されるリン酸基量(強酸性基量)は1.45mmol/gだった。
 未漂白リン酸化パルプを、有機オニウム塩水溶液を加える直前のリン酸化パルプ1の代わりに使用した以外は製造例1と同様にし、繊維状セルロース含有物を得た。
<製造例9~11>
 製造例1で得られたリン酸化パルプ1にイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、直径12インチのシングルディスクリファイナー(熊谷理機工業社製)を用いて、クリアランス50μm、回転数3000rpmに設定して3回(製造例9)、8回(製造例10)、35回(製造例11)通液処理し、機械処理された繊維状セルロースを得た。これら機械処理された繊維状セルロースの繊維幅と、後述する方法で測定した上澄み収率を下表に示した。いずれの条件で機械処理された繊維状セルロースもX線回折により、セルロースI型結晶を維持していることが確認された。得られた機械処理された繊維状セルロースを、有機オニウム塩水溶液を加える直前のリン酸化パルプ1の代わりに用いた以外は、製造例1と同様にして、繊維状セルロース含有物を得た。
<製造例12及び13>
 製造例1で得られたリン酸化パルプ1にイオン交換水を添加し、固形分濃度が2質量%のスラリーを調製した。このスラリーを、湿式微粒化装置(スギノマシン社製、スターバースト)で200MPaの圧力にて1回(製造例12)、6回(製造例13)処理し、機械処理された繊維状セルロースを得た。これら機械処理された繊維状セルロースの繊維幅と、後述する方法で測定した上澄み収率を下表に示した。いずれの条件で機械処理された繊維状セルロースもX線回折により、セルロースI型結晶を維持していることが確認された。得られた機械処理された繊維状セルロースを、有機オニウム塩水溶液を加える直前のリン酸化パルプ1の代わりに用いた以外は、製造例1と同様にして、繊維状セルロース含有物を得た。
<製造例14>
 製造例13における、3.86質量%のジ-n-アルキルジメチルアンモニウムクロリド水溶液74質量部を、2.43質量%のN,N-ジドデシルメチルアミン水溶液74質量部に0.44質量部の乳酸を添加してなるN,N-ジドデシルメチルアミン乳酸塩水溶液に変えた以外は製造例13と同様にして、繊維状セルロース含有物を得た。
<製造例15>
 製造例13における、3.86質量%のジ-n-アルキルジメチルアンモニウムクロリド水溶液74質量部を、1.83質量%のポリオキシエチレンドデシルアミン(オキシエチレン残基の個数は2)水溶液74質量部に0.44質量部の乳酸を添加してなるポリオキシエチレンドデシルアミン乳酸塩水溶液に変えた以外は製造例13と同様にして、繊維状セルロース含有物を得た。
<製造例16>
 製造例13における、3.86質量%のジ-n-アルキルジメチルアンモニウムクロリド水溶液74質量部を、2.33質量%のアルキルジメチルベンジルアンモニウムクロリド水溶液74質量部に変えた以外は製造例13と同様にして、繊維状セルロース含有物を得た。
<製造例17>
 製造例1で得られたリン酸化パルプ1の代わりに、製造例5で得られたTEMPO酸化パルプを用いた以外は、製造例13と同様にして、機械処理された繊維状セルロースを得た。この機械処理された繊維状セルロースの繊維幅と、後述する方法で測定した上澄み収率を下表に示した。機械処理された繊維状セルロースもX線回折により、セルロースI型結晶を維持していることが確認された。得られた機械処理された繊維状セルロースを、有機オニウム塩水溶液を加える直前のTEMPO酸化パルプの代わりに用いた以外は、製造例5と同様にして、繊維状セルロース含有物を得た。
<製造例18>
 王子製紙製の針葉樹クラフトパルプ(固形分93質量%、坪量208g/m2シート状、離解してJIS P 8121に準じて測定されるカナダ標準濾水度(CSF)が700ml)を離解した後、減圧濾過によって脱水し、ケーキ状の繊維状セルロース含有物を得た。
<製造例19>
 製造例1で得られたリン酸化パルプ1(ジ-n-アルキルジメチルアンモニウムクロリド水溶液を加える前)を減圧濾過によって脱水し、ケーキ状の繊維状セルロース含有物を得た。
<製造例20>
 製造例1の中和処理の際に用いるアルカリを、1N水酸化ナトリウムから1Nテトラブチルアンモニウムヒドロキシドに変えることで、対イオンがテトラブチルアンモニウムとなったリン酸化パルプ4を得た。このリン酸化パルプ4を減圧濾過によって脱水し、ケーキ状の繊維状セルロース含有物を得た。
<実施例1~10および比較例1~10>
 製造例1~20で得られた繊維状セルロース含有物について、後述する方法により、[1]湿式分級後の歩留り、[2]フラッフ化回収率、[3]嵩、[4]水面からの沈降率を測定した。結果を下表に示した。なお、各実施例及び各比較例において用いた繊維状セルロース含有物(製造例)については、下表に記載した。
<湿式分級後の歩留り>
 得られた繊維状セルロース含有物を24時間、イオン交換水に浸漬した後、固形分濃度が20質量%となるように調製し、周速10m/sの高速回転ディスパーザーで15分間分散処理を行った。得られた分散液について、目開き150μmのJIS試験篩上で湿式分級を行い、下記式によって歩留りを算出した。なお、湿式分級時には、流量150mL/secのイオン交換水のシャワーを試験篩上部から流し、十分に繊維状セルロースが試験篩上に広がるようにした。
 また、目開き300μmのJIS試験篩上でも同様に湿式分級を行い、下記式によって歩留りを算出した。
 歩留り[質量%]=試験篩上に残った繊維状セルロース含有物の絶乾質量/供試した繊維状セルロース含有物の絶乾質量×100
<フラッフ化回収率>
 繊維状セルロース含有物をイオン交換水で1質量%濃度に希釈し、絶乾質量換算での坪量が200g/m2となるよう調整して再度減圧濾過にてシート状態とした後、30℃、相対湿度40%の条件下で恒量となるまで乾燥し、繊維状セルロース含有シートを得た。得られた繊維状セルロース含有シートを絶乾質量で1g(0.005m2)切り取り、容量75mLの粉砕機(ラボミルサープラス)にて、20,000rpmで20秒間処理を行うことでフラッフ化を行った。フラッフ処理後の繊維状セルロース含有物(フラッフ化セルロースとフラッフ化されなかったセルロースの両方を含む)を目開き2mmφの試験篩上に展開し、緩やかに振とうして、試験篩を通過した繊維状セルロース含有物(フラッフ化セルロース)の絶乾質量を測定し、下記式にしたがって、フラッフ化回収率を算出した。
 フラッフ化回収率[質量%]=試験篩を通過した繊維状セルロース含有物の絶乾質量/フラッフ化前の繊維状セルロース含有シートの絶乾質量×100
<嵩>
 フラッフ化回収率の算出時に、目開き2mmφの試験篩を通過した繊維状セルロースを、試験篩の直下に配備したメスシリンダーに落とし込み、一定体積溜まった後に、当該体積を占める繊維状セルロースの絶乾質量を測定することで、嵩(mL/g)を算出した。
<水面からの沈降率>
 フラッフ化回収率の算出時に、目開き2mmφの試験篩を通過した繊維状セルロースを、試験篩の直下50mmの位置に配備した40mmφの直径を有する容器に落下させた。この容器の壁面を伝わせながら、イオン交換水を20g/minの速度で、50g静かに注ぎ入れた直後に、撥水して水面に浮き上がった繊維状セルロースと、底部に沈降した繊維状セルロースとを別々に回収し、下記式にしたがって、水面からの沈降率を算出した。
 水面からの沈降率[質量%]=沈降した繊維状セルロース含有物の絶乾質量/(沈降した繊維状セルロース含有物の絶乾質量+水面に浮上した繊維状セルロース含有物の絶乾質量)×100
<評価1>
〔リン酸基量の測定〕
 繊維状セルロースのリン酸基量は、以下のようにして得た微細繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。微細繊維状セルロース含有スラリーは、対象となる繊維状セルロースを十分に微細化(2質量%の繊維状セルロース分散液を圧力200MPaの高圧ホモジナイザーで6回処理)した後に、微細繊維状セルロース分散液をイオン交換水で含有量が0.2質量%となるように希釈して作製した。
 イオン交換樹脂による処理は、上記繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
 また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を、30秒に1回、50μLずつ加えながら、スラリーが示す電気伝導度の値の変化を計測することにより行った。リン酸基量(mmol/g)は、計測結果のうち図1に示す第1領域に相当する領域において必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除して算出した。
〔カルボキシ基量の測定〕
 繊維状セルロースのカルボキシ基量は、以下のようにして得た微細繊維状セルロース含有スラリーに対し、イオン交換樹脂による処理を行った後、アルカリを用いた滴定を行うことにより測定した。微細繊維状セルロース含有スラリーは、対象となる繊維状セルロースを十分に微細化(2質量%の繊維状セルロース分散液を圧力200MPaの高圧ホモジナイザーで6回処理)した後に、微細繊維状セルロースを含む微細繊維状セルロース分散液をイオン交換水で含有量が0.2質量%となるように希釈して作製した。
 イオン交換樹脂による処理は、上記繊維状セルロース含有スラリーに体積で1/10の強酸性イオン交換樹脂(アンバージェット1024;オルガノ株式会社、コンディショング済)を加え、1時間振とう処理を行った後、目開き90μmのメッシュ上に注いで樹脂とスラリーを分離することにより行った。
 また、アルカリを用いた滴定は、イオン交換樹脂による処理後の繊維状セルロース含有スラリーに、0.1Nの水酸化ナトリウム水溶液を30秒に1回、50μLずつ加えながら、スラリーが示す電気伝導度の値の変化を計測することにより行った。カルボキシ基量(mmol/g)は、計測結果のうち図2に示す第1領域に相当する領域において必要としたアルカリ量(mmol)を、滴定対象スラリー中の固形分(g)で除して算出した。
〔上澄み収率の測定〕
 繊維状セルロースの上澄み収率は、繊維状セルロース分散液を遠心分離することで算出した。遠心分離後の上澄み収率は、微細化度の指標となり、微細なセルロース繊維が含まれるほど高い値となる。まず、繊維状セルロース分散液を固形分濃度0.1質量%に調製し、冷却高速遠心分離機(コクサン社製、H-2000B)を用い、12000G、10分の条件で遠心分離した。得られた上澄み液を回収し、上澄み液の固形分濃度を測定した。下記式に基づいて、セルロース繊維の上澄み収率を求めた。
 繊維状セルロースの上澄み収率(質量%)=上澄みの固形分濃度(質量%)/0.1×100
〔繊維幅〕
 製造例1~8および18~20の繊維状セルロースについては、カヤーニオートメーション社のカヤーニ繊維長測定器(FS-200形)を用いて長さ平均繊維幅を測定した。製造例13~17については、透過電子顕微鏡による観察により、繊維幅を測定した。製造例9~12については、幅1000nm以下の繊維状セルロースが実質的に存在しない、製造例1に供試したセルロース繊維を基準(R0)として、前述した光学顕微鏡観察による、少なくとも存在する繊維幅が1000nm以下のセルロース繊維の重量の割合の算出を行った。なお、観察時の繊維状セルロース濃度(C)は0.2質量%とし、観察する視野の面積S0は合計20mm2(1mm2の範囲を異なる画像で20枚)とした。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 表中の略式名称や注釈は以下のとおりである。
DADMA:ジ-n-アルキルジメチルアンモニウム
DDMA:ジドデシルメチルアンモニウム
POEDA:ポリオキシエチレンドデシルアンモニウム
ADMBA:アルキルジメチルベンジルアンモニウム
TBA:テトラブチルアンモニウム
Na:ナトリウム
*1 カヤーニファイバーラボで測定された平均値
*2 光学顕微鏡観察での測定結果
*3 TEMでの観察結果
 なお、前述した製造例において、繊維径の測定を行っているが、この繊維径は後述する有機オニウム塩の添加により得られる繊維状セルロース含有物を構成する繊維状セルロースの繊維幅と同等であった。
 実施例の繊維状セルロース含有物はフラッフ化回収率が高く、かつフラッフ化セルロースは嵩高いものであった。また、実施例の繊維状セルロース含有物から得られたフラッフ化セルロースは水面からの沈降率が低く、疎水性にすぐれていた。このことから、実施例では、フラッフ性が良好であり、かつフラッフ化後の疎水性に優れたフラッフ化セルロースが得られていた。
<評価2>
 <フラッフ化回収率>に記載の方法で、目開き2mmφの試験篩の下に回収されたフラッフ化セルロース(実施例1、5、8、比較例4、7の繊維状セルロース含有物を使用)を分取し、[1]溶剤濡れテスト、[2]樹脂複合テストを下記の方法で行った。
<溶剤濡れテスト>
 フラッフ化された繊維状セルロースに固液比6mL/g(mLはトルエンの体積、gは繊維状セルロースの絶乾質量)になるようにトルエンを加え、常温で緩やかに撹拌した際の、液層の流動性を目視で観察した。
○:目視で液の流動性が下がる(湿潤したひと塊の状態になる)
×:目視で液の流動性が下がらない(自由に流動するトルエンが多い)
<樹脂複合テスト>
 トルエンにスチレンポリマー(重合度 約2000)を10質量%の濃度となるように溶解させ、この溶液にフラッフ化セルロースを、スチレンポリマーの全質量に対して、5質量%になるよう加え、常温で緩やかに撹拌した。得られたスチレンポリマー・フラッフ化セルロース分散液を、坪量2000g/m2になるように、キャスト乾燥させた後、繊維状セルロースとスチレン樹脂との複合性を目視で観察した。
○:厚さ方向で、ほぼ全域に繊維状セルロースが分布している
×:厚さ方向で、底部に繊維状セルロースが局在している
Figure JPOXMLDOC01-appb-T000007
 実施例では、溶剤及び樹脂との親和性の高いフラッフ化セルロースが得られていた。また、樹脂複合テスト後には、フラッフ化セルロースを含む樹脂複合体が形成されていた。

Claims (7)

  1.  アニオン性基を有する繊維状セルロースを含む繊維状セルロース含有物であって、
     前記繊維状セルロース含有物の下記測定方法で測定される歩留りが50質量%以上であり、
     前記繊維状セルロース含有物は、前記アニオン性基の対イオンとして有機オニウムイオンを有し、
     前記有機オニウムイオンは、下記(a)及び(b)から選択される少なくとも一方の条件を満たす、繊維状セルロース含有物;
    (a)炭素数が5以上の炭化水素基を含む;
    (b)総炭素数が17以上である;
    (測定方法)
     繊維状セルロース含有物を24時間、イオン交換水に浸漬した後、固形分濃度を20質量%に調製し、周速10m/sの高速回転ディスパーザーで15分間分散処理を行う;得られた分散液について、目開き150μmのJIS試験篩上で湿式分級を行い、下記式によって歩留りを算出する。
     歩留り[質量%]=試験篩上に残った繊維状セルロース含有物の絶乾質量/供試した繊維状セルロース含有物の絶乾質量×100
  2.  前記有機オニウムイオンは、有機アンモニウムイオンである請求項1に記載の繊維状セルロース含有物。
  3.  前記繊維状セルロースの繊維幅は、1000nmより大きい、請求項1又は2に記載の繊維状セルロース含有物。
  4.  前記アニオン性基量が、0.50mmol/g以上である請求項1~3のいずれか1項に記載の繊維状セルロース含有物。
  5.  請求項1~4のいずれか1項に記載の繊維状セルロース含有物をフラッフ化してなるフラッフ化セルロース。
  6.  請求項1~4のいずれか1項に記載の繊維状セルロース含有物、もしくは、請求項5に記載のフラッフ化セルロースと、
     有機溶剤とを含む組成物。
  7.  請求項1~4のいずれか1項に記載の繊維状セルロース含有物、もしくは、請求項5に記載のフラッフ化セルロースと、
     樹脂とを含む組成物。
PCT/JP2019/034906 2018-09-06 2019-09-05 繊維状セルロース含有物、フラッフ化セルロース及び組成物 WO2020050348A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US17/274,004 US20210253744A1 (en) 2018-09-06 2019-09-05 Cellulose fiber-containing material, fluffed cellulose, and composition
EP19857424.6A EP3848504B1 (en) 2018-09-06 2019-09-05 Cellulose fiber-containing material, fluffed cellulose, and composition
JP2020541289A JP7255598B2 (ja) 2018-09-06 2019-09-05 繊維状セルロース含有物、フラッフ化セルロース及び組成物
CN201980058251.6A CN112654746B (zh) 2018-09-06 2019-09-05 纤维状纤维素含有物、绒毛化纤维素及组合物
KR1020217006997A KR20210039466A (ko) 2018-09-06 2019-09-05 섬유상 셀룰로오스 함유물, 플러프화 셀룰로오스 및 조성물

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018166886 2018-09-06
JP2018-166886 2018-09-06

Publications (1)

Publication Number Publication Date
WO2020050348A1 true WO2020050348A1 (ja) 2020-03-12

Family

ID=69721905

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/034906 WO2020050348A1 (ja) 2018-09-06 2019-09-05 繊維状セルロース含有物、フラッフ化セルロース及び組成物

Country Status (6)

Country Link
US (1) US20210253744A1 (ja)
EP (1) EP3848504B1 (ja)
JP (1) JP7255598B2 (ja)
KR (1) KR20210039466A (ja)
CN (1) CN112654746B (ja)
WO (1) WO2020050348A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810284A (ja) * 1994-06-28 1996-01-16 New Oji Paper Co Ltd セルロース系繊維の製造方法及び吸収性構造物
US20060184147A1 (en) * 2005-02-16 2006-08-17 Hamed Othman A Treatment composition for making acquisition fluff pulp in sheet form
JP2007046219A (ja) 2005-07-12 2007-02-22 Canon Inc 被記録媒体及び該被記録媒体を用いた画像形成方法
JP2010077248A (ja) * 2008-09-25 2010-04-08 Teijin Ltd 微細修飾セルロース含有芳香族ポリアミドコンポジット
JP2011047084A (ja) * 2009-08-28 2011-03-10 Sumitomo Bakelite Co Ltd 有機化繊維、樹脂組成物及びその製造方法
JP2015213643A (ja) 2014-05-12 2015-12-03 ユニ・チャーム株式会社 吸収体用の不織布シートを含む吸収性物品、及び当該吸収性物品に用いられる不織布シートの製造方法
JP2017065109A (ja) * 2015-09-30 2017-04-06 王子ホールディングス株式会社 シートおよび積層体

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107630385B (zh) * 2012-08-10 2020-12-11 王子控股株式会社 微细纤维状纤维素聚集体及其制造方法、以及微细纤维状纤维素分散液的再制造方法
EP3879029A1 (en) * 2015-05-15 2021-09-15 Nippon Paper Industries Co., Ltd. Anion-modified cellulose nanofiber dispersion liquid and composition
CA2997023C (en) * 2015-08-04 2021-02-16 Oji Holdings Corporation Cosmetic thickeners comprising microfibrous cellulose and a water-soluble polymer with improved properties
WO2017057578A1 (ja) * 2015-09-30 2017-04-06 王子ホールディングス株式会社 シートおよび積層体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0810284A (ja) * 1994-06-28 1996-01-16 New Oji Paper Co Ltd セルロース系繊維の製造方法及び吸収性構造物
US20060184147A1 (en) * 2005-02-16 2006-08-17 Hamed Othman A Treatment composition for making acquisition fluff pulp in sheet form
JP2007046219A (ja) 2005-07-12 2007-02-22 Canon Inc 被記録媒体及び該被記録媒体を用いた画像形成方法
JP2010077248A (ja) * 2008-09-25 2010-04-08 Teijin Ltd 微細修飾セルロース含有芳香族ポリアミドコンポジット
JP2011047084A (ja) * 2009-08-28 2011-03-10 Sumitomo Bakelite Co Ltd 有機化繊維、樹脂組成物及びその製造方法
JP2015213643A (ja) 2014-05-12 2015-12-03 ユニ・チャーム株式会社 吸収体用の不織布シートを含む吸収性物品、及び当該吸収性物品に用いられる不織布シートの製造方法
JP2017065109A (ja) * 2015-09-30 2017-04-06 王子ホールディングス株式会社 シートおよび積層体

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SEAGAL ET AL., TEXTILE RESEARCH JOURNAL, vol. 29, 1959, pages 786

Also Published As

Publication number Publication date
CN112654746B (zh) 2022-04-29
JP7255598B2 (ja) 2023-04-11
EP3848504C0 (en) 2023-11-08
JPWO2020050348A1 (ja) 2021-09-16
EP3848504A4 (en) 2022-05-25
US20210253744A1 (en) 2021-08-19
KR20210039466A (ko) 2021-04-09
EP3848504B1 (en) 2023-11-08
EP3848504A1 (en) 2021-07-14
CN112654746A (zh) 2021-04-13

Similar Documents

Publication Publication Date Title
JP7196051B2 (ja) リン酸エステル化微細セルロース繊維及びその製造方法
JP6613771B2 (ja) 微細繊維状セルロース含有物
JP7172033B2 (ja) 繊維状セルロース、繊維状セルロース含有組成物、繊維状セルロース分散液及び繊維状セルロースの製造方法
WO2019163797A1 (ja) 繊維状セルロース含有被膜の製造方法、樹脂組成物、被膜及び積層体
JP6601088B2 (ja) 微細繊維状セルロース含有物
WO2021153590A1 (ja) 微細繊維状セルロース・ナノカーボン含有物の製造方法及び微細繊維状セルロース・ナノカーボン含有物
WO2018159743A1 (ja) 繊維状セルロース、繊維状セルロース含有組成物、繊維状セルロース分散液及び繊維状セルロースの製造方法
WO2018062501A1 (ja) 組成物
JP7255106B2 (ja) 固形状体及び繊維状セルロース含有組成物
WO2020050348A1 (ja) 繊維状セルロース含有物、フラッフ化セルロース及び組成物
JP2020033398A (ja) 微細繊維状セルロース含有組成物およびその製造方法
JP6607328B1 (ja) 固形状体及び繊維状セルロース含有組成物
JP7351305B2 (ja) 繊維状セルロース含有組成物、液状組成物及び成形体
JP7346878B2 (ja) リンオキソ酸化パルプの製造方法
JP2021116519A (ja) 微細繊維状セルロース・微細無機層状化合物含有物の製造方法及び微細繊維状セルロース・微細無機層状化合物含有物
JP7135729B2 (ja) セルロース含有組成物、液状組成物、固形状体及びセルロース含有組成物の製造方法
JP7127005B2 (ja) 微細繊維状セルロース含有物
JP2020147637A (ja) 樹脂組成物および成形体
WO2020050346A1 (ja) 固形状体、シート及び固形状体の製造方法
WO2020050347A1 (ja) 固形状体及び固形状体の製造方法
WO2020050349A1 (ja) 固形状体及び繊維状セルロース含有組成物
JP7346880B2 (ja) 微細繊維状セルロースの製造方法
JP2021116430A (ja) 微細繊維状セルロース・ナノカーボン含有物の製造方法及び微細繊維状セルロース・ナノカーボン含有物
JP2021116518A (ja) 微細繊維状セルロース・微細無機層状化合物含有物の製造方法及び微細繊維状セルロース・微細無機層状化合物含有物
JP2021116429A (ja) 微細繊維状セルロース・ナノカーボン含有物の製造方法及び微細繊維状セルロース・ナノカーボン含有物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19857424

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020541289

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217006997

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019857424

Country of ref document: EP

Effective date: 20210406